mariadb/sql/opt_range.cc

2852 lines
76 KiB
C++
Raw Normal View History

2000-07-31 21:29:14 +02:00
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
2000-08-29 11:31:01 +02:00
/*
TODO:
Fix that MAYBE_KEY are stored in the tree so that we can detect use
of full hash keys for queries like:
2000-10-07 13:59:47 +02:00
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);
2000-08-29 11:31:01 +02:00
*/
2000-07-31 21:29:14 +02:00
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <m_ctype.h>
#include <nisam.h>
#include "sql_select.h"
#include <assert.h>
2000-07-31 21:29:14 +02:00
#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);
static char is_null_string[2]= {1,0};
class SEL_ARG :public Sql_alloc
{
public:
uint8 min_flag,max_flag,maybe_flag;
uint8 part; // Which key part
uint8 maybe_null;
uint16 elements; // Elements in tree
ulong use_count; // use of this sub_tree
Field *field;
char *min_value,*max_value; // Pointer to range
SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
enum leaf_color { BLACK,RED } color;
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
SEL_ARG() {}
SEL_ARG(SEL_ARG &);
SEL_ARG(Field *,const char *,const char *);
SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
SEL_ARG(enum Type type_arg)
:elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
type(type_arg)
{}
2000-07-31 21:29:14 +02:00
inline bool is_same(SEL_ARG *arg)
{
if (type != arg->type)
return 0;
if (type != KEY_RANGE)
return 1;
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag=1; }
inline int cmp_min_to_min(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
}
inline int cmp_min_to_max(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
}
inline int cmp_max_to_max(SEL_ARG* arg)
{
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
}
inline int cmp_max_to_min(SEL_ARG* arg)
{
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
}
SEL_ARG *clone_and(SEL_ARG* arg)
{ // Get overlapping range
char *new_min,*new_max;
uint8 flag_min,flag_max;
if (cmp_min_to_min(arg) >= 0)
{
new_min=min_value; flag_min=min_flag;
}
else
{
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
}
if (cmp_max_to_max(arg) <= 0)
{
new_max=max_value; flag_max=max_flag;
}
else
{
new_max=arg->max_value; flag_max=arg->max_flag;
}
2002-11-11 22:43:07 +01:00
return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
test(maybe_flag && arg->maybe_flag));
2000-07-31 21:29:14 +02:00
}
SEL_ARG *clone_first(SEL_ARG *arg)
{ // min <= X < arg->min
2002-11-11 22:43:07 +01:00
return new SEL_ARG(field,part, min_value, arg->min_value,
2000-07-31 21:29:14 +02:00
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
2002-11-11 22:43:07 +01:00
maybe_flag | arg->maybe_flag);
2000-07-31 21:29:14 +02:00
}
SEL_ARG *clone_last(SEL_ARG *arg)
{ // min <= X <= key_max
2002-11-11 22:43:07 +01:00
return new SEL_ARG(field, part, min_value, arg->max_value,
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
2000-07-31 21:29:14 +02:00
}
SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);
bool copy_min(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_min_to_min(arg) > 0)
{
min_value=arg->min_value; min_flag=arg->min_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
2002-11-11 22:43:07 +01:00
return 1; // Full range
2000-07-31 21:29:14 +02:00
}
maybe_flag|=arg->maybe_flag;
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
bool copy_max(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_max_to_max(arg) <= 0)
{
max_value=arg->max_value; max_flag=arg->max_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
2002-11-11 22:43:07 +01:00
return 1; // Full range
2000-07-31 21:29:14 +02:00
}
maybe_flag|=arg->maybe_flag;
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
void copy_min_to_min(SEL_ARG *arg)
{
min_value=arg->min_value; min_flag=arg->min_flag;
}
void copy_min_to_max(SEL_ARG *arg)
{
max_value=arg->min_value;
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
}
void copy_max_to_min(SEL_ARG *arg)
{
min_value=arg->max_value;
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
void store(uint length,char **min_key,uint min_key_flag,
char **max_key, uint max_key_flag)
{
if (!(min_flag & NO_MIN_RANGE) &&
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
{
if (maybe_null && *min_value)
{
**min_key=1;
bzero(*min_key+1,length);
}
else
memcpy(*min_key,min_value,length+(int) maybe_null);
(*min_key)+= length+(int) maybe_null;
}
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{
if (maybe_null && *max_value)
{
**max_key=1;
bzero(*max_key+1,length);
}
else
memcpy(*max_key,max_value,length+(int) maybe_null);
(*max_key)+= length+(int) maybe_null;
}
}
void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
{
SEL_ARG *key_tree= first();
key_tree->store(key[key_tree->part].part_length,
range_key,*range_key_flag,range_key,NO_MAX_RANGE);
*range_key_flag|= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
}
void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
{
SEL_ARG *key_tree= last();
key_tree->store(key[key_tree->part].part_length,
range_key, NO_MIN_RANGE, range_key,*range_key_flag);
(*range_key_flag)|= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
}
SEL_ARG *insert(SEL_ARG *key);
SEL_ARG *tree_delete(SEL_ARG *key);
SEL_ARG *find_range(SEL_ARG *key);
SEL_ARG *rb_insert(SEL_ARG *leaf);
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
void test_use_count(SEL_ARG *root);
#endif
SEL_ARG *first();
SEL_ARG *last();
void make_root();
inline bool simple_key()
{
return !next_key_part && elements == 1;
}
void increment_use_count(long count)
{
if (next_key_part)
{
next_key_part->use_count+=count;
count*= (next_key_part->use_count-count);
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
if (pos->next_key_part)
pos->increment_use_count(count);
}
}
void free_tree()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
if (pos->next_key_part)
{
pos->next_key_part->use_count--;
pos->next_key_part->free_tree();
}
}
inline SEL_ARG **parent_ptr()
{
return parent->left == this ? &parent->left : &parent->right;
}
SEL_ARG *clone_tree();
};
class SEL_TREE :public Sql_alloc
{
public:
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
SEL_TREE(enum Type type_arg) :type(type_arg) {}
SEL_TREE() :type(KEY) { bzero((char*) keys,sizeof(keys));}
SEL_ARG *keys[MAX_KEY];
};
typedef struct st_qsel_param {
TABLE *table;
KEY_PART *key_parts,*key_parts_end,*key[MAX_KEY];
MEM_ROOT *mem_root;
table_map prev_tables,read_tables,current_table;
uint baseflag,keys,max_key_part;
2000-07-31 21:29:14 +02:00
uint real_keynr[MAX_KEY];
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
bool quick; // Don't calulate possible keys
2000-07-31 21:29:14 +02:00
} PARAM;
static SEL_TREE * get_mm_parts(PARAM *param,Field *field,
Item_func::Functype type,Item *value,
Item_result cmp_type);
static SEL_ARG *get_mm_leaf(PARAM *param,Field *field,KEY_PART *key_part,
2000-07-31 21:29:14 +02:00
Item_func::Functype type,Item *value);
static bool like_range(const char *ptr,uint length,char wild_prefix,
uint field_length, char *min_str,char *max_str,
char max_sort_char,uint *min_length,uint *max_length);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag);
static QUICK_SELECT *get_quick_select(PARAM *param,uint index,
SEL_ARG *key_tree);
#ifndef DBUG_OFF
static void print_quick(QUICK_SELECT *quick,key_map needed_reg);
#endif
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
static bool get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length);
2000-07-31 21:29:14 +02:00
/***************************************************************************
** Basic functions for SQL_SELECT and QUICK_SELECT
***************************************************************************/
/* make a select from mysql info
Error is set as following:
0 = ok
1 = Got some error (out of memory?)
