mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 14:54:20 +01:00
54b16784b4
git-svn-id: file:///svn/toku/tokudb@48329 c7de825b-a66e-492c-adef-691d508d4ae1
1387 lines
49 KiB
C++
1387 lines
49 KiB
C++
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
|
|
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
|
|
#ident "$Id$"
|
|
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
|
|
|
|
#include "test.h"
|
|
|
|
#include "includes.h"
|
|
|
|
#ifndef MIN
|
|
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
|
|
#endif
|
|
|
|
static int omt_int_cmp(OMTVALUE p, void *q)
|
|
{
|
|
LEAFENTRY CAST_FROM_VOIDP(a, p);
|
|
LEAFENTRY CAST_FROM_VOIDP(b, q);
|
|
void *ak, *bk;
|
|
uint32_t al, bl;
|
|
ak = le_key_and_len(a, &al);
|
|
bk = le_key_and_len(b, &bl);
|
|
assert(al == 4 && bl == 4);
|
|
int ai = *(int *) ak;
|
|
int bi = *(int *) bk;
|
|
int c = ai - bi;
|
|
if (c < 0) { return -1; }
|
|
if (c > 0) { return +1; }
|
|
else { return 0; }
|
|
}
|
|
|
|
|
|
static int omt_cmp(OMTVALUE p, void *q)
|
|
{
|
|
LEAFENTRY CAST_FROM_VOIDP(a, p);
|
|
LEAFENTRY CAST_FROM_VOIDP(b, q);
|
|
void *ak, *bk;
|
|
uint32_t al, bl;
|
|
ak = le_key_and_len(a, &al);
|
|
bk = le_key_and_len(b, &bl);
|
|
int l = MIN(al, bl);
|
|
int c = memcmp(ak, bk, l);
|
|
if (c < 0) { return -1; }
|
|
if (c > 0) { return +1; }
|
|
int d = al - bl;
|
|
if (d < 0) { return -1; }
|
|
if (d > 0) { return +1; }
|
|
else { return 0; }
|
|
}
|
|
|
|
static size_t
|
|
calc_le_size(int keylen, int vallen) {
|
|
size_t rval;
|
|
LEAFENTRY le;
|
|
rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + keylen + vallen;
|
|
return rval;
|
|
}
|
|
|
|
static LEAFENTRY
|
|
le_fastmalloc(struct mempool * mp, const char *key, int keylen, const char *val, int vallen)
|
|
{
|
|
LEAFENTRY le;
|
|
size_t le_size = calc_le_size(keylen, vallen);
|
|
CAST_FROM_VOIDP(le, toku_mempool_malloc(mp, le_size, 1));
|
|
resource_assert(le);
|
|
le->type = LE_CLEAN;
|
|
le->keylen = keylen;
|
|
le->u.clean.vallen = vallen;
|
|
memcpy(&le->u.clean.key_val[0], key, keylen);
|
|
memcpy(&le->u.clean.key_val[keylen], val, vallen);
|
|
return le;
|
|
}
|
|
|
|
static LEAFENTRY
|
|
le_malloc(struct mempool * mp, const char *key, const char *val)
|
|
{
|
|
int keylen = strlen(key) + 1;
|
|
int vallen = strlen(val) + 1;
|
|
return le_fastmalloc(mp, key, keylen, val, vallen);
|
|
}
|
|
|
|
struct check_leafentries_struct {
|
|
int nelts;
|
|
LEAFENTRY *elts;
|
|
int i;
|
|
int (*cmp)(OMTVALUE, void *);
|
|
};
|
|
|
|
static int check_leafentries(OMTVALUE v, uint32_t UU(i), void *extra) {
|
|
struct check_leafentries_struct *CAST_FROM_VOIDP(e, extra);
|
|
assert(e->i < e->nelts);
|
|
assert(e->cmp(v, e->elts[e->i]) == 0);
|
|
e->i++;
|
|
return 0;
|
|
}
|
|
|
|
enum ftnode_verify_type {
|
|
read_all=1,
|
|
read_compressed,
|
|
read_none
|
|
};
|
|
|
|
static int
|
|
string_key_cmp(DB *UU(e), const DBT *a, const DBT *b)
|
|
{
|
|
char *CAST_FROM_VOIDP(s, a->data);
|
|
char *CAST_FROM_VOIDP(t, b->data);
|
|
return strcmp(s, t);
|
|
}
|
|
|
|
static void
|
|
setup_dn(enum ftnode_verify_type bft, int fd, FT brt_h, FTNODE *dn, FTNODE_DISK_DATA* ndd) {
|
|
int r;
|
|
brt_h->compare_fun = string_key_cmp;
|
|
if (bft == read_all) {
|
|
struct ftnode_fetch_extra bfe;
|
|
fill_bfe_for_full_read(&bfe, brt_h);
|
|
r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, ndd, &bfe);
