mariadb/sql/opt_range.cc

3295 lines
90 KiB
C++
Raw Normal View History

2000-07-31 21:29:14 +02:00
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
2000-08-29 12:31:01 +03:00
/*
TODO:
Fix that MAYBE_KEY are stored in the tree so that we can detect use
of full hash keys for queries like:
2000-10-07 13:59:47 +02:00
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);
2000-08-29 12:31:01 +03:00
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
2000-07-31 21:29:14 +02:00
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
2000-07-31 21:29:14 +02:00
#include <m_ctype.h>
#include <nisam.h>
#include "sql_select.h"
#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);
static char is_null_string[2]= {1,0};
/*
A construction block of the SEL_ARG-graph.
The following description only covers graphs of SEL_ARG objects with
sel_arg->type==KEY_RANGE:
One SEL_ARG object represents an "elementary interval" in form
min_value <=? table.keypartX <=? max_value
The interval is a non-empty interval of any kind: with[out] minimum/maximum
bound, [half]open/closed, single-point interval, etc.
1. SEL_ARG GRAPH STRUCTURE
SEL_ARG objects are linked together in a graph. The meaning of the graph
is better demostrated by an example:
tree->keys[i]
|
| $ $
| part=1 $ part=2 $ part=3
| $ $
| +-------+ $ +-------+ $ +--------+
| | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
| +-------+ $ +-------+ $ +--------+
| | $ $ |
| | $ $ +--------+
| | $ $ | kp3=12 |
| | $ $ +--------+
| +-------+ $ $
\->| kp1=2 |--$--------------$-+
+-------+ $ $ | +--------+
| $ $ ==>| kp3=11 |
+-------+ $ $ | +--------+
| kp1=3 |--$--------------$-+ |
+-------+ $ $ +--------+
| $ $ | kp3=14 |
... $ $ +--------+
The entire graph is partitioned into "interval lists".
An interval list is a sequence of ordered disjoint intervals over the same
key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
all intervals in the list form an RB-tree, linked via left/right/parent
pointers. The RB-tree root SEL_ARG object will be further called "root of the
interval list".
In the example pic, there are 4 interval lists:
"kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
The vertical lines represent SEL_ARG::next/prev pointers.
In an interval list, each member X may have SEL_ARG::next_key_part pointer
pointing to the root of another interval list Y. The pointed interval list
must cover a key part with greater number (i.e. Y->part > X->part).
In the example pic, the next_key_part pointers are represented by
horisontal lines.
2. SEL_ARG GRAPH SEMANTICS
It represents a condition in a special form (we don't have a name for it ATM)
The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
For example, the picture represents the condition in form:
(kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
(kp1=2 AND (kp3=11 OR kp3=14)) OR
(kp1=3 AND (kp3=11 OR kp3=14))
3. SEL_ARG GRAPH USE
Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
Then walk the SEL_ARG graph and get a list of dijsoint ordered key
intervals (i.e. intervals in form
(constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)
Those intervals can be used to access the index. The uses are in:
- check_quick_select() - Walk the SEL_ARG graph and find an estimate of
how many table records are contained within all
intervals.
- get_quick_select() - Walk the SEL_ARG, materialize the key intervals,
and create QUICK_RANGE_SELECT object that will
read records within these intervals.
*/
2000-07-31 21:29:14 +02:00
class SEL_ARG :public Sql_alloc
{
public:
uint8 min_flag,max_flag,maybe_flag;
uint8 part; // Which key part
uint8 maybe_null;
/*
Number of children of this element in the RB-tree, plus 1 for this
element itself.
*/
uint16 elements;
/*
Valid only for elements which are RB-tree roots: Number of times this
RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
*/
ulong use_count;
2000-07-31 21:29:14 +02:00
Field *field;
char *min_value,*max_value; // Pointer to range
SEL_ARG *left,*right; /* R-B tree children */
SEL_ARG *next,*prev; /* Links for bi-directional interval list */
SEL_ARG *parent; /* R-B tree parent */
SEL_ARG *next_key_part;
2000-07-31 21:29:14 +02:00
enum leaf_color { BLACK,RED } color;
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
SEL_ARG() {}
SEL_ARG(SEL_ARG &);
SEL_ARG(Field *,const char *,const char *);
SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
SEL_ARG(enum Type type_arg)
:min_flag(0),elements(1),use_count(1),left(0),next_key_part(0),
color(BLACK), type(type_arg)
{}
2000-07-31 21:29:14 +02:00
inline bool is_same(SEL_ARG *arg)
{
2003-11-28 15:45:34 +02:00
if (type != arg->type || part != arg->part)
2000-07-31 21:29:14 +02:00
return 0;
if (type != KEY_RANGE)
return 1;
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag=1; }
inline int cmp_min_to_min(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
}
inline int cmp_min_to_max(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
}
inline int cmp_max_to_max(SEL_ARG* arg)
{
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
}
inline int cmp_max_to_min(SEL_ARG* arg)
{
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
}
SEL_ARG *clone_and(SEL_ARG* arg)
{ // Get overlapping range
char *new_min,*new_max;
uint8 flag_min,flag_max;
if (cmp_min_to_min(arg) >= 0)
{
new_min=min_value; flag_min=min_flag;
}
else
{
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
}
if (cmp_max_to_max(arg) <= 0)
{
new_max=max_value; flag_max=max_flag;
}
else
{
new_max=arg->max_value; flag_max=arg->max_flag;
}
return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
test(maybe_flag && arg->maybe_flag));
}
SEL_ARG *clone_first(SEL_ARG *arg)
{ // min <= X < arg->min
return new SEL_ARG(field,part, min_value, arg->min_value,
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone_last(SEL_ARG *arg)
{ // min <= X <= key_max
return new SEL_ARG(field, part, min_value, arg->max_value,
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);
bool copy_min(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_min_to_min(arg) > 0)
{
min_value=arg->min_value; min_flag=arg->min_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
bool copy_max(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_max_to_max(arg) <= 0)
{
max_value=arg->max_value; max_flag=arg->max_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
void copy_min_to_min(SEL_ARG *arg)
{
min_value=arg->min_value; min_flag=arg->min_flag;
}
void copy_min_to_max(SEL_ARG *arg)
{
max_value=arg->min_value;
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
}
void copy_max_to_min(SEL_ARG *arg)
{
min_value=arg->max_value;
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
void store(uint length,char **min_key,uint min_key_flag,
char **max_key, uint max_key_flag)
{
2002-02-22 15:24:42 +04:00
if ((min_flag & GEOM_FLAG) ||
(!(min_flag & NO_MIN_RANGE) &&
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
2000-07-31 21:29:14 +02:00
{
if (maybe_null && *min_value)
{
**min_key=1;
bzero(*min_key+1,length-1);
2000-07-31 21:29:14 +02:00
}
else
memcpy(*min_key,min_value,length);
(*min_key)+= length;
2000-07-31 21:29:14 +02:00
}
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{
if (maybe_null && *max_value)
{
**max_key=1;
bzero(*max_key+1,length-1);
2000-07-31 21:29:14 +02:00
}
else
memcpy(*max_key,max_value,length);
(*max_key)+= length;
2000-07-31 21:29:14 +02:00
}
}
void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
{
SEL_ARG *key_tree= first();
key_tree->store(key[key_tree->part].store_length,
2000-07-31 21:29:14 +02:00
range_key,*range_key_flag,range_key,NO_MAX_RANGE);
*range_key_flag|= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
}
void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
{
SEL_ARG *key_tree= last();
key_tree->store(key[key_tree->part].store_length,
2000-07-31 21:29:14 +02:00
range_key, NO_MIN_RANGE, range_key,*range_key_flag);
(*range_key_flag)|= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
}
SEL_ARG *insert(SEL_ARG *key);
SEL_ARG *tree_delete(SEL_ARG *key);
SEL_ARG *find_range(SEL_ARG *key);
SEL_ARG *rb_insert(SEL_ARG *leaf);
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
void test_use_count(SEL_ARG *root);
#endif
SEL_ARG *first();
SEL_ARG *last();
void make_root();
inline bool simple_key()
{
return !next_key_part && elements == 1;
}
void increment_use_count(long count)
{
if (next_key_part)
{
next_key_part->use_count+=count;
count*= (next_key_part->use_count-count);
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
if (pos->next_key_part)
pos->increment_use_count(count);
}
}
void free_tree()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
if (pos->next_key_part)
{
pos->next_key_part->use_count--;
pos->next_key_part->free_tree();
}
}
inline SEL_ARG **parent_ptr()
{
return parent->left == this ? &parent->left : &parent->right;
}
SEL_ARG *clone_tree();
};
class SEL_TREE :public Sql_alloc
{
public:
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
SEL_TREE(enum Type type_arg) :type(type_arg) {}
SEL_TREE() :type(KEY) { bzero((char*) keys,sizeof(keys));}
SEL_ARG *keys[MAX_KEY];
};
typedef struct st_qsel_param {
THD *thd;
2000-07-31 21:29:14 +02:00
TABLE *table;
KEY_PART *key_parts,*key_parts_end,*key[MAX_KEY];
MEM_ROOT *mem_root;
table_map prev_tables,read_tables,current_table;
uint baseflag, keys, max_key_part, range_count;
2000-07-31 21:29:14 +02:00
uint real_keynr[MAX_KEY];
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
bool quick; // Don't calulate possible keys
COND *cond;
2000-07-31 21:29:14 +02:00
} PARAM;
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
2000-07-31 21:29:14 +02:00
Item_func::Functype type,Item *value,
Item_result cmp_type);
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
KEY_PART *key_part,
2000-07-31 21:29:14 +02:00
Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag);
static QUICK_SELECT *get_quick_select(PARAM *param,uint index,
SEL_ARG *key_tree);
#ifndef DBUG_OFF
2003-10-24 22:44:48 +02:00
static void print_quick(QUICK_SELECT *quick,const key_map* needed_reg);
2000-07-31 21:29:14 +02:00
#endif
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
static bool get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length);
2000-07-31 21:29:14 +02:00
/***************************************************************************
** Basic functions for SQL_SELECT and QUICK_SELECT
***************************************************************************/
/* make a select from mysql info
Error is set as following:
0 = ok
1 = Got some error (out of memory?)
