mirror of
https://github.com/MariaDB/server.git
synced 2025-01-23 23:34:34 +01:00
259 lines
5.5 KiB
C++
259 lines
5.5 KiB
C++
#ifndef SQL_ARRAY_INCLUDED
|
|
#define SQL_ARRAY_INCLUDED
|
|
|
|
/* Copyright (c) 2003, 2005-2007 MySQL AB, 2009 Sun Microsystems, Inc.
|
|
Use is subject to license terms.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
#include <my_sys.h>
|
|
|
|
/**
|
|
A wrapper class which provides array bounds checking.
|
|
We do *not* own the array, we simply have a pointer to the first element,
|
|
and a length.
|
|
|
|
@remark
|
|
We want the compiler-generated versions of:
|
|
- the copy CTOR (memberwise initialization)
|
|
- the assignment operator (memberwise assignment)
|
|
|
|
@param Element_type The type of the elements of the container.
|
|
*/
|
|
template <typename Element_type> class Bounds_checked_array
|
|
{
|
|
public:
|
|
Bounds_checked_array() : m_array(NULL), m_size(0) {}
|
|
|
|
Bounds_checked_array(Element_type *el, size_t size)
|
|
: m_array(el), m_size(size)
|
|
{}
|
|
|
|
void reset() { m_array= NULL; m_size= 0; }
|
|
|
|
void reset(Element_type *array, size_t size)
|
|
{
|
|
m_array= array;
|
|
m_size= size;
|
|
}
|
|
|
|
/**
|
|
Set a new bound on the array. Does not resize the underlying
|
|
array, so the new size must be smaller than or equal to the
|
|
current size.
|
|
*/
|
|
void resize(size_t new_size)
|
|
{
|
|
DBUG_ASSERT(new_size <= m_size);
|
|
m_size= new_size;
|
|
}
|
|
|
|
Element_type &operator[](size_t n)
|
|
{
|
|
DBUG_ASSERT(n < m_size);
|
|
return m_array[n];
|
|
}
|
|
|
|
const Element_type &operator[](size_t n) const
|
|
{
|
|
DBUG_ASSERT(n < m_size);
|
|
return m_array[n];
|
|
}
|
|
|
|
size_t element_size() const { return sizeof(Element_type); }
|
|
size_t size() const { return m_size; }
|
|
|
|
bool is_null() const { return m_array == NULL; }
|
|
|
|
void pop_front()
|
|
{
|
|
DBUG_ASSERT(m_size > 0);
|
|
m_array+= 1;
|
|
m_size-= 1;
|
|
}
|
|
|
|
Element_type *array() const { return m_array; }
|
|
|
|
private:
|
|
Element_type *m_array;
|
|
size_t m_size;
|
|
};
|
|
|
|
/*
|
|
A typesafe wrapper around DYNAMIC_ARRAY
|
|
*/
|
|
|
|
template <class Elem> class Dynamic_array
|
|
{
|
|
DYNAMIC_ARRAY array;
|
|
public:
|
|
Dynamic_array(uint prealloc=16, uint increment=16)
|
|
{
|
|
my_init_dynamic_array(&array, sizeof(Elem), prealloc, increment,
|
|
MYF(MY_THREAD_SPECIFIC));
|
|
}
|
|
|
|
Elem& at(size_t idx)
|
|
{
|
|
DBUG_ASSERT(idx < array.elements);
|
|
return *(((Elem*)array.buffer) + idx);
|
|
}
|
|
|
|
Elem *front()
|
|
{
|
|
return (Elem*)array.buffer;
|
|
}
|
|
|
|
Elem *back()
|
|
{
|
|
return ((Elem*)array.buffer) + array.elements;
|
|
}
|
|
|
|
bool append(Elem &el)
|
|
{
|
|
return (insert_dynamic(&array, (uchar*)&el));
|
|
}
|
|
|
|
bool append_val(Elem el)
|
|
{
|
|
return (insert_dynamic(&array, (uchar*)&el));
|
|
}
|
|
|
|
bool push(Elem &el)
|
|
{
|
|
return append(el);
|
|
}
|
|
|
|
Elem *pop()
|
|
{
|
|
return (Elem*)pop_dynamic(&array);
|
|
}
|
|
|
|
size_t elements()
|
|
{
|
|
return array.elements;
|
|
}
|
|
|
|
void set_elements(size_t n)
|
|
{
|
|
array.elements= n;
|
|
}
|
|
|
|
bool resize(size_t new_size, Elem default_val)
|
|
{
|
|
size_t old_size= elements();
|
|
if (allocate_dynamic(&array, new_size))
|
|
return true;
|
|
|
|
if (new_size > old_size)
|
|
{
|
|
set_dynamic(&array, (uchar*)&default_val, new_size - 1);
|
|
/*for (size_t i= old_size; i != new_size; i++)
|
|
{
|
|
at(i)= default_val;
|
|
}*/
|
|
}
|
|
return false;
|
|
}
|
|
|
|
~Dynamic_array()
|
|
{
|
|
delete_dynamic(&array);
|
|
}
|
|
|
|
typedef int (*CMP_FUNC)(const Elem *el1, const Elem *el2);
|
|
|
|
void sort(CMP_FUNC cmp_func)
|
|
{
|
|
my_qsort(array.buffer, array.elements, sizeof(Elem), (qsort_cmp)cmp_func);
|
|
}
|
|
|
|
typedef int (*CMP_FUNC2)(const Elem *el1, const Elem *el2, void *);
|
|
void sort(CMP_FUNC2 cmp_func, void *data)
|
|
{
|
|
my_qsort2(array.buffer, array.elements, sizeof(Elem), (qsort2_cmp)cmp_func, data);
|
|
}
|
|
};
|
|
|
|
/*
|
|
Array of pointers to Elem that uses memory from MEM_ROOT
|
|
|
|
MEM_ROOT has no realloc() so this is supposed to be used for cases when
|
|
reallocations are rare.
|
|
*/
|
|
|
|
template <class Elem> class Array
|
|
{
|
|
enum {alloc_increment = 16};
|
|
Elem **buffer;
|
|
uint n_elements, max_element;
|
|
public:
|
|
Array(MEM_ROOT *mem_root, uint prealloc=16)
|
|
{
|
|
buffer= (Elem**)alloc_root(mem_root, prealloc * sizeof(Elem**));
|
|
max_element = buffer? prealloc : 0;
|
|
n_elements= 0;
|
|
}
|
|
|
|
Elem& at(int idx)
|
|
{
|
|
return *(((Elem*)buffer) + idx);
|
|
}
|
|
|
|
Elem **front()
|
|
{
|
|
return buffer;
|
|
}
|
|
|
|
Elem **back()
|
|
{
|
|
return buffer + n_elements;
|
|
}
|
|
|
|
bool append(MEM_ROOT *mem_root, Elem *el)
|
|
{
|
|
if (n_elements == max_element)
|
|
{
|
|
Elem **newbuf;
|
|
if (!(newbuf= (Elem**)alloc_root(mem_root, (n_elements + alloc_increment)*
|
|
sizeof(Elem**))))
|
|
{
|
|
return FALSE;
|
|
}
|
|
memcpy(newbuf, buffer, n_elements*sizeof(Elem*));
|
|
buffer= newbuf;
|
|
}
|
|
buffer[n_elements++]= el;
|
|
return FALSE;
|
|
}
|
|
|
|
int elements()
|
|
{
|
|
return n_elements;
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
n_elements= 0;
|
|
}
|
|
|
|
typedef int (*CMP_FUNC)(Elem * const *el1, Elem *const *el2);
|
|
|
|
void sort(CMP_FUNC cmp_func)
|
|
{
|
|
my_qsort(buffer, n_elements, sizeof(Elem*), (qsort_cmp)cmp_func);
|
|
}
|
|
};
|
|
|
|
#endif /* SQL_ARRAY_INCLUDED */
|