/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" #ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved." #include "test.h" #include "includes.h" #ifndef MIN #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #endif static int omt_int_cmp(OMTVALUE p, void *q) { LEAFENTRY CAST_FROM_VOIDP(a, p); LEAFENTRY CAST_FROM_VOIDP(b, q); void *ak, *bk; uint32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); assert(al == 4 && bl == 4); int ai = *(int *) ak; int bi = *(int *) bk; int c = ai - bi; if (c < 0) { return -1; } if (c > 0) { return +1; } else { return 0; } } static int omt_cmp(OMTVALUE p, void *q) { LEAFENTRY CAST_FROM_VOIDP(a, p); LEAFENTRY CAST_FROM_VOIDP(b, q); void *ak, *bk; uint32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); int l = MIN(al, bl); int c = memcmp(ak, bk, l); if (c < 0) { return -1; } if (c > 0) { return +1; } int d = al - bl; if (d < 0) { return -1; } if (d > 0) { return +1; } else { return 0; } } static size_t calc_le_size(int keylen, int vallen) { size_t rval; LEAFENTRY le; rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + keylen + vallen; return rval; } static LEAFENTRY le_fastmalloc(struct mempool * mp, const char *key, int keylen, const char *val, int vallen) { LEAFENTRY le; size_t le_size = calc_le_size(keylen, vallen); CAST_FROM_VOIDP(le, toku_mempool_malloc(mp, le_size, 1)); resource_assert(le); le->type = LE_CLEAN; le->keylen = keylen; le->u.clean.vallen = vallen; memcpy(&le->u.clean.key_val[0], key, keylen); memcpy(&le->u.clean.key_val[keylen], val, vallen); return le; } static LEAFENTRY le_malloc(struct mempool * mp, const char *key, const char *val) { int keylen = strlen(key) + 1; int vallen = strlen(val) + 1; return le_fastmalloc(mp, key, keylen, val, vallen); } struct check_leafentries_struct { int nelts; LEAFENTRY *elts; int i; int (*cmp)(OMTVALUE, void *); }; static int check_leafentries(OMTVALUE v, uint32_t UU(i), void *extra) { struct check_leafentries_struct *CAST_FROM_VOIDP(e, extra); assert(e->i < e->nelts); assert(e->cmp(v, e->elts[e->i]) == 0); e->i++; return 0; } enum ftnode_verify_type { read_all=1, read_compressed, read_none }; static int string_key_cmp(DB *UU(e), const DBT *a, const DBT *b) { char *CAST_FROM_VOIDP(s, a->data); char *CAST_FROM_VOIDP(t, b->data); return strcmp(s, t); } static void setup_dn(enum ftnode_verify_type bft, int fd, FT brt_h, FTNODE *dn, FTNODE_DISK_DATA* ndd) { int r; brt_h->compare_fun = string_key_cmp; if (bft == read_all) { struct ftnode_fetch_extra bfe; fill_bfe_for_full_read(&bfe, brt_h); r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, ndd, &bfe); assert(r==0); } else if (bft == read_compressed || bft == read_none) { struct ftnode_fetch_extra bfe; fill_bfe_for_min_read(&bfe, brt_h); r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, ndd, &bfe); assert(r==0); // assert all bp's are compressed or on disk. for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_COMPRESSED || BP_STATE(*dn, i) == PT_ON_DISK); } // if read_none, get rid of the compressed bp's if (bft == read_none) { if ((*dn)->height == 0) { PAIR_ATTR attr; toku_ftnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h); // assert all bp's are on disk for (int i = 0; i < (*dn)->n_children; i++) { if ((*dn)->height == 0) { assert(BP_STATE(*dn,i) == PT_ON_DISK); assert(is_BNULL(*dn, i)); } else { assert(BP_STATE(*dn,i) == PT_COMPRESSED); } } } else { // first decompress everything, and make sure // that it is available // then run partial eviction to get it compressed PAIR_ATTR attr; fill_bfe_for_full_read(&bfe, brt_h); assert(toku_ftnode_pf_req_callback(*dn, &bfe)); r = toku_ftnode_pf_callback(*dn, *ndd, &bfe, fd, &attr); assert(r==0); // assert all bp's are available for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_AVAIL); } toku_ftnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h); for (int i = 0; i < (*dn)->n_children; i++) { // assert all bp's are still available, because we touched the clock assert(BP_STATE(*dn,i) == PT_AVAIL); // now assert all should be evicted