|
|
assert(r==0);
|
|
}
|
|
else if (bft == read_compressed || bft == read_none) {
|
|
struct ftnode_fetch_extra bfe;
|
|
fill_bfe_for_min_read(&bfe, brt_h);
|
|
r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, ndd, &bfe);
|
|
assert(r==0);
|
|
// assert all bp's are compressed or on disk.
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_COMPRESSED || BP_STATE(*dn, i) == PT_ON_DISK);
|
|
}
|
|
// if read_none, get rid of the compressed bp's
|
|
if (bft == read_none) {
|
|
if ((*dn)->height == 0) {
|
|
PAIR_ATTR attr;
|
|
toku_ftnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h);
|
|
// assert all bp's are on disk
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
if ((*dn)->height == 0) {
|
|
assert(BP_STATE(*dn,i) == PT_ON_DISK);
|
|
assert(is_BNULL(*dn, i));
|
|
}
|
|
else {
|
|
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// first decompress everything, and make sure
|
|
// that it is available
|
|
// then run partial eviction to get it compressed
|
|
PAIR_ATTR attr;
|
|
fill_bfe_for_full_read(&bfe, brt_h);
|
|
assert(toku_ftnode_pf_req_callback(*dn, &bfe));
|
|
r = toku_ftnode_pf_callback(*dn, *ndd, &bfe, fd, &attr);
|
|
assert(r==0);
|
|
// assert all bp's are available
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_AVAIL);
|
|
}
|
|
toku_ftnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h);
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
// assert all bp's are still available, because we touched the clock
|
|
assert(BP_STATE(*dn,i) == PT_AVAIL);
|
|
// now assert all should be evicted
|
|
assert(BP_SHOULD_EVICT(*dn, i));
|
|
}
|
|
toku_ftnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h);
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
|
|
}
|
|
}
|
|
}
|
|
// now decompress them
|
|
fill_bfe_for_full_read(&bfe, brt_h);
|
|
assert(toku_ftnode_pf_req_callback(*dn, &bfe));
|
|
PAIR_ATTR attr;
|
|
r = toku_ftnode_pf_callback(*dn, *ndd, &bfe, fd, &attr);
|
|
assert(r==0);
|
|
// assert all bp's are available
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_AVAIL);
|
|
}
|
|
// continue on with test
|
|
}
|
|
else {
|
|
// if we get here, this is a test bug, NOT a bug in development code
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
static void write_sn_to_disk(int fd, FT_HANDLE brt, FTNODE sn, FTNODE_DISK_DATA* src_ndd, bool do_clone) {
|
|
int r;
|
|
if (do_clone) {
|
|
void* cloned_node_v = NULL;
|
|
PAIR_ATTR attr;
|
|
toku_ftnode_clone_callback(sn, &cloned_node_v, &attr, false, brt->ft);
|
|
FTNODE CAST_FROM_VOIDP(cloned_node, cloned_node_v);
|
|
r = toku_serialize_ftnode_to(fd, make_blocknum(20), cloned_node, src_ndd, false, brt->ft, false);
|
|
assert(r==0);
|
|
toku_ftnode_free(&cloned_node);
|
|
}
|
|
else {
|
|
r = toku_serialize_ftnode_to(fd, make_blocknum(20), sn, src_ndd, true, brt->ft, false);
|
|
assert(r==0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_check_msn(enum ftnode_verify_type bft, bool do_clone) {
|
|
// struct ft_handle source_ft;
|
|
struct ftnode sn, *dn;
|
|
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
#define PRESERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 42 })
|
|
#define POSTSERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 84 })
|
|
|
|
sn.max_msn_applied_to_node_on_disk = PRESERIALIZE_MSN_ON_DISK;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = 2;