*/
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
table_map read_tables, COND *conds, int *error)
{
SQL_SELECT *select;
DBUG_ENTER("make_select");
*error=0;
if (!conds)
DBUG_RETURN(0);
if (!(select= new SQL_SELECT))
{
*error= 1; // out of memory
DBUG_RETURN(0); /* purecov: inspected */
2000-07-31 21:29:14 +02:00
}
select->read_tables=read_tables;
select->const_tables=const_tables;
select->head=head;
select->cond=conds;
if (head->sort.io_cache)
2000-07-31 21:29:14 +02:00
{
select->file= *head->sort.io_cache;
2000-07-31 21:29:14 +02:00
select->records=(ha_rows) (select->file.end_of_file/
head->file->ref_length);
my_free((gptr) (head->sort.io_cache),MYF(0));
head->sort.io_cache=0;
2000-07-31 21:29:14 +02:00
}
DBUG_RETURN(select);
}
SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
2003-10-24 22:44:48 +02:00
quick_keys.clear_all(); needed_reg.clear_all();
2000-07-31 21:29:14 +02:00
my_b_clear(&file);
}
void SQL_SELECT::cleanup()
2000-07-31 21:29:14 +02:00
{
delete quick;
quick= 0;
2000-07-31 21:29:14 +02:00
if (free_cond)
{
free_cond=0;
2000-07-31 21:29:14 +02:00
delete cond;
cond= 0;
}
2000-07-31 21:29:14 +02:00
close_cached_file(&file);
}
SQL_SELECT::~SQL_SELECT()
{
cleanup();
}
#undef index // Fix for Unixware 7
2000-07-31 21:29:14 +02:00
QUICK_SELECT::QUICK_SELECT(THD *thd, TABLE *table, uint key_nr, bool no_alloc)
:dont_free(0),sorted(0),error(0),index(key_nr),max_used_key_length(0),
used_key_parts(0), head(table), it(ranges),range(0)
2000-07-31 21:29:14 +02:00
{
if (!no_alloc)
{
// Allocates everything through the internal memroot
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
thd->mem_root= &alloc;
2000-07-31 21:29:14 +02:00
}
else
bzero((char*) &alloc,sizeof(alloc));
file=head->file;
record=head->record[0];
2000-11-30 15:19:22 +01:00
init();
2000-07-31 21:29:14 +02:00
}
QUICK_SELECT::~QUICK_SELECT()
{
2001-06-29 04:04:29 +03:00
if (!dont_free)
{
if (file->inited)
file->ha_index_end();
2001-06-29 04:04:29 +03:00
free_root(&alloc,MYF(0));
}
2000-07-31 21:29:14 +02:00
}
QUICK_RANGE::QUICK_RANGE()
:min_key(0),max_key(0),min_length(0),max_length(0),
flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}
SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
type=arg.type;
min_flag=arg.min_flag;
max_flag=arg.max_flag;
maybe_flag=arg.maybe_flag;
maybe_null=arg.maybe_null;
part=arg.part;
field=arg.field;
min_value=arg.min_value;
max_value=arg.max_value;
next_key_part=arg.next_key_part;
use_count=1; elements=1;
}
inline void SEL_ARG::make_root()
{
left=right= &null_element;
color=BLACK;
next=prev=0;
use_count=0; elements=1;
}
SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
max_value((char*) max_value_arg), next(0),prev(0),
next_key_part(0),color(BLACK),type(KEY_RANGE)
{
left=right= &null_element;
}
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
field(field_), min_value(min_value_), max_value(max_value_),
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
left=right= &null_element;
}
SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
SEL_ARG *tmp;
if (type != KEY_RANGE)
{
if (!(tmp= new SEL_ARG(type)))
return 0; // out of memory
2000-07-31 21:29:14 +02:00
tmp->prev= *next_arg; // Link into next/prev chain
(*next_arg)->next=tmp;
(*next_arg)= tmp;
}
else
{
if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
min_flag, max_flag, maybe_flag)))
return 0; // OOM
2000-07-31 21:29:14 +02:00
tmp->parent=new_parent;
tmp->next_key_part=next_key_part;
if (left != &null_element)
tmp->left=left->clone(tmp,next_arg);
tmp->prev= *next_arg; // Link into next/prev chain
(*next_arg)->next=tmp;
(*next_arg)= tmp;
if (right != &null_element)
if (!(tmp->right= right->clone(tmp,next_arg)))
return 0; // OOM
2000-07-31 21:29:14 +02:00
}
increment_use_count(1);
tmp->color= color;
tmp->elements= this->elements;
2000-07-31 21:29:14 +02:00
return tmp;
}
SEL_ARG *SEL_ARG::first()
{
SEL_ARG *next_arg=this;
if (!next_arg->left)
return 0; // MAYBE_KEY
while (next_arg->left != &null_element)
next_arg=next_arg->left;
return next_arg;
}
SEL_ARG *SEL_ARG::last()
{
SEL_ARG *next_arg=this;
if (!next_arg->right)
return 0; // MAYBE_KEY
while (next_arg->right != &null_element)
next_arg=next_arg->right;
return next_arg;
}
2000-07-31 21:29:14 +02:00
/*
Check if a compare is ok, when one takes ranges in account
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
*/
2000-07-31 21:29:14 +02:00
static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
int cmp;
/* First check if there was a compare to a min or max element */
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
{
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
return 0;
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
}
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
if (field->real_maybe_null()) // If null is part of key
{
if (*a != *b)
{
return *a ? -1 : 1;
}
if (*a)
goto end; // NULL where equal
a++; b++; // Skip NULL marker
2000-07-31 21:29:14 +02:00
}
cmp=field->key_cmp((byte*) a,(byte*) b);
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
// Check if the compared equal arguments was defined with open/closed range
end:
if (a_flag & (NEAR_MIN | NEAR_MAX))
{
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
return 0;
if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
return (a_flag & NEAR_MIN) ? 2 : -2;
return (a_flag & NEAR_MIN) ? 1 : -1;
}
if (b_flag & (NEAR_MIN | NEAR_MAX))
return (b_flag & NEAR_MIN) ? -2 : 2;
return 0; // The elements where equal
}
SEL_ARG *SEL_ARG::clone_tree()
{
SEL_ARG tmp_link,*next_arg,*root;
next_arg= &tmp_link;
root= clone((SEL_ARG *) 0, &next_arg);
2000-07-31 21:29:14 +02:00
next_arg->next=0; // Fix last link
tmp_link.next->prev=0; // Fix first link
if (root) // If not OOM
root->use_count= 0;
2000-07-31 21:29:14 +02:00
return root;
}
/*
2005-10-18 14:04:14 +04:00
Find the best index to retrieve first N records in given order
SYNOPSIS
get_index_for_order()
table Table to be accessed
order Required ordering
limit Number of records that will be retrieved
DESCRIPTION
2005-10-18 14:04:14 +04:00
Find the best index that allows to retrieve first #limit records in the
given order cheaper then one would retrieve them using full table scan.
IMPLEMENTATION
Run through all table indexes and find the shortest index that allows
2005-10-18 14:04:14 +04:00
records to be retrieved in given order. We look for the shortest index
as we will have fewer index pages to read with it.
This function is used only by UPDATE/DELETE, so we take into account how
the UPDATE/DELETE code will work:
* index can only be scanned in forward direction
* HA_EXTRA_KEYREAD will not be used
Perhaps these assumptions could be relaxed
RETURN
index number
MAX_KEY if no such index was found.
*/
uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
{
uint idx;
uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1;
ORDER *ord;
for (ord= order; ord; ord= ord->next)
if (!ord->asc)
return MAX_KEY;
for (idx= 0; idx < table->keys; idx++)
{
if (!(table->keys_in_use_for_query.is_set(idx)))
continue;
KEY_PART_INFO *keyinfo= table->key_info[idx].key_part;
uint partno= 0;
/*
The below check is sufficient considering we now have either BTREE
indexes (records are returned in order for any index prefix) or HASH
indexes (records are not returned in order for any index prefix).
*/
if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER))
continue;
for (ord= order; ord; ord= ord->next, partno++)
{
Item *item= order->item[0];
if (!(item->type() == Item::FIELD_ITEM &&
((Item_field*)item)->field->eq(keyinfo[partno].field)))
break;
}
if (!ord && table->key_info[idx].key_length < match_key_len)
{
/*
Ok, the ordering is compatible and this key is shorter then
previous match (we want shorter keys as we'll have to read fewer
index pages for the same number of records)
*/
match_key= idx;
match_key_len= table->key_info[idx].key_length;
}
}
if (match_key != MAX_KEY)
{
/*
Found an index that allows records to be retrieved in the requested
order. Now we'll check if using the index is cheaper then doing a table
scan.
*/
double full_scan_time= table->file->scan_time();
double index_scan_time= table->file->read_time(match_key, 1, limit);
if (index_scan_time > full_scan_time)
match_key= MAX_KEY;
}
return match_key;
}
2003-10-30 19:17:57 +01:00
/*
Test if a key can be used in different ranges
SYNOPSIS
SQL_SELECT::test_quick_select(thd,keys_to_use, prev_tables,
limit, force_quick_range)
Updates the following in the select parameter:
needed_reg - Bits for keys with may be used if all prev regs are read
quick - Parameter to use when reading records.
