We'd like to update our HELP contents independently of the test cases.
Like 5e270ca28d, the same concept
is applied to make the MTR output of a dummy help topic is done
to prove the HELP can works as a prepared statement.
Spider waits until the server initialization has been completed
(i.e., mysqld_server_started has been set to 1) before creating the
Spider system tables. Spider also wait until the system tables have
been created before instantiating ha_spider.
These waits leads to dead lock when a non-system Spider table is
created by --in-file. This is because queries passed by --in-file
are executed during the server initialization and creating the
non-system Spider table causes an instantiation of ha_spider.
In the first place, there seems to be no need for Spider to do such
a synchronization. Thus, we simply remove the synchronization.
Suppose we have two transactions, trx 1 and trx 2.
trx 2 does deadlock resolving from lock_wait(), it sets
victim->lock.was_chosen_as_deadlock_victim=true for trx 1, but has not
yet invoked lock_cancel_waiting_and_release().
trx 1 checks the flag in lock_trx_handle_wait(), and starts rollback
from row_mysql_handle_errors(). It can change trx->lock.wait_thr and
trx->state as it holds trx_t::mutex, but trx 2 has not yet requested it,
as lock_cancel_waiting_and_release() has not yet been called.
After that trx 1 tries to release locks in trx_t::rollback_low(),
invoking trx_t::rollback_finish(). lock_release() is blocked on try to
acquire lock_sys.rd_lock(SRW_LOCK_CALL) in lock_release_try(), as
lock_sys is blocked by trx 2, as deadlock resolution works under
lock_sys.wr_lock(SRW_LOCK_CALL), see Deadlock::report() for details.
trx 2 executes lock_cancel_waiting_and_release() for deadlock victim, i.
e. for trx 1. lock_cancel_waiting_and_release() contains some
trx->lock.wait_thr and trx->state assertions, which will fail, because
trx 1 has changed them during rollback execution.
So, according to the above scenario, it's legal to have
trx->lock.wait_thr==0 and trx->state!=TRX_STATE_ACTIVE in
lock_cancel_waiting_and_release(), if it was invoked from
Deadlock::report(), and the fix is just in the assertion conditions
changing.
The fix is just in changing assertion condition.
There is also lock_wait() cleanup around trx->error_state.
If trx->error_state can be changed not by the owned thread, it must be
protected with lock_sys.wait_mutex, as lock_wait() uses trx->lock.cond
along with that mutex.
Also if trx->error_state was changed before lock_sys.wait_mutex
acquision, then it could be reset with the following code, what is
wrong. Also we need to check trx->error_state before entering waiting
loop, otherwise it can be the case when trx->error_state was set before
lock_sys.wait_mutex acquision, but the thread will be waiting on
trx->lock.cond.
Returning DB_SUCCESS unconditionally if !trx->lock.wait_lock in
lock_trx_handle_wait() is wrong. Because even if
trx->lock.was_chosen_as_deadlock_victim was not set before the first check
in lock_trx_handle_wait(), it can be set after
the check, and trx->lock.wait_lock can be reset by another thread from
lock_reset_lock_and_trx_wait() if the transaction was chosen as deadlock
victim. In this case lock_trx_handle_wait() will return DB_SUCCESS even
the transaction was marked as deadlock victim, and continue execution
instead of rolling back.
The fix is to check trx->lock.was_chosen_as_deadlock_victim once more if
trx->lock.wait_lock is reset, as trx->lock.wait_lock can be reset only
after trx->lock.was_chosen_as_deadlock_victim was set if the transaction
was chosen as deadlock victim.
Until now, the attribute EXTENDED of CHECK TABLE was ignored by InnoDB,
and InnoDB only counted the records in each index according
to the current read view. Unless the attribute QUICK was specified, the
function btr_validate_index() would be invoked to validate the B-tree
structure (the sibling and child links between index pages).
The EXTENDED check will not only count all index records according to the
current read view, but also ensure that any delete-marked records in the
clustered index are waiting for the purge of history, and that all
secondary index records point to a version of the clustered index record
that is waiting for the purge of history. In other words, no index may
contain orphan records. Normal MVCC reads and the non-EXTENDED version
of CHECK TABLE would ignore these orphans.
Unpurged records merely result in warnings (at most one per index),
not errors, and no indexes will be flagged as corrupted due to such
garbage. It will remain possible to SELECT data from such indexes or
tables (which will skip such records) or to rebuild the table to
reclaim some space.
