from a MERGE view.
The problem was in the lost ability to be null for the table of a left join if it
is a view/derived table.
It hapenned because setup_table_map(), was called earlier then we merged
the view or derived.
Fixed by propagating new maybe_null flag during Item::update_used_tables().
Change in join_outer.test and join_outer_jcl6.test appeared because
IS NULL reported no used tables (i.e. constant) for argument which could not be
NULL and new maybe_null flag was propagated for IS NULL argument (Item_field)
because table the Item_field belonged to changed its maybe_null status.
Analysis:
The following call stack shows that it is possible to set Item_cache::value_cached, and the relevant value
without setting Item_cache::example.
#0 Item_cache_temporal::store_packed at item.cc:8395
#1 get_datetime_value at item_cmpfunc.cc:915
#2 resolve_const_item at item.cc:7987
#3 propagate_cond_constants at sql_select.cc:12264
#4 propagate_cond_constants at sql_select.cc:12227
#5 optimize_cond at sql_select.cc:13026
#6 JOIN::optimize at sql_select.cc:1016
#7 st_select_lex::optimize_unflattened_subqueries at sql_lex.cc:3161
#8 JOIN::optimize_unflattened_subqueries at opt_subselect.cc:4880
#9 JOIN::optimize at sql_select.cc:1554
The fix is to set Item_cache_temporal::example even when the value is
set directly by Item_cache_temporal::store_packed. This makes the
Item_cache_temporal object consistent.
If the setting of system variables does not allow to use join buffer
for a join query with GROUP BY <f1,...> / ORDER BY <f1,...> then
filesort is not needed if the first joined table is scanned in
the order compatible with order specified by the list <f1,...>.
Fix some problems in the TC_LOG_MMAP commit processing, which could
lead to assertions in some cases.
Problems are mostly reproducible in MariaDB 10.0 with asynchroneous
commit checkpoints, but most of the problems were present in earlier
versions also.
fix: don't call field->val_decimal() if the field->is_null()
because the buffer at field->ptr might not hold a valid decimal value
sql/item_sum.cc:
do not call field->val_decimal() if the field->is_null()
storage/maria/ma_blockrec.c:
cleanup
storage/maria/ma_rrnd.c:
cleanup
strings/decimal.c:
typo
Take into account that length of strings passed down to this function can be up to FN_REFLEN+1 bytes. including terminating zero.
The overwrite was caused by incomplete fix to MySQL Bug # 44834
If triggers are used for an insert/update/delete statement than the values of
all virtual columns must be computed as any of them may be used by the triggers.
The problem is that memory alocated by copy_andor_structure() well be freed,
but if level of SELECT_LEX it will be excluded (in case of merge derived tables and view)
then sl->where/having will not be updated here but still can be accessed (so it will be access to freed memory).
(patch by Sanja)
If, when executing a query with ORDER BY col LIMIT n, the optimizer chose
an index-merge scan to access the table containing col while there existed
an index defined over col then optimizer did not consider the possibility
of using an alternative range scan by this index to avoid filesort. This
could cause a performance degradation if the optimizer flag index_merge was
set up to 'on'.
mysql-test/r/partition.result:
Added test case
mysql-test/t/partition.test:
Added test case
sql/ha_partition.cc:
Removed printing of not initialized variable
storage/maria/ha_maria.cc:
Don't copy variables that are not initialized
.. into MariaDB 5.3
Fix for Bug#12667154 SAME QUERY EXEC AS WHERE SUBQ GIVES DIFFERENT
RESULTS ON IN() & NOT IN() COMP #3
This bug causes a wrong result in mysql-trunk when ICP is used
and bad performance in mysql-5.5 and mysql-trunk.
Using the query from bug report to explain what happens and causes
the wrong result from the query when ICP is enabled:
1. The t3 table contains four records. The outer query will read
these and for each of these it will execute the subquery.
2. Before the first execution of the subquery it will be optimized. In
this case the important is what happens to the first table t1:
-make_join_select() will call the range optimizer which decides
that t1 should be accessed using a range scan on the k1 index
It creates a QUICK_RANGE_SELECT object for this.
-As the last part of optimization the ICP code pushes the
condition down to the storage engine for table t1 on the k1 index.
This produces the following information in the explain for this table:
2 DEPENDENT SUBQUERY t1 range k1 k1 5 NULL 3 Using index condition; Using filesort
Note the use of filesort.
3. The first execution of the subquery does (among other things) due
to the need for sorting:
a. Call create_sort_index() which again will call find_all_keys():
b. find_all_keys() will read the required keys for all qualifying
rows from the storage engine. To do this it checks if it has a
quick-select for the table. It will use the quick-select for
reading records. In this case it will read four records from the
storage engine (based on the range criteria). The storage engine
will evaluate the pushed index condition for each record.
c. At the end of create_sort_index() there is code that cleans up a
lot of stuff on the join tab. One of the things that is cleaned
is the select object. The result of this is that the
quick-select object created in make_join_select is deleted.
4. The second execution of the subquery does the same as the first but
the result is different:
a. Call create_sort_index() which again will call find_all_keys()
(same as for the first execution)
b. find_all_keys() will read the keys from the storage engine. To
do this it checks if it has a quick-select for the table. Now
there is NO quick-select object(!) (since it was deleted in
step 3c). So find_all_keys defaults to read the table using a
table scan instead. So instead of reading the four relevant records
in the range it reads the entire table (6 records). It then
evaluates the table's condition (and here it goes wrong). Since
the entire condition has been pushed down to the storage engine
using ICP all 6 records qualify. (Note that the storage engine
will not evaluate the pushed index condition in this case since
it was pushed for the k1 index and now we do a table scan
without any index being used).
The result is that here we return six qualifying key values
instead of four due to not evaluating the table's condition.
c. As above.
5. The two last execution of the subquery will also produce wrong results
for the same reason.
Summary: The problem occurs due to all but the first executions of the
subquery is done as a table scan without evaluating the table's
condition (which is pushed to the storage engine on a different
index). This is caused by the create_sort_index() function deleting
the quick-select object that should have been used for executing the
subquery as a range scan.
Note that this bug in addition to causing wrong results also can
result in bad performance due to executing the subquery using a table
scan instead of a range scan. This is an issue in MySQL 5.5.
The fix for this problem is to avoid that the Quick-select-object that
the optimizer created is deleted when create_sort_index() is doing
clean-up of the join-tab. This will ensure that the quick-select
object and the corresponding pushed index condition will be available
and used by all following executions of the subquery.