aboutsummaryrefslogtreecommitdiffstats
path: root/signaling-server/node_modules/socket.io/node_modules/socket.io-client/lib/vendor/web-socket-js/flash-src/com/hurlant/crypto/cert/X509Certificate.as
blob: db4ea1c42ee64831a749cf513e3cff0428f2e035 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/**
 * X509Certificate
 * 
 * A representation for a X509 Certificate, with
 * methods to parse, verify and sign it.
 * Copyright (c) 2007 Henri Torgemane
 * 
 * See LICENSE.txt for full license information.
 */
package com.hurlant.crypto.cert {
	import com.hurlant.crypto.hash.IHash;
	import com.hurlant.crypto.hash.MD2;
	import com.hurlant.crypto.hash.MD5;
	import com.hurlant.crypto.hash.SHA1;
	import com.hurlant.crypto.rsa.RSAKey;
	import com.hurlant.util.ArrayUtil;
	import com.hurlant.util.Base64;
	import com.hurlant.util.der.ByteString;
	import com.hurlant.util.der.DER;
	import com.hurlant.util.der.OID;
	import com.hurlant.util.der.ObjectIdentifier;
	import com.hurlant.util.der.PEM;
	import com.hurlant.util.der.PrintableString;
	import com.hurlant.util.der.Sequence;
	import com.hurlant.util.der.Type;
	
	import flash.utils.ByteArray;
	
	public class X509Certificate {
		private var _loaded:Boolean;
		private var _param:*;
		private var _obj:Object;
		public function X509Certificate(p:*) {
			_loaded = false;
			_param = p;
			// lazy initialization, to avoid unnecessary parsing of every builtin CA at start-up.
		}
		private function load():void {
			if (_loaded) return;
			var p:* = _param;
			var b:ByteArray;
			if (p is String) {
				b = PEM.readCertIntoArray(p as String);
			} else if (p is ByteArray) {
				b = p;
			}
			if (b!=null) {
				_obj = DER.parse(b, Type.TLS_CERT);
				_loaded = true;
			} else {
				throw new Error("Invalid x509 Certificate parameter: "+p);
			}
		}
		public function isSigned(store:X509CertificateCollection, CAs:X509CertificateCollection, time:Date=null):Boolean {
			load();
			// check timestamps first. cheapest.
			if (time==null) {
				time = new Date;
			}
			var notBefore:Date = getNotBefore();
			var notAfter:Date = getNotAfter();
			if (time.getTime()<notBefore.getTime()) return false; // cert isn't born yet.
			if (time.getTime()>notAfter.getTime()) return false;  // cert died of old age.
			// check signature.
			var subject:String = getIssuerPrincipal();
			// try from CA first, since they're treated better.
			var parent:X509Certificate = CAs.getCertificate(subject);
			var parentIsAuthoritative:Boolean = false;
			if (parent == null) {
				parent = store.getCertificate(subject);
				if (parent == null) {
					return false; // issuer not found
				}
			} else {
				parentIsAuthoritative = true;
			}
			if (parent == this) { // pathological case. avoid infinite loop
				return false; // isSigned() returns false if we're self-signed.
			}
			if (!(parentIsAuthoritative&&parent.isSelfSigned(time)) &&
				!parent.isSigned(store, CAs, time)) {
				return false;
			}
			var key:RSAKey = parent.getPublicKey();
			return verifyCertificate(key);
		}
		public function isSelfSigned(time:Date):Boolean {
			load();
			
			var key:RSAKey = getPublicKey();
			return verifyCertificate(key);
		}
		private function verifyCertificate(key:RSAKey):Boolean {
			var algo:String = getAlgorithmIdentifier();
			var hash:IHash;
			var oid:String;
			switch (algo) {
				case OID.SHA1_WITH_RSA_ENCRYPTION:
					hash = new SHA1;
					oid = OID.SHA1_ALGORITHM;
					break;
				case OID.MD2_WITH_RSA_ENCRYPTION:
					hash = new MD2;
					oid = OID.MD2_ALGORITHM;
					break;
				case OID.MD5_WITH_RSA_ENCRYPTION:
					hash = new MD5;
					oid = OID.MD5_ALGORITHM;
					break;
				default:
					return false;
			}
			var data:ByteArray = _obj.signedCertificate_bin;
			var buf:ByteArray = new ByteArray;
			key.verify(_obj.encrypted, buf, _obj.encrypted.length);
			buf.position=0;
			data = hash.hash(data);
			var obj:Object = DER.parse(buf, Type.RSA_SIGNATURE);
			if (obj.algorithm.algorithmId.toString() != oid) {
				return false; // wrong algorithm
			}
			if (!ArrayUtil.equals(obj.hash, data)) {
				return false; // hashes don't match
			}
			return true;
		}
		
		/**
		 * This isn't used anywhere so far.
		 * It would become useful if we started to offer facilities
		 * to generate and sign X509 certificates.
		 * 
		 * @param key
		 * @param algo
		 * @return 
		 * 
		 */
		private function signCertificate(key:RSAKey, algo:String):ByteArray {
			var hash:IHash;
			var oid:String;
			switch (algo) {
				case OID.SHA1_WITH_RSA_ENCRYPTION:
					hash = new SHA1;
					oid = OID.SHA1_ALGORITHM;
					break;
				case OID.MD2_WITH_RSA_ENCRYPTION:
					hash = new MD2;
					oid = OID.MD2_ALGORITHM;
					break;
				case OID.MD5_WITH_RSA_ENCRYPTION:
					hash = new MD5;
					oid = OID.MD5_ALGORITHM;
					break;
				default:
					return null
			}
			var data:ByteArray = _obj.signedCertificate_bin;
			data = hash.hash(data);
			var seq1:Sequence = new Sequence;
			seq1[0] = new Sequence;
			seq1[0][0] = new ObjectIdentifier(0,0, oid);
			seq1[0][1] = null;
			seq1[1] = new ByteString;
			seq1[1].writeBytes(data);
			data = seq1.toDER();
			var buf:ByteArray = new ByteArray;
			key.sign(data, buf, data.length);
			return buf;
		}
		
		public function getPublicKey():RSAKey {
			load();
			var pk:ByteArray = _obj.signedCertificate.subjectPublicKeyInfo.subjectPublicKey as ByteArray;
			pk.position = 0;
			var rsaKey:Object = DER.parse(pk, [{name:"N"},{name:"E"}]);
			return new RSAKey(rsaKey.N, rsaKey.E.valueOf());
		}
		
		/**
		 * Returns a subject principal, as an opaque base64 string.
		 * This is only used as a hash key for known certificates.
		 * 
		 * Note that this assumes X509 DER-encoded certificates are uniquely encoded,
		 * as we look for exact matches between Issuer and Subject fields.
		 * 
		 */
		public function getSubjectPrincipal():String {
			load();
			return Base64.encodeByteArray(_obj.signedCertificate.subject_bin);
		}
		/**
		 * Returns an issuer principal, as an opaque base64 string.
		 * This is only used to quickly find matching parent certificates.
		 * 
		 * Note that this assumes X509 DER-encoded certificates are uniquely encoded,
		 * as we look for exact matches between Issuer and Subject fields.
		 * 
		 */
		public function getIssuerPrincipal():String {
			load();
			return Base64.encodeByteArray(_obj.signedCertificate.issuer_bin);
		}
		public function getAlgorithmIdentifier():String {
			return _obj.algorithmIdentifier.algorithmId.toString();
		}
		public function getNotBefore():Date {
			return _obj.signedCertificate.validity.notBefore.date;
		}
		public function getNotAfter():Date {
			return _obj.signedCertificate.validity.notAfter.date;
		}
		
		public function getCommonName():String {
			var subject:Sequence = _obj.signedCertificate.subject;
			return (subject.findAttributeValue(OID.COMMON_NAME) as PrintableString).getString();
		}
	}
}