We introduce purge_sys.end_view that will be (almost) a copy of
purge_sys.view at the end of a batch of purging committed transaction
history. It is not an exact copy, because if the size of a purge batch
is limited by innodb_purge_batch_size, some records that
purge_sys.view would allow to be purged will be left over for
subsequent batches.
The purge_sys.view is relevant in the purge of committed transaction
history, to determine if records are safe to remove. The new
purge_sys.end_view is relevant in MVCC operations and in
CHECK TABLE ... EXTENDED. It tells which undo log records are
safe to access (have not been discarded at the end of a purge batch).
purge_sys.clone_oldest_view<true>(): In trx_lists_init_at_db_start(),
clone the oldest read view similar to purge_sys_t::clone_end_view()
so that CHECK TABLE ... EXTENDED will not report bogus failures between
InnoDB restart and the completed purge of committed transaction history.
purge_sys_t::is_purgeable(): Replaces purge_sys_t::changes_visible()
in the case that purge_sys.latch will not be held by the caller.
Among other things, this guards access to BLOBs. It is not safe to
dereference any BLOBs of a delete-marked purgeable record, because
they may have already been freed.
purge_sys_t::view_guard::view(): Return a reference to purge_sys.view
that will be protected by purge_sys.latch, held by purge_sys_t::view_guard.
purge_sys_t::end_view_guard::view(): Return a reference to
purge_sys.end_view while it is protected by purge_sys.end_latch.
Whenever a thread needs to retrieve an older version of a clustered
index record, it will hold a page latch on the clustered index page
and potentially also on a secondary index page that points to the
clustered index page. If these pages contain purgeable records that
would be accessed by a currently running purge batch, the progress of
the purge batch would be blocked by the page latches. Hence, it is
safe to make a copy of purge_sys.end_view while holding an index page
latch, and consult the copy of the view to determine whether a record
should already have been purged.
btr_validate_index(): Remove a redundant check.
row_check_index_match(): Check if a secondary index record and a
version of a clustered index record match each other.
row_check_index(): Replaces row_scan_index_for_mysql().
Count the records in each index directly, duplicating the relevant
logic from row_search_mvcc(). Initialize check_table_extended_view
for CHECK ... EXTENDED while holding an index leaf page latch.
If we encounter an orphan record, the copy of purge_sys.end_view that
we make is safe for visibility checks, and trx_undo_get_undo_rec() will
check for the safety to access each undo log record. Should that check
fail, we should return DB_MISSING_HISTORY to report a corrupted index.
The EXTENDED check tries to match each secondary index record with
every available clustered index record version, by duplicating the logic
of row_vers_build_for_consistent_read() and invoking
trx_undo_prev_version_build() directly.
Before invoking row_check_index_match() on delete-marked clustered index
record versions, we will consult purge_sys.is_purgeable() in order to
avoid accessing freed BLOBs.
We will always check that the DB_TRX_ID or PAGE_MAX_TRX_ID does not
exceed the global maximum. Orphan secondary index records will be
flagged only if everything up to PAGE_MAX_TRX_ID has been purged.
We warn also about clustered index records whose nonzero DB_TRX_ID
should have been reset in purge or rollback.
trx_set_rw_mode(): Move an assertion from ReadView::set_creator_trx_id().
trx_undo_prev_version_build(): Remove two debug-only parameters,
and return an error code instead of a Boolean.
trx_undo_get_undo_rec(): Return a pointer to the undo log record,
or nullptr if one cannot be retrieved. Instead of consulting the
purge_sys.view, consult the purge_sys.end_view to determine which
records can be accessed.
trx_undo_get_rec_if_purgeable(): A variant of trx_undo_get_undo_rec()
that will consult purge_sys.view instead of purge_sys.end_view.
TRX_UNDO_CHECK_PURGEABILITY: A new parameter to
trx_undo_prev_version_build(), passed by row_vers_old_has_index_entry()
so that purge_sys.view instead of purge_sys.end_view will be consulted
to determine whether a secondary index record may be safely purged.
row_upd_changes_disowned_external(): Remove. This should be more
expensive than briefly latching purge_sys in trx_undo_prev_version_build()
(which may make use of transactional memory).
row_sel_reset_old_vers_heap(): New function, split from
row_sel_build_prev_vers_for_mysql().
row_sel_build_prev_vers_for_mysql(): Reorder some parameters
to simplify the call to row_sel_reset_old_vers_heap().
row_search_for_mysql(): Replaced with direct calls to row_search_mvcc().
sel_node_get_nth_plan(): Define inline in row0sel.h
open_step(): Define at the call site, in simplified form.
sel_node_reset_cursor(): Merged with the only caller open_step().
---
ReadViewBase::check_trx_id_sanity(): Remove.
Let us handle "future" DB_TRX_ID in a more meaningful way:
row_sel_clust_sees(): Return DB_SUCCESS if the record is visible,
DB_SUCCESS_LOCKED_REC if it is invisible, and DB_CORRUPTION if
the DB_TRX_ID is in the future.
row_undo_mod_must_purge(), row_undo_mod_clust(): Silently ignore
corrupted DB_TRX_ID. We are in ROLLBACK, and we should have noticed
that corruption when we were about to modify the record in the first
place (leading us to refuse the operation).
row_vers_build_for_consistent_read(): Return DB_CORRUPTION if
DB_TRX_ID is in the future.
Tested by: Matthias Leich
Reviewed by: Vladislav Lesin
The problem was that SHOW SLAVE STATUS was exceuted before the slave IO
thread had time to create a new relay log
Fixed by writing a command on the master and syncing the slave data.
This ensures that the slave creates a new relay log.
SELECT FROM JSON_TABLE
Analysis: When fix_fields_if_needed() is called, it doesnt check if operands
are valid because check_cols() is not called. So it doesn't error out and
eventually crashes.
Fix: Use fix_fields_if_needed_for_scalar() instead of
fix_fields_if_needed(). It filters the scalar and returns the error if
it occurs.
See also commits aa8a31da and 64678c for a Bug #22990029 fix.
In this scenario INSERT chose to check if delete unmarking is available for
a just deleted record. To build an update vector, it needed to calculate
the vcols as well. Since this INSERT was not IGNORE-flagged, recalculation
failed.
Solutiuon: temporarily set abort_on_warning=true, while calculating the
column for delete-unmarked insert.
As of now innodb does not store trx_id for each record in secondary index.
The idea behind is following: let us store only per-page max_trx_id, and
delete-mark the records when they are deleted/updated.
If the read starts, it rememders the lowest id of currently active
transaction. Innodb refers to it as trx->read_view->m_up_limit_id.
See also ReadView::open.
When the page is fetched, its max_trx_id is compared to m_up_limit_id.
If the value is lower, and the secondary index record is not delete-marked,
then this page is just safe to read as is. Else, a clustered index could be
needed ato access. See page_get_max_trx_id call in row_search_mvcc, and the
corresponding switch (row_search_idx_cond_check(...)) below.
Virtual columns are required to be updated in case if the record was
delete-marked. The motivation behind it is documented in
Row_sel_get_clust_rec_for_mysql::operator() near
row_sel_sec_rec_is_for_clust_rec call.
This was basically a description why virtual column computation can
normally happen during SELECT, and, generally, a vcol index access.
Sometimes stats tables are updated by innodb. This starts a new
transaction, and it can happen that it didn't finish to the moment of
SELECT execution, forcing virtual columns recomputation. If the result was
a something that normally outputs a warning, like division by zero, then
it could be outputted in a racy manner.
The solution is to suppress the warnings when a column is computed
for the described purpose.
ignore_wrnings argument is added innobase_get_computed_value.
Currently, it is only true for a call from
row_sel_sec_rec_is_for_clust_rec.
MDEV-19243 introduced a regression on Windows.
In (supposedly rare) case, where environment variable TZ was set,
@@system_time_zone no longer derives from TZ. Instead, it incorrecty
refers to system default time zone, eventhough UTC time conversion
takes TZ into account.
The fix is to restore TZ-aware handling (timezone name derives from
tzname), if TZ is set.
Avoid relatively expensive THD::store_globals() for every query in the
threadpool. Use a lighter version instead, that only resets some thread
local storage variables(THD, mysys, PSI), avoids some calculationms
and caches syscall gettid (Linux only) in a thread_local variable.
Also simplify Worker_context use, with RAII.
Adding debug output for key and keyseg flags at ha_myisam::open() time.
So now there are three points of debug output:
1. In the very end of mysql_prepare_create_table()
2. In ha_myisam::create(), after the table2myisam() call
3. In ha_myisan::open(), after the mi_open() call
mi_create(), which is is called between 2 and 3, modifies flags for
some data types, so the output in 2 and 3 is different.
Fix error message to contain correct errno. This commit was
tested interactively because mtr will notice if you provide
wrong wsrep_provider in config and you may not change
wsrep_provider dynamically.