assert(BP_SHOULD_EVICT(*dn, i)); } toku_ftnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h); for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_COMPRESSED); } } } // now decompress them fill_bfe_for_full_read(&bfe, brt_h); assert(toku_ftnode_pf_req_callback(*dn, &bfe)); PAIR_ATTR attr; r = toku_ftnode_pf_callback(*dn, *ndd, &bfe, fd, &attr); assert(r==0); // assert all bp's are available for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_AVAIL); } // continue on with test } else { // if we get here, this is a test bug, NOT a bug in development code assert(false); } } static void write_sn_to_disk(int fd, FT_HANDLE brt, FTNODE sn, FTNODE_DISK_DATA* src_ndd, bool do_clone) { int r; if (do_clone) { void* cloned_node_v = NULL; PAIR_ATTR attr; toku_ftnode_clone_callback(sn, &cloned_node_v, &attr, false, brt->ft); FTNODE CAST_FROM_VOIDP(cloned_node, cloned_node_v); r = toku_serialize_ftnode_to(fd, make_blocknum(20), cloned_node, src_ndd, false, brt->ft, false); assert(r==0); toku_ftnode_free(&cloned_node); } else { r = toku_serialize_ftnode_to(fd, make_blocknum(20), sn, src_ndd, true, brt->ft, false); assert(r==0); } } static void test_serialize_leaf_check_msn(enum ftnode_verify_type bft, bool do_clone) { // struct ft_handle source_ft; struct ftnode sn, *dn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; #define PRESERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 42 }) #define POSTSERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 84 }) sn.max_msn_applied_to_node_on_disk = PRESERIALIZE_MSN_ON_DISK; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 2; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(1, sn.childkeys); toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2); sn.totalchildkeylens = 2; BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; set_BLB(&sn, 0, toku_create_empty_bn()); set_BLB(&sn, 1, toku_create_empty_bn()); LEAFENTRY elts[3]; { BASEMENTNODE bn = BLB(&sn,0); struct mempool * mp0 = &bn->buffer_mempool; bn = BLB(&sn,1); struct mempool * mp1 = &bn->buffer_mempool; toku_mempool_construct(mp0, 1024); toku_mempool_construct(mp1, 1024); elts[0] = le_malloc(mp0, "a", "aval"); elts[1] = le_malloc(mp0, "b", "bval"); elts[2] = le_malloc(mp1, "x", "xval"); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0); } BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_MAX_MSN_APPLIED(&sn, 0) = ((MSN) { MIN_MSN.msn + 73 }); BLB_MAX_MSN_APPLIED(&sn, 1) = POSTSERIALIZE_MSN_ON_DISK; FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>=1); assert(dn->max_msn_applied_to_node_on_disk.msn == POSTSERIALIZE_MSN_ON_DISK.msn); { // Man, this is way too ugly. This entire test suite needs to be refactored. // Create a dummy mempool and put the leaves there. Ugh. struct mempool dummy_mp; toku_mempool_construct(&dummy_mp, 1024); elts[0] = le_malloc(&dummy_mp, "a", "aval"); elts[1] = le_malloc(&dummy_mp, "b", "bval"); elts[2] = le_malloc(&dummy_mp, "x", "xval"); const uint32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(BLB_MAX_MSN_APPLIED(dn, i).msn == POSTSERIALIZE_MSN_ON_DISK.msn); assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); uint32_t keylen; if (i < npartitions-1) { assert(strcmp((char*)dn->childkeys[i].data, (char*)le_key_and_len(elts[extra.i-1], &keylen))==0); } // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } toku_mempool_destroy(&dummy_mp); assert(extra.i == 3); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } for (int i = 0; i < sn.n_children; i++) { BASEMENTNODE bn = BLB(&sn, i); struct mempool * mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_large_pivots(enum ftnode_verify_type bft, bool do_clone) { int r; struct ftnode sn, *dn; const int keylens = 256*1024, vallens = 0, nrows = 8; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = nrows; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*sizeof(int); for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; set_BLB(&sn, i, toku_create_empty_bn()); } for (int i = 0; i < nrows; ++i) { // one basement per row BASEMENTNODE bn = BLB(&sn, i); struct mempool * mp = &bn->buffer_mempool; size_t le_size = calc_le_size(keylens, vallens); size_t mpsize = le_size; // one basement per row implies one row per basement toku_mempool_construct(mp, mpsize); char key[keylens], val[vallens]; key[keylens-1] = '\0'; char c = 'a' + i; memset(key, c, keylens-1); LEAFENTRY le = le_fastmalloc(mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val)); r = toku_omt_insert(BLB_BUFFER(&sn, i), le, omt_cmp, le, NULL); assert(r==0); BLB_NBYTESINBUF(&sn, i) = leafentry_disksize(le); if (i < nrows-1) { uint32_t keylen; char *CAST_FROM_VOIDP(keyp, le_key_and_len(le, &keylen)); toku_fill_dbt(&sn.childkeys[i], toku_xmemdup(keyp, keylen), keylen); } } FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); { // Man, this is way too ugly. This entire test suite needs to be refactored. // Create a dummy mempool and put the leaves there. Ugh. struct mempool dummy_mp; size_t le_size = calc_le_size(keylens, vallens); size_t mpsize = nrows * le_size; toku_mempool_construct(&dummy_mp, mpsize); LEAFENTRY les[nrows]; { char key[keylens], val[vallens]; key[keylens-1] = '\0'; for (int i = 0; i < nrows; ++i) { char c = 'a' + i; memset(key, c, keylens-1); les[i] = le_fastmalloc(&dummy_mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val)); } } const uint32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(keylens*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } toku_mempool_destroy(&dummy_mp); assert(extra.i == nrows); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } toku_free(sn.childkeys); for (int i = 0; i < sn.n_children; i++) { BASEMENTNODE bn = BLB(&sn, i); struct mempool * mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_many_rows(enum ftnode_verify_type bft, bool do_clone) { int r; struct ftnode sn, *dn; const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 1; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*sizeof(int); for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; set_BLB(&sn, i, toku_create_empty_bn()); } BLB_NBYTESINBUF(&sn, 0) = 0; BASEMENTNODE bn = BLB(&sn,0); struct mempool * mp = &bn->buffer_mempool; { size_t le_size = calc_le_size(keylens, vallens); size_t mpsize = nrows * le_size; // one basement, so all rows must fit in this one mempool toku_mempool_construct(mp, mpsize); } for (int i = 0; i < nrows; ++i) { int key = i; int val = i; LEAFENTRY le = le_fastmalloc(mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val)); r = toku_omt_insert(BLB_BUFFER(&sn, 0), le, omt_int_cmp, le, NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(le); } FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); { // Man, this is way too ugly. This entire test suite needs to be refactored. // Create a dummy mempool and put the leaves there. Ugh. struct mempool dummy_mp; size_t le_size = calc_le_size(keylens, vallens); size_t mpsize = nrows * le_size; toku_mempool_construct(&dummy_mp, mpsize); LEAFENTRY les[nrows]; { int key = 0, val = 0; for (int i = 0; i < nrows; ++i, key++, val++) { les[i] = le_fastmalloc(&dummy_mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val)); } } const uint32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i))); assert(BLB_NBYTESINBUF(dn, i) < 128*1024); // BN_MAX_SIZE, apt to change last_i = extra.i; } toku_mempool_destroy(&dummy_mp); assert(extra.i == nrows); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } for (int i = 0; i < sn.n_children; i++) { bn = BLB(&sn, i); mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_large_rows(enum ftnode_verify_type bft, bool do_clone) { int r; struct ftnode sn, *dn; const uint32_t nrows = 7; const size_t key_size = 8; const size_t val_size = 512*1024; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 1; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*8; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; set_BLB(&sn, i, toku_create_empty_bn()); } BASEMENTNODE bn = BLB(&sn,0); struct mempool * mp = &bn->buffer_mempool; { size_t le_size = calc_le_size(key_size, val_size); size_t mpsize = nrows * le_size; // one basement, so all rows must fit in this one mempool toku_mempool_construct(mp, mpsize); } BLB_NBYTESINBUF(&sn, 0) = 0; for (uint32_t i = 0; i < nrows; ++i) { char key[key_size], val[val_size]; key[key_size-1] = '\0'; val[val_size-1] = '\0'; char c = 'a' + i; memset(key, c, key_size-1); memset(val, c, val_size-1); LEAFENTRY le = le_fastmalloc(mp, key, 8, val, val_size); r = toku_omt_insert(BLB_BUFFER(&sn, 0), le, omt_cmp, le, NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(le); } FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); { // Man, this is way too ugly. This entire test suite needs to be refactored. // Create a dummy mempool and put the leaves there. Ugh. struct mempool dummy_mp; size_t le_size = calc_le_size(key_size, val_size); size_t mpsize = nrows * le_size; toku_mempool_construct(&dummy_mp, mpsize); LEAFENTRY les[nrows]; { char key[key_size], val[val_size]; key[key_size-1] = '\0'; val[val_size-1] = '\0'; for (uint32_t i = 0; i < nrows; ++i) { char c = 'a' + i; memset(key, c, key_size-1); memset(val, c, val_size-1); les[i] = le_fastmalloc(&dummy_mp, key, key_size, val, val_size); } } const uint32_t npartitions = dn->n_children; assert(npartitions == nrows); assert(dn->totalchildkeylens==(key_size*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } toku_mempool_destroy(&dummy_mp); assert(extra.i == 7); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } for (int i = 0; i < sn.n_children; i++) { bn = BLB(&sn, i); mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_empty_basement_nodes(enum ftnode_verify_type bft, bool do_clone) { struct ftnode sn, *dn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 7; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("A", 2), 2); toku_fill_dbt(&sn.childkeys[1], toku_xmemdup("a", 2), 2); toku_fill_dbt(&sn.childkeys[2], toku_xmemdup("a", 2), 2); toku_fill_dbt(&sn.childkeys[3], toku_xmemdup("b", 2), 2); toku_fill_dbt(&sn.childkeys[4], toku_xmemdup("b", 2), 2); toku_fill_dbt(&sn.childkeys[5], toku_xmemdup("x", 2), 2); sn.totalchildkeylens = (sn.n_children-1)*2; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; set_BLB(&sn, i, toku_create_empty_bn()); BLB_SEQINSERT(&sn, i) = 0; } LEAFENTRY elts[3]; { BASEMENTNODE bn = BLB(&sn,1); struct mempool * mp1 = &bn->buffer_mempool; bn = BLB(&sn,3); struct mempool * mp3 = &bn->buffer_mempool; bn = BLB(&sn,5); struct mempool * mp5 = &bn->buffer_mempool; toku_mempool_construct(mp1, 1024); toku_mempool_construct(mp3, 1024); toku_mempool_construct(mp5, 1024); elts[0] = le_malloc(mp1, "a", "aval"); elts[1] = le_malloc(mp3, "b", "bval"); elts[2] = le_malloc(mp5, "x", "xval"); r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 3), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 5), elts[2], omt_cmp, elts[2], NULL); assert(r==0); } BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2)); BLB_NBYTESINBUF(&sn, 3) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3)); BLB_NBYTESINBUF(&sn, 4) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 4)); BLB_NBYTESINBUF(&sn, 5) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 5)); BLB_NBYTESINBUF(&sn, 6) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 6)); FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>0); { // Man, this is way too ugly. This entire test suite needs to be refactored. // Create a dummy mempool and put the leaves there. Ugh. struct mempool dummy_mp; toku_mempool_construct(&dummy_mp, 1024); elts[0] = le_malloc(&dummy_mp, "a", "aval"); elts[1] = le_malloc(&dummy_mp, "b", "bval"); elts[2] = le_malloc(&dummy_mp, "x", "xval"); const uint32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } toku_mempool_destroy(&dummy_mp); assert(extra.i == 3); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } for (int i = 0; i < sn.n_children; i++) { BASEMENTNODE bn = BLB(&sn, i); struct mempool * mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_multiple_empty_basement_nodes(enum ftnode_verify_type bft, bool do_clone) { struct ftnode sn, *dn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 4; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("A", 2), 2); toku_fill_dbt(&sn.childkeys[1], toku_xmemdup("A", 2), 2); toku_fill_dbt(&sn.childkeys[2], toku_xmemdup("A", 2), 2); sn.totalchildkeylens = (sn.n_children-1)*2; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; set_BLB(&sn, i, toku_create_empty_bn()); } BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2)); BLB_NBYTESINBUF(&sn, 3) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3)); FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children == 1); { const uint32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 0, .elts = NULL, .i = 0, .cmp = omt_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } assert(toku_omt_size(BLB_BUFFER(dn, i)) == 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 0); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_leaf(enum ftnode_verify_type bft, bool do_clone) { // struct ft_handle source_ft; struct ftnode sn, *dn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 2; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(1, sn.childkeys); toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2); sn.totalchildkeylens = 2; BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; set_BLB(&sn, 0, toku_create_empty_bn()); set_BLB(&sn, 1, toku_create_empty_bn()); LEAFENTRY elts[3]; { BASEMENTNODE bn = BLB(&sn,0); struct mempool * mp0 = &bn->buffer_mempool; bn = BLB(&sn,1); struct mempool * mp1 = &bn->buffer_mempool; toku_mempool_construct(mp0, 1024); toku_mempool_construct(mp1, 1024); elts[0] = le_malloc(mp0, "a", "aval"); elts[1] = le_malloc(mp0, "b", "bval"); elts[2] = le_malloc(mp1, "x", "xval"); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0); } BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>=1); { // Man, this is way too ugly. This entire test suite needs to be refactored. // Create a dummy mempool and put the leaves there. Ugh. struct mempool dummy_mp; toku_mempool_construct(&dummy_mp, 1024); elts[0] = le_malloc(&dummy_mp, "a", "aval"); elts[1] = le_malloc(&dummy_mp, "b", "bval"); elts[2] = le_malloc(&dummy_mp, "x", "xval"); const uint32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; uint32_t last_i = 0; for (uint32_t i = 0; i < npartitions; ++i) { assert(dest_ndd[i].start > 0); assert(dest_ndd[i].size > 0); if (i > 0) { assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size); } toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); uint32_t keylen; if (i < npartitions-1) { assert(strcmp((char*)dn->childkeys[i].data, (char*)le_key_and_len(elts[extra.i-1], &keylen))==0); } // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } toku_mempool_destroy(&dummy_mp); assert(extra.i == 3); } toku_ftnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { toku_free(sn.childkeys[i].data); } for (int i = 0; i < sn.n_children; i++) { BASEMENTNODE bn = BLB(&sn, i); struct mempool * mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } static void test_serialize_nonleaf(enum ftnode_verify_type bft, bool do_clone) { // struct ft_handle source_ft; struct ftnode sn, *dn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; // source_ft.fd=fd; sn.max_msn_applied_to_node_on_disk.msn = 0; char *hello_string; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = FT_LAYOUT_VERSION; sn.layout_version_original = FT_LAYOUT_VERSION; sn.height = 1; sn.n_children = 2; sn.dirty = 1; hello_string = toku_strdup("hello"); MALLOC_N(2, sn.bp); MALLOC_N(1, sn.childkeys); toku_fill_dbt(&sn.childkeys[0], hello_string, 6); sn.totalchildkeylens = 6; BP_BLOCKNUM(&sn, 0).b = 30; BP_BLOCKNUM(&sn, 1).b = 35; BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; set_BNC(&sn, 0, toku_create_empty_nl()); set_BNC(&sn, 1, toku_create_empty_nl()); //Create XIDS XIDS xids_0 = xids_get_root_xids(); XIDS xids_123; XIDS xids_234; r = xids_create_child(xids_0, &xids_123, (TXNID)123); CKERR(r); r = xids_create_child(xids_123, &xids_234, (TXNID)234); CKERR(r); toku_bnc_insert_msg(BNC(&sn, 0), "a", 2, "aval", 5, FT_NONE, next_dummymsn(), xids_0, true, NULL, string_key_cmp); toku_bnc_insert_msg(BNC(&sn, 0), "b", 2, "bval", 5, FT_NONE, next_dummymsn(), xids_123, false, NULL, string_key_cmp); toku_bnc_insert_msg(BNC(&sn, 1), "x", 2, "xval", 5, FT_NONE, next_dummymsn(), xids_234, true, NULL, string_key_cmp); //Cleanup: xids_destroy(&xids_0); xids_destroy(&xids_123); xids_destroy(&xids_234); FT_HANDLE XMALLOC(brt); FT XCALLOC(brt_h); toku_ft_init(brt_h, make_blocknum(0), ZERO_LSN, TXNID_NONE, 4*1024*1024, 128*1024, TOKU_DEFAULT_COMPRESSION_METHOD); brt->ft = brt_h; toku_blocktable_create_new(&brt_h->blocktable); { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } FTNODE_DISK_DATA src_ndd = NULL; FTNODE_DISK_DATA dest_ndd = NULL; write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone); setup_dn(bft, fd, brt_h, &dn, &dest_ndd); assert(dn->thisnodename.b==20); assert(dn->layout_version ==FT_LAYOUT_VERSION); assert(dn->layout_version_original ==FT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==FT_LAYOUT_VERSION); assert(dn->height == 1); assert(dn->n_children==2); assert(strcmp((char*)dn->childkeys[0].data, "hello")==0); assert(dn->childkeys[0].size==6); assert(dn->totalchildkeylens==6); assert(BP_BLOCKNUM(dn,0).b==30); assert(BP_BLOCKNUM(dn,1).b==35); FIFO src_fifo_1 = BNC(&sn, 0)->buffer; FIFO src_fifo_2 = BNC(&sn, 1)->buffer; FIFO dest_fifo_1 = BNC(dn, 0)->buffer; FIFO dest_fifo_2 = BNC(dn, 1)->buffer; assert(toku_are_fifos_same(src_fifo_1, dest_fifo_1)); assert(toku_are_fifos_same(src_fifo_2, dest_fifo_2)); toku_ftnode_free(&dn); toku_free(sn.childkeys[0].data); destroy_nonleaf_childinfo(BNC(&sn, 0)); destroy_nonleaf_childinfo(BNC(&sn, 1)); toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h->h); toku_free(brt_h); toku_free(brt); toku_free(src_ndd); toku_free(dest_ndd); r = close(fd); assert(r != -1); } int test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) { initialize_dummymsn(); test_serialize_leaf(read_none, false); test_serialize_leaf(read_all, false); test_serialize_leaf(read_compressed, false); test_serialize_leaf(read_none, true); test_serialize_leaf(read_all, true); test_serialize_leaf(read_compressed, true); test_serialize_leaf_with_empty_basement_nodes(read_none, false); test_serialize_leaf_with_empty_basement_nodes(read_all, false); test_serialize_leaf_with_empty_basement_nodes(read_compressed, false); test_serialize_leaf_with_empty_basement_nodes(read_none, true); test_serialize_leaf_with_empty_basement_nodes(read_all, true); test_serialize_leaf_with_empty_basement_nodes(read_compressed, true); test_serialize_leaf_with_multiple_empty_basement_nodes(read_none, false); test_serialize_leaf_with_multiple_empty_basement_nodes(read_all, false); test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed, false); test_serialize_leaf_with_multiple_empty_basement_nodes(read_none, true); test_serialize_leaf_with_multiple_empty_basement_nodes(read_all, true); test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed, true); test_serialize_leaf_with_large_rows(read_none, false); test_serialize_leaf_with_large_rows(read_all, false); test_serialize_leaf_with_large_rows(read_compressed, false); test_serialize_leaf_with_large_rows(read_none, true); test_serialize_leaf_with_large_rows(read_all, true); test_serialize_leaf_with_large_rows(read_compressed, true); test_serialize_leaf_with_many_rows(read_none, false); test_serialize_leaf_with_many_rows(read_all, false); test_serialize_leaf_with_many_rows(read_compressed, false); test_serialize_leaf_with_many_rows(read_none, true); test_serialize_leaf_with_many_rows(read_all, true); test_serialize_leaf_with_many_rows(read_compressed, true); test_serialize_leaf_with_large_pivots(read_none, false); test_serialize_leaf_with_large_pivots(read_all, false); test_serialize_leaf_with_large_pivots(read_compressed, false); test_serialize_leaf_with_large_pivots(read_none, true); test_serialize_leaf_with_large_pivots(read_all, true); test_serialize_leaf_with_large_pivots(read_compressed, true); test_serialize_leaf_check_msn(read_none, false); test_serialize_leaf_check_msn(read_all, false); test_serialize_leaf_check_msn(read_compressed, false); test_serialize_leaf_check_msn(read_none, true); test_serialize_leaf_check_msn(read_all, true); test_serialize_leaf_check_msn(read_compressed, true); test_serialize_nonleaf(read_none, false); test_serialize_nonleaf(read_all, false); test_serialize_nonleaf(read_compressed, false); test_serialize_nonleaf(read_none, true); test_serialize_nonleaf(read_all, true); test_serialize_nonleaf(read_compressed, true); return 0; }