In the table struct the following information is updated:
quick_keys - Which keys can be used
quick_rows - How many rows the key matches
RETURN VALUES
-1 if impossible select
0 if can't use quick_select
1 if found usable range
TODO
check if the function really needs to modify keys_to_use, and change the
code to pass it by reference if not
*/
2000-07-31 21:29:14 +02:00
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
table_map prev_tables,
2000-07-31 21:29:14 +02:00
ha_rows limit, bool force_quick_range)
{
uint idx;
double scan_time;
DBUG_ENTER("test_quick_select");
2003-10-24 22:44:48 +02:00
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
keys_to_use.to_ulonglong(), (ulong) prev_tables,
(ulong) const_tables));
2000-07-31 21:29:14 +02:00
delete quick;
quick=0;
2003-10-11 13:06:55 +02:00
needed_reg.clear_all(); quick_keys.clear_all();
2000-07-31 21:29:14 +02:00
if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
!limit)
DBUG_RETURN(0); /* purecov: inspected */
if (keys_to_use.is_clear_all())
DBUG_RETURN(0);
2000-07-31 21:29:14 +02:00
records=head->file->records;
if (!records)
records++; /* purecov: inspected */
scan_time=(double) records / TIME_FOR_COMPARE+1;
2004-06-25 21:56:23 +03:00
read_time=(double) head->file->scan_time()+ scan_time + 1.1;
if (head->force_index)
scan_time= read_time= DBL_MAX;
2000-07-31 21:29:14 +02:00
if (limit < records)
read_time=(double) records+scan_time+1; // Force to use index
else if (read_time <= 2.0 && !force_quick_range)
DBUG_RETURN(0); /* No need for quick select */
2000-07-31 21:29:14 +02:00
DBUG_PRINT("info",("Time to scan table: %g", read_time));
2000-07-31 21:29:14 +02:00
2003-10-11 13:06:55 +02:00
keys_to_use.intersect(head->keys_in_use_for_query);
if (!keys_to_use.is_clear_all())
2000-07-31 21:29:14 +02:00
{
MEM_ROOT *old_root,alloc;
SEL_TREE *tree;
KEY_PART *key_parts;
KEY *key_info;
2000-07-31 21:29:14 +02:00
PARAM param;
2003-10-24 22:44:48 +02:00
2000-07-31 21:29:14 +02:00
/* set up parameter that is passed to all functions */
param.thd= thd;
param.baseflag=head->file->table_flags();
2000-07-31 21:29:14 +02:00
param.prev_tables=prev_tables | const_tables;
param.read_tables=read_tables;
param.current_table= head->map;
param.table=head;
param.keys=0;
param.mem_root= &alloc;
thd->no_errors=1; // Don't warn about NULL
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
2000-07-31 21:29:14 +02:00
if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc,
sizeof(KEY_PART)*
head->key_parts)))
{
thd->no_errors=0;
free_root(&alloc,MYF(0)); // Return memory & allocator
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0); // Can't use range
}
key_parts= param.key_parts;
old_root= thd->mem_root;
thd->mem_root= &alloc;
2000-07-31 21:29:14 +02:00
key_info= head->key_info;
for (idx=0 ; idx < head->keys ; idx++, key_info++)
2000-07-31 21:29:14 +02:00
{
KEY_PART_INFO *key_part_info;
2003-10-11 13:06:55 +02:00
if (!keys_to_use.is_set(idx))
2000-07-31 21:29:14 +02:00
continue;
if (key_info->flags & HA_FULLTEXT)
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
param.key[param.keys]=key_parts;
key_part_info= key_info->key_part;
for (uint part=0 ; part < key_info->key_parts ;
part++, key_parts++, key_part_info++)
2000-07-31 21:29:14 +02:00
{
key_parts->key= param.keys;
key_parts->part= part;
key_parts->length= key_part_info->length;
key_parts->store_length= key_part_info->store_length;
key_parts->field= key_part_info->field;
key_parts->null_bit= key_part_info->null_bit;
2003-10-11 13:06:55 +02:00
key_parts->image_type =
2002-02-22 15:24:42 +04:00
(key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
2000-07-31 21:29:14 +02:00
}
param.real_keynr[param.keys++]=idx;
}
param.key_parts_end=key_parts;
if ((tree=get_mm_tree(&param,cond)))
{
if (tree->type == SEL_TREE::IMPOSSIBLE)
{
records=0L; // Return -1 from this function
read_time= (double) HA_POS_ERROR;
}
else if (tree->type == SEL_TREE::KEY ||
tree->type == SEL_TREE::KEY_SMALLER)
{
SEL_ARG **key,**end,**best_key=0;
2002-02-22 15:24:42 +04:00
2000-07-31 21:29:14 +02:00
for (idx=0,key=tree->keys, end=key+param.keys ;
key != end ;
key++,idx++)
{
ha_rows found_records;
double found_read_time;
if (*key)
{
uint keynr= param.real_keynr[idx];
2000-07-31 21:29:14 +02:00
if ((*key)->type == SEL_ARG::MAYBE_KEY ||
(*key)->maybe_flag)
2003-10-11 13:06:55 +02:00
needed_reg.set_bit(keynr);
2000-07-31 21:29:14 +02:00
found_records=check_quick_select(&param, idx, *key);
2000-07-31 21:29:14 +02:00
if (found_records != HA_POS_ERROR && found_records > 2 &&
2003-10-11 13:06:55 +02:00
head->used_keys.is_set(keynr) &&
(head->file->index_flags(keynr, param.max_key_part, 1) &
HA_KEYREAD_ONLY))
2000-07-31 21:29:14 +02:00
{
/*
We can resolve this by only reading through this key.
Assume that we will read trough the whole key range
and that all key blocks are half full (normally things are
much better).
2000-07-31 21:29:14 +02:00
*/
uint keys_per_block= (head->file->block_size/2/
(head->key_info[keynr].key_length+
head->file->ref_length) + 1);
2000-07-31 21:29:14 +02:00
found_read_time=((double) (found_records+keys_per_block-1)/
(double) keys_per_block);
}
else
found_read_time= (head->file->read_time(keynr,
param.range_count,
found_records)+
(double) found_records / TIME_FOR_COMPARE);
2004-06-25 21:56:23 +03:00
DBUG_PRINT("info",("read_time: %g found_read_time: %g",
read_time, found_read_time));
if (read_time > found_read_time && found_records != HA_POS_ERROR)
2000-07-31 21:29:14 +02:00
{
read_time=found_read_time;
records=found_records;
best_key=key;
}
}
}
if (best_key && records)
{
if ((quick=get_quick_select(&param,(uint) (best_key-tree->keys),
*best_key)))
{
quick->records=records;
quick->read_time=read_time;
}
}
}
}
free_root(&alloc,MYF(0)); // Return memory & allocator
thd->mem_root= old_root;
thd->no_errors=0;
2000-07-31 21:29:14 +02:00
}
2003-10-24 22:44:48 +02:00
DBUG_EXECUTE("info",print_quick(quick,&needed_reg););
2000-07-31 21:29:14 +02:00
/*
Assume that if the user is using 'limit' we will only need to scan
limit rows if we are using a key
*/
DBUG_RETURN(records ? test(quick) : -1);
}
/* make a select tree of all keys in condition */
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
SEL_TREE *tree=0;
DBUG_ENTER("get_mm_tree");
if (cond->type() == Item::COND_ITEM)
{
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
tree=0;
Item *item;
while ((item=li++))
{
SEL_TREE *new_tree=get_mm_tree(param,item);
if (param->thd->is_fatal_error)
DBUG_RETURN(0); // out of memory
2000-07-31 21:29:14 +02:00
tree=tree_and(param,tree,new_tree);
if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
break;
}
}
else
{ // COND OR
tree=get_mm_tree(param,li++);
if (tree)
{
Item *item;
while ((item=li++))
{
SEL_TREE *new_tree=get_mm_tree(param,item);
if (!new_tree)
DBUG_RETURN(0); // out of memory
2000-07-31 21:29:14 +02:00
tree=tree_or(param,tree,new_tree);
if (!tree || tree->type == SEL_TREE::ALWAYS)
break;
}
}
}
DBUG_RETURN(tree);
}
/* Here when simple cond */
if (cond->const_item())
{
if (cond->val_int())
DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
}
2000-07-31 21:29:14 +02:00
table_map ref_tables=cond->used_tables();
if (cond->type() != Item::FUNC_ITEM)
{ // Should be a field
if ((ref_tables & param->current_table) ||
(ref_tables & ~(param->prev_tables | param->read_tables)))
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0);
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
}
2000-07-31 21:29:14 +02:00
Item_func *cond_func= (Item_func*) cond;
if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
DBUG_RETURN(0); // Can't be calculated
param->cond= cond;
2000-07-31 21:29:14 +02:00
if (cond_func->functype() == Item_func::BETWEEN)
{
if (!((Item_func_between *)(cond_func))->negated &&
cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
2000-07-31 21:29:14 +02:00
{
Field *field=((Item_field*) (cond_func->arguments()[0]))->field;
Item_result cmp_type=field->cmp_type();
DBUG_RETURN(tree_and(param,
get_mm_parts(param, cond_func, field,
Item_func::GE_FUNC,
cond_func->arguments()[1], cmp_type),
get_mm_parts(param, cond_func, field,
2000-07-31 21:29:14 +02:00
Item_func::LE_FUNC,
cond_func->arguments()[2], cmp_type)));
2000-07-31 21:29:14 +02:00
}
DBUG_RETURN(0);
}
if (cond_func->functype() == Item_func::IN_FUNC)
{ // COND OR
Item_func_in *func=(Item_func_in*) cond_func;
if (!func->negated && func->key_item()->type() == Item::FIELD_ITEM)
2000-07-31 21:29:14 +02:00
{
Field *field=((Item_field*) (func->key_item()))->field;
Item_result cmp_type=field->cmp_type();
tree= get_mm_parts(param,cond_func,field,Item_func::EQ_FUNC,
func->arguments()[1],cmp_type);
2000-07-31 21:29:14 +02:00
if (!tree)
DBUG_RETURN(tree); // Not key field
for (uint i=2 ; i < func->argument_count(); i++)
2000-07-31 21:29:14 +02:00
{
SEL_TREE *new_tree=get_mm_parts(param,cond_func,field,
Item_func::EQ_FUNC,
2000-07-31 21:29:14 +02:00
func->arguments()[i],cmp_type);
tree=tree_or(param,tree,new_tree);
}
DBUG_RETURN(tree);
}
DBUG_RETURN(0); // Can't optimize this IN
}
if (ref_tables & ~(param->prev_tables | param->read_tables |
param->current_table))
DBUG_RETURN(0); // Can't be calculated yet
if (!(ref_tables & param->current_table))
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); // This may be false or true
2000-07-31 21:29:14 +02:00
/* check field op const */
/* btw, ft_func's arguments()[0] isn't FIELD_ITEM. SerG*/
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
{
tree= get_mm_parts(param, cond_func,
2000-07-31 21:29:14 +02:00
((Item_field*) (cond_func->arguments()[0]))->field,
cond_func->functype(),
cond_func->arg_count > 1 ? cond_func->arguments()[1] :
0,
((Item_field*) (cond_func->arguments()[0]))->field->
cmp_type());
}
/* check const op field */
if (!tree &&
cond_func->have_rev_func() &&
cond_func->arguments()[1]->type() == Item::FIELD_ITEM)
{
DBUG_RETURN(get_mm_parts(param, cond_func,
2000-07-31 21:29:14 +02:00
((Item_field*)
(cond_func->arguments()[1]))->field,
((Item_bool_func2*) cond_func)->rev_functype(),
cond_func->arguments()[0],
((Item_field*)
(cond_func->arguments()[1]))->field->cmp_type()
));
}
DBUG_RETURN(tree);
}
static SEL_TREE *
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
Item_func::Functype type,
Item *value, Item_result cmp_type)
2000-07-31 21:29:14 +02:00
{
bool ne_func= FALSE;
2000-07-31 21:29:14 +02:00
DBUG_ENTER("get_mm_parts");
if (field->table != param->table)
DBUG_RETURN(0);
2003-10-01 23:37:05 -07:00
if (type == Item_func::NE_FUNC)
{
ne_func= TRUE;
type= Item_func::LT_FUNC;
}
KEY_PART *key_part = param->key_parts;
KEY_PART *end = param->key_parts_end;
2000-07-31 21:29:14 +02:00
SEL_TREE *tree=0;
if (value &&
value->used_tables() & ~(param->prev_tables | param->read_tables))
DBUG_RETURN(0);
for (; key_part != end ; key_part++)
2000-07-31 21:29:14 +02:00
{
if (field->eq(key_part->field))
{
SEL_ARG *sel_arg=0;
if (!tree && !(tree=new SEL_TREE()))
DBUG_RETURN(0); // OOM
2000-07-31 21:29:14 +02:00
if (!value || !(value->used_tables() & ~param->read_tables))
{
sel_arg=get_mm_leaf(param,cond_func,
key_part->field,key_part,type,value);
2000-07-31 21:29:14 +02:00
if (!sel_arg)
continue;
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
{
tree->type=SEL_TREE::IMPOSSIBLE;
/* If this is an NE_FUNC, we still need to check GT_FUNC. */
if (!ne_func)
DBUG_RETURN(tree);
2000-07-31 21:29:14 +02:00
}
}
else
{
// This key may be used later
if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
DBUG_RETURN(0); // OOM
}
2000-07-31 21:29:14 +02:00
sel_arg->part=(uchar) key_part->part;
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
}
}
if (ne_func)
{
SEL_TREE *tree2= get_mm_parts(param, cond_func,
field, Item_func::GT_FUNC,
value, cmp_type);
/* tree_or() will return 0 if tree2 is 0 */
tree= tree_or(param,tree,tree2);
}
2000-07-31 21:29:14 +02:00
DBUG_RETURN(tree);
}
static SEL_ARG *
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
2000-07-31 21:29:14 +02:00
Item_func::Functype type,Item *value)
{
uint maybe_null=(uint) field->real_maybe_null(), copies;
2000-07-31 21:29:14 +02:00
uint field_length=field->pack_length()+maybe_null;
SEL_ARG *tree;
char *str, *str2;
2000-07-31 21:29:14 +02:00
DBUG_ENTER("get_mm_leaf");
if (!value) // IS NULL or IS NOT NULL
{
if (field->table->outer_join) // Can't use a key on this
DBUG_RETURN(0);
if (!maybe_null) // Not null field
DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0);
if (!(tree=new SEL_ARG(field,is_null_string,is_null_string)))
DBUG_RETURN(0); // out of memory
if (type == Item_func::ISNOTNULL_FUNC)
{
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
tree->max_flag=NO_MAX_RANGE;
}
DBUG_RETURN(tree);
}
/*
1. Usually we can't use an index if the column collation
differ from the operation collation.
