warnings in sql_trigger.cc and sql_view.cc".
According to the current version of C++ standard offsetof() macro
can't be used for non-POD types. So warnings were emitted when we
tried to use this macro for TABLE_LIST and Table_triggers_list
classes. Note that despite of these warnings it was probably safe
thing to do.
This fix tries to circumvent this limitation by implementing
custom version of offsetof() macro to be used with these
classes. This hack should go away once we will refactor
File_parser class.
Alternative approaches such as disabling this warning for
sql_trigger.cc/sql_view.cc or for the whole server were
considered less explicit. Also I was unable to find a way
to disable particular warning for particular _part_ of
file in GCC.
Backport from 5.1.
Raised STACK_MIN_SIZE for Debian GNU/Linux Sid,
Linux kernel 2.6.16,
gcc version 3.3.6 (Debian 1:3.3.6-13),
libc6-dbg 2.3.6.ds1-4,
Pentium4 (x86),
BUILD/compile-pentium-debug-max
Raised about 100 Bytes above the required minimum.
When statement to be prepared contained CREATE PROCEDURE, CREATE FUNCTION
or CREATE TRIGGER statements with a syntax error in it, the preparation
would fail with syntax error message, but the memory could be corrupted.
The problem occurred because we switch memroot when parse stored
routine or trigger definitions, and on parse error we restored the
original memroot only after performing some memory operations. In more
detail:
- prepared statement would activate its own memory root to parse
the definition of the stored procedure.
- SP would reset this memory root with its own memory root to
parse SP statements
- a syntax error would happen
- prepared statement would restore the original memory root
- stored procedure would restore what it thinks was the original
memory root, but actually was the statement memory root.
That led to double free - in destruction of the statement and in
a next call to mysql_parse().
The solution is to restore memroot right after the failed parsing.
Repair table could crash a server if there is not sufficient
memory (myisam_sort_buffer_size) to operate. Affects not only
repair, but also all statements that use create index by sort:
repair by sort, parallel repair, bulk insert.
Return an error if there is not sufficient memory to store at
least one key per BUFFPEK.
Also fixed memory leak if thr_find_all_keys returns an error.
list using a function
When executing dependent subqueries they are re-inited and re-exec() for
each row of the outer context.
The cause for the bug is that during subquery reinitialization/re-execution,
the optimizer reallocates JOIN::join_tab, JOIN::table in make_simple_join()
and the local variable in 'sortorder' in create_sort_index(), which is
allocated by make_unireg_sortorder().
Care must be taken not to allocate anything into the thread's memory pool
while re-initializing query plan structures between subquery re-executions.
All such items mush be cached and reused because the thread's memory pool
is freed at the end of the whole query.
Note that they must be cached and reused even for queries that are not
otherwise cacheable because otherwise it will grow the thread's memory
pool every time a cacheable query is re-executed.
We provide additional members to the JOIN structure to store references
to the items that need to be cached.
account predicates that become sargable after reading const tables.
In some cases this resulted in choosing non-optimal execution plans.
Now info of such potentially saragable predicates is saved in
an array and after reading const tables we check whether this
predicates has become saragable.
When using index for group by and range access the server isolates
a set of ranges based on the conditions over the key parts of the
index used. Then it uses only the ranges over the GROUP BY fields to
jump from one group to another. Since the GROUP BY fields may form a
prefix over the index, we may use only a prefix of the ranges produced
by the range optimizer.
Each range contains a notion on whether it includes its border values.
The problem is that when using a range prefix, the last range is open
because it assumes that there is a range on the next keypart. Thus when
we use a prefix range as it is, it excludes all border values.
The solution is when ignoring the suffix of the range conditions
(to jump over the GROUP BY prefix only) the server must change the
remaining intervals so they always contain their borders, e.g.
if the whole range was :
(1,-inf) <= (<group_by_col>,<min_max_arg_col>) < (1, 3) we must make
(1) <= (<group_by_col>) <= (1) because (a,b) < (c1,c2) means :
a < c1 OR (a = c1 AND b < c2).