*/
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
table_map read_tables, COND *conds, int *error)
{
SQL_SELECT *select;
DBUG_ENTER("make_select");
*error=0;
if (!conds)
DBUG_RETURN(0);
if (!(select= new SQL_SELECT))
{
*error= 1;
DBUG_RETURN(0); /* purecov: inspected */
}
select->read_tables=read_tables;
select->const_tables=const_tables;
select->head=head;
select->cond=conds;
if (head->io_cache)
{
select->file= *head->io_cache;
select->records=(ha_rows) (select->file.end_of_file/
head->file->ref_length);
my_free((gptr) (head->io_cache),MYF(0));
head->io_cache=0;
}
DBUG_RETURN(select);
}
SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
quick_keys=0; needed_reg=0;
my_b_clear(&file);
}
SQL_SELECT::~SQL_SELECT()
{
delete quick;
if (free_cond)
delete cond;
close_cached_file(&file);
}
#undef index // Fix for Unixware 7
2000-07-31 21:29:14 +02:00
QUICK_SELECT::QUICK_SELECT(TABLE *table,uint key_nr,bool no_alloc)
2001-06-29 03:04:29 +02:00
:dont_free(0),error(0),index(key_nr),max_used_key_length(0),head(table),
2000-07-31 21:29:14 +02:00
it(ranges),range(0)
{
if (!no_alloc)
{
init_sql_alloc(&alloc,1024,0); // Allocates everything here
2000-07-31 21:29:14 +02:00
my_pthread_setspecific_ptr(THR_MALLOC,&alloc);
}
else
bzero((char*) &alloc,sizeof(alloc));
file=head->file;
record=head->record[0];
2000-11-30 15:19:22 +01:00
init();
2000-07-31 21:29:14 +02:00
}
QUICK_SELECT::~QUICK_SELECT()
{
2001-06-29 03:04:29 +02:00
if (!dont_free)
{
file->index_end();
free_root(&alloc,MYF(0));
}
2000-07-31 21:29:14 +02:00
}
QUICK_RANGE::QUICK_RANGE()
:min_key(0),max_key(0),min_length(0),max_length(0),
flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}
SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
type=arg.type;
min_flag=arg.min_flag;
max_flag=arg.max_flag;
maybe_flag=arg.maybe_flag;
maybe_null=arg.maybe_null;
part=arg.part;
field=arg.field;
min_value=arg.min_value;
max_value=arg.max_value;
next_key_part=arg.next_key_part;
use_count=1; elements=1;
}
inline void SEL_ARG::make_root()
{
left=right= &null_element;
color=BLACK;
next=prev=0;
use_count=0; elements=1;
}
SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
max_value((char*) max_value_arg), next(0),prev(0),
next_key_part(0),color(BLACK),type(KEY_RANGE)
{
left=right= &null_element;
}
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
field(field_), min_value(min_value_), max_value(max_value_),
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
left=right= &null_element;
}
SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
SEL_ARG *tmp;
if (type != KEY_RANGE)
{
tmp=new SEL_ARG(type);
tmp->prev= *next_arg; // Link into next/prev chain
(*next_arg)->next=tmp;
(*next_arg)= tmp;
}
else
{
tmp=new SEL_ARG(field,part, min_value,max_value,
min_flag, max_flag, maybe_flag);
tmp->parent=new_parent;
tmp->next_key_part=next_key_part;
if (left != &null_element)
tmp->left=left->clone(tmp,next_arg);
tmp->prev= *next_arg; // Link into next/prev chain
(*next_arg)->next=tmp;
(*next_arg)= tmp;
if (right != &null_element)
tmp->right=right->clone(tmp,next_arg);
}
increment_use_count(1);
2002-11-11 22:43:07 +01:00
return tmp;
2000-07-31 21:29:14 +02:00
}
SEL_ARG *SEL_ARG::first()
{
SEL_ARG *next_arg=this;
if (!next_arg->left)
2002-11-11 22:43:07 +01:00
return 0; // MAYBE_KEY
2000-07-31 21:29:14 +02:00
while (next_arg->left != &null_element)
next_arg=next_arg->left;
2002-11-11 22:43:07 +01:00
return next_arg;
2000-07-31 21:29:14 +02:00
}
SEL_ARG *SEL_ARG::last()
{
SEL_ARG *next_arg=this;
if (!next_arg->right)
2002-11-11 22:43:07 +01:00
return 0; // MAYBE_KEY
2000-07-31 21:29:14 +02:00
while (next_arg->right != &null_element)
next_arg=next_arg->right;
2002-11-11 22:43:07 +01:00
return next_arg;
2000-07-31 21:29:14 +02:00
}
/*
Check if a compare is ok, when one takes ranges in account
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
*/
static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
int cmp;
/* First check if there was a compare to a min or max element */
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
{
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
2002-11-11 22:43:07 +01:00
return 0;
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
2000-07-31 21:29:14 +02:00
}
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
2002-11-11 22:43:07 +01:00
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
2000-07-31 21:29:14 +02:00
if (field->real_maybe_null()) // If null is part of key
{
if (*a != *b)
{
2002-11-11 22:43:07 +01:00
return *a ? -1 : 1;
2000-07-31 21:29:14 +02:00
}
if (*a)
goto end; // NULL where equal
a++; b++; // Skip NULL marker
2000-07-31 21:29:14 +02:00
}
cmp=field->key_cmp((byte*) a,(byte*) b);
2002-11-11 22:43:07 +01:00
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
2000-07-31 21:29:14 +02:00
// Check if the compared equal arguments was defined with open/closed range
end:
if (a_flag & (NEAR_MIN | NEAR_MAX))
{
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
2002-11-11 22:43:07 +01:00
return (a_flag & NEAR_MIN) ? 2 : -2;
return (a_flag & NEAR_MIN) ? 1 : -1;
2000-07-31 21:29:14 +02:00
}
if (b_flag & (NEAR_MIN | NEAR_MAX))
2002-11-11 22:43:07 +01:00
return (b_flag & NEAR_MIN) ? -2 : 2;
return 0; // The elements where equal
2000-07-31 21:29:14 +02:00
}
SEL_ARG *SEL_ARG::clone_tree()
{
SEL_ARG tmp_link,*next_arg,*root;
next_arg= &tmp_link;
root=clone((SEL_ARG *) 0, &next_arg);
next_arg->next=0; // Fix last link
tmp_link.next->prev=0; // Fix first link
root->use_count=0;
2002-11-11 22:43:07 +01:00
return root;
2000-07-31 21:29:14 +02:00
}
/*****************************************************************************
** Test if a key can be used in different ranges
** Returns:
** -1 if impossible select
** 0 if can't use quick_select
2000-08-29 11:31:01 +02:00
** 1 if found usable range
2000-07-31 21:29:14 +02:00
** Updates the following in the select parameter:
** needed_reg ; Bits for keys with may be used if all prev regs are read
** quick ; Parameter to use when reading records.
** In the table struct the following information is updated:
** quick_keys ; Which keys can be used
** quick_rows ; How many rows the key matches
*****************************************************************************/
int SQL_SELECT::test_quick_select(key_map keys_to_use, table_map prev_tables,
ha_rows limit, bool force_quick_range)
{
uint basflag;
uint idx;
double scan_time;
DBUG_ENTER("test_quick_select");
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
(ulong) keys_to_use, (ulong) prev_tables,
(ulong) const_tables));
2000-07-31 21:29:14 +02:00
delete quick;
quick=0;
needed_reg=0; quick_keys=0;
if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
!limit)
DBUG_RETURN(0); /* purecov: inspected */
if (!((basflag= head->file->table_flags()) & HA_KEYPOS_TO_RNDPOS) &&
2000-07-31 21:29:14 +02:00
keys_to_use == (uint) ~0 || !keys_to_use)
DBUG_RETURN(0); /* Not smart database */
records=head->file->records;
if (!records)
records++; /* purecov: inspected */
scan_time=(double) records / TIME_FOR_COMPARE+1;
read_time=(double) head->file->scan_time()+ scan_time + 1.0;
if (head->force_index)
scan_time= read_time= DBL_MAX;
2000-07-31 21:29:14 +02:00
if (limit < records)
read_time=(double) records+scan_time+1; // Force to use index
else if (read_time <= 2.0 && !force_quick_range)
DBUG_RETURN(0); /* No need for quick select */
2000-07-31 21:29:14 +02:00
DBUG_PRINT("info",("Time to scan table: %g", read_time));
2000-07-31 21:29:14 +02:00
keys_to_use&=head->keys_in_use_for_query;
if (keys_to_use)
{
MEM_ROOT *old_root,alloc;
SEL_TREE *tree;
KEY_PART *key_parts;
PARAM param;
/* set up parameter that is passed to all functions */
param.baseflag=basflag;
param.prev_tables=prev_tables | const_tables;
param.read_tables=read_tables;
param.current_table= head->map;
param.table=head;
param.keys=0;
param.mem_root= &alloc;
2000-07-31 21:29:14 +02:00
current_thd->no_errors=1; // Don't warn about NULL
init_sql_alloc(&alloc,2048,0);
2000-07-31 21:29:14 +02:00
if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc,
sizeof(KEY_PART)*
head->key_parts)))
{
current_thd->no_errors=0;
free_root(&alloc,MYF(0)); // Return memory & allocator
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0); // Can't use range
}
key_parts= param.key_parts;
old_root=my_pthread_getspecific_ptr(MEM_ROOT*,THR_MALLOC);
my_pthread_setspecific_ptr(THR_MALLOC,&alloc);
for (idx=0 ; idx < head->keys ; idx++)
{
if (!(keys_to_use & ((key_map) 1L << idx)))
continue;
KEY *key_info= &head->key_info[idx];
if (key_info->flags & HA_FULLTEXT)
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
param.key[param.keys]=key_parts;
for (uint part=0 ; part < key_info->key_parts ; part++,key_parts++)
{
key_parts->key=param.keys;
key_parts->part=part;
key_parts->part_length= key_info->key_part[part].length;
key_parts->field= key_info->key_part[part].field;
key_parts->null_bit= key_info->key_part[part].null_bit;
if (key_parts->field->type() == FIELD_TYPE_BLOB)
key_parts->part_length+=HA_KEY_BLOB_LENGTH;
}
param.real_keynr[param.keys++]=idx;
}
param.key_parts_end=key_parts;
if ((tree=get_mm_tree(&param,cond)))
{
if (tree->type == SEL_TREE::IMPOSSIBLE)
{
records=0L; // Return -1 from this function
read_time= (double) HA_POS_ERROR;
}
else if (tree->type == SEL_TREE::KEY ||
tree->type == SEL_TREE::KEY_SMALLER)
{
SEL_ARG **key,**end,**best_key=0;
for (idx=0,key=tree->keys, end=key+param.keys ;
key != end ;
key++,idx++)
{
ha_rows found_records;
double found_read_time;
if (*key)
{
uint keynr= param.real_keynr[idx];
2000-07-31 21:29:14 +02:00
if ((*key)->type == SEL_ARG::MAYBE_KEY ||
(*key)->maybe_flag)
needed_reg|= (key_map) 1 << keynr;
2000-07-31 21:29:14 +02:00
found_records=check_quick_select(&param, idx, *key);
2000-07-31 21:29:14 +02:00
if (found_records != HA_POS_ERROR && found_records > 2 &&
head->used_keys & ((table_map) 1 << keynr) &&
(head->file->index_flags(keynr) & HA_KEY_READ_ONLY))
2000-07-31 21:29:14 +02:00
{
/*
We can resolve this by only reading through this key.
Assume that we will read trough the whole key range
and that all key blocks are half full (normally things are
much better).
2000-07-31 21:29:14 +02:00
*/
uint keys_per_block= (head->file->block_size/2/
(head->key_info[keynr].key_length+
head->file->ref_length) + 1);
2000-07-31 21:29:14 +02:00
found_read_time=((double) (found_records+keys_per_block-1)/
(double) keys_per_block);
}
else
found_read_time= head->file->read_time(found_records)+
(double) found_records / TIME_FOR_COMPARE;
if (read_time > found_read_time)
{
read_time=found_read_time;
records=found_records;
best_key=key;
}
}
}
if (best_key && records)
{
if ((quick=get_quick_select(&param,(uint) (best_key-tree->keys),
*best_key)))
{
quick->records=records;
quick->read_time=read_time;
}
}
}
}
free_root(&alloc,MYF(0)); // Return memory & allocator
2000-07-31 21:29:14 +02:00
my_pthread_setspecific_ptr(THR_MALLOC,old_root);
current_thd->no_errors=0;
}
DBUG_EXECUTE("info",print_quick(quick,needed_reg););
/*
Assume that if the user is using 'limit' we will only need to scan
limit rows if we are using a key
*/
DBUG_RETURN(records ? test(quick) : -1);
}
/* make a select tree of all keys in condition */
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
SEL_TREE *tree=0;
DBUG_ENTER("get_mm_tree");
if (cond->type() == Item::COND_ITEM)
{
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
tree=0;
Item *item;
while ((item=li++))
{
SEL_TREE *new_tree=get_mm_tree(param,item);
tree=tree_and(param,tree,new_tree);
if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
break;
}
}
else
{ // COND OR
tree=get_mm_tree(param,li++);
if (tree)
{
Item *item;
while ((item=li++))
{
SEL_TREE *new_tree=get_mm_tree(param,item);
if (!new_tree)
DBUG_RETURN(0);
tree=tree_or(param,tree,new_tree);
if (!tree || tree->type == SEL_TREE::ALWAYS)
break;
}
}
}
DBUG_RETURN(tree);
}
/* Here when simple cond */
if (cond->const_item())
{
if (cond->val_int())
DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
}
table_map ref_tables=cond->used_tables();
if (ref_tables & ~(param->prev_tables | param->read_tables |
param->current_table))
DBUG_RETURN(0); // Can't be calculated yet
if (cond->type() != Item::FUNC_ITEM)
{ // Should be a field
if (ref_tables & param->current_table)
DBUG_RETURN(0);
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
}
if (!(ref_tables & param->current_table))
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); // This may be false or true
Item_func *cond_func= (Item_func*) cond;
if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
DBUG_RETURN(0); // Can't be calculated
if (cond_func->functype() == Item_func::BETWEEN)
{
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
{
Field *field=((Item_field*) (cond_func->arguments()[0]))->field;
Item_result cmp_type=field->cmp_type();
tree= get_mm_parts(param,field,Item_func::GE_FUNC,
cond_func->arguments()[1],cmp_type);
DBUG_RETURN(tree_and(param,tree,
get_mm_parts(param, field,
Item_func::LE_FUNC,
cond_func->arguments()[2],cmp_type)));
}
DBUG_RETURN(0);
}
if (cond_func->functype() == Item_func::IN_FUNC)
{ // COND OR
Item_func_in *func=(Item_func_in*) cond_func;
if (func->key_item()->type() == Item::FIELD_ITEM)
{
Field *field=((Item_field*) (func->key_item()))->field;
Item_result cmp_type=field->cmp_type();
tree= get_mm_parts(param,field,Item_func::EQ_FUNC,
func->arguments()[0],cmp_type);
if (!tree)
DBUG_RETURN(tree); // Not key field
for (uint i=1 ; i < func->argument_count(); i++)
{
SEL_TREE *new_tree=get_mm_parts(param,field,Item_func::EQ_FUNC,
func->arguments()[i],cmp_type);
tree=tree_or(param,tree,new_tree);
}
DBUG_RETURN(tree);
}
DBUG_RETURN(0); // Can't optimize this IN
}
/* check field op const */
/* btw, ft_func's arguments()[0] isn't FIELD_ITEM. SerG*/
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
{
tree= get_mm_parts(param,
((Item_field*) (cond_func->arguments()[0]))->field,
cond_func->functype(),
cond_func->arg_count > 1 ? cond_func->arguments()[1] :
0,
((Item_field*) (cond_func->arguments()[0]))->field->
cmp_type());
}
/* check const op field */
if (!tree &&
cond_func->have_rev_func() &&
cond_func->arguments()[1]->type() == Item::FIELD_ITEM)
{
DBUG_RETURN(get_mm_parts(param,
((Item_field*)
(cond_func->arguments()[1]))->field,
((Item_bool_func2*) cond_func)->rev_functype(),
cond_func->arguments()[0],
((Item_field*)
(cond_func->arguments()[1]))->field->cmp_type()
));
}
DBUG_RETURN(tree);
}
static SEL_TREE *
get_mm_parts(PARAM *param,Field *field, Item_func::Functype type,Item *value,
Item_result cmp_type)
{
DBUG_ENTER("get_mm_parts");
if (field->table != param->table)
DBUG_RETURN(0);
KEY_PART *key_part = param->key_parts,*end=param->key_parts_end;
SEL_TREE *tree=0;
if (value &&
value->used_tables() & ~(param->prev_tables | param->read_tables))
DBUG_RETURN(0);
for (; key_part != end ; key_part++)
2000-07-31 21:29:14 +02:00
{
if (field->eq(key_part->field))
{
SEL_ARG *sel_arg=0;
if (!tree)
tree=new SEL_TREE();
if (!value || !(value->used_tables() & ~param->read_tables))
{
sel_arg=get_mm_leaf(param,key_part->field,key_part,type,value);
2000-07-31 21:29:14 +02:00
if (!sel_arg)
continue;
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
{
tree->type=SEL_TREE::IMPOSSIBLE;
DBUG_RETURN(tree);
}
}
else
sel_arg=new SEL_ARG(SEL_ARG::MAYBE_KEY);// This key may be used later
sel_arg->part=(uchar) key_part->part;
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
}
}
DBUG_RETURN(tree);
}
static SEL_ARG *
get_mm_leaf(PARAM *param, Field *field, KEY_PART *key_part,
2000-07-31 21:29:14 +02:00
Item_func::Functype type,Item *value)
{
uint maybe_null=(uint) field->real_maybe_null();
uint field_length=field->pack_length()+maybe_null;
SEL_ARG *tree;
DBUG_ENTER("get_mm_leaf");
if (type == Item_func::LIKE_FUNC)
{
bool like_error;
char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
String tmp(buff1,sizeof(buff1)),*res;
uint length,offset,min_length,max_length;
if (!field->optimize_range((uint) key_part->key))
2001-04-17 13:07:38 +02:00
DBUG_RETURN(0); // Can't optimize this
2000-07-31 21:29:14 +02:00
if (!(res= value->val_str(&tmp)))
DBUG_RETURN(&null_element);
/*
TODO:
Check if this was a function. This should have be optimized away
in the sql_select.cc
*/
2000-07-31 21:29:14 +02:00
if (res != &tmp)
{
tmp.copy(*res); // Get own copy
res= &tmp;
}
if (field->cmp_type() != STRING_RESULT)
DBUG_RETURN(0); // Can only optimize strings
offset=maybe_null;
length=key_part->part_length;
if (field->type() == FIELD_TYPE_BLOB)
{
offset+=HA_KEY_BLOB_LENGTH;
field_length=key_part->part_length-HA_KEY_BLOB_LENGTH;
}
else
{
if (length < field_length)
length=field_length; // Only if overlapping key
else
field_length=length;
}
length+=offset;
if (!(min_str= (char*) alloc_root(param->mem_root, length*2)))
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0);
max_str=min_str+length;
if (maybe_null)
max_str[0]= min_str[0]=0;
if (field->binary())
like_error=like_range(res->ptr(),res->length(),wild_prefix,field_length,
min_str+offset,max_str+offset,(char) 255,
&min_length,&max_length);
else
{
#ifdef USE_STRCOLL
if (use_strcoll(default_charset_info))
like_error= my_like_range(default_charset_info,
res->ptr(),res->length(),wild_prefix,
field_length, min_str+maybe_null,
max_str+maybe_null,&min_length,&max_length);
else
#endif
like_error=like_range(res->ptr(),res->length(),wild_prefix,
field_length,
2000-07-31 21:29:14 +02:00
min_str+offset,max_str+offset,
max_sort_char,&min_length,&max_length);
}
if (like_error) // Can't optimize with LIKE
DBUG_RETURN(0);
if (offset != maybe_null) // Blob
{
int2store(min_str+maybe_null,min_length);
int2store(max_str+maybe_null,max_length);
}
DBUG_RETURN(new SEL_ARG(field,min_str,max_str));
}
if (!value) // IS NULL or IS NOT NULL
{
if (field->table->outer_join) // Can't use a key on this
DBUG_RETURN(0);
if (!maybe_null) // Not null field
DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0);
tree=new SEL_ARG(field,is_null_string,is_null_string);
if (!tree)
DBUG_RETURN(0);
if (type == Item_func::ISNOTNULL_FUNC)
{
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
tree->max_flag=NO_MAX_RANGE;
}
DBUG_RETURN(tree);
}
if (!field->optimize_range((uint) key_part->key) &&
type != Item_func::EQ_FUNC &&
2000-07-31 21:29:14 +02:00
type != Item_func::EQUAL_FUNC)
DBUG_RETURN(0); // Can't optimize this
/*
We can't always use indexes when comparing a string index to a number
cmp_type() is checked to allow compare of dates to numbers
*/
2000-07-31 21:29:14 +02:00
if (field->result_type() == STRING_RESULT &&
value->result_type() != STRING_RESULT &&
field->cmp_type() != value->result_type())
DBUG_RETURN(0);
if (value->save_in_field(field, 1))
2000-07-31 21:29:14 +02:00
{
/* This happens when we try to insert a NULL field in a not null column */
// TODO; Check if we can we remove the following block.
2000-07-31 21:29:14 +02:00
if (type == Item_func::EQUAL_FUNC)
{
/* convert column_name <=> NULL -> column_name IS NULL */
// Get local copy of key
char *str= (char*) alloc_root(param->mem_root,1);
if (!str)
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0);
*str= 1;
2000-07-31 21:29:14 +02:00
DBUG_RETURN(new SEL_ARG(field,str,str));
}
DBUG_RETURN(&null_element); // cmp with NULL is never true
2000-07-31 21:29:14 +02:00
}
// Get local copy of key
char *str= (char*) alloc_root(param->mem_root,
key_part->part_length+maybe_null);
2000-07-31 21:29:14 +02:00
if (!str)
DBUG_RETURN(0);
if (maybe_null)
*str= (char) field->is_real_null(); // Set to 1 if null
2000-07-31 21:29:14 +02:00
field->get_key_image(str+maybe_null,key_part->part_length);
if (!(tree=new SEL_ARG(field,str,str)))
DBUG_RETURN(0);
switch (type) {
case Item_func::LT_FUNC:
if (field_is_equal_to_item(field,value))
tree->max_flag=NEAR_MAX;
/* fall through */
case Item_func::LE_FUNC:
if (!maybe_null)
tree->min_flag=NO_MIN_RANGE; /* From start */
else
{ // > NULL
tree->min_value=is_null_string;
tree->min_flag=NEAR_MIN;
}
break;
case Item_func::GT_FUNC:
if (field_is_equal_to_item(field,value))
tree->min_flag=NEAR_MIN;
/* fall through */
case Item_func::GE_FUNC:
tree->max_flag=NO_MAX_RANGE;
break;
default:
break;
}
DBUG_RETURN(tree);
}
/*
** Calculate min_str and max_str that ranges a LIKE string.
** Arguments:
** ptr Pointer to LIKE string.
** ptr_length Length of LIKE string.
** escape Escape character in LIKE. (Normally '\').
** All escape characters should be removed from min_str and max_str
** res_length Length of min_str and max_str.
** min_str Smallest case sensitive string that ranges LIKE.
** Should be space padded to res_length.
** max_str Largest case sensitive string that ranges LIKE.
** Normally padded with the biggest character sort value.
**
** The function should return 0 if ok and 1 if the LIKE string can't be
** optimized !
*/
static bool like_range(const char *ptr,uint ptr_length,char escape,
uint res_length, char *min_str,char *max_str,
char max_sort_chr, uint *min_length, uint *max_length)
{
const char *end=ptr+ptr_length;
char *min_org=min_str;
char *min_end=min_str+res_length;
for (; ptr != end && min_str != min_end ; ptr++)
{
if (*ptr == escape && ptr+1 != end)
{
ptr++; // Skip escape
2000-07-31 21:29:14 +02:00
*min_str++= *max_str++ = *ptr;
continue;
}
if (*ptr == wild_one) // '_' in SQL
{
*min_str++='\0'; // This should be min char
*max_str++=max_sort_chr;
continue;
}
if (*ptr == wild_many) // '%' in SQL
{
*min_length= (uint) (min_str - min_org);
*max_length=res_length;
do {
*min_str++ = ' '; // Because if key compression
*max_str++ = max_sort_chr;
} while (min_str != min_end);
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
*min_str++= *max_str++ = *ptr;
}
*min_length= *max_length = (uint) (min_str - min_org);
/* Temporary fix for handling wild_one at end of string (key compression) */
for (char *tmp= min_str ; tmp > min_org && tmp[-1] == '\0';)
*--tmp=' ';
2000-07-31 21:29:14 +02:00
while (min_str != min_end)
*min_str++ = *max_str++ = ' '; // Because if key compression
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
** IMPOSSIBLE: Condition is never true
** ALWAYS: Condition is always true
** MAYBE: Condition may exists when tables are read
** MAYBE_KEY: Condition refers to a key that may be used in join loop
** KEY_RANGE: Condition uses a key
******************************************************************************/
/*
** Add a new key test to a key when scanning through all keys
** This will never be called for same key parts.
*/
static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
SEL_ARG *root,**key_link;
if (!key1)
2002-11-11 22:43:07 +01:00
return key2;
2000-07-31 21:29:14 +02:00
if (!key2)
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
key_link= &root;
while (key1 && key2)
{
if (key1->part < key2->part)
{
*key_link= key1;
key_link= &key1->next_key_part;
key1=key1->next_key_part;
}
else
{
*key_link= key2;
key_link= &key2->next_key_part;
key2=key2->next_key_part;
}
}
*key_link=key1 ? key1 : key2;
2002-11-11 22:43:07 +01:00
return root;
2000-07-31 21:29:14 +02:00
}
#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
DBUG_ENTER("tree_and");
if (!tree1)
DBUG_RETURN(tree2);
if (!tree2)
DBUG_RETURN(tree1);
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree1);
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree2);
if (tree1->type == SEL_TREE::MAYBE)
{
if (tree2->type == SEL_TREE::KEY)
tree2->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree2);
}
if (tree2->type == SEL_TREE::MAYBE)
{
tree1->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree1);
}
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
key1 != end ; key1++,key2++)
{
uint flag=0;
if (*key1 || *key2)
{
if (*key1 && !(*key1)->simple_key())
flag|=CLONE_KEY1_MAYBE;
if (*key2 && !(*key2)->simple_key())
flag|=CLONE_KEY2_MAYBE;
*key1=key_and(*key1,*key2,flag);
if ((*key1)->type == SEL_ARG::IMPOSSIBLE)
{
tree1->type= SEL_TREE::IMPOSSIBLE;
break;
}
#ifdef EXTRA_DEBUG
(*key1)->test_use_count(*key1);
#endif
}
}
DBUG_RETURN(tree1);
}
static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
DBUG_ENTER("tree_or");
if (!tree1 || !tree2)
DBUG_RETURN(0);
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree2);
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree1);
if (tree1->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree1); // Can't use this
if (tree2->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree2);
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
SEL_TREE *result=0;
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
key1 != end ; key1++,key2++)
{
*key1=key_or(*key1,*key2);
if (*key1)
{
result=tree1; // Added to tree1
#ifdef EXTRA_DEBUG
(*key1)->test_use_count(*key1);
#endif
}
}
DBUG_RETURN(result);
}
/* And key trees where key1->part < key2 -> part */
static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
SEL_ARG *next;
ulong use_count=key1->use_count;
if (key1->elements != 1)
{
key2->use_count+=key1->elements-1;
key2->increment_use_count((int) key1->elements-1);
}
if (key1->type == SEL_ARG::MAYBE_KEY)
{
key1->right= key1->left= &null_element;
key1->next= key1->prev= 0;
2000-07-31 21:29:14 +02:00
}
for (next=key1->first(); next ; next=next->next)
{
if (next->next_key_part)
{
SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
{
key1=key1->tree_delete(next);
continue;
}
next->next_key_part=tmp;
if (use_count)
next->increment_use_count(use_count);
}
else
next->next_key_part=key2;
}
if (!key1)
2002-11-11 22:43:07 +01:00
return &null_element; // Impossible ranges
2000-07-31 21:29:14 +02:00
key1->use_count++;
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
}
static SEL_ARG *
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
if (!key1)
2002-11-11 22:43:07 +01:00
return key2;
2000-07-31 21:29:14 +02:00
if (!key2)
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
if (key1->part != key2->part)
{
if (key1->part > key2->part)
{
swap(SEL_ARG *,key1,key2);
clone_flag=swap_clone_flag(clone_flag);
}
// key1->part < key2->part
key1->use_count--;
if (key1->use_count > 0)
key1=key1->clone_tree();
2002-11-11 22:43:07 +01:00
return and_all_keys(key1,key2,clone_flag);
2000-07-31 21:29:14 +02:00
}
if (((clone_flag & CLONE_KEY2_MAYBE) &&
!(clone_flag & CLONE_KEY1_MAYBE)) ||
key1->type == SEL_ARG::MAYBE_KEY)
{ // Put simple key in key2
swap(SEL_ARG *,key1,key2);
clone_flag=swap_clone_flag(clone_flag);
}
// If one of the key is MAYBE_KEY then the found region may be smaller
if (key2->type == SEL_ARG::MAYBE_KEY)
{
if (key1->use_count > 1)
{
key1->use_count--;
key1=key1->clone_tree();
key1->use_count++;
}
if (key1->type == SEL_ARG::MAYBE_KEY)
{ // Both are maybe key
key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
clone_flag);
if (key1->next_key_part &&
key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
}
else
{
key1->maybe_smaller();
if (key2->next_key_part)
2002-11-11 22:43:07 +01:00
return and_all_keys(key1,key2,clone_flag);
2000-07-31 21:29:14 +02:00
key2->use_count--; // Key2 doesn't have a tree
}
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
}
key1->use_count--;
key2->use_count--;
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
while (e1 && e2)
{
int cmp=e1->cmp_min_to_min(e2);
if (cmp < 0)
{
if (get_range(&e1,&e2,key1))
continue;
}
else if (get_range(&e2,&e1,key2))
continue;
SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
e1->increment_use_count(1);
e2->increment_use_count(1);
if (!next || next->type != SEL_ARG::IMPOSSIBLE)
{
SEL_ARG *new_arg= e1->clone_and(e2);
new_arg->next_key_part=next;
if (!new_tree)
{
new_tree=new_arg;
}
else
new_tree=new_tree->insert(new_arg);
}
if (e1->cmp_max_to_max(e2) < 0)
e1=e1->next; // e1 can't overlapp next e2
else
e2=e2->next;
}
key1->free_tree();
key2->free_tree();
if (!new_tree)
2002-11-11 22:43:07 +01:00
return &null_element; // Impossible range
return new_tree;
2000-07-31 21:29:14 +02:00
}
static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
(*e1)=root1->find_range(*e2); // first e1->min < e2->min
if ((*e1)->cmp_max_to_min(*e2) < 0)
{
if (!((*e1)=(*e1)->next))
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
if ((*e1)->cmp_min_to_max(*e2) > 0)
{
(*e2)=(*e2)->next;
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
}
}
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
if (!key1)
{
if (key2)
{
key2->use_count--;
key2->free_tree();
}
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
else if (!key2)
{
key1->use_count--;
key1->free_tree();
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
key1->use_count--;
key2->use_count--;
if (key1->part != key2->part)
{
key1->free_tree();
key2->free_tree();
2002-11-11 22:43:07 +01:00
return 0; // Can't optimize this
2000-07-31 21:29:14 +02:00
}
// If one of the key is MAYBE_KEY then the found region may be bigger
if (key1->type == SEL_ARG::MAYBE_KEY)
{
key2->free_tree();
key1->use_count++;
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
}
if (key2->type == SEL_ARG::MAYBE_KEY)
{
key1->free_tree();
key2->use_count++;
2002-11-11 22:43:07 +01:00
return key2;
2000-07-31 21:29:14 +02:00
}
if (key1->use_count > 0)
{
if (key2->use_count == 0 || key1->elements > key2->elements)
{
swap(SEL_ARG *,key1,key2);
}
else
key1=key1->clone_tree();
}
// Add tree at key2 to tree at key1
bool key2_shared=key2->use_count != 0;
key1->maybe_flag|=key2->maybe_flag;
for (key2=key2->first(); key2; )
{
SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min
int cmp;
if (!tmp)
{
tmp=key1->first(); // tmp.min > key2.min
cmp= -1;
}
else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
{ // Found tmp.max < key2.min
SEL_ARG *next=tmp->next;
if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
{
// Join near ranges like tmp.max < 0 and key2.min >= 0
SEL_ARG *key2_next=key2->next;
if (key2_shared)
{
key2=new SEL_ARG(*key2);
key2->increment_use_count(key1->use_count+1);
key2->next=key2_next; // New copy of key2
}
key2->copy_min(tmp);
if (!(key1=key1->tree_delete(tmp)))
{ // Only one key in tree
key1=key2;
key1->make_root();
key2=key2_next;
break;
}
}
if (!(tmp=next)) // tmp.min > key2.min
break; // Copy rest of key2
}
if (cmp < 0)
{ // tmp.min > key2.min
int tmp_cmp;
if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
{
if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
{ // ranges are connected
tmp->copy_min_to_min(key2);
key1->merge_flags(key2);
if (tmp->min_flag & NO_MIN_RANGE &&
tmp->max_flag & NO_MAX_RANGE)
{
if (key1->maybe_flag)
2002-11-11 22:43:07 +01:00
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
return 0;
2000-07-31 21:29:14 +02:00
}
key2->increment_use_count(-1); // Free not used tree
key2=key2->next;
continue;
}
else
{
SEL_ARG *next=key2->next; // Keys are not overlapping
if (key2_shared)
{
key1=key1->insert(new SEL_ARG(*key2)); // Must make copy
key2->increment_use_count(key1->use_count+1);
}
else
key1=key1->insert(key2); // Will destroy key2_root
key2=next;
continue;
}
}
}
// tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges)
if (eq_tree(tmp->next_key_part,key2->next_key_part))
{
if (tmp->is_same(key2))
{
tmp->merge_flags(key2); // Copy maybe flags
key2->increment_use_count(-1); // Free not used tree
}
else
{
SEL_ARG *last=tmp;
while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
eq_tree(last->next->next_key_part,key2->next_key_part))
{
SEL_ARG *save=last;
last=last->next;
key1=key1->tree_delete(save);
}
if (last->copy_min(key2) || last->copy_max(key2))
{ // Full range
key1->free_tree();
for (; key2 ; key2=key2->next)
key2->increment_use_count(-1); // Free not used tree
if (key1->maybe_flag)
2002-11-11 22:43:07 +01:00
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
return 0;
2000-07-31 21:29:14 +02:00
}
}
key2=key2->next;
continue;
}
if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
{ // tmp.min <= x < key2.min
SEL_ARG *new_arg=tmp->clone_first(key2);
if ((new_arg->next_key_part= key1->next_key_part))
new_arg->increment_use_count(key1->use_count+1);
tmp->copy_min_to_min(key2);
key1=key1->insert(new_arg);
}
// tmp.min >= key2.min && tmp.min <= key2.max
SEL_ARG key(*key2); // Get copy we can modify
for (;;)
{
if (tmp->cmp_min_to_min(&key) > 0)
{ // key.min <= x < tmp.min
SEL_ARG *new_arg=key.clone_first(tmp);
if ((new_arg->next_key_part=key.next_key_part))
new_arg->increment_use_count(key1->use_count+1);
key1=key1->insert(new_arg);
}
if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
{ // tmp.min. <= x <= tmp.max
tmp->maybe_flag|= key.maybe_flag;
key.increment_use_count(key1->use_count+1);
tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
if (!cmp) // Key2 is ready
break;
key.copy_max_to_min(tmp);
if (!(tmp=tmp->next))
{
key1=key1->insert(new SEL_ARG(key));
key2=key2->next;
goto end;
}
if (tmp->cmp_min_to_max(&key) > 0)
{
key1=key1->insert(new SEL_ARG(key));
break;
}
}
else
{
SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
tmp->copy_max_to_min(&key);
tmp->increment_use_count(key1->use_count+1);
new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
key1=key1->insert(new_arg);
break;
}
}
key2=key2->next;
}
end:
while (key2)
{
SEL_ARG *next=key2->next;
if (key2_shared)
{
key2->increment_use_count(key1->use_count+1);
key1=key1->insert(new SEL_ARG(*key2)); // Must make copy
}
else
key1=key1->insert(key2); // Will destroy key2_root
key2=next;
}
key1->use_count++;
2002-11-11 22:43:07 +01:00
return key1;
2000-07-31 21:29:14 +02:00
}
/* Compare if two trees are equal */
static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
if (a == b)
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
if (!a || !b || !a->is_same(b))
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
if (a->left != &null_element && b->left != &null_element)
{
if (!eq_tree(a->left,b->left))
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
else if (a->left != &null_element || b->left != &null_element)
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
if (a->right != &null_element && b->right != &null_element)
{
if (!eq_tree(a->right,b->right))
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
else if (a->right != &null_element || b->right != &null_element)
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
if (a->next_key_part != b->next_key_part)
{ // Sub range
if (!a->next_key_part != !b->next_key_part ||
!eq_tree(a->next_key_part, b->next_key_part))
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
}
SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
SEL_ARG *element,**par,*last_element;
LINT_INIT(par); LINT_INIT(last_element);
for (element= this; element != &null_element ; )
{
last_element=element;
if (key->cmp_min_to_min(element) > 0)
{
par= &element->right; element= element->right;
}
else
{
par = &element->left; element= element->left;
}
}
*par=key;
key->parent=last_element;
/* Link in list */
if (par == &last_element->left)
{
key->next=last_element;
if ((key->prev=last_element->prev))
key->prev->next=key;
last_element->prev=key;
}
else
{
if ((key->next=last_element->next))
key->next->prev=key;
key->prev=last_element;
last_element->next=key;
}
key->left=key->right= &null_element;
SEL_ARG *root=rb_insert(key); // rebalance tree
root->use_count=this->use_count; // copy root info
root->elements= this->elements+1;
root->maybe_flag=this->maybe_flag;
2002-11-11 22:43:07 +01:00
return root;
2000-07-31 21:29:14 +02:00
}
/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/
SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
SEL_ARG *element=this,*found=0;
for (;;)
{
if (element == &null_element)
2002-11-11 22:43:07 +01:00
return found;
2000-07-31 21:29:14 +02:00
int cmp=element->cmp_min_to_min(key);
if (cmp == 0)
2002-11-11 22:43:07 +01:00
return element;
2000-07-31 21:29:14 +02:00
if (cmp < 0)
{
found=element;
element=element->right;
}
else
element=element->left;
}
}
/*
** Remove a element from the tree
** This also frees all sub trees that is used by the element
*/
SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
enum leaf_color remove_color;
SEL_ARG *root,*nod,**par,*fix_par;
root=this; this->parent= 0;
/* Unlink from list */
if (key->prev)
key->prev->next=key->next;
if (key->next)
key->next->prev=key->prev;
key->increment_use_count(-1);
if (!key->parent)
par= &root;
else
par=key->parent_ptr();
if (key->left == &null_element)
{
*par=nod=key->right;
fix_par=key->parent;
if (nod != &null_element)
nod->parent=fix_par;
remove_color= key->color;
}
else if (key->right == &null_element)
{
*par= nod=key->left;
nod->parent=fix_par=key->parent;
remove_color= key->color;
}
else
{
SEL_ARG *tmp=key->next; // next bigger key (exist!)
nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
fix_par=tmp->parent;
if (nod != &null_element)
nod->parent=fix_par;
remove_color= tmp->color;
tmp->parent=key->parent; // Move node in place of key
(tmp->left=key->left)->parent=tmp;
if ((tmp->right=key->right) != &null_element)
tmp->right->parent=tmp;
tmp->color=key->color;
*par=tmp;
if (fix_par == key) // key->right == key->next
fix_par=tmp; // new parent of nod
}
if (root == &null_element)
2002-11-11 22:43:07 +01:00
return 0; // Maybe root later
2000-07-31 21:29:14 +02:00
if (remove_color == BLACK)
root=rb_delete_fixup(root,nod,fix_par);
test_rb_tree(root,root->parent);
root->use_count=this->use_count; // Fix root counters
root->elements=this->elements-1;
root->maybe_flag=this->maybe_flag;
2002-11-11 22:43:07 +01:00
return root;
2000-07-31 21:29:14 +02:00
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
SEL_ARG *y=leaf->right;
leaf->right=y->left;
if (y->left != &null_element)
y->left->parent=leaf;
if (!(y->parent=leaf->parent))
*root=y;
else
*leaf->parent_ptr()=y;
y->left=leaf;
leaf->parent=y;
}
static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
SEL_ARG *y=leaf->left;
leaf->left=y->right;
if (y->right != &null_element)
y->right->parent=leaf;
if (!(y->parent=leaf->parent))
*root=y;
else
*leaf->parent_ptr()=y;
y->right=leaf;
leaf->parent=y;
}
SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
SEL_ARG *y,*par,*par2,*root;
root= this; root->parent= 0;
leaf->color=RED;
while (leaf != root && (par= leaf->parent)->color == RED)
{ // This can't be root or 1 level under
if (par == (par2= leaf->parent->parent)->left)
{
y= par2->right;
if (y->color == RED)
{
par->color=BLACK;
y->color=BLACK;
leaf=par2;
leaf->color=RED; /* And the loop continues */
}
else
{
if (leaf == par->right)
{
left_rotate(&root,leaf->parent);
par=leaf; /* leaf is now parent to old leaf */
}
par->color=BLACK;
par2->color=RED;
right_rotate(&root,par2);
break;
}
}
else
{
y= par2->left;
if (y->color == RED)
{
par->color=BLACK;
y->color=BLACK;
leaf=par2;
leaf->color=RED; /* And the loop continues */
}
else
{
if (leaf == par->left)
{
right_rotate(&root,par);
par=leaf;
}
par->color=BLACK;
par2->color=RED;
left_rotate(&root,par2);
break;
}
}
}
root->color=BLACK;
test_rb_tree(root,root->parent);
2002-11-11 22:43:07 +01:00
return root;
2000-07-31 21:29:14 +02:00
}
SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
SEL_ARG *x,*w;
root->parent=0;
x= key;
while (x != root && x->color == SEL_ARG::BLACK)
{
if (x == par->left)
{
w=par->right;
if (w->color == SEL_ARG::RED)
{
w->color=SEL_ARG::BLACK;
par->color=SEL_ARG::RED;
left_rotate(&root,par);
w=par->right;
}
if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
{
w->color=SEL_ARG::RED;
x=par;
}
else
{
if (w->right->color == SEL_ARG::BLACK)
{
w->left->color=SEL_ARG::BLACK;
w->color=SEL_ARG::RED;
right_rotate(&root,w);
w=par->right;
}
w->color=par->color;
par->color=SEL_ARG::BLACK;
w->right->color=SEL_ARG::BLACK;
left_rotate(&root,par);
x=root;
break;
}
}
else
{
w=par->left;
if (w->color == SEL_ARG::RED)
{
w->color=SEL_ARG::BLACK;
par->color=SEL_ARG::RED;
right_rotate(&root,par);
w=par->left;
}
if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
{
w->color=SEL_ARG::RED;
x=par;
}
else
{
if (w->left->color == SEL_ARG::BLACK)
{
w->right->color=SEL_ARG::BLACK;
w->color=SEL_ARG::RED;
left_rotate(&root,w);
w=par->left;
}
w->color=par->color;
par->color=SEL_ARG::BLACK;
w->left->color=SEL_ARG::BLACK;
right_rotate(&root,par);
x=root;
break;
}
}
par=x->parent;
}
x->color=SEL_ARG::BLACK;
2002-11-11 22:43:07 +01:00
return root;
2000-07-31 21:29:14 +02:00
}
/* Test that the proporties for a red-black tree holds */
#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
int count_l,count_r;
if (element == &null_element)
2002-11-11 22:43:07 +01:00
return 0; // Found end of tree
2000-07-31 21:29:14 +02:00
if (element->parent != parent)
{
sql_print_error("Wrong tree: Parent doesn't point at parent");
2002-11-11 22:43:07 +01:00
return -1;
2000-07-31 21:29:14 +02:00
}
if (element->color == SEL_ARG::RED &&
(element->left->color == SEL_ARG::RED ||
element->right->color == SEL_ARG::RED))
{
sql_print_error("Wrong tree: Found two red in a row");
2002-11-11 22:43:07 +01:00
return -1;
2000-07-31 21:29:14 +02:00
}
if (element->left == element->right && element->left != &null_element)
{ // Dummy test
sql_print_error("Wrong tree: Found right == left");
2002-11-11 22:43:07 +01:00
return -1;
2000-07-31 21:29:14 +02:00
}
count_l=test_rb_tree(element->left,element);
count_r=test_rb_tree(element->right,element);
if (count_l >= 0 && count_r >= 0)
{
if (count_l == count_r)
2002-11-11 22:43:07 +01:00
return count_l+(element->color == SEL_ARG::BLACK);
2000-07-31 21:29:14 +02:00
sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
count_l,count_r);
}
2002-11-11 22:43:07 +01:00
return -1; // Error, no more warnings
2000-07-31 21:29:14 +02:00
}
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
ulong count= 0;
for (root=root->first(); root ; root=root->next)
{
if (root->next_key_part)
{
if (root->next_key_part == key)
count++;
if (root->next_key_part->part < key->part)
count+=count_key_part_usage(root->next_key_part,key);
}
}
2002-11-11 22:43:07 +01:00
return count;
2000-07-31 21:29:14 +02:00
}
void SEL_ARG::test_use_count(SEL_ARG *root)
{
if (this == root && use_count != 1)
{
sql_print_error("Use_count: Wrong count %lu for root",use_count);
2002-11-11 22:43:07 +01:00
return;
2000-07-31 21:29:14 +02:00
}
if (this->type != SEL_ARG::KEY_RANGE)
2002-11-11 22:43:07 +01:00
return;
2000-07-31 21:29:14 +02:00
uint e_count=0;
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
{
e_count++;
if (pos->next_key_part)
{
ulong count=count_key_part_usage(root,pos->next_key_part);
if (count > pos->next_key_part->use_count)
{
sql_print_error("Use_count: Wrong count for key at %lx, %lu should be %lu",
pos,pos->next_key_part->use_count,count);
2002-11-11 22:43:07 +01:00
return;
2000-07-31 21:29:14 +02:00
}
pos->next_key_part->test_use_count(root);
}
}
if (e_count != elements)
sql_print_error("Wrong use count: %u for tree at %lx", e_count,
(gptr) this);
}
#endif
/*****************************************************************************
** Check how many records we will find by using the found tree
*****************************************************************************/
static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
ha_rows records;
DBUG_ENTER("check_quick_select");
if (!tree)
DBUG_RETURN(HA_POS_ERROR); // Can't use it
if (tree->type == SEL_ARG::IMPOSSIBLE)
DBUG_RETURN(0L); // Impossible select. return
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
DBUG_RETURN(HA_POS_ERROR); // Don't use tree
param->max_key_part=0;
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
if (records != HA_POS_ERROR)
{
uint key=param->real_keynr[idx];
param->table->quick_keys|= (key_map) 1 << key;
param->table->quick_rows[key]=records;
param->table->quick_key_parts[key]=param->max_key_part+1;
}
DBUG_RETURN(records);
}
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
char *min_key,uint min_key_flag, char *max_key,
uint max_key_flag)
{
ha_rows records=0,tmp;
param->max_key_part=max(param->max_key_part,key_tree->part);
if (key_tree->left != &null_element)
{
records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
max_key,max_key_flag);
if (records == HA_POS_ERROR) // Impossible
2002-11-11 22:43:07 +01:00
return records;
2000-07-31 21:29:14 +02:00
}
uint tmp_min_flag,tmp_max_flag,keynr;
char *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store(param->key[idx][key_tree->part].part_length,
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
uint min_key_length= (uint) (tmp_min_key- param->min_key);
uint max_key_length= (uint) (tmp_max_key- param->max_key);
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{ // const key as prefix
if (min_key_length == max_key_length &&
!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
!key_tree->min_flag && !key_tree->max_flag)
{
tmp=check_quick_keys(param,idx,key_tree->next_key_part,
tmp_min_key, min_key_flag | key_tree->min_flag,
tmp_max_key, max_key_flag | key_tree->max_flag);
goto end; // Ugly, but efficient
}
tmp_min_flag=key_tree->min_flag;
tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
&tmp_min_flag);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
&tmp_max_flag);
min_key_length= (uint) (tmp_min_key- param->min_key);
max_key_length= (uint) (tmp_max_key- param->max_key);
}
else
{
tmp_min_flag=min_key_flag | key_tree->min_flag;
tmp_max_flag=max_key_flag | key_tree->max_flag;
}
keynr=param->real_keynr[idx];
if (!tmp_min_flag && ! tmp_max_flag &&
(uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
(param->table->key_info[keynr].flags & HA_NOSAME) &&
min_key_length == max_key_length &&
!memcmp(param->min_key,param->max_key,min_key_length))
tmp=1; // Max one record
else
tmp=param->table->file->
records_in_range((int) keynr,
(byte*) (!min_key_length ? NullS :
param->min_key),
min_key_length,
(tmp_min_flag & NEAR_MIN ?
HA_READ_AFTER_KEY : HA_READ_KEY_EXACT),
(byte*) (!max_key_length ? NullS :
param->max_key),
max_key_length,
(tmp_max_flag & NEAR_MAX ?
HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY));
end:
if (tmp == HA_POS_ERROR) // Impossible range
2002-11-11 22:43:07 +01:00
return tmp;
2000-07-31 21:29:14 +02:00
records+=tmp;
if (key_tree->right != &null_element)
{
tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
max_key,max_key_flag);
if (tmp == HA_POS_ERROR)
2002-11-11 22:43:07 +01:00
return tmp;
2000-07-31 21:29:14 +02:00
records+=tmp;
}
2002-11-11 22:43:07 +01:00
return records;
2000-07-31 21:29:14 +02:00
}
/****************************************************************************
** change a tree to a structure to be used by quick_select
** This uses it's own malloc tree
****************************************************************************/
static QUICK_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
{
QUICK_SELECT *quick;
DBUG_ENTER("get_quick_select");
if ((quick=new QUICK_SELECT(param->table,param->real_keynr[idx])))
{
if (quick->error ||
get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
param->max_key,0))
{
delete quick;
quick=0;
}
else
{
quick->key_parts=(KEY_PART*)
memdup_root(&quick->alloc,(char*) param->key[idx],
2000-07-31 21:29:14 +02:00
sizeof(KEY_PART)*
param->table->key_info[param->real_keynr[idx]].key_parts);
}
}
DBUG_RETURN(quick);
}
/*
** Fix this to get all possible sub_ranges
*/
static bool
get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag)
{
QUICK_RANGE *range;
uint flag;
if (key_tree->left != &null_element)
{
if (get_quick_keys(param,quick,key,key_tree->left,
min_key,min_key_flag, max_key, max_key_flag))
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
}
char *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store(key[key_tree->part].part_length,
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{ // const key as prefix
if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
key_tree->min_flag || key_tree->max_flag))
{
if (get_quick_keys(param,quick,key,key_tree->next_key_part,
tmp_min_key, min_key_flag | key_tree->min_flag,
tmp_max_key, max_key_flag | key_tree->max_flag))
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
goto end; // Ugly, but efficient
}
{
uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(key, &tmp_min_key,
&tmp_min_flag);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(key, &tmp_max_key,
&tmp_max_flag);
flag=tmp_min_flag | tmp_max_flag;
}
}
else
flag=key_tree->min_flag | key_tree->max_flag;
/* Ensure that some part of min_key and max_key are used. If not,
regard this as no lower/upper range */
if (tmp_min_key != param->min_key)
flag&= ~NO_MIN_RANGE;
else
flag|= NO_MIN_RANGE;
if (tmp_max_key != param->max_key)
flag&= ~NO_MAX_RANGE;
else
flag|= NO_MAX_RANGE;
if (flag == 0)
{
uint length= (uint) (tmp_min_key - param->min_key);
if (length == (uint) (tmp_max_key - param->max_key) &&
!memcmp(param->min_key,param->max_key,length))
{
KEY *table_key=quick->head->key_info+quick->index;
flag=EQ_RANGE;
if (table_key->flags & HA_NOSAME && key->part == table_key->key_parts-1)
{
if (!(table_key->flags & HA_NULL_PART_KEY) ||
!null_part_in_key(key,
param->min_key,
(uint) (tmp_min_key - param->min_key)))
flag|= UNIQUE_RANGE;
else
flag|= NULL_RANGE;
}
2000-07-31 21:29:14 +02:00
}
}
/* Get range for retrieving rows in QUICK_SELECT::get_next */
range= new QUICK_RANGE(param->min_key,
(uint) (tmp_min_key - param->min_key),
param->max_key,
(uint) (tmp_max_key - param->max_key),
flag);
set_if_bigger(quick->max_used_key_length,range->min_length);
set_if_bigger(quick->max_used_key_length,range->max_length);
if (!range) // Not enough memory
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
quick->ranges.push_back(range);
end:
if (key_tree->right != &null_element)
2002-11-11 22:43:07 +01:00
return get_quick_keys(param,quick,key,key_tree->right,
2000-07-31 21:29:14 +02:00
min_key,min_key_flag,
2002-11-11 22:43:07 +01:00
max_key,max_key_flag);
return 0;
2000-07-31 21:29:14 +02:00
}
/*
Return 1 if there is only one range and this uses the whole primary key
*/
bool QUICK_SELECT::unique_key_range()
{
if (ranges.elements == 1)
{
QUICK_RANGE *tmp;
if (((tmp=ranges.head())->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
2000-07-31 21:29:14 +02:00
{
KEY *key=head->key_info+index;
2002-11-11 22:43:07 +01:00
return ((key->flags & HA_NOSAME) &&
key->key_length == tmp->min_length);
2000-07-31 21:29:14 +02:00
}
}
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
/* Returns true if any part of the key is NULL */
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
for (const char *end=key+length ;
key < end;
key+= key_part++->part_length)
{
if (key_part->null_bit)
{
if (*key++)
2002-11-11 22:43:07 +01:00
return 1;
}
}
2002-11-11 22:43:07 +01:00
return 0;
}
2000-07-31 21:29:14 +02:00
/****************************************************************************
** Create a QUICK RANGE based on a key
****************************************************************************/
QUICK_SELECT *get_quick_select_for_ref(TABLE *table, TABLE_REF *ref)
{
2000-10-16 01:29:48 +02:00
table->file->index_end(); // Remove old cursor
2000-07-31 21:29:14 +02:00
QUICK_SELECT *quick=new QUICK_SELECT(table, ref->key, 1);
KEY *key_info = &table->key_info[ref->key];
KEY_PART *key_part;
uint part;
if (!quick)
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
QUICK_RANGE *range= new QUICK_RANGE();
if (!range || cp_buffer_from_ref(ref))
goto err;
range->min_key=range->max_key=(char*) ref->key_buff;
range->min_length=range->max_length=ref->key_length;
range->flag= ((ref->key_length == key_info->key_length &&
(key_info->flags & HA_NOSAME)) ? EQ_RANGE : 0);
if (!(quick->key_parts=key_part=(KEY_PART *)
alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
2000-07-31 21:29:14 +02:00
goto err;
for (part=0 ; part < ref->key_parts ;part++,key_part++)
{
key_part->part=part;
key_part->field= key_info->key_part[part].field;
key_part->part_length= key_info->key_part[part].length;
if (key_part->field->type() == FIELD_TYPE_BLOB)
key_part->part_length+=HA_KEY_BLOB_LENGTH;
key_part->null_bit= key_info->key_part[part].null_bit;
}
if (!quick->ranges.push_back(range))
2002-11-11 22:43:07 +01:00
return quick;
2000-07-31 21:29:14 +02:00
err:
delete quick;
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
/* get next possible record using quick-struct */
int QUICK_SELECT::get_next()
{
DBUG_ENTER("get_next");
for (;;)
{
int result;
2000-07-31 21:29:14 +02:00
if (range)
{ // Already read through key
result=((range->flag & EQ_RANGE) ?
file->index_next_same(record, (byte*) range->min_key,
range->min_length) :
file->index_next(record));
if (!result)
{
if (!cmp_next(*it.ref()))
DBUG_RETURN(0);
}
else if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
2000-07-31 21:29:14 +02:00
}
2000-07-31 21:29:14 +02:00
if (!(range=it++))
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
if (range->flag & NO_MIN_RANGE) // Read first record
{
int local_error;
if ((local_error=file->index_first(record)))
DBUG_RETURN(local_error); // Empty table
2000-07-31 21:29:14 +02:00
if (cmp_next(range) == 0)
DBUG_RETURN(0);
range=0; // No matching records; go to next range
2000-07-31 21:29:14 +02:00
continue;
}
if ((result = file->index_read(record,(byte*) range->min_key,
2000-07-31 21:29:14 +02:00
range->min_length,
((range->flag & NEAR_MIN) ?
HA_READ_AFTER_KEY:
(range->flag & EQ_RANGE) ?
HA_READ_KEY_EXACT :
HA_READ_KEY_OR_NEXT))))
2000-07-31 21:29:14 +02:00
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
2000-07-31 21:29:14 +02:00
range=0; // Not found, to next range
continue;
}
if (cmp_next(range) == 0)
{
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
range=0; // Stop searching
DBUG_RETURN(0); // Found key is in range
}
range=0; // To next range
}
}
/* compare if found key is over max-value */
/* Returns 0 if key <= range->max_key */
int QUICK_SELECT::cmp_next(QUICK_RANGE *range_arg)
2000-07-31 21:29:14 +02:00
{
if (range_arg->flag & NO_MAX_RANGE)
2002-11-11 22:43:07 +01:00
return 0; /* key can't be to large */
2000-07-31 21:29:14 +02:00
KEY_PART *key_part=key_parts;
for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
2000-07-31 21:29:14 +02:00
key < end;
key+= key_part++->part_length)
{
int cmp;
if (key_part->null_bit)
{
if (*key++)
{
if (!key_part->field->is_null())
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
continue;
}
else if (key_part->field->is_null())
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
}
if ((cmp=key_part->field->key_cmp((byte*) key, key_part->part_length)) < 0)
2002-11-11 22:43:07 +01:00
return 0;
2000-07-31 21:29:14 +02:00
if (cmp > 0)
2002-11-11 22:43:07 +01:00
return 1;
2000-07-31 21:29:14 +02:00
}
2002-11-11 22:43:07 +01:00
return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match
2000-07-31 21:29:14 +02:00
}
2001-06-29 03:04:29 +02:00
/*
This is a hack: we inherit from QUICK_SELECT so that we can use the
get_next() interface, but we have to hold a pointer to the original
QUICK_SELECT because its data are used all over the place. What
should be done is to factor out the data that is needed into a base
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
which handle the ranges and implement the get_next() function. But
for now, this seems to work right at least.