2. However, we can reuse a case insensitive index for
the binary searches:
WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;
WHERE latin1_swedish_ci_colimn = BINARY 'a '
*/
if (field->result_type() == STRING_RESULT &&
value->result_type() == STRING_RESULT &&
key_part->image_type == Field::itRAW &&
((Field_str*)field)->charset() != conf_func->compare_collation() &&
!(conf_func->compare_collation()->state & MY_CS_BINSORT))
DBUG_RETURN(0);
2000-07-31 21:29:14 +02:00
if (type == Item_func::LIKE_FUNC)
{
bool like_error;
char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
2000-07-31 21:29:14 +02:00
uint length,offset,min_length,max_length;
if (!field->optimize_range(param->real_keynr[key_part->key],
key_part->part))
2001-04-17 14:07:38 +03:00
DBUG_RETURN(0); // Can't optimize this
2000-07-31 21:29:14 +02:00
if (!(res= value->val_str(&tmp)))
DBUG_RETURN(&null_element);
/*
TODO:
Check if this was a function. This should have be optimized away
in the sql_select.cc
*/
2000-07-31 21:29:14 +02:00
if (res != &tmp)
{
tmp.copy(*res); // Get own copy
res= &tmp;
}
if (field->cmp_type() != STRING_RESULT)
DBUG_RETURN(0); // Can only optimize strings
offset=maybe_null;
length=key_part->store_length;
if (length != key_part->length + maybe_null)
2000-07-31 21:29:14 +02:00
{
/* key packed with length prefix */
offset+= HA_KEY_BLOB_LENGTH;
field_length= length - HA_KEY_BLOB_LENGTH;
2000-07-31 21:29:14 +02:00
}
else
{
if (unlikely(length < field_length))
{
/*
This can only happen in a table created with UNIREG where one key
overlaps many fields
*/
length= field_length;
}
2000-07-31 21:29:14 +02:00
else
field_length= length;
2000-07-31 21:29:14 +02:00
}
length+=offset;
if (!(min_str= (char*) alloc_root(param->mem_root, length*2)))
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0);
max_str=min_str+length;
if (maybe_null)
max_str[0]= min_str[0]=0;
like_error= my_like_range(field->charset(),
2004-02-11 00:06:46 +01:00
res->ptr(), res->length(),
((Item_func_like*)(param->cond))->escape,
wild_one, wild_many,
field_length-maybe_null,
2004-02-11 00:06:46 +01:00
min_str+offset, max_str+offset,
&min_length, &max_length);
2000-07-31 21:29:14 +02:00
if (like_error) // Can't optimize with LIKE
DBUG_RETURN(0);
2004-02-11 00:06:46 +01:00
2000-07-31 21:29:14 +02:00
if (offset != maybe_null) // Blob
{
int2store(min_str+maybe_null,min_length);
int2store(max_str+maybe_null,max_length);
}
DBUG_RETURN(new SEL_ARG(field,min_str,max_str));
}
if (!field->optimize_range(param->real_keynr[key_part->key],
key_part->part) &&
type != Item_func::EQ_FUNC &&
2000-07-31 21:29:14 +02:00
type != Item_func::EQUAL_FUNC)
DBUG_RETURN(0); // Can't optimize this
/*
We can't always use indexes when comparing a string index to a number
cmp_type() is checked to allow compare of dates to numbers
*/
2000-07-31 21:29:14 +02:00
if (field->result_type() == STRING_RESULT &&
value->result_type() != STRING_RESULT &&
field->cmp_type() != value->result_type())
DBUG_RETURN(0);
2004-03-16 13:26:37 +04:00
if (value->save_in_field(field, 1) < 0)
2000-07-31 21:29:14 +02:00
{
/* This happens when we try to insert a NULL field in a not null column */
DBUG_RETURN(&null_element); // cmp with NULL is never true
2000-07-31 21:29:14 +02:00
}
/* Get local copy of key */
copies= 1;
if (field->key_type() == HA_KEYTYPE_VARTEXT)
copies= 2;
str= str2= (char*) alloc_root(param->mem_root,
(key_part->store_length)*copies+1);
2000-07-31 21:29:14 +02:00
if (!str)
DBUG_RETURN(0);
if (maybe_null)
*str= (char) field->is_real_null(); // Set to 1 if null
field->get_key_image(str+maybe_null, key_part->length,
field->charset(), key_part->image_type);
if (copies == 2)
{
/*
The key is stored as 2 byte length + key
key doesn't match end space. In other words, a key 'X ' should match
all rows between 'X' and 'X ...'
*/
uint length= uint2korr(str+maybe_null);
str2= str+ key_part->store_length;
/* remove end space */
while (length > 0 && str[length+HA_KEY_BLOB_LENGTH+maybe_null-1] == ' ')
length--;
int2store(str+maybe_null, length);
/* Create key that is space filled */
memcpy(str2, str, length + HA_KEY_BLOB_LENGTH + maybe_null);
my_fill_8bit(field->charset(),
str2+ length+ HA_KEY_BLOB_LENGTH +maybe_null,
key_part->length-length, ' ');
int2store(str2+maybe_null, key_part->length);
}
if (!(tree=new SEL_ARG(field,str,str2)))
DBUG_RETURN(0); // out of memory
2000-07-31 21:29:14 +02:00
/*
Check if we are comparing an UNSIGNED integer with a negative constant.
In this case we know that:
(a) (unsigned_int [< | <=] negative_constant) == FALSE
(b) (unsigned_int [> | >=] negative_constant) == TRUE
In case (a) the condition is false for all values, and in case (b) it
is true for all values, so we can avoid unnecessary retrieval and condition
testing, and we also get correct comparison of unsinged integers with
negative integers (which otherwise fails because at query execution time
negative integers are cast to unsigned if compared with unsigned).
*/
Item_result field_result_type= field->result_type();
Item_result value_result_type= value->result_type();
if (field_result_type == INT_RESULT && value_result_type == INT_RESULT &&
((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
{
longlong item_val= value->val_int();
if (item_val < 0)
{
if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
{
tree->type= SEL_ARG::IMPOSSIBLE;
DBUG_RETURN(tree);
}
if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
DBUG_RETURN(0);
}
}
2000-07-31 21:29:14 +02:00
switch (type) {
case Item_func::LT_FUNC:
if (field_is_equal_to_item(field,value))
tree->max_flag=NEAR_MAX;
/* fall through */
case Item_func::LE_FUNC:
if (!maybe_null)
tree->min_flag=NO_MIN_RANGE; /* From start */
else
{ // > NULL
tree->min_value=is_null_string;
tree->min_flag=NEAR_MIN;
}
break;
case Item_func::GT_FUNC:
if (field_is_equal_to_item(field,value))
tree->min_flag=NEAR_MIN;
/* fall through */
case Item_func::GE_FUNC:
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_EQUALS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_DISJOINT_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_INTERSECTS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_TOUCHES_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_CROSSES_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_WITHIN_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_CONTAINS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
case Item_func::SP_OVERLAPS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
2002-02-22 15:24:42 +04:00
2000-07-31 21:29:14 +02:00
default:
break;
}
DBUG_RETURN(tree);
}
/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
** IMPOSSIBLE: Condition is never true
** ALWAYS: Condition is always true
** MAYBE: Condition may exists when tables are read
** MAYBE_KEY: Condition refers to a key that may be used in join loop
** KEY_RANGE: Condition uses a key
******************************************************************************/
/*
Add a new key test to a key when scanning through all keys
This will never be called for same key parts.
2000-07-31 21:29:14 +02:00
*/
static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
SEL_ARG *root,**key_link;
if (!key1)
return key2;
if (!key2)
return key1;
key_link= &root;
while (key1 && key2)
{
if (key1->part < key2->part)
{
*key_link= key1;
key_link= &key1->next_key_part;
key1=key1->next_key_part;
}
else
{
*key_link= key2;
key_link= &key2->next_key_part;
key2=key2->next_key_part;
}
}
*key_link=key1 ? key1 : key2;
return root;
}
#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
DBUG_ENTER("tree_and");
if (!tree1)
DBUG_RETURN(tree2);
if (!tree2)
DBUG_RETURN(tree1);
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree1);
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree2);
if (tree1->type == SEL_TREE::MAYBE)
{
if (tree2->type == SEL_TREE::KEY)
tree2->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree2);
}
if (tree2->type == SEL_TREE::MAYBE)
{
tree1->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree1);
}
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
key1 != end ; key1++,key2++)
{
uint flag=0;
if (*key1 || *key2)
{
if (*key1 && !(*key1)->simple_key())
flag|=CLONE_KEY1_MAYBE;
if (*key2 && !(*key2)->simple_key())
flag|=CLONE_KEY2_MAYBE;
*key1=key_and(*key1,*key2,flag);
if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
2000-07-31 21:29:14 +02:00
{
tree1->type= SEL_TREE::IMPOSSIBLE;
#ifdef EXTRA_DEBUG
(*key1)->test_use_count(*key1);
2000-07-31 21:29:14 +02:00
#endif
break;
}
2000-07-31 21:29:14 +02:00
}
}
DBUG_RETURN(tree1);
}
static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
DBUG_ENTER("tree_or");
if (!tree1 || !tree2)
DBUG_RETURN(0);
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree2);
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree1);
if (tree1->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree1); // Can't use this
if (tree2->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree2);
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
SEL_TREE *result=0;
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
key1 != end ; key1++,key2++)
{
*key1=key_or(*key1,*key2);
if (*key1)
{
result=tree1; // Added to tree1
#ifdef EXTRA_DEBUG
(*key1)->test_use_count(*key1);
#endif
}
}
DBUG_RETURN(result);
}
/* And key trees where key1->part < key2 -> part */
static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
SEL_ARG *next;
ulong use_count=key1->use_count;
if (key1->elements != 1)
{
key2->use_count+=key1->elements-1;
key2->increment_use_count((int) key1->elements-1);
}
if (key1->type == SEL_ARG::MAYBE_KEY)
{
key1->right= key1->left= &null_element;
key1->next= key1->prev= 0;
2000-07-31 21:29:14 +02:00
}
for (next=key1->first(); next ; next=next->next)
{
if (next->next_key_part)
{
SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
{
key1=key1->tree_delete(next);
continue;
}
next->next_key_part=tmp;
if (use_count)
next->increment_use_count(use_count);
}
else
next->next_key_part=key2;
}
if (!key1)
return &null_element; // Impossible ranges
key1->use_count++;
return key1;
}
/*
Produce a SEL_ARG graph that represents "key1 AND key2"
SYNOPSIS
key_and()
key1 First argument, root of its RB-tree
key2 Second argument, root of its RB-tree
RETURN
RB-tree root of the resulting SEL_ARG graph.
NULL if the result of AND operation is an empty interval {0}.
*/
2000-07-31 21:29:14 +02:00
static SEL_ARG *
key_and(SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
2000-07-31 21:29:14 +02:00
{
if (!key1)
return key2;
if (!key2)
return key1;
if (key1->part != key2->part)
{
if (key1->part > key2->part)
{
swap_variables(SEL_ARG *, key1, key2);
2000-07-31 21:29:14 +02:00
clone_flag=swap_clone_flag(clone_flag);
}
// key1->part < key2->part
key1->use_count--;
if (key1->use_count > 0)
if (!(key1= key1->clone_tree()))
return 0; // OOM
2000-07-31 21:29:14 +02:00
return and_all_keys(key1,key2,clone_flag);
}
if (((clone_flag & CLONE_KEY2_MAYBE) &&
!(clone_flag & CLONE_KEY1_MAYBE) &&
key2->type != SEL_ARG::MAYBE_KEY) ||
2000-07-31 21:29:14 +02:00
key1->type == SEL_ARG::MAYBE_KEY)
{ // Put simple key in key2
swap_variables(SEL_ARG *, key1, key2);
2000-07-31 21:29:14 +02:00
clone_flag=swap_clone_flag(clone_flag);
}
// If one of the key is MAYBE_KEY then the found region may be smaller
if (key2->type == SEL_ARG::MAYBE_KEY)
{
if (key1->use_count > 1)
{
key1->use_count--;
if (!(key1=key1->clone_tree()))
return 0; // OOM
2000-07-31 21:29:14 +02:00
key1->use_count++;
}
if (key1->type == SEL_ARG::MAYBE_KEY)
{ // Both are maybe key
key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
clone_flag);
if (key1->next_key_part &&
key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
return key1;
}
else
{
key1->maybe_smaller();
if (key2->next_key_part)
{
key1->use_count--; // Incremented in and_all_keys
2000-07-31 21:29:14 +02:00
return and_all_keys(key1,key2,clone_flag);
}
2000-07-31 21:29:14 +02:00
key2->use_count--; // Key2 doesn't have a tree
}
return key1;
}
if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
{
/* TODO: why not leave one of the trees? */
key1->free_tree();
key2->free_tree();
return 0; // Can't optimize this
}
2000-07-31 21:29:14 +02:00
key1->use_count--;
key2->use_count--;
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
while (e1 && e2)
{
int cmp=e1->cmp_min_to_min(e2);
if (cmp < 0)
{
if (get_range(&e1,&e2,key1))
continue;
}
else if (get_range(&e2,&e1,key2))
continue;
SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
e1->increment_use_count(1);
e2->increment_use_count(1);
if (!next || next->type != SEL_ARG::IMPOSSIBLE)
{
SEL_ARG *new_arg= e1->clone_and(e2);
if (!new_arg)
return &null_element; // End of memory
2000-07-31 21:29:14 +02:00
new_arg->next_key_part=next;
if (!new_tree)
{
new_tree=new_arg;
}
else
new_tree=new_tree->insert(new_arg);
}
if (e1->cmp_max_to_max(e2) < 0)
e1=e1->next; // e1 can't overlapp next e2
else
e2=e2->next;
}
key1->free_tree();
key2->free_tree();
if (!new_tree)
return &null_element; // Impossible range
return new_tree;
}
static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
(*e1)=root1->find_range(*e2); // first e1->min < e2->min
if ((*e1)->cmp_max_to_min(*e2) < 0)
{
if (!((*e1)=(*e1)->next))
return 1;
if ((*e1)->cmp_min_to_max(*e2) > 0)
{
(*e2)=(*e2)->next;
return 1;
}
}
return 0;
}
static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
if (!key1)
{
if (key2)
{
key2->use_count--;
key2->free_tree();
}
return 0;
}
if (!key2)
2000-07-31 21:29:14 +02:00
{
key1->use_count--;
key1->free_tree();
return 0;
}
key1->use_count--;
key2->use_count--;
if (key1->part != key2->part ||
(key1->min_flag | key2->min_flag) & GEOM_FLAG)
2000-07-31 21:29:14 +02:00
{
key1->free_tree();
key2->free_tree();
return 0; // Can't optimize this
}
// If one of the key is MAYBE_KEY then the found region may be bigger
if (key1->type == SEL_ARG::MAYBE_KEY)
{
key2->free_tree();
key1->use_count++;
return key1;
}
if (key2->type == SEL_ARG::MAYBE_KEY)
{
key1->free_tree();
key2->use_count++;
return key2;
}
if (key1->use_count > 0)
{
if (key2->use_count == 0 || key1->elements > key2->elements)
{
swap_variables(SEL_ARG *,key1,key2);
2000-07-31 21:29:14 +02:00
}
if (key1->use_count > 0 || !(key1=key1->clone_tree()))
return 0; // OOM
2000-07-31 21:29:14 +02:00
}
// Add tree at key2 to tree at key1
bool key2_shared=key2->use_count != 0;
key1->maybe_flag|=key2->maybe_flag;
for (key2=key2->first(); key2; )
{
SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min
int cmp;
if (!tmp)
{
tmp=key1->first(); // tmp.min > key2.min
cmp= -1;
}
else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
{ // Found tmp.max < key2.min
SEL_ARG *next=tmp->next;
if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
{
// Join near ranges like tmp.max < 0 and key2.min >= 0
SEL_ARG *key2_next=key2->next;
if (key2_shared)
{
if (!(key2=new SEL_ARG(*key2)))
return 0; // out of memory
2000-07-31 21:29:14 +02:00
key2->increment_use_count(key1->use_count+1);
key2->next=key2_next; // New copy of key2
}
key2->copy_min(tmp);
if (!(key1=key1->tree_delete(tmp)))
{ // Only one key in tree
key1=key2;
key1->make_root();
key2=key2_next;
break;
}
}
if (!(tmp=next)) // tmp.min > key2.min
break; // Copy rest of key2
}
if (cmp < 0)
{ // tmp.min > key2.min
int tmp_cmp;
if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
{
if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
{ // ranges are connected
tmp->copy_min_to_min(key2);
key1->merge_flags(key2);
if (tmp->min_flag & NO_MIN_RANGE &&
tmp->max_flag & NO_MAX_RANGE)
{
if (key1->maybe_flag)
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
return 0;
}
key2->increment_use_count(-1); // Free not used tree
key2=key2->next;
continue;
}
else
{
SEL_ARG *next=key2->next; // Keys are not overlapping
if (key2_shared)
{
SEL_ARG *cpy= new SEL_ARG(*key2); // Must make copy
if (!cpy)
return 0; // OOM
key1=key1->insert(cpy);
2000-07-31 21:29:14 +02:00
key2->increment_use_count(key1->use_count+1);
}
else
key1=key1->insert(key2); // Will destroy key2_root
key2=next;
continue;
}
}
}
// tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges)
if (eq_tree(tmp->next_key_part,key2->next_key_part))
{
if (tmp->is_same(key2))
{
tmp->merge_flags(key2); // Copy maybe flags
key2->increment_use_count(-1); // Free not used tree
}
else
{
SEL_ARG *last=tmp;
while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
eq_tree(last->next->next_key_part,key2->next_key_part))
{
SEL_ARG *save=last;
last=last->next;
key1=key1->tree_delete(save);
}
last->copy_min(tmp);
2000-07-31 21:29:14 +02:00
if (last->copy_min(key2) || last->copy_max(key2))
{ // Full range
key1->free_tree();
for (; key2 ; key2=key2->next)
key2->increment_use_count(-1); // Free not used tree
if (key1->maybe_flag)
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
return 0;
}
}
key2=key2->next;
continue;
}
if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
{ // tmp.min <= x < key2.min
SEL_ARG *new_arg=tmp->clone_first(key2);
if (!new_arg)
return 0; // OOM
2000-07-31 21:29:14 +02:00
if ((new_arg->next_key_part= key1->next_key_part))
new_arg->increment_use_count(key1->use_count+1);
tmp->copy_min_to_min(key2);
key1=key1->insert(new_arg);
}
// tmp.min >= key2.min && tmp.min <= key2.max
SEL_ARG key(*key2); // Get copy we can modify
for (;;)
{
if (tmp->cmp_min_to_min(&key) > 0)
{ // key.min <= x < tmp.min
SEL_ARG *new_arg=key.clone_first(tmp);
if (!new_arg)
return 0; // OOM
2000-07-31 21:29:14 +02:00
if ((new_arg->next_key_part=key.next_key_part))
new_arg->increment_use_count(key1->use_count+1);
key1=key1->insert(new_arg);
}
if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
{ // tmp.min. <= x <= tmp.max
tmp->maybe_flag|= key.maybe_flag;
key.increment_use_count(key1->use_count+1);
tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
if (!cmp) // Key2 is ready
break;
key.copy_max_to_min(tmp);
if (!(tmp=tmp->next))
{
SEL_ARG *tmp2= new SEL_ARG(key);
if (!tmp2)
return 0; // OOM
key1=key1->insert(tmp2);
2000-07-31 21:29:14 +02:00
key2=key2->next;
goto end;
}
if (tmp->cmp_min_to_max(&key) > 0)
{
SEL_ARG *tmp2= new SEL_ARG(key);
if (!tmp2)
return 0; // OOM
key1=key1->insert(tmp2);
2000-07-31 21:29:14 +02:00
break;
}
}
else
{
SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
if (!new_arg)
return 0; // OOM
2000-07-31 21:29:14 +02:00
tmp->copy_max_to_min(&key);
tmp->increment_use_count(key1->use_count+1);
/* Increment key count as it may be used for next loop */
key.increment_use_count(1);
2000-07-31 21:29:14 +02:00
new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
key1=key1->insert(new_arg);
break;
}
}
key2=key2->next;
}
end:
while (key2)
{
SEL_ARG *next=key2->next;
if (key2_shared)
{
SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy
if (!tmp)
return 0;
2000-07-31 21:29:14 +02:00
key2->increment_use_count(key1->use_count+1);
key1=key1->insert(tmp);
2000-07-31 21:29:14 +02:00
}
else
key1=key1->insert(key2); // Will destroy key2_root
key2=next;
}
key1->use_count++;
return key1;
}
/* Compare if two trees are equal */
static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
if (a == b)
return 1;
if (!a || !b || !a->is_same(b))
return 0;
if (a->left != &null_element && b->left != &null_element)
{
if (!eq_tree(a->left,b->left))
return 0;
}
else if (a->left != &null_element || b->left != &null_element)
return 0;
if (a->right != &null_element && b->right != &null_element)
{
if (!eq_tree(a->right,b->right))
return 0;
}
else if (a->right != &null_element || b->right != &null_element)
return 0;
if (a->next_key_part != b->next_key_part)
{ // Sub range
if (!a->next_key_part != !b->next_key_part ||
!eq_tree(a->next_key_part, b->next_key_part))
return 0;
}
return 1;
}
SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
SEL_ARG *element,**par,*last_element;
LINT_INIT(par); LINT_INIT(last_element);
2000-07-31 21:29:14 +02:00
for (element= this; element != &null_element ; )
{
last_element=element;
if (key->cmp_min_to_min(element) > 0)
{
par= &element->right; element= element->right;
}
else
{
par = &element->left; element= element->left;
}
}
*par=key;
key->parent=last_element;
/* Link in list */
if (par == &last_element->left)
{
key->next=last_element;
if ((key->prev=last_element->prev))
key->prev->next=key;
last_element->prev=key;
}
else
{
if ((key->next=last_element->next))
key->next->prev=key;
key->prev=last_element;
last_element->next=key;
}
key->left=key->right= &null_element;
SEL_ARG *root=rb_insert(key); // rebalance tree
root->use_count=this->use_count; // copy root info
root->elements= this->elements+1;
root->maybe_flag=this->maybe_flag;
return root;
}
/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/
SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
SEL_ARG *element=this,*found=0;
for (;;)
{
if (element == &null_element)
return found;
int cmp=element->cmp_min_to_min(key);
if (cmp == 0)
return element;
if (cmp < 0)
{
found=element;
element=element->right;
}
else
element=element->left;
}
}
/*
Remove a element from the tree
SYNOPSIS
tree_delete()
key Key that is to be deleted from tree (this)
NOTE
This also frees all sub trees that is used by the element
RETURN
root of new tree (with key deleted)
2000-07-31 21:29:14 +02:00
*/
SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
enum leaf_color remove_color;
SEL_ARG *root,*nod,**par,*fix_par;
DBUG_ENTER("tree_delete");
root=this;
this->parent= 0;
2000-07-31 21:29:14 +02:00
/* Unlink from list */
if (key->prev)
key->prev->next=key->next;
if (key->next)
key->next->prev=key->prev;
key->increment_use_count(-1);
if (!key->parent)
par= &root;
else
par=key->parent_ptr();
if (key->left == &null_element)
{
*par=nod=key->right;
fix_par=key->parent;
if (nod != &null_element)
nod->parent=fix_par;
remove_color= key->color;
}
else if (key->right == &null_element)
{
*par= nod=key->left;
nod->parent=fix_par=key->parent;
remove_color= key->color;
}
else
{
SEL_ARG *tmp=key->next; // next bigger key (exist!)
nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
fix_par=tmp->parent;
if (nod != &null_element)
nod->parent=fix_par;
remove_color= tmp->color;
tmp->parent=key->parent; // Move node in place of key
(tmp->left=key->left)->parent=tmp;
if ((tmp->right=key->right) != &null_element)
tmp->right->parent=tmp;
tmp->color=key->color;
*par=tmp;
if (fix_par == key) // key->right == key->next
fix_par=tmp; // new parent of nod
}
if (root == &null_element)
DBUG_RETURN(0); // Maybe root later
2000-07-31 21:29:14 +02:00
if (remove_color == BLACK)
root=rb_delete_fixup(root,nod,fix_par);
test_rb_tree(root,root->parent);
root->use_count=this->use_count; // Fix root counters
root->elements=this->elements-1;
root->maybe_flag=this->maybe_flag;
DBUG_RETURN(root);
2000-07-31 21:29:14 +02:00
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
SEL_ARG *y=leaf->right;
leaf->right=y->left;
if (y->left != &null_element)
y->left->parent=leaf;
if (!(y->parent=leaf->parent))
*root=y;
else
*leaf->parent_ptr()=y;
y->left=leaf;
leaf->parent=y;
}
static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
SEL_ARG *y=leaf->left;
leaf->left=y->right;
if (y->right != &null_element)
y->right->parent=leaf;
if (!(y->parent=leaf->parent))
*root=y;
else
*leaf->parent_ptr()=y;
y->right=leaf;
leaf->parent=y;
}
SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
SEL_ARG *y,*par,*par2,*root;
root= this; root->parent= 0;
leaf->color=RED;
while (leaf != root && (par= leaf->parent)->color == RED)
{ // This can't be root or 1 level under
if (par == (par2= leaf->parent->parent)->left)
{
y= par2->right;
if (y->color == RED)
{
par->color=BLACK;
y->color=BLACK;
leaf=par2;
leaf->color=RED; /* And the loop continues */
}
else
{
if (leaf == par->right)
{
left_rotate(&root,leaf->parent);
par=leaf; /* leaf is now parent to old leaf */
}
par->color=BLACK;
par2->color=RED;
right_rotate(&root,par2);
break;
}
}
else
{
y= par2->left;
if (y->color == RED)
{
par->color=BLACK;
y->color=BLACK;
leaf=par2;
leaf->color=RED; /* And the loop continues */
}
else
{
if (leaf == par->left)
{
right_rotate(&root,par);
par=leaf;
}
par->color=BLACK;
par2->color=RED;
left_rotate(&root,par2);
break;
}
}
}
root->color=BLACK;
test_rb_tree(root,root->parent);
return root;
}
SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
SEL_ARG *x,*w;
root->parent=0;
x= key;
while (x != root && x->color == SEL_ARG::BLACK)
{
if (x == par->left)
{
w=par->right;
if (w->color == SEL_ARG::RED)
{
w->color=SEL_ARG::BLACK;
par->color=SEL_ARG::RED;
left_rotate(&root,par);
w=par->right;
}
if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
{
w->color=SEL_ARG::RED;
x=par;
}
else
{
if (w->right->color == SEL_ARG::BLACK)
{
w->left->color=SEL_ARG::BLACK;
w->color=SEL_ARG::RED;
right_rotate(&root,w);
w=par->right;
}
w->color=par->color;
par->color=SEL_ARG::BLACK;
w->right->color=SEL_ARG::BLACK;
left_rotate(&root,par);
x=root;
break;
}
}
else
{
w=par->left;
if (w->color == SEL_ARG::RED)
{
w->color=SEL_ARG::BLACK;
par->color=SEL_ARG::RED;
right_rotate(&root,par);
w=par->left;
}
if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
{
w->color=SEL_ARG::RED;
x=par;
}
else
{
if (w->left->color == SEL_ARG::BLACK)
{
w->right->color=SEL_ARG::BLACK;
w->color=SEL_ARG::RED;
left_rotate(&root,w);
w=par->left;
}
w->color=par->color;
par->color=SEL_ARG::BLACK;
w->left->color=SEL_ARG::BLACK;
right_rotate(&root,par);
x=root;
break;
}
}
par=x->parent;
}
x->color=SEL_ARG::BLACK;
return root;
}
/* Test that the proporties for a red-black tree holds */
#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
int count_l,count_r;
if (element == &null_element)
return 0; // Found end of tree
if (element->parent != parent)
{
sql_print_error("Wrong tree: Parent doesn't point at parent");
return -1;
}
if (element->color == SEL_ARG::RED &&
(element->left->color == SEL_ARG::RED ||
element->right->color == SEL_ARG::RED))
{
sql_print_error("Wrong tree: Found two red in a row");
return -1;
}
if (element->left == element->right && element->left != &null_element)
{ // Dummy test
sql_print_error("Wrong tree: Found right == left");
return -1;
}
count_l=test_rb_tree(element->left,element);
count_r=test_rb_tree(element->right,element);
if (count_l >= 0 && count_r >= 0)
{
if (count_l == count_r)
return count_l+(element->color == SEL_ARG::BLACK);
sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
count_l,count_r);
}
return -1; // Error, no more warnings
}
/*
Count how many times SEL_ARG graph "root" refers to its part "key"
SYNOPSIS
count_key_part_usage()
root An RB-Root node in a SEL_ARG graph.
key Another RB-Root node in that SEL_ARG graph.
DESCRIPTION
The passed "root" node may refer to "key" node via root->next_key_part,
root->next->n
This function counts how many times the node "key" is referred (via
SEL_ARG::next_key_part) by
- intervals of RB-tree pointed by "root",
- intervals of RB-trees that are pointed by SEL_ARG::next_key_part from
intervals of RB-tree pointed by "root",
- and so on.
Here is an example (horizontal links represent next_key_part pointers,
vertical links - next/prev prev pointers):
+----+ $
|root|-----------------+
+----+ $ |
| $ |
| $ |
+----+ +---+ $ | +---+ Here the return value
| |- ... -| |---$-+--+->|key| will be 4.
+----+ +---+ $ | | +---+
| $ | |
... $ | |
| $ | |
+----+ +---+ $ | |
| |---| |---------+ |
+----+ +---+ $ |
| | $ |
... +---+ $ |
| |------------+
+---+ $
RETURN
Number of links to "key" from nodes reachable from "root".
*/
2000-07-31 21:29:14 +02:00
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
ulong count= 0;
for (root=root->first(); root ; root=root->next)
{
if (root->next_key_part)
{
if (root->next_key_part == key)
count++;
if (root->next_key_part->part < key->part)
count+=count_key_part_usage(root->next_key_part,key);
}
}
return count;
}
/*
Check if SEL_ARG::use_count value is correct
SYNOPSIS
SEL_ARG::test_use_count()
root The root node of the SEL_ARG graph (an RB-tree root node that
has the least value of sel_arg->part in the entire graph, and
thus is the "origin" of the graph)
DESCRIPTION
Check if SEL_ARG::use_count value is correct. See the definition of
use_count for what is "correct".
*/
2000-07-31 21:29:14 +02:00
void SEL_ARG::test_use_count(SEL_ARG *root)
{
uint e_count=0;
2000-07-31 21:29:14 +02:00
if (this == root && use_count != 1)
{
2004-09-04 20:17:09 +02:00
sql_print_information("Use_count: Wrong count %lu for root",use_count);
2000-07-31 21:29:14 +02:00
return;
}
if (this->type != SEL_ARG::KEY_RANGE)
return;
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
{
e_count++;
if (pos->next_key_part)
{
ulong count=count_key_part_usage(root,pos->next_key_part);
if (count > pos->next_key_part->use_count)
{
2004-09-04 20:17:09 +02:00
sql_print_information("Use_count: Wrong count for key at %lx, %lu should be %lu",
2000-07-31 21:29:14 +02:00
pos,pos->next_key_part->use_count,count);
return;
}
pos->next_key_part->test_use_count(root);
}
}
if (e_count != elements)
2004-09-04 20:17:09 +02:00
sql_print_warning("Wrong use count: %u (should be %u) for tree at %lx",
e_count, elements, (gptr) this);
2000-07-31 21:29:14 +02:00
}
#endif
/*****************************************************************************
** Check how many records we will find by using the found tree
*****************************************************************************/
static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
ha_rows records;
DBUG_ENTER("check_quick_select");
if (!tree)
DBUG_RETURN(HA_POS_ERROR); // Can't use it
param->max_key_part=0;
param->range_count=0;
2000-07-31 21:29:14 +02:00
if (tree->type == SEL_ARG::IMPOSSIBLE)
DBUG_RETURN(0L); // Impossible select. return
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
DBUG_RETURN(HA_POS_ERROR); // Don't use tree
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
if (records != HA_POS_ERROR)
{
uint key=param->real_keynr[idx];
2003-10-11 13:06:55 +02:00
param->table->quick_keys.set_bit(key);
2000-07-31 21:29:14 +02:00
param->table->quick_rows[key]=records;
param->table->quick_key_parts[key]=param->max_key_part+1;
}
DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
2000-07-31 21:29:14 +02:00
DBUG_RETURN(records);
}
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
char *min_key,uint min_key_flag, char *max_key,
uint max_key_flag)
{
ha_rows records=0,tmp;
param->max_key_part=max(param->max_key_part,key_tree->part);
if (key_tree->left != &null_element)
{
records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
max_key,max_key_flag);
if (records == HA_POS_ERROR) // Impossible
return records;
}
uint tmp_min_flag,tmp_max_flag,keynr;
char *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store(param->key[idx][key_tree->part].store_length,
2000-07-31 21:29:14 +02:00
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
uint min_key_length= (uint) (tmp_min_key- param->min_key);
uint max_key_length= (uint) (tmp_max_key- param->max_key);
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{ // const key as prefix
if (min_key_length == max_key_length &&
!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
!key_tree->min_flag && !key_tree->max_flag)
{
tmp=check_quick_keys(param,idx,key_tree->next_key_part,
tmp_min_key, min_key_flag | key_tree->min_flag,
tmp_max_key, max_key_flag | key_tree->max_flag);
goto end; // Ugly, but efficient
}
tmp_min_flag=key_tree->min_flag;
tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
&tmp_min_flag);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
&tmp_max_flag);
min_key_length= (uint) (tmp_min_key- param->min_key);
max_key_length= (uint) (tmp_max_key- param->max_key);
}
else
{
tmp_min_flag=min_key_flag | key_tree->min_flag;
tmp_max_flag=max_key_flag | key_tree->max_flag;
}
keynr=param->real_keynr[idx];
param->range_count++;
2000-07-31 21:29:14 +02:00
if (!tmp_min_flag && ! tmp_max_flag &&
(uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
(param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
HA_NOSAME &&
2000-07-31 21:29:14 +02:00
min_key_length == max_key_length &&
!memcmp(param->min_key,param->max_key,min_key_length))
tmp=1; // Max one record
else
2002-02-22 15:24:42 +04:00
{
2002-12-28 01:01:05 +02:00
if (tmp_min_flag & GEOM_FLAG)
2002-02-22 15:24:42 +04:00
{
key_range min_range;
min_range.key= (byte*) param->min_key;
min_range.length= min_key_length;
/* In this case tmp_min_flag contains the handler-read-function */
min_range.flag= (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);
tmp= param->table->file->records_in_range(keynr, &min_range,
(key_range*) 0);
2002-02-22 15:24:42 +04:00
}
else
{
key_range min_range, max_range;
min_range.key= (byte*) param->min_key;
min_range.length= min_key_length;
min_range.flag= (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
HA_READ_KEY_EXACT);
max_range.key= (byte*) param->max_key;
max_range.length= max_key_length;
max_range.flag= (tmp_max_flag & NEAR_MAX ?
HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
tmp=param->table->file->records_in_range(keynr,
(min_key_length ? &min_range :
(key_range*) 0),
(max_key_length ? &max_range :
(key_range*) 0));
2002-02-22 15:24:42 +04:00
}
}
2000-07-31 21:29:14 +02:00
end:
if (tmp == HA_POS_ERROR) // Impossible range
return tmp;
records+=tmp;
if (key_tree->right != &null_element)
{
tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
max_key,max_key_flag);
if (tmp == HA_POS_ERROR)
return tmp;
records+=tmp;
}
return records;
}
/****************************************************************************
** change a tree to a structure to be used by quick_select
** This uses it's own malloc tree
****************************************************************************/
static QUICK_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
{
QUICK_SELECT *quick;
DBUG_ENTER("get_quick_select");
if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
quick=new QUICK_SELECT_GEOM(param->thd, param->table, param->real_keynr[idx],
0);
else
quick=new QUICK_SELECT(param->thd, param->table, param->real_keynr[idx]);
if (quick)
2000-07-31 21:29:14 +02:00
{
if (quick->error ||
get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
param->max_key,0))
{
delete quick;
quick=0;
}
else
{
quick->key_parts=(KEY_PART*)
memdup_root(&quick->alloc,(char*) param->key[idx],
2000-07-31 21:29:14 +02:00
sizeof(KEY_PART)*
param->table->key_info[param->real_keynr[idx]].key_parts);
}
}
DBUG_RETURN(quick);
}
/*
** Fix this to get all possible sub_ranges
*/
static bool
get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag)
{
QUICK_RANGE *range;
uint flag;
if (key_tree->left != &null_element)
{
if (get_quick_keys(param,quick,key,key_tree->left,
min_key,min_key_flag, max_key, max_key_flag))
return 1;
}
char *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store(key[key_tree->part].store_length,
2000-07-31 21:29:14 +02:00
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{ // const key as prefix
if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
key_tree->min_flag || key_tree->max_flag))
{
if (get_quick_keys(param,quick,key,key_tree->next_key_part,
tmp_min_key, min_key_flag | key_tree->min_flag,
tmp_max_key, max_key_flag | key_tree->max_flag))
return 1;
goto end; // Ugly, but efficient
}
{
uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(key, &tmp_min_key,
&tmp_min_flag);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(key, &tmp_max_key,
&tmp_max_flag);
flag=tmp_min_flag | tmp_max_flag;
}
}
else
2002-02-22 15:24:42 +04:00
{
flag = (key_tree->min_flag & GEOM_FLAG) ?
key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
}
2000-07-31 21:29:14 +02:00
/*
Ensure that some part of min_key and max_key are used. If not,
regard this as no lower/upper range
*/
if ((flag & GEOM_FLAG) == 0)
2002-02-22 15:24:42 +04:00
{
if (tmp_min_key != param->min_key)
flag&= ~NO_MIN_RANGE;
else
flag|= NO_MIN_RANGE;
if (tmp_max_key != param->max_key)
flag&= ~NO_MAX_RANGE;
else
flag|= NO_MAX_RANGE;
}
2000-07-31 21:29:14 +02:00
if (flag == 0)
{
uint length= (uint) (tmp_min_key - param->min_key);
if (length == (uint) (tmp_max_key - param->max_key) &&
!memcmp(param->min_key,param->max_key,length))
{
KEY *table_key=quick->head->key_info+quick->index;
flag=EQ_RANGE;
if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
key->part == table_key->key_parts-1)
{
if (!(table_key->flags & HA_NULL_PART_KEY) ||
!null_part_in_key(key,
param->min_key,
(uint) (tmp_min_key - param->min_key)))
flag|= UNIQUE_RANGE;
else
flag|= NULL_RANGE;
}
2000-07-31 21:29:14 +02:00
}
}
/* Get range for retrieving rows in QUICK_SELECT::get_next */
if (!(range= new QUICK_RANGE((const char *) param->min_key,
(uint) (tmp_min_key - param->min_key),
(const char *) param->max_key,
(uint) (tmp_max_key - param->max_key),
flag)))
return 1; // out of memory
2000-07-31 21:29:14 +02:00
set_if_bigger(quick->max_used_key_length,range->min_length);
set_if_bigger(quick->max_used_key_length,range->max_length);
set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
2000-07-31 21:29:14 +02:00
quick->ranges.push_back(range);
end:
if (key_tree->right != &null_element)
return get_quick_keys(param,quick,key,key_tree->right,
min_key,min_key_flag,
max_key,max_key_flag);
return 0;
}
/*
Return 1 if there is only one range and this uses the whole primary key
*/
bool QUICK_SELECT::unique_key_range()
{
if (ranges.elements == 1)
{
QUICK_RANGE *tmp;
if (((tmp=ranges.head())->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
2000-07-31 21:29:14 +02:00
{
KEY *key=head->key_info+index;
return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
2000-07-31 21:29:14 +02:00
key->key_length == tmp->min_length);
}
}
return 0;
}
/* Returns true if any part of the key is NULL */
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
for (const char *end=key+length ;
key < end;
key+= key_part++->store_length)
{
if (key_part->null_bit && *key)
return 1;
}
return 0;
}
2000-07-31 21:29:14 +02:00
/****************************************************************************
Create a QUICK RANGE based on a key
2000-07-31 21:29:14 +02:00
****************************************************************************/
QUICK_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref)
2000-07-31 21:29:14 +02:00
{
MEM_ROOT *old_root= thd->mem_root;
/* The following call may change thd->mem_root */
QUICK_SELECT *quick= new QUICK_SELECT(thd, table, ref->key);
2000-07-31 21:29:14 +02:00
KEY *key_info = &table->key_info[ref->key];
KEY_PART *key_part;
2003-12-09 21:56:11 +01:00
QUICK_RANGE *range;
2000-07-31 21:29:14 +02:00
uint part;
if (!quick)
return 0; /* no ranges found */
if (cp_buffer_from_ref(thd, ref))
{
if (thd->is_fatal_error)
2003-12-09 20:49:48 +01:00
goto err; // out of memory
goto ok; // empty range
}
2003-12-09 21:56:11 +01:00
if (!(range= new QUICK_RANGE()))
goto err; // out of memory
2000-07-31 21:29:14 +02:00
range->min_key=range->max_key=(char*) ref->key_buff;
range->min_length=range->max_length=ref->key_length;
range->flag= ((ref->key_length == key_info->key_length &&
(key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
HA_NOSAME) ? EQ_RANGE : 0);
2000-07-31 21:29:14 +02:00
if (!(quick->key_parts=key_part=(KEY_PART *)
alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
2000-07-31 21:29:14 +02:00
goto err;
for (part=0 ; part < ref->key_parts ;part++,key_part++)
{
key_part->part=part;
key_part->field= key_info->key_part[part].field;
key_part->length= key_info->key_part[part].length;
key_part->store_length= key_info->key_part[part].store_length;
2000-07-31 21:29:14 +02:00
key_part->null_bit= key_info->key_part[part].null_bit;
}
if (quick->ranges.push_back(range))
goto err;
/*
Add a NULL range if REF_OR_NULL optimization is used.
For example:
if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
and have ref->null_ref_key set. Will create a new NULL range here.
*/
if (ref->null_ref_key)
{
QUICK_RANGE *null_range;
*ref->null_ref_key= 1; // Set null byte then create a range
2004-03-12 18:05:51 -03:00
if (!(null_range= new QUICK_RANGE((char*)ref->key_buff, ref->key_length,
(char*)ref->key_buff, ref->key_length,
EQ_RANGE)))
goto err;
*ref->null_ref_key= 0; // Clear null byte
if (quick->ranges.push_back(null_range))
goto err;
}
ok:
thd->mem_root= old_root;
return quick;
2000-07-31 21:29:14 +02:00
err:
thd->mem_root= old_root;
2000-07-31 21:29:14 +02:00
delete quick;
return 0;
}
/* get next possible record using quick-struct */
int QUICK_SELECT::get_next()
{
DBUG_ENTER("get_next");
for (;;)
{
int result;
key_range start_key, end_key;
2000-07-31 21:29:14 +02:00
if (range)
{
// Already read through key
result= file->read_range_next();
if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
2000-07-31 21:29:14 +02:00
}
if (!(range= it++))
2000-07-31 21:29:14 +02:00
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
2002-02-22 15:24:42 +04:00
start_key.key= (const byte*) range->min_key;
start_key.length= range->min_length;
start_key.flag= ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
(range->flag & EQ_RANGE) ?
HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
end_key.key= (const byte*) range->max_key;
end_key.length= range->max_length;
/*
We use READ_AFTER_KEY here because if we are reading on a key
prefix we want to find all keys with this prefix
*/
end_key.flag= (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
HA_READ_AFTER_KEY);
2002-02-22 15:24:42 +04:00
result= file->read_range_first(range->min_length ? &start_key : 0,
range->max_length ? &end_key : 0,
test(range->flag & EQ_RANGE),
sorted);
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
range=0; // Stop searching
2000-07-31 21:29:14 +02:00
if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
range=0; // No matching rows; go to next range
2000-07-31 21:29:14 +02:00
}
}
/* Get next for geometrical indexes */
2000-07-31 21:29:14 +02:00
int QUICK_SELECT_GEOM::get_next()
2000-07-31 21:29:14 +02:00
{
DBUG_ENTER(" QUICK_SELECT_GEOM::get_next");
2000-07-31 21:29:14 +02:00
for (;;)
2000-07-31 21:29:14 +02:00
{
int result;
if (range)
2000-07-31 21:29:14 +02:00
{
// Already read through key
result= file->index_next_same(record, (byte*) range->min_key,
range->min_length);
if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
2000-07-31 21:29:14 +02:00
}
if (!(range= it++))
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
result= file->index_read(record,
(byte*) range->min_key,
range->min_length,
(ha_rkey_function)(range->flag ^ GEOM_FLAG));
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
range=0; // Not found, to next range
2000-07-31 21:29:14 +02:00
}
}
2001-06-29 04:04:29 +03:00
/*
This is a hack: we inherit from QUICK_SELECT so that we can use the
get_next() interface, but we have to hold a pointer to the original
QUICK_SELECT because its data are used all over the place. What
should be done is to factor out the data that is needed into a base
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
which handle the ranges and implement the get_next() function. But
for now, this seems to work right at least.
*/
2001-06-29 04:04:29 +03:00
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_SELECT *q, uint used_key_parts)
: QUICK_SELECT(*q), rev_it(rev_ranges)
{
2001-09-15 16:22:34 +03:00
QUICK_RANGE *r;
it.rewind();
2001-09-15 16:22:34 +03:00
for (r = it++; r; r = it++)
{
rev_ranges.push_front(r);
}
2001-06-29 04:04:29 +03:00
/* Remove EQ_RANGE flag for keys that are not using the full key */
2001-09-15 16:22:34 +03:00
for (r = rev_it++; r; r = rev_it++)
2001-06-29 04:04:29 +03:00
{
if ((r->flag & EQ_RANGE) &&
head->key_info[index].key_length != r->max_length)
r->flag&= ~EQ_RANGE;
}
rev_it.rewind();
q->dont_free=1; // Don't free shared mem
delete q;
}
2001-06-29 04:04:29 +03:00
int QUICK_SELECT_DESC::get_next()
{
DBUG_ENTER("QUICK_SELECT_DESC::get_next");
/* The max key is handled as follows:
* - if there is NO_MAX_RANGE, start at the end and move backwards
2001-06-29 04:04:29 +03:00
* - if it is an EQ_RANGE, which means that max key covers the entire
* key, go directly to the key and read through it (sorting backwards is
* same as sorting forwards)
* - if it is NEAR_MAX, go to the key or next, step back once, and
* move backwards
* - otherwise (not NEAR_MAX == include the key), go after the key,
* step back once, and move backwards
*/
for (;;)
{
int result;
if (range)
{ // Already read through key
2001-06-29 04:04:29 +03:00
result = ((range->flag & EQ_RANGE)
? file->index_next_same(record, (byte*) range->min_key,
range->min_length) :
file->index_prev(record));
if (!result)
{
if (cmp_prev(*rev_it.ref()) == 0)
DBUG_RETURN(0);
}
else if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
}
if (!(range=rev_it++))
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
if (range->flag & NO_MAX_RANGE) // Read last record
{
int local_error;
if ((local_error=file->index_last(record)))
DBUG_RETURN(local_error); // Empty table
if (cmp_prev(range) == 0)
DBUG_RETURN(0);
range=0; // No matching records; go to next range
continue;
}
2001-06-29 04:04:29 +03:00
if (range->flag & EQ_RANGE)
{
result = file->index_read(record, (byte*) range->max_key,
range->max_length, HA_READ_KEY_EXACT);
}
else
{
DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
result=file->index_read(record, (byte*) range->max_key,
range->max_length,
((range->flag & NEAR_MAX) ?
HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
}
if (result)
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
range=0; // Not found, to next range
continue;
}
if (cmp_prev(range) == 0)
{
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
range = 0; // Stop searching
DBUG_RETURN(0); // Found key is in range
}
range = 0; // To next range
}
}
/*
Returns 0 if found key is inside range (found key >= range->min_key).
*/
int QUICK_SELECT_DESC::cmp_prev(QUICK_RANGE *range_arg)
{
int cmp;
if (range_arg->flag & NO_MIN_RANGE)
2002-11-11 22:43:07 +01:00
return 0; /* key can't be to small */
cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
range_arg->min_length);
if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
return 0;
return 1; // outside of range
}
/*
* True if this range will require using HA_READ_AFTER_KEY
2001-06-29 04:04:29 +03:00
See comment in get_next() about this
*/
2001-06-29 04:04:29 +03:00
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
{
2002-11-11 22:43:07 +01:00
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
!(range_arg->flag & EQ_RANGE) ||
2002-11-11 22:43:07 +01:00
head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
}
2001-06-29 04:04:29 +03:00
/* True if we are reading over a key that may have a NULL value */
#ifdef NOT_USED
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
2001-06-29 04:04:29 +03:00
uint used_key_parts)
{
uint offset, end;
2001-06-29 04:04:29 +03:00
KEY_PART *key_part = key_parts,
*key_part_end= key_part+used_key_parts;
for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ;
2001-06-29 04:04:29 +03:00
offset < end && key_part != key_part_end ;
offset+= key_part++->store_length)
2001-06-29 04:04:29 +03:00
{
if (!memcmp((char*) range_arg->min_key+offset,
(char*) range_arg->max_key+offset,
key_part->store_length))
2001-06-29 04:04:29 +03:00
continue;
if (key_part->null_bit && range_arg->min_key[offset])
2001-06-29 04:04:29 +03:00
return 1; // min_key is null and max_key isn't
// Range doesn't cover NULL. This is ok if there is no more null parts
break;
}
/*
If the next min_range is > NULL, then we can use this, even if
it's a NULL key
Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;
*/
if (key_part != key_part_end && key_part->null_bit)
{
if (offset >= range_arg->min_length || range_arg->min_key[offset])
2001-06-29 04:04:29 +03:00
return 1; // Could be null
key_part++;
}
/*
If any of the key parts used in the ORDER BY could be NULL, we can't
use the key to sort the data.
*/
for (; key_part != key_part_end ; key_part++)
if (key_part->null_bit)
return 1; // Covers null part
return 0;
}
#endif
2001-06-29 04:04:29 +03:00
2000-07-31 21:29:14 +02:00
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/
#ifndef DBUG_OFF
static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
char buff[1024];
const char *key_end= key+used_length;
2003-01-29 17:31:20 +04:00
String tmp(buff,sizeof(buff),&my_charset_bin);
uint store_length;
2000-07-31 21:29:14 +02:00
for (; key < key_end; key+=store_length, key_part++)
2000-07-31 21:29:14 +02:00
{
Field *field= key_part->field;
store_length= key_part->store_length;
2000-07-31 21:29:14 +02:00
if (field->real_maybe_null())
{
if (*key)
2000-07-31 21:29:14 +02:00
{
fwrite("NULL",sizeof(char),4,DBUG_FILE);
continue;
}
key++; // Skip null byte
store_length--;
2000-07-31 21:29:14 +02:00
}
field->set_key_image((char*) key, key_part->length, field->charset());
field->val_str(&tmp);
2000-07-31 21:29:14 +02:00
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
if (key+store_length < key_end)
fputc('/',DBUG_FILE);
2000-07-31 21:29:14 +02:00
}
}
2003-10-24 22:44:48 +02:00
static void print_quick(QUICK_SELECT *quick,const key_map* needed_reg)
2000-07-31 21:29:14 +02:00
{
QUICK_RANGE *range;
2003-10-11 13:06:55 +02:00
char buf[MAX_KEY/8+1];
2000-07-31 21:29:14 +02:00
DBUG_ENTER("print_param");
if (! _db_on_ || !quick)
DBUG_VOID_RETURN;
List_iterator<QUICK_RANGE> li(quick->ranges);
DBUG_LOCK_FILE;
2003-10-24 22:44:48 +02:00
fprintf(DBUG_FILE,"Used quick_range on key: %d (other_keys: 0x%s):\n",
quick->index, needed_reg->print(buf));
2000-07-31 21:29:14 +02:00
while ((range=li++))
{
if (!(range->flag & NO_MIN_RANGE))
{
print_key(quick->key_parts,range->min_key,range->min_length);
if (range->flag & NEAR_MIN)
fputs(" < ",DBUG_FILE);
else
fputs(" <= ",DBUG_FILE);
}
fputs("X",DBUG_FILE);
if (!(range->flag & NO_MAX_RANGE))
{
if (range->flag & NEAR_MAX)
fputs(" < ",DBUG_FILE);
else
fputs(" <= ",DBUG_FILE);
print_key(quick->key_parts,range->max_key,range->max_length);
}
fputs("\n",DBUG_FILE);
}
DBUG_UNLOCK_FILE;
DBUG_VOID_RETURN;
}
#endif
/*****************************************************************************
** Instansiate templates
*****************************************************************************/
#ifdef __GNUC__
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif