mariadb/storage/innobase/mtr/mtr0mtr.cc
2017-03-13 18:11:01 +02:00

1154 lines
27 KiB
C++

/*****************************************************************************
Copyright (c) 1995, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file mtr/mtr0mtr.cc
Mini-transaction buffer
Created 11/26/1995 Heikki Tuuri
*******************************************************/
#include "mtr0mtr.h"
#include "buf0buf.h"
#include "buf0flu.h"
#include "fsp0sysspace.h"
#include "page0types.h"
#include "mtr0log.h"
#include "log0log.h"
#include "row0trunc.h"
#include "log0recv.h"
#ifdef UNIV_NONINL
#include "mtr0mtr.ic"
#endif /* UNIV_NONINL */
/** Iterate over a memo block in reverse. */
template <typename Functor>
struct Iterate {
/** Release specific object */
explicit Iterate(Functor& functor)
:
m_functor(functor)
{
/* Do nothing */
}
/** @return false if the functor returns false. */
bool operator()(mtr_buf_t::block_t* block)
{
const mtr_memo_slot_t* start =
reinterpret_cast<const mtr_memo_slot_t*>(
block->begin());
mtr_memo_slot_t* slot =
reinterpret_cast<mtr_memo_slot_t*>(
block->end());
ut_ad(!(block->used() % sizeof(*slot)));
while (slot-- != start) {
if (!m_functor(slot)) {
return(false);
}
}
return(true);
}
Functor& m_functor;
};
/** Find specific object */
struct Find {
/** Constructor */
Find(const void* object, ulint type)
:
m_slot(),
m_type(type),
m_object(object)
{
ut_a(object != NULL);
}
/** @return false if the object was found. */
bool operator()(mtr_memo_slot_t* slot)
{
if (m_object == slot->object && m_type == slot->type) {
m_slot = slot;
return(false);
}
return(true);
}
/** Slot if found */
mtr_memo_slot_t*m_slot;
/** Type of the object to look for */
ulint m_type;
/** The object instance to look for */
const void* m_object;
};
/** Find a page frame */
struct FindPage
{
/** Constructor
@param[in] ptr pointer to within a page frame
@param[in] flags MTR_MEMO flags to look for */
FindPage(const void* ptr, ulint flags)
: m_ptr(ptr), m_flags(flags), m_slot(NULL)
{
/* There must be some flags to look for. */
ut_ad(flags);
/* We can only look for page-related flags. */
ut_ad(!(flags & ulint(~(MTR_MEMO_PAGE_S_FIX
| MTR_MEMO_PAGE_X_FIX
| MTR_MEMO_PAGE_SX_FIX
| MTR_MEMO_BUF_FIX
| MTR_MEMO_MODIFY))));
}
/** Visit a memo entry.
@param[in] slot memo entry to visit
@retval false if a page was found
@retval true if the iteration should continue */
bool operator()(mtr_memo_slot_t* slot)
{
ut_ad(m_slot == NULL);
if (!(m_flags & slot->type) || slot->object == NULL) {
return(true);
}
buf_block_t* block = reinterpret_cast<buf_block_t*>(
slot->object);
if (m_ptr < block->frame
|| m_ptr >= block->frame + block->page.size.logical()) {
return(true);
}
ut_ad(!(m_flags & (MTR_MEMO_PAGE_S_FIX
| MTR_MEMO_PAGE_SX_FIX
| MTR_MEMO_PAGE_X_FIX))
|| rw_lock_own_flagged(&block->lock, m_flags));
m_slot = slot;
return(false);
}
/** @return the slot that was found */
mtr_memo_slot_t* get_slot() const
{
ut_ad(m_slot != NULL);
return(m_slot);
}
/** @return the block that was found */
buf_block_t* get_block() const
{
return(reinterpret_cast<buf_block_t*>(get_slot()->object));
}
private:
/** Pointer inside a page frame to look for */
const void*const m_ptr;
/** MTR_MEMO flags to look for */
const ulint m_flags;
/** The slot corresponding to m_ptr */
mtr_memo_slot_t* m_slot;
};
/** Release latches and decrement the buffer fix count.