*/
2001-06-29 03:04:29 +02:00
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_SELECT *q, uint used_key_parts)
: QUICK_SELECT(*q), rev_it(rev_ranges)
{
bool not_read_after_key = file->table_flags() & HA_NOT_READ_AFTER_KEY;
2001-09-15 15:22:34 +02:00
QUICK_RANGE *r;
it.rewind();
2001-09-15 15:22:34 +02:00
for (r = it++; r; r = it++)
{
rev_ranges.push_front(r);
if (not_read_after_key && range_reads_after_key(r))
{
2001-06-29 03:04:29 +02:00
it.rewind(); // Reset range
error = HA_ERR_UNSUPPORTED;
2001-06-29 03:04:29 +02:00
dont_free=1; // Don't free memory from 'q'
2002-11-11 22:43:07 +01:00
return;
}
}
2001-06-29 03:04:29 +02:00
/* Remove EQ_RANGE flag for keys that are not using the full key */
2001-09-15 15:22:34 +02:00
for (r = rev_it++; r; r = rev_it++)
2001-06-29 03:04:29 +02:00
{
if ((r->flag & EQ_RANGE) &&
head->key_info[index].key_length != r->max_length)
r->flag&= ~EQ_RANGE;
}
rev_it.rewind();
q->dont_free=1; // Don't free shared mem
delete q;
}
2001-06-29 03:04:29 +02:00
int QUICK_SELECT_DESC::get_next()
{
DBUG_ENTER("QUICK_SELECT_DESC::get_next");
/* The max key is handled as follows:
* - if there is NO_MAX_RANGE, start at the end and move backwards
2001-06-29 03:04:29 +02:00
* - if it is an EQ_RANGE, which means that max key covers the entire
* key, go directly to the key and read through it (sorting backwards is
* same as sorting forwards)
* - if it is NEAR_MAX, go to the key or next, step back once, and
* move backwards
* - otherwise (not NEAR_MAX == include the key), go after the key,
* step back once, and move backwards
*/
for (;;)
{
int result;
if (range)
{ // Already read through key
2001-06-29 03:04:29 +02:00
result = ((range->flag & EQ_RANGE)
? file->index_next_same(record, (byte*) range->min_key,
range->min_length) :
file->index_prev(record));
if (!result)
{
if (cmp_prev(*rev_it.ref()) == 0)
DBUG_RETURN(0);
}
else if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
}
if (!(range=rev_it++))
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
if (range->flag & NO_MAX_RANGE) // Read last record
{
int local_error;
if ((local_error=file->index_last(record)))
DBUG_RETURN(local_error); // Empty table
if (cmp_prev(range) == 0)
DBUG_RETURN(0);
range=0; // No matching records; go to next range
continue;
}
2001-06-29 03:04:29 +02:00
if (range->flag & EQ_RANGE)
{
result = file->index_read(record, (byte*) range->max_key,
range->max_length, HA_READ_KEY_EXACT);
}
else
{
/* Heikki changed Sept 11, 2002: since InnoDB does not store the cursor
position if READ_KEY_EXACT is used to a primary key with all
key columns specified, we must use below HA_READ_KEY_OR_NEXT,
so that InnoDB stores the cursor position and is able to move
the cursor one step backward after the search. */
2001-11-28 01:55:52 +01:00
DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
/* Note: even if max_key is only a prefix, HA_READ_AFTER_KEY will
* do the right thing - go past all keys which match the prefix */
2001-06-29 03:04:29 +02:00
result=file->index_read(record, (byte*) range->max_key,
range->max_length,
((range->flag & NEAR_MAX) ?
HA_READ_KEY_OR_NEXT : HA_READ_AFTER_KEY));
result = file->index_prev(record);
}
if (result)
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
range=0; // Not found, to next range
continue;
}
if (cmp_prev(range) == 0)
{
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
range = 0; // Stop searching
DBUG_RETURN(0); // Found key is in range
}
range = 0; // To next range
}
}
/*
Returns 0 if found key is inside range (found key >= range->min_key).
*/
int QUICK_SELECT_DESC::cmp_prev(QUICK_RANGE *range_arg)
{
if (range_arg->flag & NO_MIN_RANGE)
2002-11-11 22:43:07 +01:00
return 0; /* key can't be to small */
2001-06-29 03:04:29 +02:00
KEY_PART *key_part = key_parts;
for (char *key = range_arg->min_key, *end = key + range_arg->min_length;
key < end;
key += key_part++->part_length)
{
int cmp;
if (key_part->null_bit)
{
// this key part allows null values; NULL is lower than everything else
if (*key++)
{
// the range is expecting a null value
if (!key_part->field->is_null())
2002-11-11 22:43:07 +01:00
return 0; // not null -- still inside the range
continue; // null -- exact match, go to next key part
}
else if (key_part->field->is_null())
2002-11-11 22:43:07 +01:00
return 1; // null -- outside the range
}
if ((cmp = key_part->field->key_cmp((byte*) key,
key_part->part_length)) > 0)
2002-11-11 22:43:07 +01:00
return 0;
if (cmp < 0)
2002-11-11 22:43:07 +01:00
return 1;
}
2002-11-11 22:43:07 +01:00
return (range_arg->flag & NEAR_MIN) ? 1 : 0; // Exact match
}
/*
* True if this range will require using HA_READ_AFTER_KEY
2001-06-29 03:04:29 +02:00
See comment in get_next() about this
*/
2001-06-29 03:04:29 +02:00
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
{
2002-11-11 22:43:07 +01:00
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
!(range_arg->flag & EQ_RANGE) ||
2002-11-11 22:43:07 +01:00
head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
}
2001-06-29 03:04:29 +02:00
/* True if we are reading over a key that may have a NULL value */
#ifdef NOT_USED
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
2001-06-29 03:04:29 +02:00
uint used_key_parts)
{
uint offset,end;
KEY_PART *key_part = key_parts,
*key_part_end= key_part+used_key_parts;
for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ;
2001-06-29 03:04:29 +02:00
offset < end && key_part != key_part_end ;
offset += key_part++->part_length)
{
uint null_length=test(key_part->null_bit);
if (!memcmp((char*) range_arg->min_key+offset,
(char*) range_arg->max_key+offset,
2001-06-29 03:04:29 +02:00
key_part->part_length + null_length))
{
offset+=null_length;
continue;
}
if (null_length && range_arg->min_key[offset])
2002-11-11 22:43:07 +01:00
return 1; // min_key is null and max_key isn't
2001-06-29 03:04:29 +02:00
// Range doesn't cover NULL. This is ok if there is no more null parts
break;
}
/*
If the next min_range is > NULL, then we can use this, even if
it's a NULL key
Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;
*/
if (key_part != key_part_end && key_part->null_bit)
{
if (offset >= range_arg->min_length || range_arg->min_key[offset])
2002-11-11 22:43:07 +01:00
return 1; // Could be null
2001-06-29 03:04:29 +02:00
key_part++;
}
/*
If any of the key parts used in the ORDER BY could be NULL, we can't
use the key to sort the data.
*/
for (; key_part != key_part_end ; key_part++)
if (key_part->null_bit)
2002-11-11 22:43:07 +01:00
return 1; // Covers null part
return 0;
2001-06-29 03:04:29 +02:00
}
#endif
2001-06-29 03:04:29 +02:00
2000-07-31 21:29:14 +02:00
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/
#ifndef DBUG_OFF
static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
char buff[1024];
String tmp(buff,sizeof(buff));
for (uint length=0;
length < used_length ;
length+=key_part->part_length, key+=key_part->part_length, key_part++)
{
Field *field=key_part->field;
if (length != 0)
fputc('/',DBUG_FILE);
if (field->real_maybe_null())
{
length++; // null byte is not in part_length
2000-07-31 21:29:14 +02:00
if (*key++)
{
fwrite("NULL",sizeof(char),4,DBUG_FILE);
continue;
}
}
field->set_key_image((char*) key,key_part->part_length -
((field->type() == FIELD_TYPE_BLOB) ?
HA_KEY_BLOB_LENGTH : 0));
2000-07-31 21:29:14 +02:00
field->val_str(&tmp,&tmp);
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
}
}
static void print_quick(QUICK_SELECT *quick,key_map needed_reg)
{
QUICK_RANGE *range;
DBUG_ENTER("print_param");
if (! _db_on_ || !quick)
DBUG_VOID_RETURN;
List_iterator<QUICK_RANGE> li(quick->ranges);
DBUG_LOCK_FILE;
fprintf(DBUG_FILE,"Used quick_range on key: %d (other_keys: %lu):\n",
quick->index, (ulong) needed_reg);
while ((range=li++))
{
if (!(range->flag & NO_MIN_RANGE))
{
print_key(quick->key_parts,range->min_key,range->min_length);
if (range->flag & NEAR_MIN)
fputs(" < ",DBUG_FILE);
else
fputs(" <= ",DBUG_FILE);
}
fputs("X",DBUG_FILE);
if (!(range->flag & NO_MAX_RANGE))
{
if (range->flag & NEAR_MAX)
fputs(" < ",DBUG_FILE);
else
fputs(" <= ",DBUG_FILE);
print_key(quick->key_parts,range->max_key,range->max_length);
}
fputs("\n",DBUG_FILE);
}
DBUG_UNLOCK_FILE;
DBUG_VOID_RETURN;
}
#endif
/*****************************************************************************
** Instansiate templates
*****************************************************************************/
#ifdef __GNUC__
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif