mariadb/sql/table.cc
Aleksey Midenkov 762bf7a03b MDEV-22602 Disable UPDATE CASCADE for SQL constraints
CHECK constraint is checked by check_expression() which walks its
items and gets into Item_field::check_vcol_func_processor() to check
for conformity with foreign key list.

WITHOUT OVERLAPS is checked for same conformity in
mysql_prepare_create_table().

Long uniques are already impossible with InnoDB foreign keys. See
ER_CANT_CREATE_TABLE in test case.

2 accompanying bugs fixed (test main.constraints failed):

1. check->name.str lived on SP execute mem_root while "check" obj
itself lives on SP main mem_root. On second SP execute check->name.str
had garbage data. Fixed by allocating from thd->stmt_arena->mem_root
which is SP main mem_root.

2. CHECK_CONSTRAINT_IF_NOT_EXISTS value was mixed with
VCOL_FIELD_REF. VCOL_FIELD_REF is assigned in check_expression() and
then detected as CHECK_CONSTRAINT_IF_NOT_EXISTS in
handle_if_exists_options().

Existing cases for MDEV-16932 in main.constraints cover both fixes.
2020-06-12 11:12:40 +03:00

9923 lines
298 KiB
C++

/* Copyright (c) 2000, 2017, Oracle and/or its affiliates.
Copyright (c) 2008, 2020, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
/* Some general useful functions */
#include "mariadb.h" /* NO_EMBEDDED_ACCESS_CHECKS */
#include "sql_priv.h"
#include "table.h"
#include "key.h" // find_ref_key
#include "sql_table.h" // build_table_filename,
// primary_key_name
#include "sql_parse.h" // free_items
#include "strfunc.h" // unhex_type2
#include "ha_partition.h" // PART_EXT
// mysql_unpack_partition,
// fix_partition_func, partition_info
#include "sql_base.h"
#include "create_options.h"
#include "sql_trigger.h"
#include <m_ctype.h>
#include "my_md5.h"
#include "my_bit.h"
#include "sql_select.h"
#include "sql_derived.h"
#include "sql_statistics.h"
#include "discover.h"
#include "mdl.h" // MDL_wait_for_graph_visitor
#include "sql_view.h"
#include "rpl_filter.h"
#include "sql_cte.h"
#include "ha_sequence.h"
#include "sql_show.h"
#include "opt_trace.h"
/* For MySQL 5.7 virtual fields */
#define MYSQL57_GENERATED_FIELD 128
#define MYSQL57_GCOL_HEADER_SIZE 4
struct extra2_fields
{
LEX_CUSTRING version;
LEX_CUSTRING options;
Lex_ident engine;
LEX_CUSTRING gis;
LEX_CUSTRING field_flags;
LEX_CUSTRING system_period;
LEX_CUSTRING application_period;
LEX_CUSTRING field_data_type_info;
LEX_CUSTRING without_overlaps;
void reset()
{ bzero((void*)this, sizeof(*this)); }
};
static Virtual_column_info * unpack_vcol_info_from_frm(THD *, MEM_ROOT *,
TABLE *, String *, Virtual_column_info **, bool *);
static bool check_vcol_forward_refs(Field *, Virtual_column_info *,
bool check_constraint);
/* INFORMATION_SCHEMA name */
LEX_CSTRING INFORMATION_SCHEMA_NAME= {STRING_WITH_LEN("information_schema")};
/* PERFORMANCE_SCHEMA name */
LEX_CSTRING PERFORMANCE_SCHEMA_DB_NAME= {STRING_WITH_LEN("performance_schema")};
/* MYSQL_SCHEMA name */
LEX_CSTRING MYSQL_SCHEMA_NAME= {STRING_WITH_LEN("mysql")};
/* GENERAL_LOG name */
LEX_CSTRING GENERAL_LOG_NAME= {STRING_WITH_LEN("general_log")};
/* SLOW_LOG name */
LEX_CSTRING SLOW_LOG_NAME= {STRING_WITH_LEN("slow_log")};
LEX_CSTRING TRANSACTION_REG_NAME= {STRING_WITH_LEN("transaction_registry")};
LEX_CSTRING MYSQL_PROC_NAME= {STRING_WITH_LEN("proc")};
/*
Keyword added as a prefix when parsing the defining expression for a
virtual column read from the column definition saved in the frm file
*/
static LEX_CSTRING parse_vcol_keyword= { STRING_WITH_LEN("PARSE_VCOL_EXPR ") };
static std::atomic<ulong> last_table_id;
/* Functions defined in this file */
static bool fix_type_pointers(const char ***typelib_value_names,
uint **typelib_value_lengths,
TYPELIB *point_to_type, uint types,
char *names, size_t names_length);
static uint find_field(Field **fields, uchar *record, uint start, uint length);
inline bool is_system_table_name(const char *name, size_t length);
/**************************************************************************
Object_creation_ctx implementation.
**************************************************************************/
Object_creation_ctx *Object_creation_ctx::set_n_backup(THD *thd)
{
Object_creation_ctx *backup_ctx;
DBUG_ENTER("Object_creation_ctx::set_n_backup");
backup_ctx= create_backup_ctx(thd);
change_env(thd);
DBUG_RETURN(backup_ctx);
}
void Object_creation_ctx::restore_env(THD *thd, Object_creation_ctx *backup_ctx)
{
if (!backup_ctx)
return;
backup_ctx->change_env(thd);
delete backup_ctx;
}
/**************************************************************************
Default_object_creation_ctx implementation.
**************************************************************************/
Default_object_creation_ctx::Default_object_creation_ctx(THD *thd)
: m_client_cs(thd->variables.character_set_client),
m_connection_cl(thd->variables.collation_connection)
{ }
Default_object_creation_ctx::Default_object_creation_ctx(
CHARSET_INFO *client_cs, CHARSET_INFO *connection_cl)
: m_client_cs(client_cs),
m_connection_cl(connection_cl)
{ }
Object_creation_ctx *
Default_object_creation_ctx::create_backup_ctx(THD *thd) const
{
return new Default_object_creation_ctx(thd);
}
void Default_object_creation_ctx::change_env(THD *thd) const
{
thd->update_charset(m_client_cs, m_connection_cl);
}
/**************************************************************************
View_creation_ctx implementation.
**************************************************************************/
View_creation_ctx *View_creation_ctx::create(THD *thd)
{
View_creation_ctx *ctx= new (thd->mem_root) View_creation_ctx(thd);
return ctx;
}
/*************************************************************************/
View_creation_ctx * View_creation_ctx::create(THD *thd,
TABLE_LIST *view)
{
View_creation_ctx *ctx= new (thd->mem_root) View_creation_ctx(thd);
/* Throw a warning if there is NULL cs name. */
if (!view->view_client_cs_name.str ||
!view->view_connection_cl_name.str)
{
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_VIEW_NO_CREATION_CTX,
ER_THD(thd, ER_VIEW_NO_CREATION_CTX),
view->db.str,
view->table_name.str);
ctx->m_client_cs= system_charset_info;
ctx->m_connection_cl= system_charset_info;
return ctx;
}
/* Resolve cs names. Throw a warning if there is unknown cs name. */
bool invalid_creation_ctx;
invalid_creation_ctx= resolve_charset(view->view_client_cs_name.str,
system_charset_info,
&ctx->m_client_cs);
invalid_creation_ctx= resolve_collation(view->view_connection_cl_name.str,
system_charset_info,
&ctx->m_connection_cl) ||
invalid_creation_ctx;
if (invalid_creation_ctx)
{
sql_print_warning("View '%s'.'%s': there is unknown charset/collation "
"names (client: '%s'; connection: '%s').",
view->db.str,
view->table_name.str,
(const char *) view->view_client_cs_name.str,
(const char *) view->view_connection_cl_name.str);
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_VIEW_INVALID_CREATION_CTX,
ER_THD(thd, ER_VIEW_INVALID_CREATION_CTX),
view->db.str,
view->table_name.str);
}
return ctx;
}
/*************************************************************************/
/* Get column name from column hash */
static uchar *get_field_name(Field **buff, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= (uint) (*buff)->field_name.length;
return (uchar*) (*buff)->field_name.str;
}
/*
Returns pointer to '.frm' extension of the file name.
SYNOPSIS
fn_frm_ext()
name file name
DESCRIPTION
Checks file name part starting with the rightmost '.' character,
and returns it if it is equal to '.frm'.
RETURN VALUES
Pointer to the '.frm' extension or NULL if not a .frm file
*/
const char *fn_frm_ext(const char *name)
{
const char *res= strrchr(name, '.');
if (res && !strcmp(res, reg_ext))
return res;
return 0;
}
TABLE_CATEGORY get_table_category(const LEX_CSTRING *db,
const LEX_CSTRING *name)
{
DBUG_ASSERT(db != NULL);
DBUG_ASSERT(name != NULL);
#ifdef WITH_WSREP
if (my_strcasecmp(system_charset_info, db->str, "mysql") == 0 &&
my_strcasecmp(system_charset_info, name->str, "wsrep_streaming_log") == 0)
{
return TABLE_CATEGORY_INFORMATION;
}
#endif /* WITH_WSREP */
if (is_infoschema_db(db))
return TABLE_CATEGORY_INFORMATION;
if (is_perfschema_db(db))
return TABLE_CATEGORY_PERFORMANCE;
if (lex_string_eq(&MYSQL_SCHEMA_NAME, db))
{
if (is_system_table_name(name->str, name->length))
return TABLE_CATEGORY_SYSTEM;
if (lex_string_eq(&GENERAL_LOG_NAME, name))
return TABLE_CATEGORY_LOG;
if (lex_string_eq(&SLOW_LOG_NAME, name))
return TABLE_CATEGORY_LOG;
if (lex_string_eq(&TRANSACTION_REG_NAME, name))
return TABLE_CATEGORY_LOG;
}
return TABLE_CATEGORY_USER;
}
/*
Allocate and setup a TABLE_SHARE structure
SYNOPSIS
alloc_table_share()
db Database name
table_name Table name
key Table cache key (db \0 table_name \0...)
key_length Length of key
RETURN
0 Error (out of memory)
# Share
*/
TABLE_SHARE *alloc_table_share(const char *db, const char *table_name,
const char *key, uint key_length)
{
MEM_ROOT mem_root;
TABLE_SHARE *share;
char *key_buff, *path_buff;
char path[FN_REFLEN];
uint path_length;
DBUG_ENTER("alloc_table_share");
DBUG_PRINT("enter", ("table: '%s'.'%s'", db, table_name));
path_length= build_table_filename(path, sizeof(path) - 1,
db, table_name, "", 0);
init_sql_alloc(key_memory_table_share, &mem_root, TABLE_ALLOC_BLOCK_SIZE, 0,
MYF(0));
if (multi_alloc_root(&mem_root,
&share, sizeof(*share),
&key_buff, key_length,
&path_buff, path_length + 1,
NULL))
{
bzero((char*) share, sizeof(*share));
share->set_table_cache_key(key_buff, key, key_length);
share->path.str= path_buff;
share->path.length= path_length;
strmov(path_buff, path);
share->normalized_path.str= share->path.str;
share->normalized_path.length= path_length;
share->table_category= get_table_category(& share->db, & share->table_name);
share->open_errno= ENOENT;
/* The following will be updated in open_table_from_share */
share->can_do_row_logging= 1;
if (share->table_category == TABLE_CATEGORY_LOG)
share->no_replicate= 1;
if (key_length > 6 &&
table_alias_charset->strnncoll(key, 6, "mysql", 6) == 0)
share->not_usable_by_query_cache= 1;
init_sql_alloc(PSI_INSTRUMENT_ME, &share->stats_cb.mem_root,
TABLE_ALLOC_BLOCK_SIZE, 0, MYF(0));
memcpy((char*) &share->mem_root, (char*) &mem_root, sizeof(mem_root));
mysql_mutex_init(key_TABLE_SHARE_LOCK_share,
&share->LOCK_share, MY_MUTEX_INIT_SLOW);
mysql_mutex_init(key_TABLE_SHARE_LOCK_ha_data,
&share->LOCK_ha_data, MY_MUTEX_INIT_FAST);
DBUG_EXECUTE_IF("simulate_big_table_id",
if (last_table_id < UINT_MAX32)
last_table_id= UINT_MAX32 - 1;);
/*
There is one reserved number that cannot be used. Remember to
change this when 6-byte global table id's are introduced.
*/
do
{
share->table_map_id=
last_table_id.fetch_add(1, std::memory_order_relaxed);
} while (unlikely(share->table_map_id == ~0UL ||
share->table_map_id == 0));
}
DBUG_RETURN(share);
}
/*
Initialize share for temporary tables
SYNOPSIS
init_tmp_table_share()
thd thread handle
share Share to fill
key Table_cache_key, as generated from tdc_create_key.
must start with db name.
key_length Length of key
table_name Table name
path Path to file (possible in lower case) without .frm
NOTES
This is different from alloc_table_share() because temporary tables
don't have to be shared between threads or put into the table def
cache, so we can do some things notable simpler and faster
If table is not put in thd->temporary_tables (happens only when
one uses OPEN TEMPORARY) then one can specify 'db' as key and
use key_length= 0 as neither table_cache_key or key_length will be used).
*/
void init_tmp_table_share(THD *thd, TABLE_SHARE *share, const char *key,
uint key_length, const char *table_name,
const char *path)
{
DBUG_ENTER("init_tmp_table_share");
DBUG_PRINT("enter", ("table: '%s'.'%s'", key, table_name));
bzero((char*) share, sizeof(*share));
/*
This can't be MY_THREAD_SPECIFIC for slaves as they are freed
during cleanup() from Relay_log_info::close_temporary_tables()
*/
init_sql_alloc(key_memory_table_share, &share->mem_root,
TABLE_ALLOC_BLOCK_SIZE, 0,
MYF(thd->slave_thread ? 0 : MY_THREAD_SPECIFIC));
share->table_category= TABLE_CATEGORY_TEMPORARY;
share->tmp_table= INTERNAL_TMP_TABLE;
share->db.str= (char*) key;
share->db.length= strlen(key);
share->table_cache_key.str= (char*) key;
share->table_cache_key.length= key_length;
share->table_name.str= (char*) table_name;
share->table_name.length= strlen(table_name);
share->path.str= (char*) path;
share->normalized_path.str= (char*) path;
share->path.length= share->normalized_path.length= strlen(path);
share->frm_version= FRM_VER_CURRENT;
share->not_usable_by_query_cache= 1;
share->can_do_row_logging= 0; // No row logging
/*
table_map_id is also used for MERGE tables to suppress repeated
compatibility checks.
*/
share->table_map_id= (ulong) thd->query_id;
DBUG_VOID_RETURN;
}
/**
Release resources (plugins) used by the share and free its memory.
TABLE_SHARE is self-contained -- it's stored in its own MEM_ROOT.
Free this MEM_ROOT.
*/
void TABLE_SHARE::destroy()
{
uint idx;
KEY *info_it;
DBUG_ENTER("TABLE_SHARE::destroy");
DBUG_PRINT("info", ("db: %s table: %s", db.str, table_name.str));
if (ha_share)
{
delete ha_share;
ha_share= NULL; // Safety
}
delete_stat_values_for_table_share(this);
delete sequence;
free_root(&stats_cb.mem_root, MYF(0));
/* The mutexes are initialized only for shares that are part of the TDC */
if (tmp_table == NO_TMP_TABLE)
{
mysql_mutex_destroy(&LOCK_share);
mysql_mutex_destroy(&LOCK_ha_data);
}
my_hash_free(&name_hash);
plugin_unlock(NULL, db_plugin);
db_plugin= NULL;
/* Release fulltext parsers */
info_it= key_info;
for (idx= keys; idx; idx--, info_it++)
{
if (info_it->flags & HA_USES_PARSER)
{
plugin_unlock(NULL, info_it->parser);
info_it->flags= 0;
}
}
#ifdef WITH_PARTITION_STORAGE_ENGINE
plugin_unlock(NULL, default_part_plugin);
#endif /* WITH_PARTITION_STORAGE_ENGINE */
PSI_CALL_release_table_share(m_psi);
/*
Make a copy since the share is allocated in its own root,
and free_root() updates its argument after freeing the memory.
*/
MEM_ROOT own_root= mem_root;
free_root(&own_root, MYF(0));
DBUG_VOID_RETURN;
}
/*
Free table share and memory used by it
SYNOPSIS
free_table_share()
share Table share
*/
void free_table_share(TABLE_SHARE *share)
{
DBUG_ENTER("free_table_share");
DBUG_PRINT("enter", ("table: %s.%s", share->db.str, share->table_name.str));
share->destroy();
DBUG_VOID_RETURN;
}
/**
Return TRUE if a table name matches one of the system table names.
Currently these are:
help_category, help_keyword, help_relation, help_topic,
proc, event
time_zone, time_zone_leap_second, time_zone_name, time_zone_transition,
time_zone_transition_type
This function trades accuracy for speed, so may return false
positives. Presumably mysql.* database is for internal purposes only
and should not contain user tables.
*/
inline bool is_system_table_name(const char *name, size_t length)
{
CHARSET_INFO *ci= system_charset_info;
return (
/* mysql.proc table */
(length == 4 &&
my_tolower(ci, name[0]) == 'p' &&
my_tolower(ci, name[1]) == 'r' &&
my_tolower(ci, name[2]) == 'o' &&
my_tolower(ci, name[3]) == 'c') ||
(length > 4 &&
(
/* one of mysql.help* tables */
(my_tolower(ci, name[0]) == 'h' &&
my_tolower(ci, name[1]) == 'e' &&
my_tolower(ci, name[2]) == 'l' &&
my_tolower(ci, name[3]) == 'p') ||
/* one of mysql.time_zone* tables */
(my_tolower(ci, name[0]) == 't' &&
my_tolower(ci, name[1]) == 'i' &&
my_tolower(ci, name[2]) == 'm' &&
my_tolower(ci, name[3]) == 'e') ||
/* one of mysql.*_stat tables, but not mysql.innodb* tables*/
((my_tolower(ci, name[length-5]) == 's' &&
my_tolower(ci, name[length-4]) == 't' &&
my_tolower(ci, name[length-3]) == 'a' &&
my_tolower(ci, name[length-2]) == 't' &&
my_tolower(ci, name[length-1]) == 's') &&
!(my_tolower(ci, name[0]) == 'i' &&
my_tolower(ci, name[1]) == 'n' &&
my_tolower(ci, name[2]) == 'n' &&
my_tolower(ci, name[3]) == 'o')) ||
/* mysql.event table */
(my_tolower(ci, name[0]) == 'e' &&
my_tolower(ci, name[1]) == 'v' &&
my_tolower(ci, name[2]) == 'e' &&
my_tolower(ci, name[3]) == 'n' &&
my_tolower(ci, name[4]) == 't')
)
)
);
}
/*
Read table definition from a binary / text based .frm file
SYNOPSIS
open_table_def()
thd Thread handler
share Fill this with table definition
flags Bit mask of the following flags: OPEN_VIEW
NOTES
This function is called when the table definition is not cached in
table definition cache
The data is returned in 'share', which is allocated by
alloc_table_share().. The code assumes that share is initialized.
*/
enum open_frm_error open_table_def(THD *thd, TABLE_SHARE *share, uint flags)
{
bool error_given= false;
File file;
uchar *buf;
uchar head[FRM_HEADER_SIZE];
char path[FN_REFLEN];
size_t frmlen, read_length;
uint length;
DBUG_ENTER("open_table_def");
DBUG_PRINT("enter", ("table: '%s'.'%s' path: '%s'", share->db.str,
share->table_name.str, share->normalized_path.str));
share->error= OPEN_FRM_OPEN_ERROR;
length=(uint) (strxmov(path, share->normalized_path.str, reg_ext, NullS) -
path);
if (flags & GTS_FORCE_DISCOVERY)
{
const char *path2= share->normalized_path.str;
DBUG_ASSERT(flags & GTS_TABLE);
DBUG_ASSERT(flags & GTS_USE_DISCOVERY);
/* Delete .frm and .par files */
mysql_file_delete_with_symlink(key_file_frm, path2, reg_ext, MYF(0));
mysql_file_delete_with_symlink(key_file_partition_ddl_log, path2, PAR_EXT,
MYF(0));
file= -1;
}
else
file= mysql_file_open(key_file_frm, path, O_RDONLY | O_SHARE, MYF(0));
if (file < 0)
{
if ((flags & GTS_TABLE) && (flags & GTS_USE_DISCOVERY))
{
ha_discover_table(thd, share);
error_given= true;
}
goto err_not_open;
}
if (mysql_file_read(file, head, sizeof(head), MYF(MY_NABP)))
{
share->error = my_errno == HA_ERR_FILE_TOO_SHORT
? OPEN_FRM_CORRUPTED : OPEN_FRM_READ_ERROR;
goto err;
}
if (memcmp(head, STRING_WITH_LEN("TYPE=VIEW\n")) == 0)
{
share->is_view= 1;
if (flags & GTS_VIEW)
{
LEX_CSTRING pathstr= { path, length };
/*
Create view file parser and hold it in TABLE_SHARE member
view_def.
*/
share->view_def= sql_parse_prepare(&pathstr, &share->mem_root, true);
if (!share->view_def)
share->error= OPEN_FRM_ERROR_ALREADY_ISSUED;
else
share->error= OPEN_FRM_OK;
}
else
share->error= OPEN_FRM_NOT_A_TABLE;
goto err;
}
if (!is_binary_frm_header(head))
{
/* No handling of text based files yet */
share->error = OPEN_FRM_CORRUPTED;
goto err;
}
if (!(flags & GTS_TABLE))
{
share->error = OPEN_FRM_NOT_A_VIEW;
goto err;
}
frmlen= uint4korr(head+10);
set_if_smaller(frmlen, FRM_MAX_SIZE); // safety
if (!(buf= (uchar*)my_malloc(PSI_INSTRUMENT_ME, frmlen,
MYF(MY_THREAD_SPECIFIC|MY_WME))))
goto err;
memcpy(buf, head, sizeof(head));
read_length= mysql_file_read(file, buf + sizeof(head),
frmlen - sizeof(head), MYF(MY_WME));
if (read_length == 0 || read_length == (size_t)-1)
{
share->error = OPEN_FRM_READ_ERROR;
my_free(buf);
goto err;
}
mysql_file_close(file, MYF(MY_WME));
frmlen= read_length + sizeof(head);
share->init_from_binary_frm_image(thd, false, buf, frmlen);
/*
Don't give any additional errors. If there would be a problem,
init_from_binary_frm_image would call my_error() itself.
*/
error_given= true;
my_free(buf);
goto err_not_open;
err:
mysql_file_close(file, MYF(MY_WME));
err_not_open:
/* Mark that table was created earlier and thus should have been logged */
share->table_creation_was_logged= 1;
if (unlikely(share->error && !error_given))
{
share->open_errno= my_errno;
open_table_error(share, share->error, share->open_errno);
}
DBUG_RETURN(share->error);
}
static bool create_key_infos(const uchar *strpos, const uchar *frm_image_end,
uint keys, KEY *keyinfo,
uint new_frm_ver, uint *ext_key_parts,
TABLE_SHARE *share, uint len,
KEY *first_keyinfo,
LEX_STRING *keynames)
{
uint i, j, n_length;
KEY_PART_INFO *key_part= NULL;
ulong *rec_per_key= NULL;
KEY_PART_INFO *first_key_part= NULL;
uint first_key_parts= 0;
if (!keys)
{
if (!(keyinfo = (KEY*) alloc_root(&share->mem_root, len)))
return 1;
bzero((char*) keyinfo, len);
key_part= reinterpret_cast<KEY_PART_INFO*> (keyinfo);
}
/*
If share->use_ext_keys is set to TRUE we assume that any key
can be extended by the components of the primary key whose
definition is read first from the frm file.
For each key only those fields of the assumed primary key are
added that are not included in the proper key definition.
If after all it turns out that there is no primary key the
added components are removed from each key.
When in the future we support others schemes of extending of
secondary keys with components of the primary key we'll have
to change the type of this flag for an enumeration type.
*/
for (i=0 ; i < keys ; i++, keyinfo++)
{
if (new_frm_ver >= 3)
{
if (strpos + 8 >= frm_image_end)
return 1;
keyinfo->flags= (uint) uint2korr(strpos) ^ HA_NOSAME;
keyinfo->key_length= (uint) uint2korr(strpos+2);
keyinfo->user_defined_key_parts= (uint) strpos[4];
keyinfo->algorithm= (enum ha_key_alg) strpos[5];
keyinfo->block_size= uint2korr(strpos+6);
strpos+=8;
}
else
{
if (strpos + 4 >= frm_image_end)
return 1;
keyinfo->flags= ((uint) strpos[0]) ^ HA_NOSAME;
keyinfo->key_length= (uint) uint2korr(strpos+1);
keyinfo->user_defined_key_parts= (uint) strpos[3];
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
strpos+=4;
}
if (i == 0)
{
(*ext_key_parts)+= (share->use_ext_keys ? first_keyinfo->user_defined_key_parts*(keys-1) : 0);
n_length=keys * sizeof(KEY) + *ext_key_parts * sizeof(KEY_PART_INFO);
if (!(keyinfo= (KEY*) alloc_root(&share->mem_root,
n_length + len)))
return 1;
bzero((char*) keyinfo,n_length);
share->key_info= keyinfo;
key_part= reinterpret_cast<KEY_PART_INFO*> (keyinfo + keys);
if (!(rec_per_key= (ulong*) alloc_root(&share->mem_root,
sizeof(ulong) * *ext_key_parts)))
return 1;
first_key_part= key_part;
first_key_parts= first_keyinfo->user_defined_key_parts;
keyinfo->flags= first_keyinfo->flags;
keyinfo->key_length= first_keyinfo->key_length;
keyinfo->user_defined_key_parts= first_keyinfo->user_defined_key_parts;
keyinfo->algorithm= first_keyinfo->algorithm;
if (new_frm_ver >= 3)
keyinfo->block_size= first_keyinfo->block_size;
}
keyinfo->key_part= key_part;
keyinfo->rec_per_key= rec_per_key;
for (j=keyinfo->user_defined_key_parts ; j-- ; key_part++)
{
if (strpos + (new_frm_ver >= 1 ? 9 : 7) >= frm_image_end)
return 1;
if (!(keyinfo->algorithm == HA_KEY_ALG_LONG_HASH))
*rec_per_key++=0;
key_part->fieldnr= (uint16) (uint2korr(strpos) & FIELD_NR_MASK);
key_part->offset= (uint) uint2korr(strpos+2)-1;
key_part->key_type= (uint) uint2korr(strpos+5);
// key_part->field= (Field*) 0; // Will be fixed later
if (new_frm_ver >= 1)
{
key_part->key_part_flag= *(strpos+4);
key_part->length= (uint) uint2korr(strpos+7);
strpos+=9;
}
else
{
key_part->length= *(strpos+4);
key_part->key_part_flag=0;
if (key_part->length > 128)
{
key_part->length&=127; /* purecov: inspected */
key_part->key_part_flag=HA_REVERSE_SORT; /* purecov: inspected */
}
strpos+=7;
}
key_part->store_length=key_part->length;
}
if (keyinfo->algorithm == HA_KEY_ALG_LONG_HASH)
{
keyinfo->key_length= HA_HASH_KEY_LENGTH_WITHOUT_NULL;
key_part++; // reserved for the hash value
*rec_per_key++=0;
}
/*
Add primary key to end of extended keys for non unique keys for
storage engines that supports it.
*/
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
keyinfo->ext_key_flags= keyinfo->flags;
keyinfo->ext_key_part_map= 0;
if (share->use_ext_keys && i && !(keyinfo->flags & HA_NOSAME))
{
for (j= 0;
j < first_key_parts && keyinfo->ext_key_parts < MAX_REF_PARTS;
j++)
{
uint key_parts= keyinfo->user_defined_key_parts;
KEY_PART_INFO* curr_key_part= keyinfo->key_part;
KEY_PART_INFO* curr_key_part_end= curr_key_part+key_parts;
for ( ; curr_key_part < curr_key_part_end; curr_key_part++)
{
if (curr_key_part->fieldnr == first_key_part[j].fieldnr)
break;
}
if (curr_key_part == curr_key_part_end)
{
*key_part++= first_key_part[j];
*rec_per_key++= 0;
keyinfo->ext_key_parts++;
keyinfo->ext_key_part_map|= 1 << j;
}
}
if (j == first_key_parts)
keyinfo->ext_key_flags= keyinfo->flags | HA_EXT_NOSAME;
}
if (keyinfo->algorithm == HA_KEY_ALG_LONG_HASH)
share->ext_key_parts++;
share->ext_key_parts+= keyinfo->ext_key_parts;
}
keynames->str= (char*) key_part;
keynames->length= strnmov(keynames->str, (char *) strpos,
frm_image_end - strpos) - keynames->str;
strpos+= keynames->length;
if (*strpos++) // key names are \0-terminated
return 1;
keynames->length++; // Include '\0', to make fix_type_pointers() happy.
//reading index comments
for (keyinfo= share->key_info, i=0; i < keys; i++, keyinfo++)
{
if (keyinfo->flags & HA_USES_COMMENT)
{
if (strpos + 2 >= frm_image_end)
return 1;
keyinfo->comment.length= uint2korr(strpos);
strpos+= 2;
if (strpos + keyinfo->comment.length >= frm_image_end)
return 1;
keyinfo->comment.str= strmake_root(&share->mem_root, (char*) strpos,
keyinfo->comment.length);
strpos+= keyinfo->comment.length;
}
DBUG_ASSERT(MY_TEST(keyinfo->flags & HA_USES_COMMENT) ==
(keyinfo->comment.length > 0));
}
share->keys= keys; // do it *after* all key_info's are initialized
return 0;
}
/** ensures that the enum value (read from frm) is within limits
if not - issues a warning and resets the value to 0
(that is, 0 is assumed to be a default value)
*/
static uint enum_value_with_check(THD *thd, TABLE_SHARE *share,
const char *name, uint value, uint limit)
{
if (value < limit)
return value;
sql_print_warning("%s.frm: invalid value %d for the field %s",
share->normalized_path.str, value, name);
return 0;
}
/**
Check if a collation has changed number
@param mysql_version
@param current collation number
@retval new collation number (same as current collation number of no change)
*/
static uint upgrade_collation(ulong mysql_version, uint cs_number)
{
if (mysql_version >= 50300 && mysql_version <= 50399)
{
switch (cs_number) {
case 149: return MY_PAGE2_COLLATION_ID_UCS2; // ucs2_crotian_ci
case 213: return MY_PAGE2_COLLATION_ID_UTF8; // utf8_crotian_ci
}
}
if ((mysql_version >= 50500 && mysql_version <= 50599) ||
(mysql_version >= 100000 && mysql_version <= 100005))
{
switch (cs_number) {
case 149: return MY_PAGE2_COLLATION_ID_UCS2; // ucs2_crotian_ci
case 213: return MY_PAGE2_COLLATION_ID_UTF8; // utf8_crotian_ci
case 214: return MY_PAGE2_COLLATION_ID_UTF32; // utf32_croatian_ci
case 215: return MY_PAGE2_COLLATION_ID_UTF16; // utf16_croatian_ci
case 245: return MY_PAGE2_COLLATION_ID_UTF8MB4;// utf8mb4_croatian_ci
}
}
return cs_number;
}
void Column_definition_attributes::frm_pack_basic(uchar *buff) const
{
int2store(buff + 3, length);
int2store(buff + 8, pack_flag);
buff[10]= (uchar) unireg_check;
}
void Column_definition_attributes::frm_unpack_basic(const uchar *buff)
{
length= uint2korr(buff + 3);
pack_flag= uint2korr(buff + 8);
unireg_check= (Field::utype) MTYP_TYPENR((uint) buff[10]);
}
void Column_definition_attributes::frm_pack_numeric_with_dec(uchar *buff) const
{
DBUG_ASSERT(f_decimals(pack_flag) == 0);
uint tmp_pack_flag= pack_flag | (decimals << FIELDFLAG_DEC_SHIFT);
int2store(buff + 3, length);
int2store(buff + 8, tmp_pack_flag);
buff[10]= (uchar) unireg_check;
}
bool
Column_definition_attributes::frm_unpack_numeric_with_dec(TABLE_SHARE *share,
const uchar *buff)
{
frm_unpack_basic(buff);
decimals= f_decimals(pack_flag);
pack_flag&= ~FIELDFLAG_DEC_MASK;
return frm_unpack_charset(share, buff);
}
bool
Column_definition_attributes::frm_unpack_temporal_with_dec(TABLE_SHARE *share,
uint intlen,
const uchar *buff)
{
frm_unpack_basic(buff);
decimals= temporal_dec(intlen);
return frm_unpack_charset(share, buff);
}
void Column_definition_attributes::frm_pack_charset(uchar *buff) const
{
buff[11]= (uchar) (charset->number >> 8);
buff[14]= (uchar) charset->number;
}
bool Column_definition_attributes::frm_unpack_charset(TABLE_SHARE *share,
const uchar *buff)
{
uint cs_org= buff[14] + (((uint) buff[11]) << 8);
uint cs_new= upgrade_collation(share->mysql_version, cs_org);
if (cs_org != cs_new)
share->incompatible_version|= HA_CREATE_USED_CHARSET;
if (cs_new && !(charset= get_charset(cs_new, MYF(0))))
{
const char *csname= get_charset_name((uint) cs_new);
char tmp[10];
if (!csname || csname[0] =='?')
{
my_snprintf(tmp, sizeof(tmp), "#%u", cs_new);
csname= tmp;
}
my_printf_error(ER_UNKNOWN_COLLATION,
"Unknown collation '%s' in table '%-.64s' definition",
MYF(0), csname, share->table_name.str);
return true;
}
return false;
}
/*
In MySQL 5.7 the null bits for not stored virtual fields are last.
Calculate the position for these bits
*/
static void mysql57_calculate_null_position(TABLE_SHARE *share,
uchar **null_pos,
uint *null_bit_pos,
const uchar *strpos,
const uchar *vcol_screen_pos)
{
uint field_pack_length= 17;
for (uint i=0 ; i < share->fields; i++, strpos+= field_pack_length)
{
uint field_length, pack_flag;
enum_field_types field_type;
if ((strpos[10] & MYSQL57_GENERATED_FIELD))
{
/* Skip virtual (not stored) generated field */
bool stored_in_db= vcol_screen_pos[3];
vcol_screen_pos+= (uint2korr(vcol_screen_pos + 1) +
MYSQL57_GCOL_HEADER_SIZE);
if (! stored_in_db)
continue;
}
field_length= uint2korr(strpos+3);
pack_flag= uint2korr(strpos+8);
field_type= (enum_field_types) (uint) strpos[13];
if (field_type == MYSQL_TYPE_BIT && !f_bit_as_char(pack_flag))
{
if (((*null_bit_pos)+= field_length & 7) > 7)
{
(*null_pos)++;
(*null_bit_pos)-= 8;
}
}
if (f_maybe_null(pack_flag))
{
if (!((*null_bit_pos)= ((*null_bit_pos) + 1) & 7))
(*null_pos)++;
}
}
}
/** Parse TABLE_SHARE::vcol_defs
unpack_vcol_info_from_frm
5.7
byte 1 = 1
byte 2,3 = expr length
byte 4 = stored_in_db
expression
10.1-
byte 1 = 1 | 2
byte 2 = sql_type ; but TABLE::init_from_binary_frm_image()
byte 3 = stored_in_db ; has put expr_length here
[byte 4] = optional interval_id for sql_type (if byte 1 == 2)
expression
10.2+
byte 1 = type
byte 2,3 = field_number
byte 4,5 = length of expression
byte 6 = length of name
name
expression
*/
bool parse_vcol_defs(THD *thd, MEM_ROOT *mem_root, TABLE *table,
bool *error_reported, vcol_init_mode mode)
{
CHARSET_INFO *save_character_set_client= thd->variables.character_set_client;
CHARSET_INFO *save_collation= thd->variables.collation_connection;
Query_arena *backup_stmt_arena_ptr= thd->stmt_arena;
const uchar *pos= table->s->vcol_defs.str;
const uchar *end= pos + table->s->vcol_defs.length;
Field **field_ptr= table->field - 1;
Field **vfield_ptr= table->vfield;
Field **dfield_ptr= table->default_field;
Virtual_column_info **check_constraint_ptr= table->check_constraints;
Query_arena backup_arena;
Virtual_column_info *vcol= 0;
StringBuffer<MAX_FIELD_WIDTH> expr_str;
bool res= 1;
DBUG_ENTER("parse_vcol_defs");
if (check_constraint_ptr)
memcpy(table->check_constraints + table->s->field_check_constraints,
table->s->check_constraints,
table->s->table_check_constraints * sizeof(Virtual_column_info*));
DBUG_ASSERT(table->expr_arena == NULL);
/*
We need to use CONVENTIONAL_EXECUTION here to ensure that
any new items created by fix_fields() are not reverted.
*/
table->expr_arena= new (alloc_root(mem_root, sizeof(Query_arena)))
Query_arena(mem_root, Query_arena::STMT_CONVENTIONAL_EXECUTION);
if (!table->expr_arena)
DBUG_RETURN(1);
thd->set_n_backup_active_arena(table->expr_arena, &backup_arena);
thd->stmt_arena= table->expr_arena;
thd->update_charset(&my_charset_utf8mb4_general_ci, table->s->table_charset);
expr_str.append(&parse_vcol_keyword);
Sql_mode_instant_remove sms(thd, MODE_NO_BACKSLASH_ESCAPES);
while (pos < end)
{
uint type, expr_length;
if (table->s->frm_version >= FRM_VER_EXPRESSSIONS)
{
uint field_nr, name_length;
/* see pack_expression() for how data is stored */
type= pos[0];
field_nr= uint2korr(pos+1);
expr_length= uint2korr(pos+3);
name_length= pos[5];
pos+= FRM_VCOL_NEW_HEADER_SIZE + name_length;
field_ptr= table->field + field_nr;
}
else
{
/*
see below in ::init_from_binary_frm_image for how data is stored
in versions below 10.2 (that includes 5.7 too)
*/
while (*++field_ptr && !(*field_ptr)->vcol_info) /* no-op */;
if (!*field_ptr)
{
open_table_error(table->s, OPEN_FRM_CORRUPTED, 1);
goto end;
}
type= (*field_ptr)->vcol_info->stored_in_db
? VCOL_GENERATED_STORED : VCOL_GENERATED_VIRTUAL;
expr_length= uint2korr(pos+1);
if (table->s->mysql_version > 50700 && table->s->mysql_version < 100000)
pos+= 4; // MySQL from 5.7
else
pos+= pos[0] == 2 ? 4 : 3; // MariaDB from 5.2 to 10.1
}
expr_str.length(parse_vcol_keyword.length);
expr_str.append((char*)pos, expr_length);
thd->where= vcol_type_name(static_cast<enum_vcol_info_type>(type));
switch (type) {
case VCOL_GENERATED_VIRTUAL:
case VCOL_GENERATED_STORED:
vcol= unpack_vcol_info_from_frm(thd, mem_root, table, &expr_str,
&((*field_ptr)->vcol_info), error_reported);
*(vfield_ptr++)= *field_ptr;
DBUG_ASSERT(table->map == 0);
/*
We need Item_field::const_item() to return false, so
datetime_precision() and time_precision() do not try to calculate
field values, e.g. val_str().
Set table->map to non-zero temporarily.
*/
table->map= 1;
if (vcol && field_ptr[0]->check_vcol_sql_mode_dependency(thd, mode))
{
DBUG_ASSERT(thd->is_error());
*error_reported= true;
goto end;
}
table->map= 0;
break;
case VCOL_DEFAULT:
vcol= unpack_vcol_info_from_frm(thd, mem_root, table, &expr_str,
&((*field_ptr)->default_value),
error_reported);
*(dfield_ptr++)= *field_ptr;
if (vcol && (vcol->flags & (VCOL_NON_DETERMINISTIC | VCOL_SESSION_FUNC)))
table->s->non_determinstic_insert= true;
break;
case VCOL_CHECK_FIELD:
vcol= unpack_vcol_info_from_frm(thd, mem_root, table, &expr_str,
&((*field_ptr)->check_constraint),
error_reported);
*check_constraint_ptr++= (*field_ptr)->check_constraint;
break;
case VCOL_CHECK_TABLE:
vcol= unpack_vcol_info_from_frm(thd, mem_root, table, &expr_str,
check_constraint_ptr, error_reported);
check_constraint_ptr++;
break;
}
if (!vcol)
goto end;
pos+= expr_length;
}
/* Now, initialize CURRENT_TIMESTAMP and UNIQUE_INDEX_HASH_FIELD fields */
for (field_ptr= table->field; *field_ptr; field_ptr++)
{
Field *field= *field_ptr;
if (field->flags & LONG_UNIQUE_HASH_FIELD)
{
List<Item> *field_list= new (mem_root) List<Item>();
Item *list_item;
KEY *key= 0;
uint key_index, parts= 0;
for (key_index= 0; key_index < table->s->keys; key_index++)
{
key=table->key_info + key_index;
parts= key->user_defined_key_parts;
if (key->key_part[parts].fieldnr == field->field_index + 1)
break;
}
if (!key || key->algorithm != HA_KEY_ALG_LONG_HASH)
goto end;
KEY_PART_INFO *keypart;
for (uint i=0; i < parts; i++)
{
keypart= key->key_part + i;
if (keypart->key_part_flag & HA_PART_KEY_SEG)
{
int length= keypart->length/keypart->field->charset()->mbmaxlen;
list_item= new (mem_root) Item_func_left(thd,
new (mem_root) Item_field(thd, keypart->field),
new (mem_root) Item_int(thd, length));
list_item->fix_fields(thd, NULL);
keypart->field->vcol_info=
table->field[keypart->field->field_index]->vcol_info;
}
else
list_item= new (mem_root) Item_field(thd, keypart->field);
field_list->push_back(list_item, mem_root);
}
Item_func_hash *hash_item= new(mem_root)Item_func_hash(thd, *field_list);
Virtual_column_info *v= new (mem_root) Virtual_column_info();
field->vcol_info= v;
field->vcol_info->expr= hash_item;
key->user_defined_key_parts= key->ext_key_parts= key->usable_key_parts= 1;
key->key_part+= parts;
if (key->flags & HA_NULL_PART_KEY)
key->key_length= HA_HASH_KEY_LENGTH_WITH_NULL;
else
key->key_length= HA_HASH_KEY_LENGTH_WITHOUT_NULL;
*(vfield_ptr++)= *field_ptr;
}
if (field->has_default_now_unireg_check())
{
expr_str.length(parse_vcol_keyword.length);
expr_str.append(STRING_WITH_LEN("current_timestamp("));
expr_str.append_ulonglong(field->decimals());
expr_str.append(')');
vcol= unpack_vcol_info_from_frm(thd, mem_root, table, &expr_str,
&((*field_ptr)->default_value),
error_reported);
*(dfield_ptr++)= *field_ptr;
if (!field->default_value->expr)
goto end;
}
else if (field->has_update_default_function() && !field->default_value)
*(dfield_ptr++)= *field_ptr;
}
if (vfield_ptr)
*vfield_ptr= 0;
if (dfield_ptr)
*dfield_ptr= 0;
if (check_constraint_ptr)
*check_constraint_ptr= 0;
/* Check that expressions aren't referring to not yet initialized fields */
for (field_ptr= table->field; *field_ptr; field_ptr++)
{
Field *field= *field_ptr;
if (check_vcol_forward_refs(field, field->vcol_info, 0) ||
check_vcol_forward_refs(field, field->check_constraint, 1) ||
check_vcol_forward_refs(field, field->default_value, 0))
goto end;
}
table->find_constraint_correlated_indexes();
res=0;
end:
thd->restore_active_arena(table->expr_arena, &backup_arena);
thd->stmt_arena= backup_stmt_arena_ptr;
if (save_character_set_client)
thd->update_charset(save_character_set_client, save_collation);
DBUG_RETURN(res);
}
static const Type_handler *old_frm_type_handler(uint pack_flag,
uint interval_nr)
{
enum_field_types field_type= (enum_field_types) f_packtype(pack_flag);
DBUG_ASSERT(field_type < 16);
if (!f_is_alpha(pack_flag))
return Type_handler::get_handler_by_real_type(field_type);
if (!f_is_packed(pack_flag))
{
if (field_type == MYSQL_TYPE_DECIMAL) // 3.23 or 4.0 string
return &type_handler_string;
if (field_type == MYSQL_TYPE_VARCHAR) // Since mysql-5.0
return &type_handler_varchar;
return NULL; // Error (bad frm?)
}
if (f_is_blob(pack_flag))
return &type_handler_blob; // QQ: exact type??
if (interval_nr)
{
if (f_is_enum(pack_flag))
return &type_handler_enum;
return &type_handler_set;
}
return Type_handler::get_handler_by_real_type(field_type);
}
/* Set overlapped bitmaps for each index */
void TABLE_SHARE::set_overlapped_keys()
{
KEY *key1= key_info;
for (uint i= 0; i < keys; i++, key1++)
{
key1->overlapped.clear_all();
key1->overlapped.set_bit(i);
}
key1= key_info;
for (uint i= 0; i < keys; i++, key1++)
{
KEY *key2= key1 + 1;
for (uint j= i+1; j < keys; j++, key2++)
{
KEY_PART_INFO *key_part1= key1->key_part;
uint n1= key1->user_defined_key_parts;
uint n2= key2->user_defined_key_parts;
for (uint k= 0; k < n1; k++, key_part1++)
{
KEY_PART_INFO *key_part2= key2->key_part;
for (uint l= 0; l < n2; l++, key_part2++)
{
if (key_part1->fieldnr == key_part2->fieldnr)
{
key1->overlapped.set_bit(j);
key2->overlapped.set_bit(i);
goto end_checking_overlap;
}
}
}
end_checking_overlap:
;
}
}
}
bool Item_field::check_index_dependence(void *arg)
{
TABLE *table= (TABLE *)arg;
KEY *key= table->key_info;
for (uint j= 0; j < table->s->keys; j++, key++)
{
if (table->constraint_dependent_keys.is_set(j))
continue;
KEY_PART_INFO *key_part= key->key_part;
uint n= key->user_defined_key_parts;
for (uint k= 0; k < n; k++, key_part++)
{
if (this->field == key_part->field)
{
table->constraint_dependent_keys.set_bit(j);
break;
}
}
}
return false;
}
/**
@brief
Find keys that occur in the same constraint on this table
@details
Constraints on this table are checked only.
The method goes through constraints list trying to find at
least two keys which parts participate in some constraint.
These keys are called constraint correlated.
Each key has its own key map with the information about with
which keys it is constraint correlated. Bit in this map is set
only if keys are constraint correlated.
This method fills each keys constraint correlated key map.
*/
void TABLE::find_constraint_correlated_indexes()
{
if (s->keys == 0)
return;
KEY *key= key_info;
for (uint i= 0; i < s->keys; i++, key++)
{
key->constraint_correlated.clear_all();
key->constraint_correlated.set_bit(i);
}
if (!check_constraints)
return;
for (Virtual_column_info **chk= check_constraints ; *chk ; chk++)
{
constraint_dependent_keys.clear_all();
(*chk)->expr->walk(&Item::check_index_dependence, 0, this);
if (constraint_dependent_keys.bits_set() <= 1)
continue;
uint key_no= 0;
key_map::Iterator ki(constraint_dependent_keys);
while ((key_no= ki++) != key_map::Iterator::BITMAP_END)
key_info[key_no].constraint_correlated.merge(constraint_dependent_keys);
}
}
bool TABLE_SHARE::init_period_from_extra2(period_info_t *period,
const uchar *data, const uchar *end)
{
if (data + 2*frm_fieldno_size > end)
return 1;
period->start_fieldno= read_frm_fieldno(data);
period->end_fieldno= read_frm_fieldno(data + frm_fieldno_size);
return period->start_fieldno >= fields || period->end_fieldno >= fields;
}
static size_t extra2_read_len(const uchar **extra2, const uchar *extra2_end)
{
size_t length= *(*extra2)++;
if (length)
return length;
if ((*extra2) + 2 >= extra2_end)
return 0;
length= uint2korr(*extra2);
(*extra2)+= 2;
if (length < 256 || *extra2 + length > extra2_end)
return 0;
return length;
}
static
bool read_extra2_section_once(const uchar *extra2, size_t len, LEX_CUSTRING *section)
{
if (section->str)
return true;
*section= {extra2, len};
return false;
}
static
bool read_extra2(const uchar *frm_image, size_t len, extra2_fields *fields)
{
const uchar *extra2= frm_image + 64;
DBUG_ENTER("read_extra2");
fields->reset();
if (*extra2 != '/') // old frm had '/' there
{
const uchar *e2end= extra2 + len;
while (extra2 + 3 <= e2end)
{
extra2_frm_value_type type= (extra2_frm_value_type)*extra2++;
size_t length= extra2_read_len(&extra2, e2end);
if (!length)
DBUG_RETURN(true);
bool fail= false;
switch (type) {
case EXTRA2_TABLEDEF_VERSION:
if (fields->version.str) // see init_from_sql_statement_string()
{
if (length != fields->version.length)
DBUG_RETURN(true);
}
else
{
fields->version.str= extra2;
fields->version.length= length;
}
break;
case EXTRA2_ENGINE_TABLEOPTS:
fail= read_extra2_section_once(extra2, length, &fields->options);
break;
case EXTRA2_DEFAULT_PART_ENGINE:
fields->engine.set((const char*)extra2, length);
break;
case EXTRA2_GIS:
fail= read_extra2_section_once(extra2, length, &fields->gis);
break;
case EXTRA2_PERIOD_FOR_SYSTEM_TIME:
fail= read_extra2_section_once(extra2, length, &fields->system_period)
|| length != 2 * frm_fieldno_size;
break;
case EXTRA2_FIELD_FLAGS:
fail= read_extra2_section_once(extra2, length, &fields->field_flags);
break;
case EXTRA2_APPLICATION_TIME_PERIOD:
fail= read_extra2_section_once(extra2, length, &fields->application_period);
break;
case EXTRA2_PERIOD_WITHOUT_OVERLAPS:
fail= read_extra2_section_once(extra2, length, &fields->without_overlaps);
break;
case EXTRA2_FIELD_DATA_TYPE_INFO:
fail= read_extra2_section_once(extra2, length, &fields->field_data_type_info);
break;
default:
/* abort frm parsing if it's an unknown but important extra2 value */
if (type >= EXTRA2_ENGINE_IMPORTANT)
DBUG_RETURN(true);
}
if (fail)
DBUG_RETURN(true);
extra2+= length;
}
if (extra2 != e2end)
DBUG_RETURN(true);
}
DBUG_RETURN(false);
}
class Field_data_type_info_array
{
public:
class Elem
{
LEX_CSTRING m_type_info;
public:
void set(const LEX_CSTRING &type_info)
{
m_type_info= type_info;
}
const LEX_CSTRING &type_info() const
{
return m_type_info;
}
};
private:
Elem *m_array;
uint m_count;
bool alloc(MEM_ROOT *root, uint count)
{
DBUG_ASSERT(!m_array);
DBUG_ASSERT(!m_count);
size_t nbytes= sizeof(Elem) * count;
if (!(m_array= (Elem*) alloc_root(root, nbytes)))
return true;
m_count= count;
bzero((void*) m_array, nbytes);
return false;
}
static uint32 read_length(uchar **pos, const uchar *end)
{
ulonglong num= safe_net_field_length_ll(pos, end - *pos);
if (num > UINT_MAX32)
return 0;
return (uint32) num;
}
static bool read_string(LEX_CSTRING *to, uchar **pos, const uchar *end)
{
to->length= read_length(pos, end);
if (*pos + to->length > end)
return true; // Not enough data
to->str= (const char *) *pos;
*pos+= to->length;
return false;
}
public:
Field_data_type_info_array()
:m_array(NULL), m_count(0)
{ }
uint count() const
{
return m_count;
}
const Elem& element(uint i) const
{
DBUG_ASSERT(i < m_count);
return m_array[i];
}
bool parse(MEM_ROOT *root, uint count, LEX_CUSTRING &image)
{
const uchar *pos= image.str;
const uchar *end= pos + image.length;
if (alloc(root, count))
return true;
for (uint i= 0; i < count && pos < end; i++)
{
LEX_CSTRING type_info;
uint fieldnr= read_length((uchar**) &pos, end);
if ((fieldnr == 0 && i > 0) || fieldnr >= count)
return true; // Bad data
if (read_string(&type_info, (uchar**) &pos, end) || type_info.length == 0)
return true; // Bad data
m_array[fieldnr].set(type_info);
}
return pos < end; // Error if some data is still left
}
};
/**
Read data from a binary .frm file image into a TABLE_SHARE
@param write Write the .frm and .par file. These are not created if
the function returns an error.
@note
frm bytes at the following offsets are unused in MariaDB 10.0:
8..9 (used to be the number of "form names")
28..29 (used to be key_info_length)
They're still set, for compatibility reasons, but never read.
42..46 are unused since 5.0 (were for RAID support)
Also, there're few unused bytes in forminfo.
*/
int TABLE_SHARE::init_from_binary_frm_image(THD *thd, bool write,
const uchar *frm_image,
size_t frm_length,
const uchar *par_image,
size_t par_length)
{
TABLE_SHARE *share= this;
uint new_frm_ver, field_pack_length, new_field_pack_flag;
uint interval_count, interval_parts, read_length, int_length;
uint total_typelib_value_count;
uint db_create_options, keys, key_parts, n_length;
uint com_length, null_bit_pos, UNINIT_VAR(mysql57_vcol_null_bit_pos), bitmap_count;
uint i, hash_fields= 0;
bool use_hash, mysql57_null_bits= 0;
LEX_STRING keynames= {NULL, 0};
char *names, *comment_pos;
const uchar *forminfo;
const uchar *frm_image_end = frm_image + frm_length;
uchar *record, *null_flags, *null_pos, *UNINIT_VAR(mysql57_vcol_null_pos);
const uchar *disk_buff, *strpos;
ulong pos, record_offset;
ulong rec_buff_length;
handler *handler_file= 0;
KEY *keyinfo;
KEY_PART_INFO *key_part= NULL;
Field **field_ptr, *reg_field;
const char **interval_array;
uint *typelib_value_lengths= NULL;
enum legacy_db_type legacy_db_type;
my_bitmap_map *bitmaps;
bool null_bits_are_used;
uint vcol_screen_length;
uchar *vcol_screen_pos;
LEX_CUSTRING options;
KEY first_keyinfo;
uint len;
uint ext_key_parts= 0;
plugin_ref se_plugin= 0;
bool vers_can_native= false, frm_created= 0;
Field_data_type_info_array field_data_type_info_array;
MEM_ROOT *old_root= thd->mem_root;
Virtual_column_info **table_check_constraints;
extra2_fields extra2;
DBUG_ENTER("TABLE_SHARE::init_from_binary_frm_image");
keyinfo= &first_keyinfo;
thd->mem_root= &share->mem_root;
if (frm_length < FRM_HEADER_SIZE + FRM_FORMINFO_SIZE)
goto err;
if (write)
{
frm_created= 1;
if (write_frm_image(frm_image, frm_length))
goto err;
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (par_image)
if (write_par_image(par_image, par_length))
goto err;
#endif
}
share->frm_version= frm_image[2];
/*
Check if .frm file created by MySQL 5.0. In this case we want to
display CHAR fields as CHAR and not as VARCHAR.
We do it this way as we want to keep the old frm version to enable
MySQL 4.1 to read these files.
*/
if (share->frm_version == FRM_VER_TRUE_VARCHAR -1 && frm_image[33] == 5)
share->frm_version= FRM_VER_TRUE_VARCHAR;
new_field_pack_flag= frm_image[27];
new_frm_ver= (frm_image[2] - FRM_VER);
field_pack_length= new_frm_ver < 2 ? 11 : 17;
/* Length of the MariaDB extra2 segment in the form file. */
len = uint2korr(frm_image+4);
if (read_extra2(frm_image, len, &extra2))
goto err;
tabledef_version.length= extra2.version.length;
tabledef_version.str= (uchar*)memdup_root(&mem_root, extra2.version.str,
extra2.version.length);
if (!tabledef_version.str)
goto err;
/* remember but delay parsing until we have read fields and keys */
options= extra2.options;
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (extra2.engine)
{
share->default_part_plugin= ha_resolve_by_name(NULL, &extra2.engine, false);
if (!share->default_part_plugin)
goto err;
}
#endif
if (frm_length < FRM_HEADER_SIZE + len ||
!(pos= uint4korr(frm_image + FRM_HEADER_SIZE + len)))
goto err;
forminfo= frm_image + pos;
if (forminfo + FRM_FORMINFO_SIZE >= frm_image_end)
goto err;
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (frm_image[61] && !share->default_part_plugin)
{
enum legacy_db_type db_type= (enum legacy_db_type) (uint) frm_image[61];
share->default_part_plugin= ha_lock_engine(NULL, ha_checktype(thd, db_type));
if (!share->default_part_plugin)
goto err;
}
#endif
legacy_db_type= (enum legacy_db_type) (uint) frm_image[3];
/*
if the storage engine is dynamic, no point in resolving it by its
dynamically allocated legacy_db_type. We will resolve it later by name.
*/
if (legacy_db_type > DB_TYPE_UNKNOWN &&
legacy_db_type < DB_TYPE_FIRST_DYNAMIC)
se_plugin= ha_lock_engine(NULL, ha_checktype(thd, legacy_db_type));
share->db_create_options= db_create_options= uint2korr(frm_image+30);
share->db_options_in_use= share->db_create_options;
share->mysql_version= uint4korr(frm_image+51);
share->table_type= TABLE_TYPE_NORMAL;
share->null_field_first= 0;
if (!frm_image[32]) // New frm file in 3.23
{
uint cs_org= (((uint) frm_image[41]) << 8) + (uint) frm_image[38];
uint cs_new= upgrade_collation(share->mysql_version, cs_org);
if (cs_org != cs_new)
share->incompatible_version|= HA_CREATE_USED_CHARSET;
share->avg_row_length= uint4korr(frm_image+34);
share->transactional= (ha_choice)
enum_value_with_check(thd, share, "transactional", frm_image[39] & 3, HA_CHOICE_MAX);
share->page_checksum= (ha_choice)
enum_value_with_check(thd, share, "page_checksum", (frm_image[39] >> 2) & 3, HA_CHOICE_MAX);
if (((ha_choice) enum_value_with_check(thd, share, "sequence",
(frm_image[39] >> 4) & 3,
HA_CHOICE_MAX)) == HA_CHOICE_YES)
{
share->table_type= TABLE_TYPE_SEQUENCE;
share->sequence= new (&share->mem_root) SEQUENCE();
share->non_determinstic_insert= true;
}
share->row_type= (enum row_type)
enum_value_with_check(thd, share, "row_format", frm_image[40], ROW_TYPE_MAX);
if (cs_new && !(share->table_charset= get_charset(cs_new, MYF(MY_WME))))
goto err;
share->null_field_first= 1;
share->stats_sample_pages= uint2korr(frm_image+42);
share->stats_auto_recalc= (enum_stats_auto_recalc)(frm_image[44]);
share->table_check_constraints= uint2korr(frm_image+45);
}
if (!share->table_charset)
{
const CHARSET_INFO *cs= thd->variables.collation_database;
/* unknown charset in frm_image[38] or pre-3.23 frm */
if (cs->use_mb())
{
/* Warn that we may be changing the size of character columns */
sql_print_warning("'%s' had no or invalid character set, "
"and default character set is multi-byte, "
"so character column sizes may have changed",
share->path.str);
}
share->table_charset= cs;
}
share->db_record_offset= 1;
share->max_rows= uint4korr(frm_image+18);
share->min_rows= uint4korr(frm_image+22);
/* Read keyinformation */
disk_buff= frm_image + uint2korr(frm_image+6);
if (disk_buff + 6 >= frm_image_end)
goto err;
if (disk_buff[0] & 0x80)
{
keys= (disk_buff[1] << 7) | (disk_buff[0] & 0x7f);
share->key_parts= key_parts= uint2korr(disk_buff+2);
}
else
{
keys= disk_buff[0];
share->key_parts= key_parts= disk_buff[1];
}
share->keys_for_keyread.init(0);
share->keys_in_use.init(keys);
ext_key_parts= key_parts;
len= (uint) uint2korr(disk_buff+4);
share->reclength = uint2korr(frm_image+16);
share->stored_rec_length= share->reclength;
if (frm_image[26] == 1)
share->system= 1; /* one-record-database */
record_offset= (ulong) (uint2korr(frm_image+6)+
((uint2korr(frm_image+14) == 0xffff ?
uint4korr(frm_image+47) : uint2korr(frm_image+14))));
if (record_offset + share->reclength >= frm_length)
goto err;
if ((n_length= uint4korr(frm_image+55)))
{
/* Read extra data segment */
const uchar *next_chunk, *buff_end;
DBUG_PRINT("info", ("extra segment size is %u bytes", n_length));
next_chunk= frm_image + record_offset + share->reclength;
buff_end= next_chunk + n_length;
if (buff_end >= frm_image_end)
goto err;
share->connect_string.length= uint2korr(next_chunk);
if (!(share->connect_string.str= strmake_root(&share->mem_root,
(char*) next_chunk + 2,
share->connect_string.
length)))
{
goto err;
}
next_chunk+= share->connect_string.length + 2;
if (next_chunk + 2 < buff_end)
{
uint str_db_type_length= uint2korr(next_chunk);
LEX_CSTRING name;
name.str= (char*) next_chunk + 2;
name.length= str_db_type_length;
plugin_ref tmp_plugin= ha_resolve_by_name(thd, &name, false);
if (tmp_plugin != NULL && !plugin_equals(tmp_plugin, se_plugin) &&
legacy_db_type != DB_TYPE_S3)
{
if (se_plugin)
{
/* bad file, legacy_db_type did not match the name */
sql_print_warning("%s.frm is inconsistent: engine typecode %d, engine name %s (%d)",
share->normalized_path.str, legacy_db_type,
plugin_name(tmp_plugin)->str,
ha_legacy_type(plugin_data(tmp_plugin, handlerton *)));
}
/*
tmp_plugin is locked with a local lock.
we unlock the old value of se_plugin before
replacing it with a globally locked version of tmp_plugin
*/
plugin_unlock(NULL, se_plugin);
se_plugin= plugin_lock(NULL, tmp_plugin);
}
#ifdef WITH_PARTITION_STORAGE_ENGINE
else if (str_db_type_length == 9 &&
!strncmp((char *) next_chunk + 2, "partition", 9))
{
/*
Use partition handler
tmp_plugin is locked with a local lock.
we unlock the old value of se_plugin before
replacing it with a globally locked version of tmp_plugin
*/
/* Check if the partitioning engine is ready */
if (!plugin_is_ready(&name, MYSQL_STORAGE_ENGINE_PLUGIN))
{
my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0),
"--skip-partition");
goto err;
}
plugin_unlock(NULL, se_plugin);
se_plugin= ha_lock_engine(NULL, partition_hton);
}
#endif
else if (!tmp_plugin)
{
/* purecov: begin inspected */
((char*) name.str)[name.length]=0;
my_error(ER_UNKNOWN_STORAGE_ENGINE, MYF(0), name.str);
goto err;
/* purecov: end */
}
next_chunk+= str_db_type_length + 2;
}
share->set_use_ext_keys_flag(plugin_hton(se_plugin)->flags & HTON_SUPPORTS_EXTENDED_KEYS);
if (create_key_infos(disk_buff + 6, frm_image_end, keys, keyinfo,
new_frm_ver, &ext_key_parts,
share, len, &first_keyinfo, &keynames))
goto err;
if (next_chunk + 5 < buff_end)
{
uint32 partition_info_str_len = uint4korr(next_chunk);
#ifdef WITH_PARTITION_STORAGE_ENGINE
if ((share->partition_info_buffer_size=
share->partition_info_str_len= partition_info_str_len))
{
if (!(share->partition_info_str= (char*)
memdup_root(&share->mem_root, next_chunk + 4,
partition_info_str_len + 1)))
{
goto err;
}
}
#else
if (partition_info_str_len)
{
DBUG_PRINT("info", ("WITH_PARTITION_STORAGE_ENGINE is not defined"));
goto err;
}
#endif
next_chunk+= 5 + partition_info_str_len;
}
if (share->mysql_version >= 50110 && next_chunk < buff_end)
{
/* New auto_partitioned indicator introduced in 5.1.11 */
#ifdef WITH_PARTITION_STORAGE_ENGINE
share->auto_partitioned= *next_chunk;
#endif
next_chunk++;
}
keyinfo= share->key_info;
for (i= 0; i < keys; i++, keyinfo++)
{
if (keyinfo->flags & HA_USES_PARSER)
{
LEX_CSTRING parser_name;
if (next_chunk >= buff_end)
{
DBUG_PRINT("error",
("fulltext key uses parser that is not defined in .frm"));
goto err;
}
parser_name.str= (char*) next_chunk;
parser_name.length= strlen((char*) next_chunk);
next_chunk+= parser_name.length + 1;
keyinfo->parser= my_plugin_lock_by_name(NULL, &parser_name,
MYSQL_FTPARSER_PLUGIN);
if (! keyinfo->parser)
{
my_error(ER_PLUGIN_IS_NOT_LOADED, MYF(0), parser_name.str);
goto err;
}
}
}
if (forminfo[46] == (uchar)255)
{
//reading long table comment
if (next_chunk + 2 > buff_end)
{
DBUG_PRINT("error",
("long table comment is not defined in .frm"));
goto err;
}
share->comment.length = uint2korr(next_chunk);
if (! (share->comment.str= strmake_root(&share->mem_root,
(char*)next_chunk + 2, share->comment.length)))
{
goto err;
}
next_chunk+= 2 + share->comment.length;
}
DBUG_ASSERT(next_chunk <= buff_end);
if (share->db_create_options & HA_OPTION_TEXT_CREATE_OPTIONS_legacy)
{
if (options.str)
goto err;
options.length= uint4korr(next_chunk);
options.str= next_chunk + 4;
next_chunk+= options.length + 4;
}
DBUG_ASSERT(next_chunk <= buff_end);
}
else
{
if (create_key_infos(disk_buff + 6, frm_image_end, keys, keyinfo,
new_frm_ver, &ext_key_parts,
share, len, &first_keyinfo, &keynames))
goto err;
}
share->key_block_size= uint2korr(frm_image+62);
keyinfo= share->key_info;
for (uint i= 0; i < share->keys; i++, keyinfo++)
if (keyinfo->algorithm == HA_KEY_ALG_LONG_HASH)
hash_fields++;
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (par_image && plugin_data(se_plugin, handlerton*) == partition_hton)
{
/*
Discovery returned a partition plugin. Change to use it. The partition
engine will then use discovery to find the rest of the plugin tables,
which may be in the original engine used for discovery
*/
share->db_plugin= se_plugin;
}
#endif
if (share->db_plugin && !plugin_equals(share->db_plugin, se_plugin))
goto err; // wrong engine (someone changed the frm under our feet?)
rec_buff_length= ALIGN_SIZE(share->reclength + 1);
share->rec_buff_length= rec_buff_length;
if (!(record= (uchar *) alloc_root(&share->mem_root, rec_buff_length)))
goto err; /* purecov: inspected */
MEM_NOACCESS(record, rec_buff_length);
MEM_UNDEFINED(record, share->reclength);
share->default_values= record;
memcpy(record, frm_image + record_offset, share->reclength);
disk_buff= frm_image + pos + FRM_FORMINFO_SIZE;
share->fields= uint2korr(forminfo+258);
if (extra2.field_flags.str && extra2.field_flags.length != share->fields)
goto err;
pos= uint2korr(forminfo+260); /* Length of all screens */
n_length= uint2korr(forminfo+268);
interval_count= uint2korr(forminfo+270);
interval_parts= uint2korr(forminfo+272);
int_length= uint2korr(forminfo+274);
share->null_fields= uint2korr(forminfo+282);
com_length= uint2korr(forminfo+284);
vcol_screen_length= uint2korr(forminfo+286);
share->virtual_fields= share->default_expressions=
share->field_check_constraints= share->default_fields= 0;
share->visible_fields= 0;
share->stored_fields= share->fields;
if (forminfo[46] != (uchar)255)
{
share->comment.length= (int) (forminfo[46]);
share->comment.str= strmake_root(&share->mem_root, (char*) forminfo+47,
share->comment.length);
}
DBUG_PRINT("info",("i_count: %d i_parts: %d index: %d n_length: %d int_length: %d com_length: %d vcol_screen_length: %d", interval_count,interval_parts, keys,n_length,int_length, com_length, vcol_screen_length));
/*
We load the following things into TYPELIBs:
- One TYPELIB for field names
- interval_count TYPELIBs for ENUM/SET values
- One TYPELIB for key names
Every TYPELIB requires one extra value with a NULL pointer and zero length,
which is the end-of-values marker.
TODO-10.5+:
Note, we should eventually reuse this total_typelib_value_count
to allocate interval_array. The below code reserves less space
than total_typelib_value_count pointers. So it seems `interval_array`
and `names` overlap in the memory. Too dangerous to fix in 10.1.
*/
total_typelib_value_count=
(share->fields + 1/*end-of-values marker*/) +
(interval_parts + interval_count/*end-of-values markers*/) +
(keys + 1/*end-of-values marker*/);
if (!multi_alloc_root(&share->mem_root,
&share->field, (uint)(share->fields+1)*sizeof(Field*),
&share->intervals, (uint)interval_count*sizeof(TYPELIB),
&share->check_constraints, (uint) share->table_check_constraints * sizeof(Virtual_column_info*),
/*
This looks wrong: shouldn't it be (+2+interval_count)
instread of (+3) ?
*/
&interval_array, (uint) (share->fields+interval_parts+ keys+3)*sizeof(char *),
&typelib_value_lengths, total_typelib_value_count * sizeof(uint *),
&names, (uint) (n_length+int_length),
&comment_pos, (uint) com_length,
&vcol_screen_pos, vcol_screen_length,
NullS))
goto err;
field_ptr= share->field;
table_check_constraints= share->check_constraints;
read_length=(uint) (share->fields * field_pack_length +
pos+ (uint) (n_length+int_length+com_length+
vcol_screen_length));
strpos= disk_buff+pos;
if (!interval_count)
share->intervals= 0; // For better debugging
share->vcol_defs.str= vcol_screen_pos;
share->vcol_defs.length= vcol_screen_length;
memcpy(names, strpos+(share->fields*field_pack_length), n_length+int_length);
memcpy(comment_pos, disk_buff+read_length-com_length-vcol_screen_length,
com_length);
memcpy(vcol_screen_pos, disk_buff+read_length-vcol_screen_length,
vcol_screen_length);
if (fix_type_pointers(&interval_array, &typelib_value_lengths,
&share->fieldnames, 1, names, n_length) ||
share->fieldnames.count != share->fields)
goto err;
if (fix_type_pointers(&interval_array, &typelib_value_lengths,
share->intervals, interval_count,
names + n_length, int_length))
goto err;
if (keynames.length &&
(fix_type_pointers(&interval_array, &typelib_value_lengths,
&share->keynames, 1, keynames.str, keynames.length) ||
share->keynames.count != keys))
goto err;
/* Allocate handler */
if (!(handler_file= get_new_handler(share, thd->mem_root,
plugin_hton(se_plugin))))
goto err;
if (handler_file->set_ha_share_ref(&share->ha_share))
goto err;
record= share->default_values-1; /* Fieldstart = 1 */
null_bits_are_used= share->null_fields != 0;
if (share->null_field_first)
{
null_flags= null_pos= record+1;
null_bit_pos= (db_create_options & HA_OPTION_PACK_RECORD) ? 0 : 1;
/*
null_bytes below is only correct under the condition that
there are no bit fields. Correct values is set below after the
table struct is initialized
*/
share->null_bytes= (share->null_fields + null_bit_pos + 7) / 8;
}
#ifndef WE_WANT_TO_SUPPORT_VERY_OLD_FRM_FILES
else
{
share->null_bytes= (share->null_fields+7)/8;
null_flags= null_pos= record + 1 + share->reclength - share->null_bytes;
null_bit_pos= 0;
}
#endif
use_hash= share->fields >= MAX_FIELDS_BEFORE_HASH;
if (use_hash)
use_hash= !my_hash_init(PSI_INSTRUMENT_ME, &share->name_hash,
system_charset_info, share->fields, 0, 0,
(my_hash_get_key) get_field_name, 0, 0);
if (share->mysql_version >= 50700 && share->mysql_version < 100000 &&
vcol_screen_length)
{
/*
MySQL 5.7 stores the null bits for not stored fields last.
Calculate the position for them.
*/
mysql57_null_bits= 1;
mysql57_vcol_null_pos= null_pos;
mysql57_vcol_null_bit_pos= null_bit_pos;
mysql57_calculate_null_position(share, &mysql57_vcol_null_pos,
&mysql57_vcol_null_bit_pos,
strpos, vcol_screen_pos);
}
/* Set system versioning information. */
vers.name= Lex_ident(STRING_WITH_LEN("SYSTEM_TIME"));
if (extra2.system_period.str == NULL)
{
versioned= VERS_UNDEFINED;
vers.start_fieldno= 0;
vers.end_fieldno= 0;
}
else
{
DBUG_PRINT("info", ("Setting system versioning informations"));
if (init_period_from_extra2(&vers, extra2.system_period.str,
extra2.system_period.str + extra2.system_period.length))
goto err;
DBUG_PRINT("info", ("Columns with system versioning: [%d, %d]",
vers.start_fieldno, vers.end_fieldno));
versioned= VERS_TIMESTAMP;
vers_can_native= handler_file->vers_can_native(thd);
status_var_increment(thd->status_var.feature_system_versioning);
} // if (system_period == NULL)
if (extra2.application_period.str)
{
const uchar *pos= extra2.application_period.str;
const uchar *end= pos + extra2.application_period.length;
period.name.length= extra2_read_len(&pos, end);
period.name.str= strmake_root(&mem_root, (char*)pos, period.name.length);
pos+= period.name.length;
period.constr_name.length= extra2_read_len(&pos, end);
period.constr_name.str= strmake_root(&mem_root, (char*)pos,
period.constr_name.length);
pos+= period.constr_name.length;
if (init_period_from_extra2(&period, pos, end))
goto err;
if (extra2_str_size(period.name.length)
+ extra2_str_size(period.constr_name.length)
+ 2 * frm_fieldno_size
!= extra2.application_period.length)
goto err;
status_var_increment(thd->status_var.feature_application_time_periods);
}
if (extra2.without_overlaps.str)
{
if (extra2.application_period.str == NULL)
goto err;
const uchar *key_pos= extra2.without_overlaps.str;
period.unique_keys= read_frm_keyno(key_pos);
for (uint k= 0; k < period.unique_keys; k++)
{
key_pos+= frm_keyno_size;
uint key_nr= read_frm_keyno(key_pos);
key_info[key_nr].without_overlaps= true;
}
if ((period.unique_keys + 1) * frm_keyno_size
!= extra2.without_overlaps.length)
goto err;
}
if (extra2.field_data_type_info.length &&
field_data_type_info_array.parse(old_root, share->fields,
extra2.field_data_type_info))
goto err;
for (i=0 ; i < share->fields; i++, strpos+=field_pack_length, field_ptr++)
{
uint interval_nr= 0, recpos;
LEX_CSTRING comment;
LEX_CSTRING name;
Virtual_column_info *vcol_info= 0;
const Type_handler *handler;
uint32 flags= 0;
Column_definition_attributes attr;
if (new_frm_ver >= 3)
{
/* new frm file in 4.1 */
recpos= uint3korr(strpos+5);
uint comment_length=uint2korr(strpos+15);
if (!comment_length)
{
comment.str= (char*) "";
comment.length=0;
}
else
{
comment.str= (char*) comment_pos;
comment.length= comment_length;
comment_pos+= comment_length;
}
if ((uchar) strpos[13] == (uchar) MYSQL_TYPE_VIRTUAL)
{
/*
MariaDB version 10.0 version.
The interval_id byte in the .frm file stores the length of the
expression statement for a virtual column.
*/
uint vcol_info_length= (uint) strpos[12];
if (!vcol_info_length) // Expect non-null expression
goto err;
attr.frm_unpack_basic(strpos);
if (attr.frm_unpack_charset(share, strpos))
goto err;
/*
Old virtual field information before 10.2
Get virtual column data stored in the .frm file as follows:
byte 1 = 1 | 2
byte 2 = sql_type
byte 3 = flags. 1 for stored_in_db
[byte 4] = optional interval_id for sql_type (if byte 1 == 2)
next byte ... = virtual column expression (text data)
*/
vcol_info= new (&share->mem_root) Virtual_column_info();
bool opt_interval_id= (uint)vcol_screen_pos[0] == 2;
enum_field_types ftype= (enum_field_types) (uchar) vcol_screen_pos[1];
if (!(handler= Type_handler::get_handler_by_real_type(ftype)))
goto err;
if (opt_interval_id)
interval_nr= (uint)vcol_screen_pos[3];
else if ((uint)vcol_screen_pos[0] != 1)
goto err;
bool stored= vcol_screen_pos[2] & 1;
vcol_info->stored_in_db= stored;
vcol_info->set_vcol_type(stored ? VCOL_GENERATED_STORED : VCOL_GENERATED_VIRTUAL);
uint vcol_expr_length= vcol_info_length -
(uint)(FRM_VCOL_OLD_HEADER_SIZE(opt_interval_id));
vcol_info->utf8= 0; // before 10.2.1 the charset was unknown
int2store(vcol_screen_pos+1, vcol_expr_length); // for parse_vcol_defs()
vcol_screen_pos+= vcol_info_length;
share->virtual_fields++;
}
else
{
interval_nr= (uint) strpos[12];
enum_field_types field_type= (enum_field_types) strpos[13];
if (!(handler= Type_handler::get_handler_by_real_type(field_type)))
goto err; // Not supported field type
handler= handler->type_handler_frm_unpack(strpos);
if (handler->Column_definition_attributes_frm_unpack(&attr, share,
strpos,
&extra2.gis))
goto err;
if (field_data_type_info_array.count())
{
const LEX_CSTRING &info= field_data_type_info_array.
element(i).type_info();
DBUG_EXECUTE_IF("frm_data_type_info",
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_UNKNOWN_ERROR, "DBUG: [%u] name='%s' type_info='%.*s'",
i, share->fieldnames.type_names[i],
(uint) info.length, info.str););
if (info.length)
{
const Type_handler *h= Type_handler::handler_by_name_or_error(thd,
info);
/*
This code will eventually be extended here:
- If the handler was not found by name, we could
still open the table using the fallback type handler "handler",
at least for a limited set of commands.
- If the handler was found by name, we could check
that "h" and "handler" have the same type code
(and maybe some other properties) to make sure
that the FRM data is consistent.
*/
if (!h)
goto err;
handler= h;
}
}
}
if (((uint) strpos[10]) & MYSQL57_GENERATED_FIELD)
{
attr.unireg_check= Field::NONE;
/*
MySQL 5.7 generated fields
byte 1 = 1
byte 2,3 = expr length
byte 4 = stored_in_db
byte 5.. = expr
*/
if ((uint)(vcol_screen_pos)[0] != 1)
goto err;
vcol_info= new (&share->mem_root) Virtual_column_info();
uint vcol_info_length= uint2korr(vcol_screen_pos + 1);
if (!vcol_info_length) // Expect non-empty expression
goto err;
vcol_info->stored_in_db= vcol_screen_pos[3];
vcol_info->utf8= 0;
vcol_screen_pos+= vcol_info_length + MYSQL57_GCOL_HEADER_SIZE;;
share->virtual_fields++;
}
}
else
{
attr.length= (uint) strpos[3];
recpos= uint2korr(strpos+4),
attr.pack_flag= uint2korr(strpos+6);
if (f_is_num(attr.pack_flag))
{
attr.decimals= f_decimals(attr.pack_flag);
attr.pack_flag&= ~FIELDFLAG_DEC_MASK;
}
attr.pack_flag&= ~FIELDFLAG_NO_DEFAULT; // Safety for old files
attr.unireg_check= (Field::utype) MTYP_TYPENR((uint) strpos[8]);
interval_nr= (uint) strpos[10];
/* old frm file */
enum_field_types ftype= (enum_field_types) f_packtype(attr.pack_flag);
if (!(handler= Type_handler::get_handler_by_real_type(ftype)))
goto err; // Not supported field type
if (f_is_binary(attr.pack_flag))
{
/*
Try to choose the best 4.1 type:
- for 4.0 "CHAR(N) BINARY" or "VARCHAR(N) BINARY"
try to find a binary collation for character set.
- for other types (e.g. BLOB) just use my_charset_bin.
*/
if (!f_is_blob(attr.pack_flag))
{
// 3.23 or 4.0 string
if (!(attr.charset= get_charset_by_csname(share->table_charset->csname,
MY_CS_BINSORT, MYF(0))))
attr.charset= &my_charset_bin;
}
}
else
attr.charset= share->table_charset;
bzero((char*) &comment, sizeof(comment));
if ((!(handler= old_frm_type_handler(attr.pack_flag, interval_nr))))
goto err; // Not supported field type
}
/* Remove >32 decimals from old files */
if (share->mysql_version < 100200)
attr.pack_flag&= ~FIELDFLAG_LONG_DECIMAL;
if (interval_nr && attr.charset->mbminlen > 1)
{
/* Unescape UCS2 intervals from HEX notation */
TYPELIB *interval= share->intervals + interval_nr - 1;
unhex_type2(interval);
}
#ifndef TO_BE_DELETED_ON_PRODUCTION
if (handler->real_field_type() == MYSQL_TYPE_NEWDECIMAL &&
!share->mysql_version)
{
/*
Fix pack length of old decimal values from 5.0.3 -> 5.0.4
The difference is that in the old version we stored precision
in the .frm table while we now store the display_length
*/
uint decimals= f_decimals(attr.pack_flag);
attr.length=
my_decimal_precision_to_length((uint) attr.length, decimals,
f_is_dec(attr.pack_flag) == 0);
sql_print_error("Found incompatible DECIMAL field '%s' in %s; "
"Please do \"ALTER TABLE '%s' FORCE\" to fix it!",
share->fieldnames.type_names[i], share->table_name.str,
share->table_name.str);
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_CRASHED_ON_USAGE,
"Found incompatible DECIMAL field '%s' in %s; "
"Please do \"ALTER TABLE '%s' FORCE\" to fix it!",
share->fieldnames.type_names[i],
share->table_name.str,
share->table_name.str);
share->crashed= 1; // Marker for CHECK TABLE
}
#endif
if (mysql57_null_bits && vcol_info && !vcol_info->stored_in_db)
{
swap_variables(uchar*, null_pos, mysql57_vcol_null_pos);
swap_variables(uint, null_bit_pos, mysql57_vcol_null_bit_pos);
}
if (versioned)
{
if (i == vers.start_fieldno)
flags|= VERS_SYS_START_FLAG;
else if (i == vers.end_fieldno)
flags|= VERS_SYS_END_FLAG;
if (flags & VERS_SYSTEM_FIELD)
{
switch (handler->real_field_type())
{
case MYSQL_TYPE_TIMESTAMP2:
break;
case MYSQL_TYPE_LONGLONG:
if (vers_can_native)
{
versioned= VERS_TRX_ID;
break;
}
/* Fallthrough */
default:
my_error(ER_VERS_FIELD_WRONG_TYPE, MYF(0), fieldnames.type_names[i],
versioned == VERS_TIMESTAMP ? "TIMESTAMP(6)" : "BIGINT(20) UNSIGNED",
table_name.str);
goto err;
}
}
}
/* Convert pre-10.2.2 timestamps to use Field::default_value */
name.str= fieldnames.type_names[i];
name.length= strlen(name.str);
attr.interval= interval_nr ? share->intervals + interval_nr - 1 : NULL;
Record_addr addr(record + recpos, null_pos, null_bit_pos);
*field_ptr= reg_field=
attr.make_field(share, &share->mem_root, &addr, handler, &name, flags);
if (!reg_field) // Not supported field type
goto err;
if (attr.unireg_check == Field::TIMESTAMP_DNUN_FIELD ||
attr.unireg_check == Field::TIMESTAMP_DN_FIELD)
{
reg_field->default_value= new (&share->mem_root) Virtual_column_info();
reg_field->default_value->set_vcol_type(VCOL_DEFAULT);
reg_field->default_value->stored_in_db= 1;
share->default_expressions++;
}
reg_field->field_index= i;
reg_field->comment=comment;
reg_field->vcol_info= vcol_info;
reg_field->flags|= flags;
if (extra2.field_flags.str)
{
uchar flags= *extra2.field_flags.str++;
if (flags & VERS_OPTIMIZED_UPDATE)
reg_field->flags|= VERS_UPDATE_UNVERSIONED_FLAG;
reg_field->invisible= f_visibility(flags);
}
if (reg_field->invisible == INVISIBLE_USER)
status_var_increment(thd->status_var.feature_invisible_columns);
if (!reg_field->invisible)
share->visible_fields++;
if (handler->real_field_type() == MYSQL_TYPE_BIT &&
!f_bit_as_char(attr.pack_flag))
{
null_bits_are_used= 1;
if ((null_bit_pos+= (uint) (attr.length & 7)) > 7)
{
null_pos++;
null_bit_pos-= 8;
}
}
if (!(reg_field->flags & NOT_NULL_FLAG))
{
if (!(null_bit_pos= (null_bit_pos + 1) & 7))
null_pos++;
}
if (vcol_info)
{
vcol_info->name= reg_field->field_name;
if (mysql57_null_bits && !vcol_info->stored_in_db)
{
/* MySQL 5.7 has null bits last */
swap_variables(uchar*, null_pos, mysql57_vcol_null_pos);
swap_variables(uint, null_bit_pos, mysql57_vcol_null_bit_pos);
}
}
if (f_no_default(attr.pack_flag))
reg_field->flags|= NO_DEFAULT_VALUE_FLAG;
if (reg_field->unireg_check == Field::NEXT_NUMBER)
share->found_next_number_field= field_ptr;
if (use_hash && my_hash_insert(&share->name_hash, (uchar*) field_ptr))
goto err;
if (!reg_field->stored_in_db())
{
share->stored_fields--;
if (share->stored_rec_length>=recpos)
share->stored_rec_length= recpos-1;
}
if (reg_field->has_update_default_function())
{
has_update_default_function= 1;
if (!reg_field->default_value)
share->default_fields++;
}
}
*field_ptr=0; // End marker
/* Sanity checks: */
DBUG_ASSERT(share->fields>=share->stored_fields);
DBUG_ASSERT(share->reclength>=share->stored_rec_length);
if (mysql57_null_bits)
{
/* We want to store the value for the last bits */
swap_variables(uchar*, null_pos, mysql57_vcol_null_pos);
swap_variables(uint, null_bit_pos, mysql57_vcol_null_bit_pos);
DBUG_ASSERT((null_pos + (null_bit_pos + 7) / 8) <= share->field[0]->ptr);
}
/* Fix key->name and key_part->field */
if (key_parts)
{
keyinfo= share->key_info;
uint hash_field_used_no= share->fields - hash_fields;
KEY_PART_INFO *hash_keypart;
Field *hash_field;
uint offset= share->reclength - HA_HASH_FIELD_LENGTH * hash_fields;
for (uint i= 0; i < share->keys; i++, keyinfo++)
{
/* We need set value in hash key_part */
if (keyinfo->algorithm == HA_KEY_ALG_LONG_HASH)
{
share->long_unique_table= 1;
hash_keypart= keyinfo->key_part + keyinfo->user_defined_key_parts;
hash_keypart->length= HA_HASH_KEY_LENGTH_WITHOUT_NULL;
hash_keypart->store_length= hash_keypart->length;
hash_keypart->type= HA_KEYTYPE_ULONGLONG;
hash_keypart->key_part_flag= 0;
hash_keypart->key_type= 32834;
/* Last n fields are unique_index_hash fields*/
hash_keypart->offset= offset;
hash_keypart->fieldnr= hash_field_used_no + 1;
hash_field= share->field[hash_field_used_no];
hash_field->flags|= LONG_UNIQUE_HASH_FIELD;//Used in parse_vcol_defs
keyinfo->flags|= HA_NOSAME;
share->virtual_fields++;
share->stored_fields--;
if (record + share->stored_rec_length >= hash_field->ptr)
share->stored_rec_length= (ulong)(hash_field->ptr - record - 1);
hash_field_used_no++;
offset+= HA_HASH_FIELD_LENGTH;
}
}
uint add_first_key_parts= 0;
longlong ha_option= handler_file->ha_table_flags();
keyinfo= share->key_info;
uint primary_key= my_strcasecmp(system_charset_info, share->keynames.type_names[0],
primary_key_name) ? MAX_KEY : 0;
KEY* key_first_info= NULL;
if (primary_key >= MAX_KEY && keyinfo->flags & HA_NOSAME &&
keyinfo->algorithm != HA_KEY_ALG_LONG_HASH)
{
/*
If the UNIQUE key doesn't have NULL columns and is not a part key
declare this as a primary key.
*/
primary_key= 0;
key_part= keyinfo->key_part;
for (i=0 ; i < keyinfo->user_defined_key_parts ;i++)
{
DBUG_ASSERT(key_part[i].fieldnr > 0);
// Table field corresponding to the i'th key part.
Field *table_field= share->field[key_part[i].fieldnr - 1];
/*
If the key column is of NOT NULL BLOB type, then it
will definitly have key prefix. And if key part prefix size
is equal to the BLOB column max size, then we can promote
it to primary key.
*/
if (!table_field->real_maybe_null() &&
table_field->type() == MYSQL_TYPE_BLOB &&
table_field->field_length == key_part[i].length)
continue;
if (table_field->real_maybe_null() ||
table_field->key_length() != key_part[i].length)
{
primary_key= MAX_KEY; // Can't be used
break;
}
}
}
if (share->use_ext_keys)
{
if (primary_key >= MAX_KEY)
{
add_first_key_parts= 0;
share->set_use_ext_keys_flag(FALSE);
}
else
{
add_first_key_parts= first_keyinfo.user_defined_key_parts;
/*
Do not add components of the primary key starting from
the major component defined over the beginning of a field.
*/
for (i= 0; i < first_keyinfo.user_defined_key_parts; i++)
{
uint fieldnr= keyinfo[0].key_part[i].fieldnr;
if (share->field[fieldnr-1]->key_length() !=
keyinfo[0].key_part[i].length)
{
add_first_key_parts= i;
break;
}
}
}
}
key_first_info= keyinfo;
for (uint key=0 ; key < keys ; key++,keyinfo++)
{
uint usable_parts= 0;
keyinfo->name.str= share->keynames.type_names[key];
keyinfo->name.length= strlen(keyinfo->name.str);
keyinfo->cache_name=
(uchar*) alloc_root(&share->mem_root,
share->table_cache_key.length+
keyinfo->name.length + 1);
if (keyinfo->cache_name) // If not out of memory
{
uchar *pos= keyinfo->cache_name;
memcpy(pos, share->table_cache_key.str, share->table_cache_key.length);
memcpy(pos + share->table_cache_key.length, keyinfo->name.str,
keyinfo->name.length+1);
}
if (ext_key_parts > share->key_parts && key)
{
KEY_PART_INFO *new_key_part= (keyinfo-1)->key_part +
(keyinfo-1)->ext_key_parts;
uint add_keyparts_for_this_key= add_first_key_parts;
uint len_null_byte= 0, ext_key_length= 0;
Field *field;
if ((keyinfo-1)->algorithm == HA_KEY_ALG_LONG_HASH)
new_key_part++; // reserved for the hash value
/*
Do not extend the key that contains a component
defined over the beginning of a field.
*/
for (i= 0; i < keyinfo->user_defined_key_parts; i++)
{
uint length_bytes= 0;
uint fieldnr= keyinfo->key_part[i].fieldnr;
field= share->field[fieldnr-1];
if (field->null_ptr)
len_null_byte= HA_KEY_NULL_LENGTH;
if (keyinfo->algorithm != HA_KEY_ALG_LONG_HASH)
length_bytes= field->key_part_length_bytes();
ext_key_length+= keyinfo->key_part[i].length + len_null_byte
+ length_bytes;
if (field->key_length() != keyinfo->key_part[i].length)
{
add_keyparts_for_this_key= 0;
break;
}
}
if (add_keyparts_for_this_key)
{
for (i= 0; i < add_keyparts_for_this_key; i++)
{
uint pk_part_length= key_first_info->key_part[i].store_length;
if (keyinfo->ext_key_part_map & 1<<i)
{
if (ext_key_length + pk_part_length > MAX_DATA_LENGTH_FOR_KEY)
{
add_keyparts_for_this_key= i;
break;
}
ext_key_length+= pk_part_length;
}
}
}
if (add_keyparts_for_this_key < keyinfo->ext_key_parts -
keyinfo->user_defined_key_parts)
{
share->ext_key_parts-= keyinfo->ext_key_parts;
key_part_map ext_key_part_map= keyinfo->ext_key_part_map;
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
keyinfo->ext_key_flags= keyinfo->flags;
keyinfo->ext_key_part_map= 0;
for (i= 0; i < add_keyparts_for_this_key; i++)
{
if (ext_key_part_map & 1<<i)
{
keyinfo->ext_key_part_map|= 1<<i;
keyinfo->ext_key_parts++;
}
}
share->ext_key_parts+= keyinfo->ext_key_parts;
}
if (new_key_part != keyinfo->key_part)
{
memmove(new_key_part, keyinfo->key_part,
sizeof(KEY_PART_INFO) * keyinfo->ext_key_parts);
keyinfo->key_part= new_key_part;
}
}
/* Fix fulltext keys for old .frm files */
if (share->key_info[key].flags & HA_FULLTEXT)
share->key_info[key].algorithm= HA_KEY_ALG_FULLTEXT;
key_part= keyinfo->key_part;
uint key_parts= share->use_ext_keys ? keyinfo->ext_key_parts :
keyinfo->user_defined_key_parts;
if (keyinfo->algorithm == HA_KEY_ALG_LONG_HASH)
key_parts++;
for (i=0; i < key_parts; key_part++, i++)
{
Field *field;
if (new_field_pack_flag <= 1)
key_part->fieldnr= (uint16) find_field(share->field,
share->default_values,
(uint) key_part->offset,
(uint) key_part->length);
if (!key_part->fieldnr)
goto err;
field= key_part->field= share->field[key_part->fieldnr-1];
key_part->type= field->key_type();
if (field->invisible > INVISIBLE_USER && !field->vers_sys_field())
if (keyinfo->algorithm != HA_KEY_ALG_LONG_HASH)
keyinfo->flags |= HA_INVISIBLE_KEY;
if (field->null_ptr)
{
key_part->null_offset=(uint) ((uchar*) field->null_ptr -
share->default_values);
key_part->null_bit= field->null_bit;
key_part->store_length+=HA_KEY_NULL_LENGTH;
keyinfo->flags|=HA_NULL_PART_KEY;
keyinfo->key_length+= HA_KEY_NULL_LENGTH;
}
key_part->key_part_flag|= field->key_part_flag();
uint16 key_part_length_bytes= field->key_part_length_bytes();
key_part->store_length+= key_part_length_bytes;
keyinfo->key_length+= key_part_length_bytes;
if (i == 0 && key != primary_key)
field->flags |= (((keyinfo->flags & HA_NOSAME ||
keyinfo->algorithm == HA_KEY_ALG_LONG_HASH) &&
(keyinfo->user_defined_key_parts == 1)) ?
UNIQUE_KEY_FLAG : MULTIPLE_KEY_FLAG);
if (i == 0)
field->key_start.set_bit(key);
if (field->key_length() == key_part->length &&
!(field->flags & BLOB_FLAG) &&
keyinfo->algorithm != HA_KEY_ALG_LONG_HASH)
{
if (handler_file->index_flags(key, i, 0) & HA_KEYREAD_ONLY)
{
share->keys_for_keyread.set_bit(key);
field->part_of_key.set_bit(key);
if (i < keyinfo->user_defined_key_parts)
field->part_of_key_not_clustered.set_bit(key);
}
if (handler_file->index_flags(key, i, 1) & HA_READ_ORDER)
field->part_of_sortkey.set_bit(key);
}
if (!(key_part->key_part_flag & HA_REVERSE_SORT) &&
usable_parts == i)
usable_parts++; // For FILESORT
field->flags|= PART_KEY_FLAG;
if (key == primary_key)
{
field->flags|= PRI_KEY_FLAG;
/*
If this field is part of the primary key and all keys contains
the primary key, then we can use any key to find this column
*/
if (ha_option & HA_PRIMARY_KEY_IN_READ_INDEX)
{
if (field->key_length() == key_part->length &&
!(field->flags & BLOB_FLAG))
field->part_of_key= share->keys_in_use;
if (field->part_of_sortkey.is_set(key))
field->part_of_sortkey= share->keys_in_use;
}
}
if (field->key_length() != key_part->length)
{
#ifndef TO_BE_DELETED_ON_PRODUCTION
if (field->type() == MYSQL_TYPE_NEWDECIMAL &&
keyinfo->algorithm != HA_KEY_ALG_LONG_HASH)
{
/*
Fix a fatal error in decimal key handling that causes crashes
on Innodb. We fix it by reducing the key length so that
InnoDB never gets a too big key when searching.
This allows the end user to do an ALTER TABLE to fix the
error.
*/
keyinfo->key_length-= (key_part->length - field->key_length());
key_part->store_length-= (uint16)(key_part->length -
field->key_length());
key_part->length= (uint16)field->key_length();
sql_print_error("Found wrong key definition in %s; "
"Please do \"ALTER TABLE '%s' FORCE \" to fix it!",
share->table_name.str,
share->table_name.str);
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_CRASHED_ON_USAGE,
"Found wrong key definition in %s; "
"Please do \"ALTER TABLE '%s' FORCE\" to fix "
"it!",
share->table_name.str,
share->table_name.str);
share->crashed= 1; // Marker for CHECK TABLE
continue;
}
#endif
key_part->key_part_flag|= HA_PART_KEY_SEG;
}
if (field->real_maybe_null())
key_part->key_part_flag|= HA_NULL_PART;
/*
Sometimes we can compare key parts for equality with memcmp.
But not always.
*/
if (!(key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART |
HA_BIT_PART)) &&
key_part->type != HA_KEYTYPE_FLOAT &&
key_part->type == HA_KEYTYPE_DOUBLE &&
keyinfo->algorithm != HA_KEY_ALG_LONG_HASH)
key_part->key_part_flag|= HA_CAN_MEMCMP;
}
keyinfo->usable_key_parts= usable_parts; // Filesort
set_if_bigger(share->max_key_length,keyinfo->key_length+
keyinfo->user_defined_key_parts);
share->total_key_length+= keyinfo->key_length;
/*
MERGE tables do not have unique indexes. But every key could be
an unique index on the underlying MyISAM table. (Bug #10400)
*/
if ((keyinfo->flags & HA_NOSAME) ||
(ha_option & HA_ANY_INDEX_MAY_BE_UNIQUE))
set_if_bigger(share->max_unique_length,keyinfo->key_length);
}
if (primary_key < MAX_KEY &&
(share->keys_in_use.is_set(primary_key)))
{
share->primary_key= primary_key;
/*
If we are using an integer as the primary key then allow the user to
refer to it as '_rowid'
*/
if (share->key_info[primary_key].user_defined_key_parts == 1)
{
Field *field= share->key_info[primary_key].key_part[0].field;
if (field && field->result_type() == INT_RESULT)
{
/* note that fieldnr here (and rowid_field_offset) starts from 1 */
share->rowid_field_offset= (share->key_info[primary_key].key_part[0].
fieldnr);
}
}
}
else
share->primary_key = MAX_KEY; // we do not have a primary key
}
else
share->primary_key= MAX_KEY;
if (new_field_pack_flag <= 1)
{
/* Old file format with default as not null */
uint null_length= (share->null_fields+7)/8;
bfill(share->default_values + (null_flags - (uchar*) record),
null_length, 255);
}
set_overlapped_keys();
/* Handle virtual expressions */
if (vcol_screen_length && share->frm_version >= FRM_VER_EXPRESSSIONS)
{
uchar *vcol_screen_end= vcol_screen_pos + vcol_screen_length;
/* Skip header */
vcol_screen_pos+= FRM_VCOL_NEW_BASE_SIZE;
share->vcol_defs.str+= FRM_VCOL_NEW_BASE_SIZE;
share->vcol_defs.length-= FRM_VCOL_NEW_BASE_SIZE;
/*
Read virtual columns, default values and check constraints
See pack_expression() for how data is stored
*/
while (vcol_screen_pos < vcol_screen_end)
{
Virtual_column_info *vcol_info;
uint type= (uint) vcol_screen_pos[0];
uint field_nr= uint2korr(vcol_screen_pos+1);
uint expr_length= uint2korr(vcol_screen_pos+3);
uint name_length= (uint) vcol_screen_pos[5];
if (!(vcol_info= new (&share->mem_root) Virtual_column_info()))
goto err;
/* The following can only be true for check_constraints */
if (field_nr != UINT_MAX16)
{
DBUG_ASSERT(field_nr < share->fields);
reg_field= share->field[field_nr];
}
else
{
reg_field= 0;
DBUG_ASSERT(name_length);
}
vcol_screen_pos+= FRM_VCOL_NEW_HEADER_SIZE;
vcol_info->set_vcol_type((enum_vcol_info_type) type);
if (name_length)
{
vcol_info->name.str= strmake_root(&share->mem_root,
(char*)vcol_screen_pos, name_length);
vcol_info->name.length= name_length;
}
else
vcol_info->name= reg_field->field_name;
vcol_screen_pos+= name_length + expr_length;
switch (type) {
case VCOL_GENERATED_VIRTUAL:
{
uint recpos;
reg_field->vcol_info= vcol_info;
share->virtual_fields++;
share->stored_fields--;
if (reg_field->flags & BLOB_FLAG)
share->virtual_not_stored_blob_fields++;
/* Correct stored_rec_length as non stored fields are last */
recpos= (uint) (reg_field->ptr - record);
if (share->stored_rec_length >= recpos)
share->stored_rec_length= recpos-1;
break;
}
case VCOL_GENERATED_STORED:
vcol_info->stored_in_db= 1;
DBUG_ASSERT(!reg_field->vcol_info);
reg_field->vcol_info= vcol_info;
share->virtual_fields++;
break;
case VCOL_DEFAULT:
vcol_info->stored_in_db= 1;
DBUG_ASSERT(!reg_field->default_value);
reg_field->default_value= vcol_info;
share->default_expressions++;
break;
case VCOL_CHECK_FIELD:
DBUG_ASSERT(!reg_field->check_constraint);
reg_field->check_constraint= vcol_info;
share->field_check_constraints++;
break;
case VCOL_CHECK_TABLE:
*(table_check_constraints++)= vcol_info;
break;
}
}
}
DBUG_ASSERT((uint) (table_check_constraints - share->check_constraints) ==
(uint) (share->table_check_constraints -
share->field_check_constraints));
if (options.str)
{
DBUG_ASSERT(options.length);
if (engine_table_options_frm_read(options.str, options.length, share))
goto err;
}
if (parse_engine_table_options(thd, handler_file->partition_ht(), share))
goto err;
if (share->found_next_number_field)
{
reg_field= *share->found_next_number_field;
if ((int) (share->next_number_index= (uint)
find_ref_key(share->key_info, keys,
share->default_values, reg_field,
&share->next_number_key_offset,
&share->next_number_keypart)) < 0)
goto err; // Wrong field definition
reg_field->flags |= AUTO_INCREMENT_FLAG;
}
if (share->blob_fields)
{
Field **ptr;
uint k, *save;
/* Store offsets to blob fields to find them fast */
if (!(share->blob_field= save=
(uint*) alloc_root(&share->mem_root,
(uint) (share->blob_fields* sizeof(uint)))))
goto err;
for (k=0, ptr= share->field ; *ptr ; ptr++, k++)
{
if ((*ptr)->flags & BLOB_FLAG)
(*save++)= k;
}
}
/*
the correct null_bytes can now be set, since bitfields have been taken
into account
*/
share->null_bytes= (uint)(null_pos - (uchar*) null_flags +
(null_bit_pos + 7) / 8);
share->last_null_bit_pos= null_bit_pos;
share->null_bytes_for_compare= null_bits_are_used ? share->null_bytes : 0;
share->can_cmp_whole_record= (share->blob_fields == 0 &&
share->varchar_fields == 0);
share->column_bitmap_size= bitmap_buffer_size(share->fields);
bitmap_count= 1;
if (share->table_check_constraints)
{
feature_check_constraint++;
if (!(share->check_set= (MY_BITMAP*)
alloc_root(&share->mem_root, sizeof(*share->check_set))))
goto err;
bitmap_count++;
}
if (!(bitmaps= (my_bitmap_map*) alloc_root(&share->mem_root,
share->column_bitmap_size *
bitmap_count)))
goto err;
my_bitmap_init(&share->all_set, bitmaps, share->fields, FALSE);
bitmap_set_all(&share->all_set);
if (share->check_set)
{
/*
Bitmap for fields used by CHECK constraint. Will be filled up
at first usage of table.
*/
my_bitmap_init(share->check_set,
(my_bitmap_map*) ((uchar*) bitmaps +
share->column_bitmap_size),
share->fields, FALSE);
bitmap_clear_all(share->check_set);
}
#ifndef DBUG_OFF
if (use_hash)
(void) my_hash_check(&share->name_hash);
#endif
share->db_plugin= se_plugin;
delete handler_file;
share->error= OPEN_FRM_OK;
thd->status_var.opened_shares++;
thd->mem_root= old_root;
DBUG_RETURN(0);
err:
if (frm_created)
{
char path[FN_REFLEN+1];
strxnmov(path, FN_REFLEN, normalized_path.str, reg_ext, NullS);
my_delete(path, MYF(0));
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (par_image)
{
strxnmov(path, FN_REFLEN, normalized_path.str, PAR_EXT, NullS);
my_delete(path, MYF(0));
}
#endif
}
share->db_plugin= NULL;
share->error= OPEN_FRM_CORRUPTED;
share->open_errno= my_errno;
delete handler_file;
plugin_unlock(0, se_plugin);
my_hash_free(&share->name_hash);
if (!thd->is_error())
open_table_error(share, OPEN_FRM_CORRUPTED, share->open_errno);
thd->mem_root= old_root;
DBUG_RETURN(HA_ERR_NOT_A_TABLE);
}
static bool sql_unusable_for_discovery(THD *thd, handlerton *engine,
const char *sql)
{
LEX *lex= thd->lex;
HA_CREATE_INFO *create_info= &lex->create_info;
// ... not CREATE TABLE
if (lex->sql_command != SQLCOM_CREATE_TABLE &&
lex->sql_command != SQLCOM_CREATE_SEQUENCE)
return 1;
// ... create like
if (lex->create_info.like())
return 1;
// ... create select
if (lex->first_select_lex()->item_list.elements)
return 1;
// ... temporary
if (create_info->tmp_table())
return 1;
// ... if exists
if (lex->create_info.if_not_exists())
return 1;
// XXX error out or rather ignore the following:
// ... partitioning
if (lex->part_info)
return 1;
// ... union
if (create_info->used_fields & HA_CREATE_USED_UNION)
return 1;
// ... index/data directory
if (create_info->data_file_name || create_info->index_file_name)
return 1;
// ... engine
DBUG_ASSERT(lex->m_sql_cmd);
if (lex->create_info.used_fields & HA_CREATE_USED_ENGINE)
{
/*
TODO: we could just compare engine names here, without resolving.
But this optimization is too late for 10.1.
*/
Storage_engine_name *opt= lex->m_sql_cmd->option_storage_engine_name();
DBUG_ASSERT(opt); // lex->m_sql_cmd must be an Sql_cmd_create_table instance
if (opt->resolve_storage_engine_with_error(thd, &create_info->db_type,
false) ||
(create_info->db_type && create_info->db_type != engine))
return 1;
}
// ... WITH SYSTEM VERSIONING
if (create_info->versioned())
return 1;
return 0;
}
int TABLE_SHARE::init_from_sql_statement_string(THD *thd, bool write,
const char *sql, size_t sql_length)
{
CHARSET_INFO *old_cs= thd->variables.character_set_client;
Parser_state parser_state;
bool error;
char *sql_copy;
handler *file;
LEX *old_lex;
Query_arena *arena, backup;
LEX tmp_lex;
KEY *unused1;
uint unused2;
handlerton *hton= plugin_hton(db_plugin);
LEX_CUSTRING frm= {0,0};
LEX_CSTRING db_backup= thd->db;
DBUG_ENTER("TABLE_SHARE::init_from_sql_statement_string");
/*
Ouch. Parser may *change* the string it's working on.
Currently (2013-02-26) it is used to permanently disable
conditional comments.
Anyway, let's copy the caller's string...
*/
if (!(sql_copy= thd->strmake(sql, sql_length)))
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
if (parser_state.init(thd, sql_copy, sql_length))
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
Sql_mode_instant_set sms(thd, MODE_NO_ENGINE_SUBSTITUTION | MODE_NO_DIR_IN_CREATE);
thd->variables.character_set_client= system_charset_info;
tmp_disable_binlog(thd);
old_lex= thd->lex;
thd->lex= &tmp_lex;
arena= thd->stmt_arena;
if (arena->is_conventional())
arena= 0;
else
thd->set_n_backup_active_arena(arena, &backup);
thd->reset_db(&db);
lex_start(thd);
if (unlikely((error= parse_sql(thd, & parser_state, NULL) ||
sql_unusable_for_discovery(thd, hton, sql_copy))))
goto ret;
thd->lex->create_info.db_type= hton;
#ifdef WITH_PARTITION_STORAGE_ENGINE
thd->work_part_info= 0; // For partitioning
#endif
if (tabledef_version.str)
thd->lex->create_info.tabledef_version= tabledef_version;
promote_first_timestamp_column(&thd->lex->alter_info.create_list);
file= mysql_create_frm_image(thd, db, table_name,
&thd->lex->create_info, &thd->lex->alter_info,
C_ORDINARY_CREATE, &unused1, &unused2, &frm);
error|= file == 0;
delete file;
if (frm.str)
{
option_list= 0; // cleanup existing options ...
option_struct= 0; // ... if it's an assisted discovery
error= init_from_binary_frm_image(thd, write, frm.str, frm.length);
}
ret:
my_free(const_cast<uchar*>(frm.str));
lex_end(thd->lex);
thd->reset_db(&db_backup);
thd->lex= old_lex;
if (arena)
thd->restore_active_arena(arena, &backup);
reenable_binlog(thd);
thd->variables.character_set_client= old_cs;
if (unlikely(thd->is_error() || error))
{
thd->clear_error();
my_error(ER_SQL_DISCOVER_ERROR, MYF(0),
plugin_name(db_plugin)->str, db.str, table_name.str,
sql_copy);
DBUG_RETURN(HA_ERR_GENERIC);
}
/* Treat the table as normal table from binary logging point of view */
table_creation_was_logged= 1;
DBUG_RETURN(0);
}
bool TABLE_SHARE::write_frm_image(const uchar *frm, size_t len)
{
char file_name[FN_REFLEN+1];
strxnmov(file_name, sizeof(file_name)-1, normalized_path.str, reg_ext,
NullS);
return writefile(file_name, db.str, table_name.str, false,
frm, len);
}
bool TABLE_SHARE::write_par_image(const uchar *par, size_t len)
{
char file_name[FN_REFLEN+1];
strxnmov(file_name, sizeof(file_name)-1, normalized_path.str, PAR_EXT,
NullS);
return writefile(file_name, db.str, table_name.str, false, par, len);
}
bool TABLE_SHARE::read_frm_image(const uchar **frm, size_t *len)
{
if (IF_PARTITIONING(partition_info_str, 0)) // cannot discover a partition
{
DBUG_ASSERT(db_type()->discover_table == 0);
return 1;
}
if (frm_image)
{
*frm= frm_image->str;
*len= frm_image->length;
frm_image->str= 0; // pass the ownership to the caller
frm_image= 0;
return 0;
}
return readfrm(normalized_path.str, frm, len);
}
void TABLE_SHARE::free_frm_image(const uchar *frm)
{
if (frm)
my_free(const_cast<uchar*>(frm));
}
static bool fix_vcol_expr(THD *thd, Virtual_column_info *vcol)
{
DBUG_ENTER("fix_vcol_expr");
const enum enum_column_usage saved_column_usage= thd->column_usage;
thd->column_usage= COLUMNS_WRITE;
int error= vcol->expr->fix_fields(thd, &vcol->expr);
thd->column_usage= saved_column_usage;
if (unlikely(error))
{
StringBuffer<MAX_FIELD_WIDTH> str;
vcol->print(&str);
my_error(ER_ERROR_EVALUATING_EXPRESSION, MYF(0), str.c_ptr_safe());
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
/** rerun fix_fields for vcols that returns time- or session- dependent values
@note this is done for all vcols for INSERT/UPDATE/DELETE,
and only as needed for SELECTs.
*/
bool fix_session_vcol_expr(THD *thd, Virtual_column_info *vcol)
{
DBUG_ENTER("fix_session_vcol_expr");
if (!(vcol->flags & (VCOL_TIME_FUNC|VCOL_SESSION_FUNC)))
DBUG_RETURN(0);
vcol->expr->walk(&Item::cleanup_excluding_fields_processor, 0, 0);
DBUG_ASSERT(!vcol->expr->is_fixed());
DBUG_RETURN(fix_vcol_expr(thd, vcol));
}
/** invoke fix_session_vcol_expr for a vcol
@note this is called for generated column or a DEFAULT expression from
their corresponding fix_fields on SELECT.
*/
bool fix_session_vcol_expr_for_read(THD *thd, Field *field,
Virtual_column_info *vcol)
{
DBUG_ENTER("fix_session_vcol_expr_for_read");
TABLE_LIST *tl= field->table->pos_in_table_list;
if (!tl || tl->lock_type >= TL_WRITE_ALLOW_WRITE)
DBUG_RETURN(0);
Security_context *save_security_ctx= thd->security_ctx;
if (tl->security_ctx)
thd->security_ctx= tl->security_ctx;
bool res= fix_session_vcol_expr(thd, vcol);
thd->security_ctx= save_security_ctx;
DBUG_RETURN(res);
}
/*
@brief
Perform semantic analysis of the defining expression for a virtual column
@param thd The thread object
@param table The table containing the virtual column
@param field Field if this is a DEFAULT or AS, otherwise NULL
@param vcol The Virtual_column object
@details
The function performs semantic analysis of the defining expression for
the virtual column vcol_field. The expression is used to compute the
values of this column.
@retval
TRUE An error occurred, something was wrong with the function
@retval
FALSE Otherwise
*/
static bool fix_and_check_vcol_expr(THD *thd, TABLE *table,
Virtual_column_info *vcol)
{
Item* func_expr= vcol->expr;
DBUG_ENTER("fix_and_check_vcol_expr");
DBUG_PRINT("info", ("vcol: %p", vcol));
DBUG_ASSERT(func_expr);
if (func_expr->is_fixed())
DBUG_RETURN(0); // nothing to do
if (fix_vcol_expr(thd, vcol))
DBUG_RETURN(1);
if (vcol->flags)
DBUG_RETURN(0); // already checked, no need to do it again
/* fix_fields could've changed the expression */
func_expr= vcol->expr;
/* this was checked in check_expression(), but the frm could be mangled... */
if (unlikely(func_expr->result_type() == ROW_RESULT))
{
my_error(ER_OPERAND_COLUMNS, MYF(0), 1);
DBUG_RETURN(1);
}
/*
Walk through the Item tree checking if all items are valid
to be part of the virtual column
*/
Item::vcol_func_processor_result res;
int error= func_expr->walk(&Item::check_vcol_func_processor, 0, &res);
if (unlikely(error || (res.errors & VCOL_IMPOSSIBLE)))
{
// this can only happen if the frm was corrupted
my_error(ER_VIRTUAL_COLUMN_FUNCTION_IS_NOT_ALLOWED, MYF(0), res.name,
vcol->get_vcol_type_name(), vcol->name.str);
DBUG_RETURN(1);
}
else if (unlikely(res.errors & VCOL_AUTO_INC))
{
/*
An auto_increment field may not be used in an expression for
a check constraint, a default value or a generated column
Note that this error condition is not detected during parsing
of the statement because the field item does not have a field
pointer at that time
*/
myf warn= table->s->frm_version < FRM_VER_EXPRESSSIONS ? ME_WARNING : 0;
my_error(ER_VIRTUAL_COLUMN_FUNCTION_IS_NOT_ALLOWED, MYF(warn),
"AUTO_INCREMENT", vcol->get_vcol_type_name(), res.name);
if (!warn)
DBUG_RETURN(1);
}
vcol->flags= res.errors;
if (vcol->flags & VCOL_SESSION_FUNC)
table->s->vcols_need_refixing= true;
DBUG_RETURN(0);
}
/*
@brief
Unpack the definition of a virtual column from its linear representation
@param thd The thread object
@param mem_root Where to allocate memory
@param table The table containing the virtual column
@param field Field if this is a DEFAULT or AS, otherwise NULL
@param vcol The Virtual_column object
@param[out] error_reported Flag to inform the caller that no
other error messages are to be generated
@details
The function takes string expression from the 'vcol' object of the
table 'table' and parses it, building an item object for it. The
pointer to this item is placed into in a Virtual_column_info object
that is created. After this the function performs
semantic analysis of the item by calling the the function
fix_and_check_vcol_expr(). Since the defining expression is part of the table
definition the item for it is created in table->memroot within the
special arena TABLE::expr_arena or in the thd memroot for INSERT DELAYED
@note
Before passing 'vcol_expr' to the parser the function wraps it in
parentheses and prepends a special keyword.
@retval Virtual_column_info* Success
@retval NULL Error
*/
static Virtual_column_info *
unpack_vcol_info_from_frm(THD *thd, MEM_ROOT *mem_root, TABLE *table,
String *expr_str, Virtual_column_info **vcol_ptr,
bool *error_reported)
{
Create_field vcol_storage; // placeholder for vcol_info
Parser_state parser_state;
Virtual_column_info *vcol= *vcol_ptr, *vcol_info= 0;
LEX *old_lex= thd->lex;
LEX lex;
bool error;
DBUG_ENTER("unpack_vcol_info_from_frm");
DBUG_ASSERT(vcol->expr == NULL);
if (parser_state.init(thd, expr_str->c_ptr_safe(), expr_str->length()))
goto end;
if (init_lex_with_single_table(thd, table, &lex))
goto end;
lex.parse_vcol_expr= true;
lex.last_field= &vcol_storage;
error= parse_sql(thd, &parser_state, NULL);
if (unlikely(error))
goto end;
if (lex.current_select->table_list.first[0].next_global)
{
/* We are using NEXT VALUE FOR sequence. Remember table name for open */
TABLE_LIST *sequence= lex.current_select->table_list.first[0].next_global;
sequence->next_global= table->internal_tables;
table->internal_tables= sequence;
}
vcol_storage.vcol_info->set_vcol_type(vcol->get_vcol_type());
vcol_storage.vcol_info->stored_in_db= vcol->stored_in_db;
vcol_storage.vcol_info->name= vcol->name;
vcol_storage.vcol_info->utf8= vcol->utf8;
if (!fix_and_check_vcol_expr(thd, table, vcol_storage.vcol_info))
{
*vcol_ptr= vcol_info= vcol_storage.vcol_info; // Expression ok
DBUG_ASSERT(vcol_info->expr);
goto end;
}
*error_reported= TRUE;
end:
end_lex_with_single_table(thd, table, old_lex);
DBUG_RETURN(vcol_info);
}
static bool check_vcol_forward_refs(Field *field, Virtual_column_info *vcol,
bool check_constraint)
{
bool res;
uint32 flags= field->flags;
if (check_constraint)
{
/* Check constraints can refer it itself */
field->flags|= NO_DEFAULT_VALUE_FLAG;
}
res= (vcol &&
vcol->expr->walk(&Item::check_field_expression_processor, 0, field));
field->flags= flags;
return res;
}
#ifndef DBUG_OFF
static void print_long_unique_table(TABLE *table)
{
char buff[256];
String str;
KEY *key_info_table, *key_info_share;
KEY_PART_INFO *key_part;
Field *field;
my_snprintf(buff, sizeof(buff), "Printing Table state, It will print table fields,"
" fields->offset,field->null_bit, field->null_pos and key_info ... \n"
"\nPrinting Table keyinfo\n");
str.append(buff, strlen(buff));
my_snprintf(buff, sizeof(buff), "\ntable->s->reclength %d\n"
"table->s->fields %d\n",
table->s->reclength, table->s->fields);
str.append(buff, strlen(buff));
for (uint i= 0; i < table->s->keys; i++)
{
key_info_table= table->key_info + i;
key_info_share= table->s->key_info + i;
my_snprintf(buff, sizeof(buff), "\ntable->key_info[%d] user_defined_key_parts = %d\n"
"table->key_info[%d] algorithm == HA_KEY_ALG_LONG_HASH = %d\n"
"table->key_info[%d] flags & HA_NOSAME = %d\n",
i, key_info_table->user_defined_key_parts,
i, key_info_table->algorithm == HA_KEY_ALG_LONG_HASH,
i, key_info_table->flags & HA_NOSAME);
str.append(buff, strlen(buff));
my_snprintf(buff, sizeof(buff), "\ntable->s->key_info[%d] user_defined_key_parts = %d\n"
"table->s->key_info[%d] algorithm == HA_KEY_ALG_LONG_HASH = %d\n"
"table->s->key_info[%d] flags & HA_NOSAME = %d\n",
i, key_info_share->user_defined_key_parts,
i, key_info_share->algorithm == HA_KEY_ALG_LONG_HASH,
i, key_info_share->flags & HA_NOSAME);
str.append(buff, strlen(buff));
key_part = key_info_table->key_part;
my_snprintf(buff, sizeof(buff), "\nPrinting table->key_info[%d].key_part[0] info\n"
"key_part->offset = %d\n"
"key_part->field_name = %s\n"
"key_part->length = %d\n"
"key_part->null_bit = %d\n"
"key_part->null_offset = %d\n",
i, key_part->offset, key_part->field->field_name.str, key_part->length,
key_part->null_bit, key_part->null_offset);
str.append(buff, strlen(buff));
for (uint j= 0; j < key_info_share->user_defined_key_parts; j++)
{
key_part= key_info_share->key_part + j;
my_snprintf(buff, sizeof(buff), "\nPrinting share->key_info[%d].key_part[%d] info\n"
"key_part->offset = %d\n"
"key_part->field_name = %s\n"
"key_part->length = %d\n"
"key_part->null_bit = %d\n"
"key_part->null_offset = %d\n",
i,j,key_part->offset, key_part->field->field_name.str, key_part->length,
key_part->null_bit, key_part->null_offset);
str.append(buff, strlen(buff));
}
}
my_snprintf(buff, sizeof(buff), "\nPrinting table->fields\n");
str.append(buff, strlen(buff));
for(uint i= 0; i < table->s->fields; i++)
{
field= table->field[i];
my_snprintf(buff, sizeof(buff), "\ntable->field[%d]->field_name %s\n"
"table->field[%d]->offset = %d\n"
"table->field[%d]->field_length = %d\n"
"table->field[%d]->null_pos wrt to record 0 = %d\n"
"table->field[%d]->null_bit_pos = %d\n",
i, field->field_name.str,
i, field->ptr- table->record[0],
i, field->pack_length(),
i, field->null_bit ? field->null_ptr - table->record[0] : -1,
i, field->null_bit);
str.append(buff, strlen(buff));
}
(*error_handler_hook)(1, str.ptr(), ME_NOTE);
}
#endif
bool copy_keys_from_share(TABLE *outparam, MEM_ROOT *root)
{
TABLE_SHARE *share= outparam->s;
if (share->key_parts)
{
KEY *key_info, *key_info_end;
KEY_PART_INFO *key_part;
if (!multi_alloc_root(root, &key_info, share->keys*sizeof(KEY),
&key_part, share->ext_key_parts*sizeof(KEY_PART_INFO),
NullS))
return 1;
outparam->key_info= key_info;
memcpy(key_info, share->key_info, sizeof(*key_info)*share->keys);
memcpy(key_part, key_info->key_part, sizeof(*key_part)*share->ext_key_parts);
my_ptrdiff_t adjust_ptrs= PTR_BYTE_DIFF(key_part, key_info->key_part);
for (key_info_end= key_info + share->keys ;
key_info < key_info_end ;
key_info++)
{
key_info->table= outparam;
key_info->key_part= reinterpret_cast<KEY_PART_INFO*>
(reinterpret_cast<char*>(key_info->key_part) + adjust_ptrs);
if (key_info->algorithm == HA_KEY_ALG_LONG_HASH)
key_info->flags&= ~HA_NOSAME;
}
for (KEY_PART_INFO *key_part_end= key_part+share->ext_key_parts;
key_part < key_part_end;
key_part++)
{
Field *field= key_part->field= outparam->field[key_part->fieldnr - 1];
if (field->key_length() != key_part->length &&
!(field->flags & BLOB_FLAG))
{
/*
We are using only a prefix of the column as a key:
Create a new field for the key part that matches the index
*/
field= key_part->field=field->make_new_field(root, outparam, 0);
field->field_length= key_part->length;
}
}
}
return 0;
}
/*
Open a table based on a TABLE_SHARE
SYNOPSIS
open_table_from_share()
thd Thread handler
share Table definition
alias Alias for table
db_stat open flags (for example HA_OPEN_KEYFILE|
HA_OPEN_RNDFILE..) can be 0 (example in
ha_example_table)
prgflag READ_ALL etc..
ha_open_flags HA_OPEN_ABORT_IF_LOCKED etc..
outparam result table
partitions_to_open open only these partitions.