@param slot memo slot */
static
void
memo_slot_release(mtr_memo_slot_t* slot)
{
switch (slot->type) {
case MTR_MEMO_BUF_FIX:
case MTR_MEMO_PAGE_S_FIX:
case MTR_MEMO_PAGE_SX_FIX:
case MTR_MEMO_PAGE_X_FIX: {
buf_block_t* block;
block = reinterpret_cast<buf_block_t*>(slot->object);
buf_block_unfix(block);
buf_page_release_latch(block, slot->type);
break;
}
case MTR_MEMO_S_LOCK:
rw_lock_s_unlock(reinterpret_cast<rw_lock_t*>(slot->object));
break;
case MTR_MEMO_SX_LOCK:
rw_lock_sx_unlock(reinterpret_cast<rw_lock_t*>(slot->object));
break;
case MTR_MEMO_X_LOCK:
rw_lock_x_unlock(reinterpret_cast<rw_lock_t*>(slot->object));
break;
#ifdef UNIV_DEBUG
default:
ut_ad(slot->type == MTR_MEMO_MODIFY);
#endif /* UNIV_DEBUG */
}
slot->object = NULL;
}
/** Unfix a page, do not release the latches on the page.
@param slot memo slot */
static
void
memo_block_unfix(mtr_memo_slot_t* slot)
{
switch (slot->type) {
case MTR_MEMO_BUF_FIX:
case MTR_MEMO_PAGE_S_FIX:
case MTR_MEMO_PAGE_X_FIX:
case MTR_MEMO_PAGE_SX_FIX: {
buf_block_unfix(reinterpret_cast<buf_block_t*>(slot->object));
break;
}
case MTR_MEMO_S_LOCK:
case MTR_MEMO_X_LOCK:
case MTR_MEMO_SX_LOCK:
break;
#ifdef UNIV_DEBUG
default:
#endif /* UNIV_DEBUG */
break;
}
}
/** Release latches represented by a slot.
@param slot memo slot */
static
void
memo_latch_release(mtr_memo_slot_t* slot)
{
switch (slot->type) {
case MTR_MEMO_BUF_FIX:
case MTR_MEMO_PAGE_S_FIX:
case MTR_MEMO_PAGE_SX_FIX:
case MTR_MEMO_PAGE_X_FIX: {
buf_block_t* block;
block = reinterpret_cast<buf_block_t*>(slot->object);
memo_block_unfix(slot);
buf_page_release_latch(block, slot->type);
slot->object = NULL;
break;
}
case MTR_MEMO_S_LOCK:
rw_lock_s_unlock(reinterpret_cast<rw_lock_t*>(slot->object));
slot->object = NULL;
break;
case MTR_MEMO_X_LOCK:
rw_lock_x_unlock(reinterpret_cast<rw_lock_t*>(slot->object));
slot->object = NULL;
break;
case MTR_MEMO_SX_LOCK:
rw_lock_sx_unlock(reinterpret_cast<rw_lock_t*>(slot->object));
slot->object = NULL;
break;
#ifdef UNIV_DEBUG
default:
ut_ad(slot->type == MTR_MEMO_MODIFY);
slot->object = NULL;
#endif /* UNIV_DEBUG */
}
}
/** Release the latches acquired by the mini-transaction. */
struct ReleaseLatches {
/** @return true always. */
bool operator()(mtr_memo_slot_t* slot) const
{
if (slot->object != NULL) {
memo_latch_release(slot);
}
return(true);
}
};
/** Release the latches and blocks acquired by the mini-transaction. */
struct ReleaseAll {
/** @return true always. */
bool operator()(mtr_memo_slot_t* slot) const
{
if (slot->object != NULL) {
memo_slot_release(slot);
}
return(true);
}
};
/** Check that all slots have been handled. */
struct DebugCheck {
/** @return true always. */
bool operator()(const mtr_memo_slot_t* slot) const
{
ut_a(slot->object == NULL);
return(true);
}
};
/** Release a resource acquired by the mini-transaction. */
struct ReleaseBlocks {
/** Release specific object */
ReleaseBlocks(lsn_t start_lsn, lsn_t end_lsn, FlushObserver* observer)
:
m_end_lsn(end_lsn),
m_start_lsn(start_lsn),
m_flush_observer(observer)
{
/* Do nothing */
}
/** Add the modified page to the buffer flush list. */
void add_dirty_page_to_flush_list(mtr_memo_slot_t* slot) const
{
ut_ad(m_end_lsn > 0);
ut_ad(m_start_lsn > 0);
buf_block_t* block;
block = reinterpret_cast<buf_block_t*>(slot->object);
buf_flush_note_modification(block, m_start_lsn,
m_end_lsn, m_flush_observer);
}
/** @return true always. */
bool operator()(mtr_memo_slot_t* slot) const
{
if (slot->object != NULL) {
if (slot->type == MTR_MEMO_PAGE_X_FIX
|| slot->type == MTR_MEMO_PAGE_SX_FIX) {
add_dirty_page_to_flush_list(slot);
}
}
return(true);
}
/** Mini-transaction REDO start LSN */
lsn_t m_end_lsn;
/** Mini-transaction REDO end LSN */
lsn_t m_start_lsn;
/** Flush observer */
FlushObserver* m_flush_observer;
};
class mtr_t::Command {
public:
/** Constructor.
Takes ownership of the mtr->m_impl, is responsible for deleting it.
@param[in,out] mtr mini-transaction */
explicit Command(mtr_t* mtr)
:
m_locks_released()
{
init(mtr);
}
void init(mtr_t* mtr)
{
m_impl = &mtr->m_impl;
m_sync = mtr->m_sync;
}
/** Destructor */
~Command()
{
ut_ad(m_impl == 0);
}
/** Write the redo log record, add dirty pages to the flush list and
release the resources. */
void execute();
/** Release the blocks used in this mini-transaction. */
void release_blocks();
/** Release the latches acquired by the mini-transaction. */
void release_latches();
/** Release both the latches and blocks used in the mini-transaction. */
void release_all();
/** Release the resources */
void release_resources();
/** Append the redo log records to the redo log buffer.
@param[in] len number of bytes to write */
void finish_write(ulint len);
private:
/** Prepare to write the mini-transaction log to the redo log buffer.
@return number of bytes to write in finish_write() */
ulint prepare_write();
/** true if it is a sync mini-transaction. */
bool m_sync;
/** The mini-transaction state. */
mtr_t::Impl* m_impl;
/** Set to 1 after the user thread releases the latches. The log
writer thread must wait for this to be set to 1. */
volatile ulint m_locks_released;
/** Start lsn of the possible log entry for this mtr */
lsn_t m_start_lsn;
/** End lsn of the possible log entry for this mtr */
lsn_t m_end_lsn;
};
/** Check if a mini-transaction is dirtying a clean page.
@return true if the mtr is dirtying a clean page. */
bool
mtr_t::is_block_dirtied(const buf_block_t* block)
{
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(block->page.buf_fix_count > 0);
/* It is OK to read oldest_modification because no
other thread can be performing a write of it and it
is only during write that the value is reset to 0. */
return(block->page.oldest_modification == 0);
}
/** Write the block contents to the REDO log */
struct mtr_write_log_t {
/** Append a block to the redo log buffer.
@return whether the appending should continue */
bool operator()(const mtr_buf_t::block_t* block) const
{
log_write_low(block->begin(), block->used());
return(true);
}
};
/** Append records to the system-wide redo log buffer.
@param[in] log redo log records */
void
mtr_write_log(
const mtr_buf_t* log)
{
const ulint len = log->size();
mtr_write_log_t write_log;
DBUG_PRINT("ib_log",
(ULINTPF " extra bytes written at " LSN_PF,
len, log_sys->lsn));
log_reserve_and_open(len);
log->for_each_block(write_log);
log_close();
}
/** Start a mini-transaction.
@param sync true if it is a synchronous mini-transaction
@param read_only true if read only mini-transaction */
void
mtr_t::start(trx_t* trx, bool sync, bool read_only)
{
UNIV_MEM_INVALID(this, sizeof(*this));
UNIV_MEM_INVALID(&m_impl, sizeof(m_impl));
m_sync = sync;
m_commit_lsn = 0;
new(&m_impl.m_log) mtr_buf_t();
new(&m_impl.m_memo) mtr_buf_t();
m_impl.m_mtr = this;
m_impl.m_log_mode = MTR_LOG_ALL;
m_impl.m_inside_ibuf = false;
m_impl.m_modifications = false;
m_impl.m_made_dirty = false;
m_impl.m_n_log_recs = 0;
m_impl.m_state = MTR_STATE_ACTIVE;
ut_d(m_impl.m_user_space_id = TRX_SYS_SPACE);
m_impl.m_user_space = NULL;
m_impl.m_undo_space = NULL;
m_impl.m_sys_space = NULL;
m_impl.m_flush_observer = NULL;
m_impl.m_trx = trx;
ut_d(m_impl.m_magic_n = MTR_MAGIC_N);
}
/** Release the resources */
void
mtr_t::Command::release_resources()
{
ut_ad(m_impl->m_magic_n == MTR_MAGIC_N);
/* Currently only used in commit */
ut_ad(m_impl->m_state == MTR_STATE_COMMITTING);
#ifdef UNIV_DEBUG
DebugCheck release;
Iterate<DebugCheck> iterator(release);
m_impl->m_memo.for_each_block_in_reverse(iterator);
#endif /* UNIV_DEBUG */
/* Reset the mtr buffers */
m_impl->m_log.erase();
m_impl->m_memo.erase();
m_impl->m_state = MTR_STATE_COMMITTED;
m_impl = 0;
}
/** Commit a mini-transaction. */
void
mtr_t::commit()
{
ut_ad(is_active());
ut_ad(!is_inside_ibuf());
ut_ad(m_impl.m_magic_n == MTR_MAGIC_N);
m_impl.m_state = MTR_STATE_COMMITTING;
/* This is a dirty read, for debugging. */
ut_ad(!recv_no_log_write);
Command cmd(this);
if (m_impl.m_modifications
&& (m_impl.m_n_log_recs > 0
|| m_impl.m_log_mode == MTR_LOG_NO_REDO)) {
ut_ad(!srv_read_only_mode
|| m_impl.m_log_mode == MTR_LOG_NO_REDO);
cmd.execute();
} else {
cmd.release_all();
cmd.release_resources();
}
}
/** Commit a mini-transaction that did not modify any pages,
but generated some redo log on a higher level, such as
MLOG_FILE_NAME records and a MLOG_CHECKPOINT marker.
The caller must invoke log_mutex_enter() and log_mutex_exit().
This is to be used at log_checkpoint().
@param[in] checkpoint_lsn the LSN of the log checkpoint */
void
mtr_t::commit_checkpoint(lsn_t checkpoint_lsn)
{
ut_ad(log_mutex_own());
ut_ad(is_active());
ut_ad(!is_inside_ibuf());
ut_ad(m_impl.m_magic_n == MTR_MAGIC_N);
ut_ad(get_log_mode() == MTR_LOG_ALL);
ut_ad(!m_impl.m_made_dirty);
ut_ad(m_impl.m_memo.size() == 0);
ut_ad(!srv_read_only_mode);
ut_d(m_impl.m_state = MTR_STATE_COMMITTING);
/* This is a dirty read, for debugging. */
ut_ad(!recv_no_log_write);
switch (m_impl.m_n_log_recs) {
case 0:
break;
case 1:
*m_impl.m_log.front()->begin() |= MLOG_SINGLE_REC_FLAG;
break;
default:
mlog_catenate_ulint(
&m_impl.m_log, MLOG_MULTI_REC_END, MLOG_1BYTE);
}
byte* ptr = m_impl.m_log.push<byte*>(SIZE_OF_MLOG_CHECKPOINT);
#if SIZE_OF_MLOG_CHECKPOINT != 9
# error SIZE_OF_MLOG_CHECKPOINT != 9
#endif
*ptr = MLOG_CHECKPOINT;
mach_write_to_8(ptr + 1, checkpoint_lsn);
Command cmd(this);
cmd.finish_write(m_impl.m_log.size());
cmd.release_resources();
DBUG_PRINT("ib_log",
("MLOG_CHECKPOINT(" LSN_PF ") written at " LSN_PF,
checkpoint_lsn, log_sys->lsn));
}
#ifdef UNIV_DEBUG
/** Check if a tablespace is associated with the mini-transaction
(needed for generating a MLOG_FILE_NAME record)
@param[in] space tablespace
@return whether the mini-transaction is associated with the space */
bool
mtr_t::is_named_space(ulint space) const
{
ut_ad(!m_impl.m_sys_space
|| m_impl.m_sys_space->id == TRX_SYS_SPACE);
ut_ad(!m_impl.m_undo_space
|| m_impl.m_undo_space->id != TRX_SYS_SPACE);
ut_ad(!m_impl.m_user_space
|| m_impl.m_user_space->id != TRX_SYS_SPACE);
ut_ad(!m_impl.m_sys_space
|| m_impl.m_sys_space != m_impl.m_user_space);
ut_ad(!m_impl.m_sys_space
|| m_impl.m_sys_space != m_impl.m_undo_space);
ut_ad(!m_impl.m_user_space
|| m_impl.m_user_space != m_impl.m_undo_space);
switch (get_log_mode()) {
case MTR_LOG_NONE:
case MTR_LOG_NO_REDO:
return(true);
case MTR_LOG_ALL:
case MTR_LOG_SHORT_INSERTS:
return(m_impl.m_user_space_id == space
|| is_predefined_tablespace(space));
}
ut_error;
return(false);
}
#endif /* UNIV_DEBUG */
/** Acquire a tablespace X-latch.
NOTE: use mtr_x_lock_space().
@param[in] space_id tablespace ID
@param[in] file file name from where called
@param[in] line line number in file
@return the tablespace object (never NULL) */
fil_space_t*
mtr_t::x_lock_space(ulint space_id, const char* file, unsigned line)
{
fil_space_t* space;
ut_ad(m_impl.m_magic_n == MTR_MAGIC_N);
ut_ad(is_active());
if (space_id == TRX_SYS_SPACE) {
space = m_impl.m_sys_space;
if (!space) {
space = m_impl.m_sys_space = fil_space_get(space_id);
}
} else if ((space = m_impl.m_user_space) && space_id == space->id) {
} else if ((space = m_impl.m_undo_space) && space_id == space->id) {
} else if (get_log_mode() == MTR_LOG_NO_REDO) {
space = fil_space_get(space_id);
ut_ad(space->purpose == FIL_TYPE_TEMPORARY
|| space->purpose == FIL_TYPE_IMPORT
|| space->redo_skipped_count > 0
|| srv_is_tablespace_truncated(space->id));
} else {
/* called from trx_rseg_create() */
space = m_impl.m_undo_space = fil_space_get(space_id);
}
ut_ad(space);
ut_ad(space->id == space_id);
x_lock(&space->latch, file, line);
ut_ad(space->purpose == FIL_TYPE_TEMPORARY
|| space->purpose == FIL_TYPE_IMPORT
|| space->purpose == FIL_TYPE_TABLESPACE);
return(space);
}
/** Look up the system tablespace. */
void
mtr_t::lookup_sys_space()
{
ut_ad(!m_impl.m_sys_space);
m_impl.m_sys_space = fil_space_get(TRX_SYS_SPACE);
ut_ad(m_impl.m_sys_space);
}
/** Look up the user tablespace.
@param[in] space_id tablespace ID */
void
mtr_t::lookup_user_space(ulint space_id)
{
ut_ad(space_id != TRX_SYS_SPACE);
ut_ad(m_impl.m_user_space_id == space_id);
ut_ad(!m_impl.m_user_space);
m_impl.m_user_space = fil_space_get(space_id);
ut_ad(m_impl.m_user_space);
}
/** Set the tablespace associated with the mini-transaction
(needed for generating a MLOG_FILE_NAME record)
@param[in] space user or system tablespace */
void
mtr_t::set_named_space(fil_space_t* space)
{
ut_ad(m_impl.m_user_space_id == TRX_SYS_SPACE);
ut_d(m_impl.m_user_space_id = space->id);
if (space->id == TRX_SYS_SPACE) {
ut_ad(m_impl.m_sys_space == NULL
|| m_impl.m_sys_space == space);
m_impl.m_sys_space = space;
} else {
m_impl.m_user_space = space;
}
}
/** Release an object in the memo stack.
@return true if released */
bool
mtr_t::memo_release(const void* object, ulint type)
{
ut_ad(m_impl.m_magic_n == MTR_MAGIC_N);
ut_ad(is_active());
/* We cannot release a page that has been written to in the
middle of a mini-transaction. */
ut_ad(!m_impl.m_modifications || type != MTR_MEMO_PAGE_X_FIX);
Find find(object, type);
Iterate<Find> iterator(find);
if (!m_impl.m_memo.for_each_block_in_reverse(iterator)) {
memo_slot_release(find.m_slot);
return(true);
}
return(false);
}
/** Release a page latch.
@param[in] ptr pointer to within a page frame
@param[in] type object type: MTR_MEMO_PAGE_X_FIX, ... */
void
mtr_t::release_page(const void* ptr, mtr_memo_type_t type)
{
ut_ad(m_impl.m_magic_n == MTR_MAGIC_N);
ut_ad(is_active());
/* We cannot release a page that has been written to in the
middle of a mini-transaction. */
ut_ad(!m_impl.m_modifications || type != MTR_MEMO_PAGE_X_FIX);
FindPage find(ptr, type);
Iterate<FindPage> iterator(find);
if (!m_impl.m_memo.for_each_block_in_reverse(iterator)) {
memo_slot_release(find.get_slot());
return;
}
/* The page was not found! */
ut_ad(0);
}
/** Prepare to write the mini-transaction log to the redo log buffer.
@return number of bytes to write in finish_write() */
ulint
mtr_t::Command::prepare_write()
{
switch (m_impl->m_log_mode) {
case MTR_LOG_SHORT_INSERTS:
ut_ad(0);
/* fall through (write no redo log) */
case MTR_LOG_NO_REDO:
case MTR_LOG_NONE:
ut_ad(m_impl->m_log.size() == 0);
log_mutex_enter();
m_end_lsn = m_start_lsn = log_sys->lsn;
return(0);
case MTR_LOG_ALL:
break;
}
ulint len = m_impl->m_log.size();
ulint n_recs = m_impl->m_n_log_recs;
ut_ad(len > 0);
ut_ad(n_recs > 0);
if (len > log_sys->buf_size / 2) {
log_buffer_extend((len + 1) * 2);
}
ut_ad(m_impl->m_n_log_recs == n_recs);
fil_space_t* space = m_impl->m_user_space;
if (space != NULL && space->id <= srv_undo_tablespaces_open) {
/* Omit MLOG_FILE_NAME for predefined tablespaces. */
space = NULL;
}
log_mutex_enter();
if (fil_names_write_if_was_clean(space, m_impl->m_mtr)) {
/* This mini-transaction was the first one to modify
this tablespace since the latest checkpoint, so
some MLOG_FILE_NAME records were appended to m_log. */
ut_ad(m_impl->m_n_log_recs > n_recs);
mlog_catenate_ulint(
&m_impl->m_log, MLOG_MULTI_REC_END, MLOG_1BYTE);
len = m_impl->m_log.size();
} else {
/* This was not the first time of dirtying a
tablespace since the latest checkpoint. */
ut_ad(n_recs == m_impl->m_n_log_recs);
if (n_recs <= 1) {
ut_ad(n_recs == 1);
/* Flag the single log record as the
only record in this mini-transaction. */
*m_impl->m_log.front()->begin()
|= MLOG_SINGLE_REC_FLAG;
} else {
/* Because this mini-transaction comprises
multiple log records, append MLOG_MULTI_REC_END
at the end. */
mlog_catenate_ulint(
&m_impl->m_log, MLOG_MULTI_REC_END,
MLOG_1BYTE);
len++;
}
}
/* check and attempt a checkpoint if exceeding capacity */
log_margin_checkpoint_age(len);
return(len);
}
/** Append the redo log records to the redo log buffer
@param[in] len number of bytes to write */
void
mtr_t::Command::finish_write(
ulint len)
{
ut_ad(m_impl->m_log_mode == MTR_LOG_ALL);
ut_ad(log_mutex_own());
ut_ad(m_impl->m_log.size() == len);
ut_ad(len > 0);
if (m_impl->m_log.is_small()) {
const mtr_buf_t::block_t* front = m_impl->m_log.front();
ut_ad(len <= front->used());
m_end_lsn = log_reserve_and_write_fast(
front->begin(), len, &m_start_lsn);
if (m_end_lsn > 0) {
return;
}
}
/* Open the database log for log_write_low */
m_start_lsn = log_reserve_and_open(len);
mtr_write_log_t write_log;
m_impl->m_log.for_each_block(write_log);
m_end_lsn = log_close();
}
/** Release the latches and blocks acquired by this mini-transaction */
void
mtr_t::Command::release_all()
{
ReleaseAll release;
Iterate<ReleaseAll> iterator(release);
m_impl->m_memo.for_each_block_in_reverse(iterator);
/* Note that we have released the latches. */
m_locks_released = 1;
}
/** Release the latches acquired by this mini-transaction */
void
mtr_t::Command::release_latches()
{
ReleaseLatches release;
Iterate<ReleaseLatches> iterator(release);
m_impl->m_memo.for_each_block_in_reverse(iterator);
/* Note that we have released the latches. */
m_locks_released = 1;
}
/** Release the blocks used in this mini-transaction */
void
mtr_t::Command::release_blocks()
{
ReleaseBlocks release(m_start_lsn, m_end_lsn, m_impl->m_flush_observer);
Iterate<ReleaseBlocks> iterator(release);
m_impl->m_memo.for_each_block_in_reverse(iterator);
}
/** Write the redo log record, add dirty pages to the flush list and release
the resources. */
void
mtr_t::Command::execute()
{
ut_ad(m_impl->m_log_mode != MTR_LOG_NONE);
if (const ulint len = prepare_write()) {
finish_write(len);
}
if (m_impl->m_made_dirty) {
log_flush_order_mutex_enter();
}
/* It is now safe to release the log mutex because the
flush_order mutex will ensure that we are the first one
to insert into the flush list. */
log_mutex_exit();
m_impl->m_mtr->m_commit_lsn = m_end_lsn;
release_blocks();
if (m_impl->m_made_dirty) {
log_flush_order_mutex_exit();
}
release_latches();
release_resources();
}
/** Release the free extents that was reserved using
fsp_reserve_free_extents(). This is equivalent to calling
fil_space_release_free_extents(). This is intended for use
with index pages.
@param[in] n_reserved number of reserved extents */
void
mtr_t::release_free_extents(ulint n_reserved)
{
fil_space_t* space;
ut_ad(m_impl.m_undo_space == NULL);
if (m_impl.m_user_space != NULL) {
ut_ad(m_impl.m_user_space->id
== m_impl.m_user_space_id);
ut_ad(memo_contains(get_memo(), &m_impl.m_user_space->latch,
MTR_MEMO_X_LOCK));
space = m_impl.m_user_space;
} else {
ut_ad(m_impl.m_sys_space->id == TRX_SYS_SPACE);
ut_ad(memo_contains(get_memo(), &m_impl.m_sys_space->latch,
MTR_MEMO_X_LOCK));
space = m_impl.m_sys_space;
}
space->release_free_extents(n_reserved);
}
#ifdef UNIV_DEBUG
/** Check if memo contains the given item.
@return true if contains */
bool
mtr_t::memo_contains(
const mtr_buf_t* memo,
const void* object,
ulint type)
{
Find find(object, type);
Iterate<Find> iterator(find);
if (memo->for_each_block_in_reverse(iterator)) {
return(false);
}
switch (type) {
case MTR_MEMO_X_LOCK:
ut_ad(rw_lock_own((rw_lock_t*) object, RW_LOCK_X));
break;
case MTR_MEMO_SX_LOCK:
ut_ad(rw_lock_own((rw_lock_t*) object, RW_LOCK_SX));
break;
case MTR_MEMO_S_LOCK:
ut_ad(rw_lock_own((rw_lock_t*) object, RW_LOCK_S));
break;
}
return(true);
}
/** Debug check for flags */
struct FlaggedCheck {
FlaggedCheck(const void* ptr, ulint flags)
:
m_ptr(ptr),
m_flags(flags)
{
/* There must be some flags to look for. */
ut_ad(flags);
/* Look for rw-lock-related and page-related flags. */
ut_ad(!(flags & ulint(~(MTR_MEMO_PAGE_S_FIX
| MTR_MEMO_PAGE_X_FIX
| MTR_MEMO_PAGE_SX_FIX
| MTR_MEMO_BUF_FIX
| MTR_MEMO_MODIFY
| MTR_MEMO_X_LOCK
| MTR_MEMO_SX_LOCK
| MTR_MEMO_S_LOCK))));
/* Either some rw-lock-related or page-related flags
must be specified, but not both at the same time. */
ut_ad(!(flags & (MTR_MEMO_PAGE_S_FIX
| MTR_MEMO_PAGE_X_FIX
| MTR_MEMO_PAGE_SX_FIX
| MTR_MEMO_BUF_FIX
| MTR_MEMO_MODIFY))
== !!(flags & (MTR_MEMO_X_LOCK
| MTR_MEMO_SX_LOCK
| MTR_MEMO_S_LOCK)));
}
/** Visit a memo entry.
@param[in] slot memo entry to visit
@retval false if m_ptr was found
@retval true if the iteration should continue */
bool operator()(const mtr_memo_slot_t* slot) const
{
if (m_ptr != slot->object || !(m_flags & slot->type)) {
return(true);
}
if (ulint flags = m_flags & (MTR_MEMO_PAGE_S_FIX
| MTR_MEMO_PAGE_SX_FIX
| MTR_MEMO_PAGE_X_FIX)) {
rw_lock_t* lock = &static_cast<buf_block_t*>(
const_cast<void*>(m_ptr))->lock;
ut_ad(rw_lock_own_flagged(lock, flags));
} else {
rw_lock_t* lock = static_cast<rw_lock_t*>(
const_cast<void*>(m_ptr));
ut_ad(rw_lock_own_flagged(lock, m_flags >> 5));
}
return(false);
}
const void*const m_ptr;
const ulint m_flags;
};
/** Check if memo contains the given item.
@param object object to search
@param flags specify types of object (can be ORred) of
MTR_MEMO_PAGE_S_FIX ... values
@return true if contains */
bool
mtr_t::memo_contains_flagged(const void* ptr, ulint flags) const
{
ut_ad(m_impl.m_magic_n == MTR_MAGIC_N);
ut_ad(is_committing() || is_active());
FlaggedCheck check(ptr, flags);
Iterate<FlaggedCheck> iterator(check);
return(!m_impl.m_memo.for_each_block_in_reverse(iterator));
}
/** Check if memo contains the given page.
@param[in] ptr pointer to within buffer frame
@param[in] flags specify types of object with OR of
MTR_MEMO_PAGE_S_FIX... values
@return the block
@retval NULL if not found */
buf_block_t*
mtr_t::memo_contains_page_flagged(
const byte* ptr,
ulint flags) const
{
FindPage check(ptr, flags);
Iterate<FindPage> iterator(check);
return(m_impl.m_memo.for_each_block_in_reverse(iterator)
? NULL : check.get_block());
}
/** Mark the given latched page as modified.
@param[in] ptr pointer to within buffer frame */
void
mtr_t::memo_modify_page(const byte* ptr)
{
buf_block_t* block = memo_contains_page_flagged(
ptr, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_SX_FIX);
ut_ad(block != NULL);
if (!memo_contains(get_memo(), block, MTR_MEMO_MODIFY)) {
memo_push(block, MTR_MEMO_MODIFY);
}
}
/** Print info of an mtr handle. */
void
mtr_t::print() const
{
ib::info() << "Mini-transaction handle: memo size "
<< m_impl.m_memo.size() << " bytes log size "
<< get_log()->size() << " bytes";
}
#endif /* UNIV_DEBUG */