mysqldump didn't properly handle getting no data on
SHOW CREATE PROCEDURE. If S/C/P fails (due to dumping
user's insufficient privileges on mysql.proc, say),
mysqldump will print a comment to that effect to the
output and return an error-code. If the -f (force) option
is used, the dump will continue, otherwise, it will abort
right there and then.
Also fixes Bug#22761, "mysqldump reports no errors when using
--routines without mysql.proc privileges"
---
Merge tnurnberg@bk-internal.mysql.com:/home/bk/mysql-5.0-maint
into mysql.com:/home/tnurnberg/27293/50-27293
some rollup rows (rows with NULLs for grouping attributes) if GROUP BY
list contained constant expressions.
This happened because the results of constant expressions were not put
in the temporary table used for duplicate elimination. In fact a constant
item from the GROUP BY list of a ROLLUP query can be replaced for an
Item_null_result object when a rollup row is produced .
Now the JOIN::rollup_init function wraps any constant item referenced in
the GROYP BY list of a ROLLUP query into an Item_func object of a special
class that is never detected as constant item. This ensures creation of
fields for such constant items in temporary tables and guarantees right
results when the result of the rollup operation first has to be written
into a temporary table, e.g. in the cases when duplicate elimination is
required.
INSERT...ON DUPLICATE KEY UPDATE may cause error 1032:
"Can't find record in ..." if we are inserting into
InnoDB table unique index of partial key with
underlying UTF-8 string field.
This error occurs because INSERT...ON DUPLICATE uses a wrong
procedure to copy string fields of multi-byte character sets
for index search.
This bug occurs when error message length exceeds allowed limit: my_error()
function outputs "%s" sequences instead of long string arguments.
Formats like %-.64s are very common in errmsg.txt files, however my_error()
function simply ignores precision of those formats.
- unsigned flag was not handled correctly for a number of mathematical funcions, which led to incorrect results
- passing large values as the number of decimals to ROUND() resulted in incorrect results and even server crashes in some cases
- reverted the fix and the testcase for bug #10083 as it violates the manual
- fixed some testcases which relied on broken ROUND() behavior
Recognize the --no-defaults, --defaults-file and --defaults-extra-file
options. Treat old --config-file argument as if --defaults-extra-file
had been specified instead.
Plus a few other defaults-related cleanups.
Before this fix, the parser would sometime change where a token starts by
altering Lex_input_string::tok_start, which later confused the code in
sql_yacc.yy that needs to capture the source code of a SQL statement,
like to represent the body of a stored procedure.
This line of code in sql_lex.cc :
case MY_LEX_USER_VARIABLE_DELIMITER:
lip->tok_start= lip->ptr; // Skip first `
would <skip the first back quote> ... and cause the bug reported.
In general, the responsibility of sql_lex.cc is to *find* where token are
in the SQL text, but is *not* to make up fake or incomplete tokens.
With a quoted label like `my_label`, the token starts on the first quote.
Extracting the token value should not change that (it did).
With this fix, the lexical analysis has been cleaned up to not change
lip->tok_start (in the case found for this bug).
The functions get_token() and get_quoted_token() now have an extra
parameters, used when some characters from the beginning of the token need
to be skipped when extracting a token value, like when extracting 'AB' from
'0xAB', for example, for a HEX_NUM token.
This exposed a bad assumption in Item_hex_string and Item_bin_string,
which has been fixed:
The assumption was that the string given, 'AB', was in fact preceded in
memory by '0x', which might be false (it can be preceded by "x'" and
followed by "'" -- or not be preceded by valid memory at all)
If a name is needed for Item_hex_string or Item_bin_string, the name is
taken from the original and true source code ('0xAB'), and assigned in
the select_item rule, instead of relying on assumptions related to how
memory is used.
The BETWEEN function was comparing DATE/DATETIME values either as ints or as
strings. Both methods have their disadvantages and may lead to a wrong
result.
Now BETWEEN function checks whether all of its arguments has the STRING result
types and at least one of them is a DATE/DATETIME item. If so it sets up
two Arg_comparator obects to compare with the compare_datetime() comparator
and uses them to compare such items.
Added two Arg_comparator object members and one flag to the
Item_func_between class for the correct DATE/DATETIME comparison.
The Item_func_between::fix_length_and_dec() function now detects whether
it's used for DATE/DATETIME comparison and sets up newly added Arg_comparator
objects to do this.
The Item_func_between::val_int() now uses Arg_comparator objects to perform
correct DATE/DATETIME comparison.
The owner variable of the Arg_comparator class now can be set to NULL if the
caller wants to handle NULL values by itself.
Now the Item_date_add_interval::get_date() function ajusts cached_field type according to the detected type.
DATE and DATETIME can be compared either as strings or as int. Both
methods have their disadvantages. Strings can contain valid DATETIME value
but have insignificant zeros omitted thus became non-comparable with
other DATETIME strings. The comparison as int usually will require conversion
from the string representation and the automatic conversion in most cases is
carried out in a wrong way thus producing wrong comparison result. Another
problem occurs when one tries to compare DATE field with a DATETIME constant.
The constant is converted to DATE losing its precision i.e. losing time part.
This fix addresses the problems described above by adding a special
DATE/DATETIME comparator. The comparator correctly converts DATE/DATETIME
string values to int when it's necessary, adds zero time part (00:00:00)
to DATE values to compare them correctly to DATETIME values. Due to correct
conversion malformed DATETIME string values are correctly compared to other
DATE/DATETIME values.
As of this patch a DATE value equals to DATETIME value with zero time part.
For example '2001-01-01' equals to '2001-01-01 00:00:00'.
The compare_datetime() function is added to the Arg_comparator class.
It implements the correct comparator for DATE/DATETIME values.
Two supplementary functions called get_date_from_str() and get_datetime_value()
are added. The first one extracts DATE/DATETIME value from a string and the
second one retrieves the correct DATE/DATETIME value from an item.
The new Arg_comparator::can_compare_as_dates() function is added and used
to check whether two given items can be compared by the compare_datetime()
comparator.
Two caching variables were added to the Arg_comparator class to speedup the
DATE/DATETIME comparison.
One more store() method was added to the Item_cache_int class to cache int
values.
The new is_datetime() function was added to the Item class. It indicates
whether the item returns a DATE/DATETIME value.