|
|
sn.dirty = 1;
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(1, sn.childkeys);
|
|
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2);
|
|
sn.totalchildkeylens = 2;
|
|
BP_STATE(&sn,0) = PT_AVAIL;
|
|
BP_STATE(&sn,1) = PT_AVAIL;
|
|
set_BLB(&sn, 0, toku_create_empty_bn());
|
|
set_BLB(&sn, 1, toku_create_empty_bn());
|
|
LEAFENTRY elts[3];
|
|
{
|
|
BASEMENTNODE bn = BLB(&sn,0);
|
|
struct mempool * mp0 = &bn->buffer_mempool;
|
|
bn = BLB(&sn,1);
|
|
struct mempool * mp1 = &bn->buffer_mempool;
|
|
toku_mempool_construct(mp0, 1024);
|
|
toku_mempool_construct(mp1, 1024);
|
|
elts[0] = le_malloc(mp0, "a", "aval");
|
|
elts[1] = le_malloc(mp0, "b", "bval");
|
|
elts[2] = le_malloc(mp1, "x", "xval");
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
BLB_MAX_MSN_APPLIED(&sn, 0) = ((MSN) { MIN_MSN.msn + 73 });
|
|
BLB_MAX_MSN_APPLIED(&sn, 1) = POSTSERIALIZE_MSN_ON_DISK;
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->n_children>=1);
|
|
assert(dn->max_msn_applied_to_node_on_disk.msn == POSTSERIALIZE_MSN_ON_DISK.msn);
|
|
{
|
|
// Man, this is way too ugly. This entire test suite needs to be refactored.
|
|
// Create a dummy mempool and put the leaves there. Ugh.
|
|
struct mempool dummy_mp;
|
|
toku_mempool_construct(&dummy_mp, 1024);
|
|
elts[0] = le_malloc(&dummy_mp, "a", "aval");
|
|
elts[1] = le_malloc(&dummy_mp, "b", "bval");
|
|
elts[2] = le_malloc(&dummy_mp, "x", "xval");
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(BLB_MAX_MSN_APPLIED(dn, i).msn == POSTSERIALIZE_MSN_ON_DISK.msn);
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
uint32_t keylen;
|
|
if (i < npartitions-1) {
|
|
assert(strcmp((char*)dn->childkeys[i].data, (char*)le_key_and_len(elts[extra.i-1], &keylen))==0);
|
|
}
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
toku_mempool_destroy(&dummy_mp);
|
|
assert(extra.i == 3);
|
|
}
|
|
toku_ftnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
BASEMENTNODE bn = BLB(&sn, i);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
toku_mempool_destroy(mp);
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_large_pivots(enum ftnode_verify_type bft, bool do_clone) {
|
|
int r;
|
|
struct ftnode sn, *dn;
|
|
const int keylens = 256*1024, vallens = 0, nrows = 8;
|
|
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = nrows;
|
|
sn.dirty = 1;
|
|
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
for (int i = 0; i < nrows; ++i) { // one basement per row
|
|
BASEMENTNODE bn = BLB(&sn, i);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
size_t le_size = calc_le_size(keylens, vallens);
|
|
size_t mpsize = le_size; // one basement per row implies one row per basement
|
|
toku_mempool_construct(mp, mpsize);
|
|
char key[keylens], val[vallens];
|
|
key[keylens-1] = '\0';
|
|
char c = 'a' + i;
|
|
memset(key, c, keylens-1);
|
|
LEAFENTRY le = le_fastmalloc(mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, i), le, omt_cmp, le, NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, i) = leafentry_disksize(le);
|
|
if (i < nrows-1) {
|
|
uint32_t keylen;
|
|
char *CAST_FROM_VOIDP(keyp, le_key_and_len(le, &keylen));
|
|
toku_fill_dbt(&sn.childkeys[i], toku_xmemdup(keyp, keylen), keylen);
|
|
}
|
|
}
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
{
|
|
// Man, this is way too ugly. This entire test suite needs to be refactored.
|
|
// Create a dummy mempool and put the leaves there. Ugh.
|
|
struct mempool dummy_mp;
|
|
size_t le_size = calc_le_size(keylens, vallens);
|
|
size_t mpsize = nrows * le_size;
|
|
toku_mempool_construct(&dummy_mp, mpsize);
|
|
LEAFENTRY les[nrows];
|
|
{
|
|
char key[keylens], val[vallens];
|
|
key[keylens-1] = '\0';
|
|
for (int i = 0; i < nrows; ++i) {
|
|
char c = 'a' + i;
|
|
memset(key, c, keylens-1);
|
|
les[i] = le_fastmalloc(&dummy_mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
|
|
}
|
|
}
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(keylens*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
toku_mempool_destroy(&dummy_mp);
|
|
assert(extra.i == nrows);
|
|
}
|
|
|
|
toku_ftnode_free(&dn);
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
toku_free(sn.childkeys);
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
BASEMENTNODE bn = BLB(&sn, i);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
toku_mempool_destroy(mp);
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_many_rows(enum ftnode_verify_type bft, bool do_clone) {
|
|
int r;
|
|
struct ftnode sn, *dn;
|
|
const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024;
|
|
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = 1;
|
|
sn.dirty = 1;
|
|
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0;
|
|
BASEMENTNODE bn = BLB(&sn,0);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
{
|
|
size_t le_size = calc_le_size(keylens, vallens);
|
|
size_t mpsize = nrows * le_size; // one basement, so all rows must fit in this one mempool
|
|
toku_mempool_construct(mp, mpsize);
|
|
}
|
|
for (int i = 0; i < nrows; ++i) {
|
|
int key = i;
|
|
int val = i;
|
|
LEAFENTRY le = le_fastmalloc(mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), le, omt_int_cmp, le, NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(le);
|
|
}
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
{
|
|
// Man, this is way too ugly. This entire test suite needs to be refactored.
|
|
// Create a dummy mempool and put the leaves there. Ugh.
|
|
struct mempool dummy_mp;
|
|
size_t le_size = calc_le_size(keylens, vallens);
|
|
size_t mpsize = nrows * le_size;
|
|
toku_mempool_construct(&dummy_mp, mpsize);
|
|
LEAFENTRY les[nrows];
|
|
{
|
|
int key = 0, val = 0;
|
|
for (int i = 0; i < nrows; ++i, key++, val++) {
|
|
les[i] = le_fastmalloc(&dummy_mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
|
|
}
|
|
}
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
assert(BLB_NBYTESINBUF(dn, i) < 128*1024); // BN_MAX_SIZE, apt to change
|
|
last_i = extra.i;
|
|
}
|
|
toku_mempool_destroy(&dummy_mp);
|
|
assert(extra.i == nrows);
|
|
}
|
|
|
|
toku_ftnode_free(&dn);
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
bn = BLB(&sn, i);
|
|
mp = &bn->buffer_mempool;
|
|
toku_mempool_destroy(mp);
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
|
|
static void
|
|
test_serialize_leaf_with_large_rows(enum ftnode_verify_type bft, bool do_clone) {
|
|
int r;
|
|
struct ftnode sn, *dn;
|
|
const uint32_t nrows = 7;
|
|
const size_t key_size = 8;
|
|
const size_t val_size = 512*1024;
|
|
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = 1;
|
|
sn.dirty = 1;
|
|
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.totalchildkeylens = (sn.n_children-1)*8;
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
BASEMENTNODE bn = BLB(&sn,0);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
{
|
|
size_t le_size = calc_le_size(key_size, val_size);
|
|
size_t mpsize = nrows * le_size; // one basement, so all rows must fit in this one mempool
|
|
toku_mempool_construct(mp, mpsize);
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0;
|
|
for (uint32_t i = 0; i < nrows; ++i) {
|
|
char key[key_size], val[val_size];
|
|
key[key_size-1] = '\0';
|
|
val[val_size-1] = '\0';
|
|
char c = 'a' + i;
|
|
memset(key, c, key_size-1);
|
|
memset(val, c, val_size-1);
|
|
LEAFENTRY le = le_fastmalloc(mp, key, 8, val, val_size);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), le, omt_cmp, le, NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(le);
|
|
}
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
{
|
|
// Man, this is way too ugly. This entire test suite needs to be refactored.
|
|
// Create a dummy mempool and put the leaves there. Ugh.
|
|
struct mempool dummy_mp;
|
|
size_t le_size = calc_le_size(key_size, val_size);
|
|
size_t mpsize = nrows * le_size;
|
|
toku_mempool_construct(&dummy_mp, mpsize);
|
|
LEAFENTRY les[nrows];
|
|
{
|
|
char key[key_size], val[val_size];
|
|
key[key_size-1] = '\0';
|
|
val[val_size-1] = '\0';
|
|
for (uint32_t i = 0; i < nrows; ++i) {
|
|
char c = 'a' + i;
|
|
memset(key, c, key_size-1);
|
|
memset(val, c, val_size-1);
|
|
les[i] = le_fastmalloc(&dummy_mp, key, key_size, val, val_size);
|
|
}
|
|
}
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(npartitions == nrows);
|
|
assert(dn->totalchildkeylens==(key_size*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
toku_mempool_destroy(&dummy_mp);
|
|
assert(extra.i == 7);
|
|
}
|
|
|
|
toku_ftnode_free(&dn);
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
bn = BLB(&sn, i);
|
|
mp = &bn->buffer_mempool;
|
|
toku_mempool_destroy(mp);
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
|
|
static void
|
|
test_serialize_leaf_with_empty_basement_nodes(enum ftnode_verify_type bft, bool do_clone) {
|
|
struct ftnode sn, *dn;
|
|
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = 7;
|
|
sn.dirty = 1;
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("A", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[1], toku_xmemdup("a", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[2], toku_xmemdup("a", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[3], toku_xmemdup("b", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[4], toku_xmemdup("b", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[5], toku_xmemdup("x", 2), 2);
|
|
sn.totalchildkeylens = (sn.n_children-1)*2;
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
BLB_SEQINSERT(&sn, i) = 0;
|
|
}
|
|
LEAFENTRY elts[3];
|
|
{
|
|
BASEMENTNODE bn = BLB(&sn,1);
|
|
struct mempool * mp1 = &bn->buffer_mempool;
|
|
bn = BLB(&sn,3);
|
|
struct mempool * mp3 = &bn->buffer_mempool;
|
|
bn = BLB(&sn,5);
|
|
struct mempool * mp5 = &bn->buffer_mempool;
|
|
toku_mempool_construct(mp1, 1024);
|
|
toku_mempool_construct(mp3, 1024);
|
|
toku_mempool_construct(mp5, 1024);
|
|
elts[0] = le_malloc(mp1, "a", "aval");
|
|
elts[1] = le_malloc(mp3, "b", "bval");
|
|
elts[2] = le_malloc(mp5, "x", "xval");
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 3), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 5), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2));
|
|
BLB_NBYTESINBUF(&sn, 3) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3));
|
|
BLB_NBYTESINBUF(&sn, 4) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 4));
|
|
BLB_NBYTESINBUF(&sn, 5) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 5));
|
|
BLB_NBYTESINBUF(&sn, 6) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 6));
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->n_children>0);
|
|
{
|
|
// Man, this is way too ugly. This entire test suite needs to be refactored.
|
|
// Create a dummy mempool and put the leaves there. Ugh.
|
|
struct mempool dummy_mp;
|
|
toku_mempool_construct(&dummy_mp, 1024);
|
|
elts[0] = le_malloc(&dummy_mp, "a", "aval");
|
|
elts[1] = le_malloc(&dummy_mp, "b", "bval");
|
|
elts[2] = le_malloc(&dummy_mp, "x", "xval");
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
toku_mempool_destroy(&dummy_mp);
|
|
assert(extra.i == 3);
|
|
}
|
|
toku_ftnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
BASEMENTNODE bn = BLB(&sn, i);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
toku_mempool_destroy(mp);
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(enum ftnode_verify_type bft, bool do_clone) {
|
|
struct ftnode sn, *dn;
|
|
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = 4;
|
|
sn.dirty = 1;
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("A", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[1], toku_xmemdup("A", 2), 2);
|
|
toku_fill_dbt(&sn.childkeys[2], toku_xmemdup("A", 2), 2);
|
|
sn.totalchildkeylens = (sn.n_children-1)*2;
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2));
|
|
BLB_NBYTESINBUF(&sn, 3) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3));
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->n_children == 1);
|
|
{
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 0, .elts = NULL, .i = 0, .cmp = omt_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) == 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == 0);
|
|
}
|
|
toku_ftnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
|
|
static void
|
|
test_serialize_leaf(enum ftnode_verify_type bft, bool do_clone) {
|
|
// struct ft_handle source_ft;
|
|
struct ftnode sn, *dn;
|
|
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.n_children = 2;
|
|
sn.dirty = 1;
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(1, sn.childkeys);
|
|
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2);
|
|
sn.totalchildkeylens = 2;
|
|
BP_STATE(&sn,0) = PT_AVAIL;
|
|
BP_STATE(&sn,1) = PT_AVAIL;
|
|
set_BLB(&sn, 0, toku_create_empty_bn());
|
|
set_BLB(&sn, 1, toku_create_empty_bn());
|
|
LEAFENTRY elts[3];
|
|
{
|
|
BASEMENTNODE bn = BLB(&sn,0);
|
|
struct mempool * mp0 = &bn->buffer_mempool;
|
|
bn = BLB(&sn,1);
|
|
struct mempool * mp1 = &bn->buffer_mempool;
|
|
toku_mempool_construct(mp0, 1024);
|
|
toku_mempool_construct(mp1, 1024);
|
|
elts[0] = le_malloc(mp0, "a", "aval");
|
|
elts[1] = le_malloc(mp0, "b", "bval");
|
|
elts[2] = le_malloc(mp1, "x", "xval");
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->n_children>=1);
|
|
{
|
|
// Man, this is way too ugly. This entire test suite needs to be refactored.
|
|
// Create a dummy mempool and put the leaves there. Ugh.
|
|
struct mempool dummy_mp;
|
|
toku_mempool_construct(&dummy_mp, 1024);
|
|
elts[0] = le_malloc(&dummy_mp, "a", "aval");
|
|
elts[1] = le_malloc(&dummy_mp, "b", "bval");
|
|
elts[2] = le_malloc(&dummy_mp, "x", "xval");
|
|
const uint32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
|
|
uint32_t last_i = 0;
|
|
for (uint32_t i = 0; i < npartitions; ++i) {
|
|
assert(dest_ndd[i].start > 0);
|
|
assert(dest_ndd[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
|
|
}
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
uint32_t keylen;
|
|
if (i < npartitions-1) {
|
|
assert(strcmp((char*)dn->childkeys[i].data, (char*)le_key_and_len(elts[extra.i-1], &keylen))==0);
|
|
}
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
toku_mempool_destroy(&dummy_mp);
|
|
assert(extra.i == 3);
|
|
}
|
|
toku_ftnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
toku_free(sn.childkeys[i].data);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
BASEMENTNODE bn = BLB(&sn, i);
|
|
struct mempool * mp = &bn->buffer_mempool;
|
|
toku_mempool_destroy(mp);
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_nonleaf(enum ftnode_verify_type bft, bool do_clone) {
|
|
// struct ft_handle source_ft;
|
|
struct ftnode sn, *dn;
|
|
|
|
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
// source_ft.fd=fd;
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
char *hello_string;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = FT_LAYOUT_VERSION;
|
|
sn.layout_version_original = FT_LAYOUT_VERSION;
|
|
sn.height = 1;
|
|
sn.n_children = 2;
|
|
sn.dirty = 1;
|
|
hello_string = toku_strdup("hello");
|
|
MALLOC_N(2, sn.bp);
|
|
MALLOC_N(1, sn.childkeys);
|
|
toku_fill_dbt(&sn.childkeys[0], hello_string, 6);
|
|
sn.totalchildkeylens = 6;
|
|
BP_BLOCKNUM(&sn, 0).b = 30;
|
|
BP_BLOCKNUM(&sn, 1).b = 35;
|
|
BP_STATE(&sn,0) = PT_AVAIL;
|
|
BP_STATE(&sn,1) = PT_AVAIL;
|
|
set_BNC(&sn, 0, toku_create_empty_nl());
|
|
set_BNC(&sn, 1, toku_create_empty_nl());
|
|
//Create XIDS
|
|
XIDS xids_0 = xids_get_root_xids();
|
|
XIDS xids_123;
|
|
XIDS xids_234;
|
|
r = xids_create_child(xids_0, &xids_123, (TXNID)123);
|
|
CKERR(r);
|
|
r = xids_create_child(xids_123, &xids_234, (TXNID)234);
|
|
CKERR(r);
|
|
|
|
toku_bnc_insert_msg(BNC(&sn, 0), "a", 2, "aval", 5, FT_NONE, next_dummymsn(), xids_0, true, NULL, string_key_cmp);
|
|
toku_bnc_insert_msg(BNC(&sn, 0), "b", 2, "bval", 5, FT_NONE, next_dummymsn(), xids_123, false, NULL, string_key_cmp);
|
|
toku_bnc_insert_msg(BNC(&sn, 1), "x", 2, "xval", 5, FT_NONE, next_dummymsn(), xids_234, true, NULL, string_key_cmp);
|
|
//Cleanup:
|
|
xids_destroy(&xids_0);
|
|
xids_destroy(&xids_123);
|
|
xids_destroy(&xids_234);
|
|
|
|
FT_HANDLE XMALLOC(brt);
|
|
FT XCALLOC(brt_h);
|
|
toku_ft_init(brt_h,
|
|
make_blocknum(0),
|
|
ZERO_LSN,
|
|
TXNID_NONE,
|
|
4*1024*1024,
|
|
128*1024,
|
|
TOKU_DEFAULT_COMPRESSION_METHOD);
|
|
brt->ft = brt_h;
|
|
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
FTNODE_DISK_DATA src_ndd = NULL;
|
|
FTNODE_DISK_DATA dest_ndd = NULL;
|
|
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==FT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION);
|
|
assert(dn->height == 1);
|
|
assert(dn->n_children==2);
|
|
assert(strcmp((char*)dn->childkeys[0].data, "hello")==0);
|
|
assert(dn->childkeys[0].size==6);
|
|
assert(dn->totalchildkeylens==6);
|
|
assert(BP_BLOCKNUM(dn,0).b==30);
|
|
assert(BP_BLOCKNUM(dn,1).b==35);
|
|
|
|
FIFO src_fifo_1 = BNC(&sn, 0)->buffer;
|
|
FIFO src_fifo_2 = BNC(&sn, 1)->buffer;
|
|
FIFO dest_fifo_1 = BNC(dn, 0)->buffer;
|
|
FIFO dest_fifo_2 = BNC(dn, 1)->buffer;
|
|
|
|
assert(toku_are_fifos_same(src_fifo_1, dest_fifo_1));
|
|
assert(toku_are_fifos_same(src_fifo_2, dest_fifo_2));
|
|
|
|
toku_ftnode_free(&dn);
|
|
|
|
toku_free(sn.childkeys[0].data);
|
|
destroy_nonleaf_childinfo(BNC(&sn, 0));
|
|
destroy_nonleaf_childinfo(BNC(&sn, 1));
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h->h);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
toku_free(src_ndd);
|
|
toku_free(dest_ndd);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
int
|
|
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
|
|
initialize_dummymsn();
|
|
|
|
test_serialize_leaf(read_none, false);
|
|
test_serialize_leaf(read_all, false);
|
|
test_serialize_leaf(read_compressed, false);
|
|
test_serialize_leaf(read_none, true);
|
|
test_serialize_leaf(read_all, true);
|
|
test_serialize_leaf(read_compressed, true);
|
|
|
|
test_serialize_leaf_with_empty_basement_nodes(read_none, false);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_all, false);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_compressed, false);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_none, true);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_all, true);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_compressed, true);
|
|
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_none, false);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_all, false);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed, false);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_none, true);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_all, true);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed, true);
|
|
|
|
test_serialize_leaf_with_large_rows(read_none, false);
|
|
test_serialize_leaf_with_large_rows(read_all, false);
|
|
test_serialize_leaf_with_large_rows(read_compressed, false);
|
|
test_serialize_leaf_with_large_rows(read_none, true);
|
|
test_serialize_leaf_with_large_rows(read_all, true);
|
|
test_serialize_leaf_with_large_rows(read_compressed, true);
|
|
|
|
test_serialize_leaf_with_many_rows(read_none, false);
|
|
test_serialize_leaf_with_many_rows(read_all, false);
|
|
test_serialize_leaf_with_many_rows(read_compressed, false);
|
|
test_serialize_leaf_with_many_rows(read_none, true);
|
|
test_serialize_leaf_with_many_rows(read_all, true);
|
|
test_serialize_leaf_with_many_rows(read_compressed, true);
|
|
|
|
test_serialize_leaf_with_large_pivots(read_none, false);
|
|
test_serialize_leaf_with_large_pivots(read_all, false);
|
|
test_serialize_leaf_with_large_pivots(read_compressed, false);
|
|
test_serialize_leaf_with_large_pivots(read_none, true);
|
|
test_serialize_leaf_with_large_pivots(read_all, true);
|
|
test_serialize_leaf_with_large_pivots(read_compressed, true);
|
|
|
|
test_serialize_leaf_check_msn(read_none, false);
|
|
test_serialize_leaf_check_msn(read_all, false);
|
|
test_serialize_leaf_check_msn(read_compressed, false);
|
|
test_serialize_leaf_check_msn(read_none, true);
|
|
test_serialize_leaf_check_msn(read_all, true);
|
|
test_serialize_leaf_check_msn(read_compressed, true);
|
|
|
|
test_serialize_nonleaf(read_none, false);
|
|
test_serialize_nonleaf(read_all, false);
|
|
test_serialize_nonleaf(read_compressed, false);
|
|
test_serialize_nonleaf(read_none, true);
|
|
test_serialize_nonleaf(read_all, true);
|
|
test_serialize_nonleaf(read_compressed, true);
|
|
|
|
return 0;
|
|
}
|