diff options
Diffstat (limited to 'plugins/LocalFilesEditor/codemirror/mode/stex/index.html')
-rw-r--r-- | plugins/LocalFilesEditor/codemirror/mode/stex/index.html | 96 |
1 files changed, 96 insertions, 0 deletions
diff --git a/plugins/LocalFilesEditor/codemirror/mode/stex/index.html b/plugins/LocalFilesEditor/codemirror/mode/stex/index.html new file mode 100644 index 000000000..73b07ac13 --- /dev/null +++ b/plugins/LocalFilesEditor/codemirror/mode/stex/index.html @@ -0,0 +1,96 @@ +<!doctype html> +<html> + <head> + <title>CodeMirror 2: sTeX mode</title> + <link rel="stylesheet" href="../../lib/codemirror.css"> + <script src="../../lib/codemirror.js"></script> + <script src="stex.js"></script> + <link rel="stylesheet" href="stex.css"> + <style>.CodeMirror {background: #f8f8f8;}</style> + <link rel="stylesheet" href="../../css/docs.css"> + </head> + <body> + <h1>CodeMirror 2: sTeX mode</h1> + <form><textarea id="code" name="code"> +\begin{module}[id=bbt-size] +\importmodule[balanced-binary-trees]{balanced-binary-trees} +\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality} + +\begin{frame} + \frametitle{Size Lemma for Balanced Trees} + \begin{itemize} + \item + \begin{assertion}[id=size-lemma,type=lemma] + Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} + of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set + $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of + \termref[cd=graphs-intro,name=node]{nodes} at + \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has + \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$. + \end{assertion} + \item + \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.} + \begin{spfcases}{We have to consider two cases} + \begin{spfcase}{$i=0$} + \begin{spfstep}[display=flow] + then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so + $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$. + \end{spfstep} + \end{spfcase} + \begin{spfcase}{$i>0$} + \begin{spfstep}[display=flow] + then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes + \begin{justification}[method=byIH](IH)\end{justification} + \end{spfstep} + \begin{spfstep} + By the \begin{justification}[method=byDef]definition of a binary + tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has + two children that are at depth $i$. + \end{spfstep} + \begin{spfstep} + As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain + leaves. + \end{spfstep} + \begin{spfstep}[type=conclusion] + Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$. + \end{spfstep} + \end{spfcase} + \end{spfcases} + \end{sproof} + \item + \begin{assertion}[id=fbbt,type=corollary] + A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes. + \end{assertion} + \item + \begin{sproof}[for=fbbt,id=fbbt-pf]{} + \begin{spfstep} + Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree + \end{spfstep} + \begin{spfstep} + Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$. + \end{spfstep} + \end{sproof} + \end{itemize} + \end{frame} +\begin{note} + \begin{omtext}[type=conclusion,for=binary-tree] + This shows that balanced binary trees grow in breadth very quickly, a consequence of + this is that they are very shallow (and this compute very fast), which is the essence of + the next result. + \end{omtext} +\end{note} +\end{module} + +%%% Local Variables: +%%% mode: LaTeX +%%% TeX-master: "all" +%%% End: \end{document} +</textarea></form> + <script> + var editor = CodeMirror.fromTextArea(document.getElementById("code"), {}); + </script> + + <p><strong>MIME types defined:</strong> <code>text/stex</code>.</p> + + </body> +</html> |