mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
bd7c9815ce
CONSISTENT SNAPSHOT OPTION A transaction is started with a consistent snapshot. After the transaction is started new indexes are added to the table. Now when we issue an update statement, the optimizer chooses an index. When the index scan is being initialized via ha_innobase::change_active_index(), InnoDB reports the error code HA_ERR_TABLE_DEF_CHANGED, with message stating that "insufficient history for index". This error message is propagated up to the SQL layer. But the my_error() api is never called. The statement level diagnostics area is not updated with the correct error status (it remains in Diagnostics_area::DA_EMPTY). Hence the following check in the Protocol::end_statement() fails. 516 case Diagnostics_area::DA_EMPTY: 517 default: 518 DBUG_ASSERT(0); 519 error= send_ok(thd->server_status, 0, 0, 0, NULL); 520 break; The fix is to backport the fix of bugs 14365043, 11761652 and 11746399. 14365043 PROTOCOL::END_STATEMENT(): ASSERTION `0' FAILED 11761652 HA_RND_INIT() RESULT CODE NOT CHECKED 11746399 RETURN VALUES OF HA_INDEX_INIT() AND INDEX_INIT() IGNORED rb://1227 approved by guilhem and mattiasj.
1023 lines
34 KiB
C++
1023 lines
34 KiB
C++
/* Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
|
|
/**
|
|
@file
|
|
|
|
Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
|
|
by replacing the aggregate expression with a constant.
|
|
|
|
Given a table with a compound key on columns (a,b,c), the following
|
|
types of queries are optimised (assuming the table handler supports
|
|
the required methods)
|
|
|
|
@verbatim
|
|
SELECT COUNT(*) FROM t1[,t2,t3,...]
|
|
SELECT MIN(b) FROM t1 WHERE a=const
|
|
SELECT MAX(c) FROM t1 WHERE a=const AND b=const
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
|
|
SELECT MIN(b) FROM t1 WHERE a=const AND b>const
|
|
SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
|
|
@endverbatim
|
|
|
|
Instead of '<' one can use '<=', '>', '>=' and '=' as well.
|
|
Instead of 'a=const' the condition 'a IS NULL' can be used.
|
|
|
|
If all selected fields are replaced then we will also remove all
|
|
involved tables and return the answer without any join. Thus, the
|
|
following query will be replaced with a row of two constants:
|
|
@verbatim
|
|
SELECT MAX(b), MIN(d) FROM t1,t2
|
|
WHERE a=const AND b<const AND d>const
|
|
@endverbatim
|
|
(assuming a index for column d of table t2 is defined)
|
|
*/
|
|
|
|
#include "sql_priv.h"
|
|
#include "key.h" // key_cmp_if_same
|
|
#include "sql_select.h"
|
|
|
|
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field,
|
|
COND *cond, uint *range_fl,
|
|
uint *key_prefix_length);
|
|
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
|
|
COND *cond, uint range_fl, uint prefix_len);
|
|
static int maxmin_in_range(bool max_fl, Field* field, COND *cond);
|
|
|
|
|
|
/*
|
|
Get exact count of rows in all tables
|
|
|
|
SYNOPSIS
|
|
get_exact_records()
|
|
tables List of tables
|
|
|
|
NOTES
|
|
When this is called, we know all table handlers supports HA_HAS_RECORDS
|
|
or HA_STATS_RECORDS_IS_EXACT
|
|
|
|
RETURN
|
|
ULONGLONG_MAX Error: Could not calculate number of rows
|
|
# Multiplication of number of rows in all tables
|
|
*/
|
|
|
|
static ulonglong get_exact_record_count(TABLE_LIST *tables)
|
|
{
|
|
ulonglong count= 1;
|
|
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
|
|
{
|
|
ha_rows tmp= tl->table->file->records();
|
|
if ((tmp == HA_POS_ERROR))
|
|
return ULONGLONG_MAX;
|
|
count*= tmp;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
/**
|
|
Use index to read MIN(field) value.
|
|
|
|
@param table Table object
|
|
@param ref Reference to the structure where we store the key value
|
|
@item_field Field used in MIN()
|
|
@range_fl Whether range endpoint is strict less than
|
|
@prefix_len Length of common key part for the range
|
|
|
|
@retval
|
|
0 No errors
|
|
HA_ERR_... Otherwise
|
|
*/
|
|
|
|
static int get_index_min_value(TABLE *table, TABLE_REF *ref,
|
|
Item_field *item_field, uint range_fl,
|
|
uint prefix_len)
|
|
{
|
|
int error;
|
|
|
|
if (!ref->key_length)
|
|
error= table->file->index_first(table->record[0]);
|
|
else
|
|
{
|
|
/*
|
|
Use index to replace MIN/MAX functions with their values
|
|
according to the following rules:
|
|
|
|
1) Insert the minimum non-null values where the WHERE clause still
|
|
matches, or
|
|
2) a NULL value if there are only NULL values for key_part_k.
|
|
3) Fail, producing a row of nulls
|
|
|
|
Implementation: Read the smallest value using the search key. If
|
|
the interval is open, read the next value after the search
|
|
key. If read fails, and we're looking for a MIN() value for a
|
|
nullable column, test if there is an exact match for the key.
|
|
*/
|
|
if (!(range_fl & NEAR_MIN))
|
|
/*
|
|
Closed interval: Either The MIN argument is non-nullable, or
|
|
we have a >= predicate for the MIN argument.
|
|
*/
|
|
error= table->file->index_read_map(table->record[0],
|
|
ref->key_buff,
|
|
make_prev_keypart_map(ref->key_parts),
|
|
HA_READ_KEY_OR_NEXT);
|
|
else
|
|
{
|
|
/*
|
|
Open interval: There are two cases:
|
|
1) We have only MIN() and the argument column is nullable, or
|
|
2) there is a > predicate on it, nullability is irrelevant.
|
|
We need to scan the next bigger record first.
|
|
Open interval is not used if the search key involves the last keypart,
|
|
and it would not work.
|
|
*/
|
|
DBUG_ASSERT(prefix_len < ref->key_length);
|
|
error= table->file->index_read_map(table->record[0],
|
|
ref->key_buff,
|
|
make_prev_keypart_map(ref->key_parts),
|
|
HA_READ_AFTER_KEY);
|
|
/*
|
|
If the found record is outside the group formed by the search
|
|
prefix, or there is no such record at all, check if all
|
|
records in that group have NULL in the MIN argument
|
|
column. If that is the case return that NULL.
|
|
|
|
Check if case 1 from above holds. If it does, we should read
|
|
the skipped tuple.
|
|
*/
|
|
if (item_field->field->real_maybe_null() &&
|
|
ref->key_buff[prefix_len] == 1 &&
|
|
/*
|
|
Last keypart (i.e. the argument to MIN) is set to NULL by
|
|
find_key_for_maxmin only if all other keyparts are bound
|
|
to constants in a conjunction of equalities. Hence, we
|
|
can detect this by checking only if the last keypart is
|
|
NULL.
|
|
*/
|
|
(error == HA_ERR_KEY_NOT_FOUND ||
|
|
key_cmp_if_same(table, ref->key_buff, ref->key, prefix_len)))
|
|
{
|
|
DBUG_ASSERT(item_field->field->real_maybe_null());
|
|
error= table->file->index_read_map(table->record[0],
|
|
ref->key_buff,
|
|
make_prev_keypart_map(ref->key_parts),
|
|
HA_READ_KEY_EXACT);
|
|
}
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/**
|
|
Use index to read MAX(field) value.
|
|
|
|
@param table Table object
|
|
@param ref Reference to the structure where we store the key value
|
|
@range_fl Whether range endpoint is strict greater than
|
|
|
|
@retval
|
|
0 No errors
|
|
HA_ERR_... Otherwise
|
|
*/
|
|
|
|
static int get_index_max_value(TABLE *table, TABLE_REF *ref, uint range_fl)
|
|
{
|
|
return (ref->key_length ?
|
|
table->file->index_read_map(table->record[0], ref->key_buff,
|
|
make_prev_keypart_map(ref->key_parts),
|
|
range_fl & NEAR_MAX ?
|
|
HA_READ_BEFORE_KEY :
|
|
HA_READ_PREFIX_LAST_OR_PREV) :
|
|
table->file->index_last(table->record[0]));
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
Substitutes constants for some COUNT(), MIN() and MAX() functions.
|
|
|
|
@param thd thread handler
|
|
@param tables list of leaves of join table tree
|
|
@param all_fields All fields to be returned
|
|
@param conds WHERE clause
|
|
|
|
@note
|
|
This function is only called for queries with aggregate functions and no
|
|
GROUP BY part. This means that the result set shall contain a single
|
|
row only
|
|
|
|
@retval
|
|
0 no errors
|
|
@retval
|
|
1 if all items were resolved
|
|
@retval
|
|
HA_ERR_KEY_NOT_FOUND on impossible conditions
|
|
@retval
|
|
HA_ERR_... if a deadlock or a lock wait timeout happens, for example
|
|
@retval
|
|
ER_... e.g. ER_SUBQUERY_NO_1_ROW
|
|
*/
|
|
|
|
int opt_sum_query(THD *thd,
|
|
TABLE_LIST *tables, List<Item> &all_fields, COND *conds)
|
|
{
|
|
List_iterator_fast<Item> it(all_fields);
|
|
int const_result= 1;
|
|
bool recalc_const_item= 0;
|
|
ulonglong count= 1;
|
|
bool is_exact_count= TRUE, maybe_exact_count= TRUE;
|
|
table_map removed_tables= 0, outer_tables= 0, used_tables= 0;
|
|
table_map where_tables= 0;
|
|
Item *item;
|
|
int error;
|
|
|
|
DBUG_ENTER("opt_sum_query");
|
|
|
|
if (conds)
|
|
where_tables= conds->used_tables();
|
|
|
|
/*
|
|
Analyze outer join dependencies, and, if possible, compute the number
|
|
of returned rows.
|
|
*/
|
|
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
|
|
{
|
|
TABLE_LIST *embedded;
|
|
for (embedded= tl ; embedded; embedded= embedded->embedding)
|
|
{
|
|
if (embedded->on_expr)
|
|
break;
|
|
}
|
|
if (embedded)
|
|
/* Don't replace expression on a table that is part of an outer join */
|
|
{
|
|
outer_tables|= tl->table->map;
|
|
|
|
/*
|
|
We can't optimise LEFT JOIN in cases where the WHERE condition
|
|
restricts the table that is used, like in:
|
|
SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
|
|
WHERE t2.field IS NULL;
|
|
*/
|
|
if (tl->table->map & where_tables)
|
|
DBUG_RETURN(0);
|
|
}
|
|
else
|
|
used_tables|= tl->table->map;
|
|
|
|
/*
|
|
If the storage manager of 'tl' gives exact row count as part of
|
|
statistics (cheap), compute the total number of rows. If there are
|
|
no outer table dependencies, this count may be used as the real count.
|
|
Schema tables are filled after this function is invoked, so we can't
|
|
get row count
|
|
*/
|
|
if (!(tl->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) ||
|
|
tl->schema_table)
|
|
{
|
|
maybe_exact_count&= test(!tl->schema_table &&
|
|
(tl->table->file->ha_table_flags() &
|
|
HA_HAS_RECORDS));
|
|
is_exact_count= FALSE;
|
|
count= 1; // ensure count != 0
|
|
}
|
|
else
|
|
{
|
|
error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
|
|
if(error)
|
|
{
|
|
tl->table->file->print_error(error, MYF(ME_FATALERROR));
|
|
DBUG_RETURN(error);
|
|
}
|
|
count*= tl->table->file->stats.records;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Iterate through all items in the SELECT clause and replace
|
|
COUNT(), MIN() and MAX() with constants (if possible).
|
|
*/
|
|
|
|
while ((item= it++))
|
|
{
|
|
if (item->type() == Item::SUM_FUNC_ITEM)
|
|
{
|
|
Item_sum *item_sum= (((Item_sum*) item));
|
|
switch (item_sum->sum_func()) {
|
|
case Item_sum::COUNT_FUNC:
|
|
/*
|
|
If the expr in COUNT(expr) can never be null we can change this
|
|
to the number of rows in the tables if this number is exact and
|
|
there are no outer joins.
|
|
*/
|
|
if (!conds && !((Item_sum_count*) item)->get_arg(0)->maybe_null &&
|
|
!outer_tables && maybe_exact_count)
|
|
{
|
|
if (!is_exact_count)
|
|
{
|
|
if ((count= get_exact_record_count(tables)) == ULONGLONG_MAX)
|
|
{
|
|
/* Error from handler in counting rows. Don't optimize count() */
|
|
const_result= 0;
|
|
continue;
|
|
}
|
|
is_exact_count= 1; // count is now exact
|
|
}
|
|
((Item_sum_count*) item)->make_const((longlong) count);
|
|
recalc_const_item= 1;
|
|
}
|
|
else
|
|
const_result= 0;
|
|
break;
|
|
case Item_sum::MIN_FUNC:
|
|
case Item_sum::MAX_FUNC:
|
|
{
|
|
int is_max= test(item_sum->sum_func() == Item_sum::MAX_FUNC);
|
|
/*
|
|
If MIN/MAX(expr) is the first part of a key or if all previous
|
|
parts of the key is found in the COND, then we can use
|
|
indexes to find the key.
|
|
*/
|
|
Item *expr=item_sum->get_arg(0);
|
|
if (expr->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
uchar key_buff[MAX_KEY_LENGTH];
|
|
TABLE_REF ref;
|
|
uint range_fl, prefix_len;
|
|
|
|
ref.key_buff= key_buff;
|
|
Item_field *item_field= (Item_field*) (expr->real_item());
|
|
TABLE *table= item_field->field->table;
|
|
|
|
/*
|
|
Look for a partial key that can be used for optimization.
|
|
If we succeed, ref.key_length will contain the length of
|
|
this key, while prefix_len will contain the length of
|
|
the beginning of this key without field used in MIN/MAX().
|
|
Type of range for the key part for this field will be
|
|
returned in range_fl.
|
|
*/
|
|
if (table->file->inited || (outer_tables & table->map) ||
|
|
!find_key_for_maxmin(is_max, &ref, item_field->field, conds,
|
|
&range_fl, &prefix_len))
|
|
{
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
if ((error= table->file->ha_index_init((uint) ref.key, 1)))
|
|
{
|
|
table->file->print_error(error, MYF(0));
|
|
table->set_keyread(FALSE);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
error= is_max ?
|
|
get_index_max_value(table, &ref, range_fl) :
|
|
get_index_min_value(table, &ref, item_field, range_fl,
|
|
prefix_len);
|
|
|
|
/* Verify that the read tuple indeed matches the search key */
|
|
if (!error && reckey_in_range(is_max, &ref, item_field->field,
|
|
conds, range_fl, prefix_len))
|
|
error= HA_ERR_KEY_NOT_FOUND;
|
|
table->set_keyread(FALSE);
|
|
table->file->ha_index_end();
|
|
if (error)
|
|
{
|
|
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(HA_ERR_KEY_NOT_FOUND); // No rows matching WHERE
|
|
/* HA_ERR_LOCK_DEADLOCK or some other error */
|
|
table->file->print_error(error, MYF(0));
|
|
DBUG_RETURN(error);
|
|
}
|
|
removed_tables|= table->map;
|
|
}
|
|
else if (!expr->const_item() || !is_exact_count)
|
|
{
|
|
/*
|
|
The optimization is not applicable in both cases:
|
|
(a) 'expr' is a non-constant expression. Then we can't
|
|
replace 'expr' by a constant.
|
|
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
|
|
NULL if the query does not return any rows. Thus, if we are not
|
|
able to determine if the query returns any rows, we can't apply
|
|
the optimization and replace MIN/MAX with a constant.
|
|
*/
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
item_sum->set_aggregator(item_sum->has_with_distinct() ?
|
|
Aggregator::DISTINCT_AGGREGATOR :
|
|
Aggregator::SIMPLE_AGGREGATOR);
|
|
/*
|
|
If count == 0 (so is_exact_count == TRUE) and
|
|
there're no outer joins, set to NULL,
|
|
otherwise set to the constant value.
|
|
*/
|
|
if (!count && !outer_tables)
|
|
{
|
|
item_sum->aggregator_clear();
|
|
}
|
|
else
|
|
item_sum->reset_and_add();
|
|
item_sum->make_const();
|
|
recalc_const_item= 1;
|
|
break;
|
|
}
|
|
default:
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
}
|
|
else if (const_result)
|
|
{
|
|
if (recalc_const_item)
|
|
item->update_used_tables();
|
|
if (!item->const_item())
|
|
const_result= 0;
|
|
}
|
|
}
|
|
|
|
if (thd->is_error())
|
|
DBUG_RETURN(thd->stmt_da->sql_errno());
|
|
|
|
/*
|
|
If we have a where clause, we can only ignore searching in the
|
|
tables if MIN/MAX optimisation replaced all used tables
|
|
We do not use replaced values in case of:
|
|
SELECT MIN(key) FROM table_1, empty_table
|
|
removed_tables is != 0 if we have used MIN() or MAX().
|
|
*/
|
|
if (removed_tables && used_tables != removed_tables)
|
|
const_result= 0; // We didn't remove all tables
|
|
DBUG_RETURN(const_result);
|
|
}
|
|
|
|
|
|
/**
|
|
Test if the predicate compares a field with constants.
|
|
|
|
@param func_item Predicate item
|
|
@param[out] args Here we store the field followed by constants
|
|
@param[out] inv_order Is set to 1 if the predicate is of the form
|
|
'const op field'
|
|
|
|
@retval
|
|
0 func_item is a simple predicate: a field is compared with
|
|
constants
|
|
@retval
|
|
1 Otherwise
|
|
*/
|
|
|
|
bool simple_pred(Item_func *func_item, Item **args, bool *inv_order)
|
|
{
|
|
Item *item;
|
|
*inv_order= 0;
|
|
switch (func_item->argument_count()) {
|
|
case 0:
|
|
/* MULT_EQUAL_FUNC */
|
|
{
|
|
Item_equal *item_equal= (Item_equal *) func_item;
|
|
Item_equal_iterator it(*item_equal);
|
|
args[0]= it++;
|
|
if (it++)
|
|
return 0;
|
|
if (!(args[1]= item_equal->get_const()))
|
|
return 0;
|
|
}
|
|
break;
|
|
case 1:
|
|
/* field IS NULL */
|
|
item= func_item->arguments()[0];
|
|
if (item->type() != Item::FIELD_ITEM)
|
|
return 0;
|
|
args[0]= item;
|
|
break;
|
|
case 2:
|
|
/* 'field op const' or 'const op field' */
|
|
item= func_item->arguments()[0];
|
|
if (item->type() == Item::FIELD_ITEM)
|
|
{
|
|
args[0]= item;
|
|
item= func_item->arguments()[1];
|
|
if (!item->const_item())
|
|
return 0;
|
|
args[1]= item;
|
|
}
|
|
else if (item->const_item())
|
|
{
|
|
args[1]= item;
|
|
item= func_item->arguments()[1];
|
|
if (item->type() != Item::FIELD_ITEM)
|
|
return 0;
|
|
args[0]= item;
|
|
*inv_order= 1;
|
|
}
|
|
else
|
|
return 0;
|
|
break;
|
|
case 3:
|
|
/* field BETWEEN const AND const */
|
|
item= func_item->arguments()[0];
|
|
if (item->type() == Item::FIELD_ITEM)
|
|
{
|
|
args[0]= item;
|
|
for (int i= 1 ; i <= 2; i++)
|
|
{
|
|
item= func_item->arguments()[i];
|
|
if (!item->const_item())
|
|
return 0;
|
|
args[i]= item;
|
|
}
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether a condition matches a key to get {MAX|MIN}(field):.
|
|
|
|
For the index specified by the keyinfo parameter and an index that
|
|
contains the field as its component (field_part), the function
|
|
checks whether
|
|
|
|
- the condition cond is a conjunction,
|
|
- all of its conjuncts refer to columns of the same table, and
|
|
- each conjunct is on one of the following forms:
|
|
- f_i = const_i or const_i = f_i or f_i IS NULL,
|
|
where f_i is part of the index
|
|
- field {<|<=|>=|>|=} const
|
|
- const {<|<=|>=|>|=} field
|
|
- field BETWEEN const_1 AND const_2
|
|
|
|
As a side-effect, the key value to be used for looking up the MIN/MAX value
|
|
is actually stored inside the Field object. An interesting feature is that
|
|
the function will find the most restrictive endpoint by over-eager
|
|
evaluation of the @c WHERE condition. It continually stores the current
|
|
endpoint inside the Field object. For a query such as
|
|
|
|
@code
|
|
SELECT MIN(a) FROM t1 WHERE a > 3 AND a > 5;
|
|
@endcode
|
|
|
|
the algorithm will recurse over the conjuction, storing first a 3 in the
|
|
field. In the next recursive invocation the expression a > 5 is evaluated
|
|
as 3 > 5 (Due to the dual nature of Field objects as value carriers and
|
|
field identifiers), which will obviously fail, leading to 5 being stored in
|
|
the Field object.
|
|
|
|
@param[in] max_fl Set to true if we are optimizing MAX(),
|
|
false means we are optimizing %MIN()
|
|
@param[in, out] ref Reference to the structure where the function
|
|
stores the key value
|
|
@param[in] keyinfo Reference to the key info
|
|
@param[in] field_part Pointer to the key part for the field
|
|
@param[in] cond WHERE condition
|
|
@param[in,out] key_part_used Map of matchings parts. The function will output
|
|
the set of key parts actually being matched in
|
|
this set, yet it relies on the caller to
|
|
initialize the value to zero. This is due
|
|
to the fact that this value is passed
|
|
recursively.
|
|
@param[in,out] range_fl Says whether endpoints use strict greater/less
|
|
than.
|
|
@param[out] prefix_len Length of common key part for the range
|
|
where MAX/MIN is searched for
|
|
|
|
@retval
|
|
false Index can't be used.
|
|
@retval
|
|
true We can use the index to get MIN/MAX value
|
|
*/
|
|
|
|
static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo,
|
|
KEY_PART_INFO *field_part, COND *cond,
|
|
key_part_map *key_part_used, uint *range_fl,
|
|
uint *prefix_len)
|
|
{
|
|
DBUG_ENTER("matching_cond");
|
|
if (!cond)
|
|
DBUG_RETURN(TRUE);
|
|
Field *field= field_part->field;
|
|
if (!(cond->used_tables() & field->table->map))
|
|
{
|
|
/* Condition doesn't restrict the used table */
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (cond->type() == Item::COND_ITEM)
|
|
{
|
|
if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
/* AND */
|
|
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (!matching_cond(max_fl, ref, keyinfo, field_part, item,
|
|
key_part_used, range_fl, prefix_len))
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
if (cond->type() != Item::FUNC_ITEM)
|
|
DBUG_RETURN(FALSE); // Not operator, can't optimize
|
|
|
|
bool eq_type= 0; // =, <=> or IS NULL
|
|
bool is_null_safe_eq= FALSE; // The operator is NULL safe, e.g. <=>
|
|
bool noeq_type= 0; // < or >
|
|
bool less_fl= 0; // < or <=
|
|
bool is_null= 0; // IS NULL
|
|
bool between= 0; // BETWEEN ... AND ...
|
|
|
|
switch (((Item_func*) cond)->functype()) {
|
|
case Item_func::ISNULL_FUNC:
|
|
is_null= 1; /* fall through */
|
|
case Item_func::EQ_FUNC:
|
|
eq_type= TRUE;
|
|
break;
|
|
case Item_func::EQUAL_FUNC:
|
|
eq_type= is_null_safe_eq= TRUE;
|
|
break;
|
|
case Item_func::LT_FUNC:
|
|
noeq_type= 1; /* fall through */
|
|
case Item_func::LE_FUNC:
|
|
less_fl= 1;
|
|
break;
|
|
case Item_func::GT_FUNC:
|
|
noeq_type= 1; /* fall through */
|
|
case Item_func::GE_FUNC:
|
|
break;
|
|
case Item_func::BETWEEN:
|
|
between= 1;
|
|
break;
|
|
case Item_func::MULT_EQUAL_FUNC:
|
|
eq_type= 1;
|
|
break;
|
|
default:
|
|
DBUG_RETURN(FALSE); // Can't optimize function
|
|
}
|
|
|
|
Item *args[3];
|
|
bool inv;
|
|
|
|
/* Test if this is a comparison of a field and constant */
|
|
if (!simple_pred((Item_func*) cond, args, &inv))
|
|
DBUG_RETURN(FALSE);
|
|
|
|
if (!is_null_safe_eq && !is_null &&
|
|
(args[1]->is_null() || (between && args[2]->is_null())))
|
|
DBUG_RETURN(FALSE);
|
|
|
|
if (inv && !eq_type)
|
|
less_fl= 1-less_fl; // Convert '<' -> '>' (etc)
|
|
|
|
/* Check if field is part of the tested partial key */
|
|
uchar *key_ptr= ref->key_buff;
|
|
KEY_PART_INFO *part;
|
|
for (part= keyinfo->key_part; ; key_ptr+= part++->store_length)
|
|
|
|
{
|
|
if (part > field_part)
|
|
DBUG_RETURN(FALSE); // Field is beyond the tested parts
|
|
if (part->field->eq(((Item_field*) args[0])->field))
|
|
break; // Found a part of the key for the field
|
|
}
|
|
|
|
bool is_field_part= part == field_part;
|
|
if (!(is_field_part || eq_type))
|
|
DBUG_RETURN(FALSE);
|
|
|
|
key_part_map org_key_part_used= *key_part_used;
|
|
if (eq_type || between || max_fl == less_fl)
|
|
{
|
|
uint length= (key_ptr-ref->key_buff)+part->store_length;
|
|
if (ref->key_length < length)
|
|
{
|
|
/* Ultimately ref->key_length will contain the length of the search key */
|
|
ref->key_length= length;
|
|
ref->key_parts= (part - keyinfo->key_part) + 1;
|
|
}
|
|
if (!*prefix_len && part+1 == field_part)
|
|
*prefix_len= length;
|
|
if (is_field_part && eq_type)
|
|
*prefix_len= ref->key_length;
|
|
|
|
*key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part);
|
|
}
|
|
|
|
if (org_key_part_used == *key_part_used &&
|
|
/*
|
|
The current search key is not being extended with a new key part. This
|
|
means that the a condition is added a key part for which there was a
|
|
previous condition. We can only overwrite such key parts in some special
|
|
cases, e.g. a > 2 AND a > 1 (here range_fl must be set to something). In
|
|
all other cases the WHERE condition is always false anyway.
|
|
*/
|
|
(eq_type || *range_fl == 0))
|
|
DBUG_RETURN(FALSE);
|
|
|
|
if (org_key_part_used != *key_part_used ||
|
|
(is_field_part &&
|
|
(between || eq_type || max_fl == less_fl) && !cond->val_int()))
|
|
{
|
|
/*
|
|
It's the first predicate for this part or a predicate of the
|
|
following form that moves upper/lower bounds for max/min values:
|
|
- field BETWEEN const AND const
|
|
- field = const
|
|
- field {<|<=} const, when searching for MAX
|
|
- field {>|>=} const, when searching for MIN
|
|
*/
|
|
|
|
if (is_null || (is_null_safe_eq && args[1]->is_null()))
|
|
{
|
|
/*
|
|
If we have a non-nullable index, we cannot use it,
|
|
since set_null will be ignored, and we will compare uninitialized data.
|
|
*/
|
|
if (!part->field->real_maybe_null())
|
|
DBUG_RETURN(false);
|
|
part->field->set_null();
|
|
*key_ptr= (uchar) 1;
|
|
}
|
|
else
|
|
{
|
|
/* Update endpoints for MAX/MIN, see function comment. */
|
|
Item *value= args[between && max_fl ? 2 : 1];
|
|
store_val_in_field(part->field, value, CHECK_FIELD_IGNORE);
|
|
if (part->null_bit)
|
|
*key_ptr++= (uchar) test(part->field->is_null());
|
|
part->field->get_key_image(key_ptr, part->length, Field::itRAW);
|
|
}
|
|
if (is_field_part)
|
|
{
|
|
if (between || eq_type)
|
|
*range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE);
|
|
else
|
|
{
|
|
*range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
|
|
if (noeq_type)
|
|
*range_fl|= (max_fl ? NEAR_MAX : NEAR_MIN);
|
|
else
|
|
*range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN);
|
|
}
|
|
}
|
|
}
|
|
else if (eq_type)
|
|
{
|
|
if ((!is_null && !cond->val_int()) ||
|
|
(is_null && !test(part->field->is_null())))
|
|
DBUG_RETURN(FALSE); // Impossible test
|
|
}
|
|
else if (is_field_part)
|
|
*range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether we can get value for {max|min}(field) by using a key.
|
|
|
|
If where-condition is not a conjunction of 0 or more conjuct the
|
|
function returns false, otherwise it checks whether there is an
|
|
index including field as its k-th component/part such that:
|
|
|
|
-# for each previous component f_i there is one and only one conjunct
|
|
of the form: f_i= const_i or const_i= f_i or f_i is null
|
|
-# references to field occur only in conjucts of the form:
|
|
field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or
|
|
field BETWEEN const1 AND const2
|
|
-# all references to the columns from the same table as column field
|
|
occur only in conjucts mentioned above.
|
|
-# each of k first components the index is not partial, i.e. is not
|
|
defined on a fixed length proper prefix of the field.
|
|
|
|
If such an index exists the function through the ref parameter
|
|
returns the key value to find max/min for the field using the index,
|
|
the length of first (k-1) components of the key and flags saying
|
|
how to apply the key for the search max/min value.
|
|
(if we have a condition field = const, prefix_len contains the length
|
|
of the whole search key)
|
|
|
|
@param[in] max_fl 0 for MIN(field) / 1 for MAX(field)
|
|
@param[in,out] ref Reference to the structure we store the key value
|
|
@param[in] field Field used inside MIN() / MAX()
|
|
@param[in] cond WHERE condition
|
|
@param[out] range_fl Bit flags for how to search if key is ok
|
|
@param[out] prefix_len Length of prefix for the search range
|
|
|
|
@note
|
|
This function may set field->table->key_read to true,
|
|
which must be reset after index is used!
|
|
(This can only happen when function returns 1)
|
|
|
|
@retval
|
|
0 Index can not be used to optimize MIN(field)/MAX(field)
|
|
@retval
|
|
1 Can use key to optimize MIN()/MAX().
|
|
In this case ref, range_fl and prefix_len are updated
|
|
*/
|
|
|
|
|
|
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
|
|
Field* field, COND *cond,
|
|
uint *range_fl, uint *prefix_len)
|
|
{
|
|
if (!(field->flags & PART_KEY_FLAG))
|
|
return false; // Not key field
|
|
|
|
DBUG_ENTER("find_key_for_maxmin");
|
|
|
|
TABLE *table= field->table;
|
|
uint idx= 0;
|
|
|
|
KEY *keyinfo,*keyinfo_end;
|
|
for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ;
|
|
keyinfo != keyinfo_end;
|
|
keyinfo++,idx++)
|
|
{
|
|
KEY_PART_INFO *part,*part_end;
|
|
key_part_map key_part_to_use= 0;
|
|
/*
|
|
Perform a check if index is not disabled by ALTER TABLE
|
|
or IGNORE INDEX.
|
|
*/
|
|
if (!table->keys_in_use_for_query.is_set(idx))
|
|
continue;
|
|
uint jdx= 0;
|
|
*prefix_len= 0;
|
|
for (part= keyinfo->key_part, part_end= part+keyinfo->key_parts ;
|
|
part != part_end ;
|
|
part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1)
|
|
{
|
|
if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER))
|
|
DBUG_RETURN(false);
|
|
|
|
/* Check whether the index component is partial */
|
|
Field *part_field= table->field[part->fieldnr-1];
|
|
if ((part_field->flags & BLOB_FLAG) ||
|
|
part->length < part_field->key_length())
|
|
break;
|
|
|
|
if (field->eq(part->field))
|
|
{
|
|
ref->key= idx;
|
|
ref->key_length= 0;
|
|
ref->key_parts= 0;
|
|
key_part_map key_part_used= 0;
|
|
*range_fl= NO_MIN_RANGE | NO_MAX_RANGE;
|
|
if (matching_cond(max_fl, ref, keyinfo, part, cond,
|
|
&key_part_used, range_fl, prefix_len) &&
|
|
!(key_part_to_use & ~key_part_used))
|
|
{
|
|
if (!max_fl && key_part_used == key_part_to_use && part->null_bit)
|
|
{
|
|
/*
|
|
The query is on this form:
|
|
|
|
SELECT MIN(key_part_k)
|
|
FROM t1
|
|
WHERE key_part_1 = const and ... and key_part_k-1 = const
|
|
|
|
If key_part_k is nullable, we want to find the first matching row
|
|
where key_part_k is not null. The key buffer is now {const, ...,
|
|
NULL}. This will be passed to the handler along with a flag
|
|
indicating open interval. If a tuple is read that does not match
|
|
these search criteria, an attempt will be made to read an exact
|
|
match for the key buffer.
|
|
*/
|
|
/* Set the first byte of key_part_k to 1, that means NULL */
|
|
ref->key_buff[ref->key_length]= 1;
|
|
ref->key_length+= part->store_length;
|
|
ref->key_parts++;
|
|
DBUG_ASSERT(ref->key_parts == jdx+1);
|
|
*range_fl&= ~NO_MIN_RANGE;
|
|
*range_fl|= NEAR_MIN; // Open interval
|
|
}
|
|
/*
|
|
The following test is false when the key in the key tree is
|
|
converted (for example to upper case)
|
|
*/
|
|
if (field->part_of_key.is_set(idx))
|
|
table->set_keyread(TRUE);
|
|
DBUG_RETURN(true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether found key is in range specified by conditions.
|
|
|
|
@param[in] max_fl 0 for MIN(field) / 1 for MAX(field)
|
|
@param[in] ref Reference to the key value and info
|
|
@param[in] field Field used the MIN/MAX expression
|
|
@param[in] cond WHERE condition
|
|
@param[in] range_fl Says whether there is a condition to to be checked
|
|
@param[in] prefix_len Length of the constant part of the key
|
|
|
|
@retval
|
|
0 ok
|
|
@retval
|
|
1 WHERE was not true for the found row
|
|
*/
|
|
|
|
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
|
|
COND *cond, uint range_fl, uint prefix_len)
|
|
{
|
|
if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len))
|
|
return 1;
|
|
if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)))
|
|
return 0;
|
|
return maxmin_in_range(max_fl, field, cond);
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether {MAX|MIN}(field) is in range specified by conditions.
|
|
|
|
@param[in] max_fl 0 for MIN(field) / 1 for MAX(field)
|
|
@param[in] field Field used the MIN/MAX expression
|
|
@param[in] cond WHERE condition
|
|
|
|
@retval
|
|
0 ok
|
|
@retval
|
|
1 WHERE was not true for the found row
|
|
*/
|
|
|
|
static int maxmin_in_range(bool max_fl, Field* field, COND *cond)
|
|
{
|
|
/* If AND/OR condition */
|
|
if (cond->type() == Item::COND_ITEM)
|
|
{
|
|
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (maxmin_in_range(max_fl, field, item))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (cond->used_tables() != field->table->map)
|
|
return 0;
|
|
bool less_fl= 0;
|
|
switch (((Item_func*) cond)->functype()) {
|
|
case Item_func::BETWEEN:
|
|
return cond->val_int() == 0; // Return 1 if WHERE is false
|
|
case Item_func::LT_FUNC:
|
|
case Item_func::LE_FUNC:
|
|
less_fl= 1;
|
|
case Item_func::GT_FUNC:
|
|
case Item_func::GE_FUNC:
|
|
{
|
|
Item *item= ((Item_func*) cond)->arguments()[1];
|
|
/* In case of 'const op item' we have to swap the operator */
|
|
if (!item->const_item())
|
|
less_fl= 1-less_fl;
|
|
/*
|
|
We only have to check the expression if we are using an expression like
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b>const
|
|
not for
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
|
|
*/
|
|
if (max_fl != less_fl)
|
|
return cond->val_int() == 0; // Return 1 if WHERE is false
|
|
return 0;
|
|
}
|
|
case Item_func::EQ_FUNC:
|
|
case Item_func::EQUAL_FUNC:
|
|
break;
|
|
default: // Keep compiler happy
|
|
DBUG_ASSERT(1); // Impossible
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|