RETURN VALUES
0 ok
1 Error (see open_table_error)
2 Error (see open_table_error)
3 Wrong data in .frm file
4 Error (see open_table_error)
5 Error (see open_table_error: charset unavailable)
7 Table definition has changed in engine
*/
enum open_frm_error open_table_from_share(THD *thd, TABLE_SHARE *share,
const LEX_CSTRING *alias, uint db_stat, uint prgflag,
uint ha_open_flags, TABLE *outparam,
bool is_create_table, List<String> *partitions_to_open)
{
enum open_frm_error error;
uint records, i, bitmap_size, bitmap_count;
const char *tmp_alias;
bool error_reported= FALSE;
uchar *record, *bitmaps;
Field **field_ptr;
uint8 save_context_analysis_only= thd->lex->context_analysis_only;
TABLE_SHARE::enum_v_keys check_set_initialized= share->check_set_initialized;
DBUG_ENTER("open_table_from_share");
DBUG_PRINT("enter",("name: '%s.%s' form: %p", share->db.str,
share->table_name.str, outparam));
thd->lex->context_analysis_only&= ~CONTEXT_ANALYSIS_ONLY_VIEW; // not a view
error= OPEN_FRM_ERROR_ALREADY_ISSUED; // for OOM errors below
bzero((char*) outparam, sizeof(*outparam));
outparam->in_use= thd;
outparam->s= share;
outparam->db_stat= db_stat;
outparam->write_row_record= NULL;
if (share->incompatible_version &&
!(ha_open_flags & (HA_OPEN_FOR_ALTER | HA_OPEN_FOR_REPAIR)))
{
/* one needs to run mysql_upgrade on the table */
error= OPEN_FRM_NEEDS_REBUILD;
goto err;
}
init_sql_alloc(key_memory_TABLE, &outparam->mem_root, TABLE_ALLOC_BLOCK_SIZE,
0, MYF(0));
/*
We have to store the original alias in mem_root as constraints and virtual
functions may store pointers to it
*/
if (!(tmp_alias= strmake_root(&outparam->mem_root, alias->str, alias->length)))
goto err;
outparam->alias.set(tmp_alias, alias->length, table_alias_charset);
/* Allocate handler */
outparam->file= 0;
if (!(prgflag & OPEN_FRM_FILE_ONLY))
{
if (!(outparam->file= get_new_handler(share, &outparam->mem_root,
share->db_type())))
goto err;
if (outparam->file->set_ha_share_ref(&share->ha_share))
goto err;
}
else
{
DBUG_ASSERT(!db_stat);
}
if (share->sequence && outparam->file)
{
ha_sequence *file;
/* SEQUENCE table. Create a sequence handler over the original handler */
if (!(file= (ha_sequence*) sql_sequence_hton->create(sql_sequence_hton, share,
&outparam->mem_root)))
goto err;
file->register_original_handler(outparam->file);
outparam->file= file;
}
outparam->reginfo.lock_type= TL_UNLOCK;
outparam->current_lock= F_UNLCK;
records=0;
if ((db_stat & HA_OPEN_KEYFILE) || (prgflag & DELAYED_OPEN))
records=1;
if (prgflag & (READ_ALL + EXTRA_RECORD))
{
records++;
if (share->versioned || share->period.name)
records++;
}
if (records == 0)
{
/* We are probably in hard repair, and the buffers should not be used */
record= share->default_values;
}
else
{
if (!(record= (uchar*) alloc_root(&outparam->mem_root,
share->rec_buff_length * records)))
goto err; /* purecov: inspected */
MEM_NOACCESS(record, share->rec_buff_length * records);
}
for (i= 0; i < 3;)
{
outparam->record[i]= record;
if (++i < records)
record+= share->rec_buff_length;
}
for (i= 0; i < records; i++)
MEM_UNDEFINED(outparam->record[i], share->reclength);
if (!(field_ptr = (Field **) alloc_root(&outparam->mem_root,
(uint) ((share->fields+1)*
sizeof(Field*)))))
goto err; /* purecov: inspected */
outparam->field= field_ptr;
record= (uchar*) outparam->record[0]-1; /* Fieldstart = 1 */
if (share->null_field_first)
outparam->null_flags= (uchar*) record+1;
else
outparam->null_flags= (uchar*) (record+ 1+ share->reclength -
share->null_bytes);
/* Setup copy of fields from share, but use the right alias and record */
for (i=0 ; i < share->fields; i++, field_ptr++)
{
if (!((*field_ptr)= share->field[i]->clone(&outparam->mem_root, outparam)))
goto err;
}
(*field_ptr)= 0; // End marker
DEBUG_SYNC(thd, "TABLE_after_field_clone");
outparam->vers_write= share->versioned;
if (share->found_next_number_field)
outparam->found_next_number_field=
outparam->field[(uint) (share->found_next_number_field - share->field)];
if (copy_keys_from_share(outparam, &outparam->mem_root))
goto err;
/*
Process virtual and default columns, if any.
*/
if (share->virtual_fields || share->default_fields ||
share->default_expressions || share->table_check_constraints)
{
Field **vfield_ptr, **dfield_ptr;
Virtual_column_info **check_constraint_ptr;
if (!multi_alloc_root(&outparam->mem_root,
&vfield_ptr, (uint) ((share->virtual_fields + 1)*
sizeof(Field*)),
&dfield_ptr, (uint) ((share->default_fields +
share->default_expressions +1)*
sizeof(Field*)),
&check_constraint_ptr,
(uint) ((share->table_check_constraints +
share->field_check_constraints + 1)*
sizeof(Virtual_column_info*)),
NullS))
goto err;
if (share->virtual_fields)
outparam->vfield= vfield_ptr;
if (share->default_fields + share->default_expressions)
outparam->default_field= dfield_ptr;
if (share->table_check_constraints || share->field_check_constraints)
outparam->check_constraints= check_constraint_ptr;
vcol_init_mode mode= VCOL_INIT_DEPENDENCY_FAILURE_IS_WARNING;
switch (thd->lex->sql_command)
{
case SQLCOM_CREATE_TABLE:
mode= VCOL_INIT_DEPENDENCY_FAILURE_IS_ERROR;
break;
case SQLCOM_ALTER_TABLE:
case SQLCOM_CREATE_INDEX:
case SQLCOM_DROP_INDEX:
if ((ha_open_flags & HA_OPEN_FOR_ALTER) == 0)
mode= VCOL_INIT_DEPENDENCY_FAILURE_IS_ERROR;
break;
default:
break;
}
if (parse_vcol_defs(thd, &outparam->mem_root, outparam,
&error_reported, mode))
{
error= OPEN_FRM_CORRUPTED;
goto err;
}
/* Update to use trigger fields */
switch_defaults_to_nullable_trigger_fields(outparam);
}
#ifdef WITH_PARTITION_STORAGE_ENGINE
bool work_part_info_used;
if (share->partition_info_str_len && outparam->file)
{
/*
In this execution we must avoid calling thd->change_item_tree since
we might release memory before statement is completed. We do this
by changing to a new statement arena. As part of this arena we also
set the memory root to be the memory root of the table since we
call the parser and fix_fields which both can allocate memory for
item objects. We keep the arena to ensure that we can release the
free_list when closing the table object.
SEE Bug #21658
*/
Query_arena *backup_stmt_arena_ptr= thd->stmt_arena;
Query_arena backup_arena;
Query_arena part_func_arena(&outparam->mem_root,
Query_arena::STMT_INITIALIZED);
thd->set_n_backup_active_arena(&part_func_arena, &backup_arena);
thd->stmt_arena= &part_func_arena;
bool tmp;
tmp= mysql_unpack_partition(thd, share->partition_info_str,
share->partition_info_str_len,
outparam, is_create_table,
plugin_hton(share->default_part_plugin),
&work_part_info_used);
if (tmp)
{
thd->stmt_arena= backup_stmt_arena_ptr;
thd->restore_active_arena(&part_func_arena, &backup_arena);
goto partititon_err;
}
outparam->part_info->is_auto_partitioned= share->auto_partitioned;
DBUG_PRINT("info", ("autopartitioned: %u", share->auto_partitioned));
/*
We should perform the fix_partition_func in either local or
caller's arena depending on work_part_info_used value.
*/
if (!work_part_info_used)
tmp= fix_partition_func(thd, outparam, is_create_table);
thd->stmt_arena= backup_stmt_arena_ptr;
thd->restore_active_arena(&part_func_arena, &backup_arena);
if (!tmp)
{
if (work_part_info_used)
tmp= fix_partition_func(thd, outparam, is_create_table);
}
outparam->part_info->item_free_list= part_func_arena.free_list;
partititon_err:
if (tmp)
{
if (is_create_table)
{
/*
During CREATE/ALTER TABLE it is ok to receive errors here.
It is not ok if it happens during the opening of an frm
file as part of a normal query.
*/
error_reported= TRUE;
}
goto err;
}
}
#endif
/* Check virtual columns against table's storage engine. */
if (share->virtual_fields &&
(outparam->file &&
!(outparam->file->ha_table_flags() & HA_CAN_VIRTUAL_COLUMNS)))
{
my_error(ER_UNSUPPORTED_ENGINE_FOR_VIRTUAL_COLUMNS, MYF(0),
plugin_name(share->db_plugin)->str);
error_reported= TRUE;
goto err;
}
/* Allocate bitmaps */
bitmap_size= share->column_bitmap_size;
bitmap_count= 7;
if (share->virtual_fields)
bitmap_count++;
if (!(bitmaps= (uchar*) alloc_root(&outparam->mem_root,
bitmap_size * bitmap_count)))
goto err;
my_bitmap_init(&outparam->def_read_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
bitmaps+= bitmap_size;
my_bitmap_init(&outparam->def_write_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
bitmaps+= bitmap_size;
my_bitmap_init(&outparam->has_value_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
bitmaps+= bitmap_size;
my_bitmap_init(&outparam->tmp_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
bitmaps+= bitmap_size;
my_bitmap_init(&outparam->eq_join_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
bitmaps+= bitmap_size;
my_bitmap_init(&outparam->cond_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
bitmaps+= bitmap_size;
my_bitmap_init(&outparam->def_rpl_write_set,
(my_bitmap_map*) bitmaps, share->fields, FALSE);
outparam->default_column_bitmaps();
outparam->cond_selectivity= 1.0;
/* The table struct is now initialized; Open the table */
if (db_stat)
{
if (specialflag & SPECIAL_WAIT_IF_LOCKED)
ha_open_flags|= HA_OPEN_WAIT_IF_LOCKED;
else
ha_open_flags|= HA_OPEN_IGNORE_IF_LOCKED;
int ha_err= outparam->file->ha_open(outparam, share->normalized_path.str,
(db_stat & HA_READ_ONLY ? O_RDONLY : O_RDWR),
ha_open_flags, 0, partitions_to_open);
if (ha_err)
{
share->open_errno= ha_err;
/* Set a flag if the table is crashed and it can be auto. repaired */
share->crashed= (outparam->file->auto_repair(ha_err) &&
!(ha_open_flags & HA_OPEN_FOR_REPAIR));
if (!thd->is_error())
outparam->file->print_error(ha_err, MYF(0));
error_reported= TRUE;
if (ha_err == HA_ERR_TABLE_DEF_CHANGED)
error= OPEN_FRM_DISCOVER;
/*
We're here, because .frm file was successfully opened.
But if the table doesn't exist in the engine and the engine
supports discovery, we force rediscover to discover
the fact that table doesn't in fact exist and remove
the stray .frm file.
*/
if (outparam->file->partition_ht()->discover_table &&
(ha_err == ENOENT || ha_err == HA_ERR_NO_SUCH_TABLE))
error= OPEN_FRM_DISCOVER;
goto err;
}
}
outparam->mark_columns_used_by_virtual_fields();
if (!check_set_initialized &&
share->check_set_initialized == TABLE_SHARE::V_KEYS)
{
// copy PART_INDIRECT_KEY_FLAG that was set meanwhile by *some* thread
for (uint i= 0 ; i < share->fields ; i++)
{
if (share->field[i]->flags & PART_INDIRECT_KEY_FLAG)
outparam->field[i]->flags|= PART_INDIRECT_KEY_FLAG;
}
}
if (db_stat)
{
/* Set some flags in share on first open of the table */
handler::Table_flags flags= outparam->file->ha_table_flags();
if (! MY_TEST(flags & (HA_BINLOG_STMT_CAPABLE |
HA_BINLOG_ROW_CAPABLE)) ||
MY_TEST(flags & HA_HAS_OWN_BINLOGGING))
share->no_replicate= TRUE;
if (outparam->file->table_cache_type() & HA_CACHE_TBL_NOCACHE)
share->not_usable_by_query_cache= TRUE;
if (outparam->file->ha_table_flags() & HA_CAN_ONLINE_BACKUPS)
share->online_backup= 1;
}
if (share->no_replicate || !binlog_filter->db_ok(share->db.str))
share->can_do_row_logging= 0; // No row based replication
/* Increment the opened_tables counter, only when open flags set. */
if (db_stat)
thd->status_var.opened_tables++;
thd->lex->context_analysis_only= save_context_analysis_only;
DBUG_EXECUTE_IF("print_long_unique_internal_state",
print_long_unique_table(outparam););
DBUG_RETURN (OPEN_FRM_OK);
err:
if (! error_reported)
open_table_error(share, error, my_errno);
delete outparam->file;
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (outparam->part_info)
free_items(outparam->part_info->item_free_list);
#endif
outparam->file= 0; // For easier error checking
outparam->db_stat=0;
thd->lex->context_analysis_only= save_context_analysis_only;
if (outparam->expr_arena)
outparam->expr_arena->free_items();
free_root(&outparam->mem_root, MYF(0)); // Safe to call on bzero'd root
outparam->alias.free();
DBUG_RETURN (error);
}
/*
Free information allocated by openfrm
SYNOPSIS
closefrm()
table TABLE object to free
*/
int closefrm(TABLE *table)
{
int error=0;
DBUG_ENTER("closefrm");
DBUG_PRINT("enter", ("table: %p", table));
if (table->db_stat)
error=table->file->ha_close();
table->alias.free();
if (table->expr_arena)
table->expr_arena->free_items();
if (table->field)
{
for (Field **ptr=table->field ; *ptr ; ptr++)
{
delete *ptr;
}
table->field= 0;
}
delete table->file;
table->file= 0; /* For easier errorchecking */
#ifdef WITH_PARTITION_STORAGE_ENGINE
if (table->part_info)
{
/* Allocated through table->mem_root, freed below */
free_items(table->part_info->item_free_list);
table->part_info->item_free_list= 0;
table->part_info= 0;
}
#endif
free_root(&table->mem_root, MYF(0));
DBUG_RETURN(error);
}
/* Deallocate temporary blob storage */
void free_blobs(TABLE *table)
{
uint *ptr, *end;
for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ;
ptr != end ;
ptr++)
{
/*
Reduced TABLE objects which are used by row-based replication for
type conversion might have some fields missing. Skip freeing BLOB
buffers for such missing fields.
*/
if (table->field[*ptr])
((Field_blob*) table->field[*ptr])->free();
}
}
/**
Reclaim temporary blob storage which is bigger than
a threshold.
@param table A handle to the TABLE object containing blob fields
@param size The threshold value.
*/
void free_field_buffers_larger_than(TABLE *table, uint32 size)
{
uint *ptr, *end;
for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ;
ptr != end ;
ptr++)
{
Field_blob *blob= (Field_blob*) table->field[*ptr];
if (blob->get_field_buffer_size() > size)
blob->free();
}
}
/* error message when opening a form file */
void open_table_error(TABLE_SHARE *share, enum open_frm_error error,
int db_errno)
{
char buff[FN_REFLEN];
const myf errortype= ME_ERROR_LOG; // Write fatals error to log
DBUG_ENTER("open_table_error");
DBUG_PRINT("info", ("error: %d db_errno: %d", error, db_errno));
switch (error) {
case OPEN_FRM_OPEN_ERROR:
/*
Test if file didn't exists. We have to also test for EINVAL as this
may happen on windows when opening a file with a not legal file name
*/
if (db_errno == ENOENT || db_errno == EINVAL)
my_error(ER_NO_SUCH_TABLE, MYF(0), share->db.str, share->table_name.str);
else
{
strxmov(buff, share->normalized_path.str, reg_ext, NullS);
my_error((db_errno == EMFILE) ? ER_CANT_OPEN_FILE : ER_FILE_NOT_FOUND,
errortype, buff, db_errno);
}
break;
case OPEN_FRM_OK:
DBUG_ASSERT(0); // open_table_error() is never called for this one
break;
case OPEN_FRM_ERROR_ALREADY_ISSUED:
break;
case OPEN_FRM_NOT_A_VIEW:
my_error(ER_WRONG_OBJECT, MYF(0), share->db.str,
share->table_name.str, "VIEW");
break;
case OPEN_FRM_NOT_A_TABLE:
my_error(ER_WRONG_OBJECT, MYF(0), share->db.str,
share->table_name.str, "TABLE");
break;
case OPEN_FRM_DISCOVER:
DBUG_ASSERT(0); // open_table_error() is never called for this one
break;
case OPEN_FRM_CORRUPTED:
strxmov(buff, share->normalized_path.str, reg_ext, NullS);
my_error(ER_NOT_FORM_FILE, errortype, buff);
break;
case OPEN_FRM_READ_ERROR:
strxmov(buff, share->normalized_path.str, reg_ext, NullS);
my_error(ER_ERROR_ON_READ, errortype, buff, db_errno);
break;
case OPEN_FRM_NEEDS_REBUILD:
strxnmov(buff, sizeof(buff)-1,
share->db.str, ".", share->table_name.str, NullS);
my_error(ER_TABLE_NEEDS_REBUILD, errortype, buff);
break;
}
DBUG_VOID_RETURN;
} /* open_table_error */
/*
** fix a str_type to a array type
** typeparts separated with some char. differents types are separated
** with a '\0'
*/
static bool
fix_type_pointers(const char ***typelib_value_names,
uint **typelib_value_lengths,
TYPELIB *point_to_type, uint types,
char *ptr, size_t length)
{
const char *end= ptr + length;
while (types--)
{
char sep;
point_to_type->name=0;
point_to_type->type_names= *typelib_value_names;
point_to_type->type_lengths= *typelib_value_lengths;
/*
Typelib can be encoded as:
1) 0x00 - empty typelib
2) 0xFF 0x00 - empty typelib (index names)
3) sep (value sep)... 0x00 - non-empty typelib (where sep is a separator)
*/
if (length == 2 && ptr[0] == (char) 0xFF && ptr[1] == '\0')
{
/*
This is a special case #2.
If there are no indexes at all, index names can be encoded
as a two byte sequence: 0xFF 0x00
TODO: Check if it's a bug in the FRM packing routine.
It should probably write just 0x00 instead of 0xFF00.
*/
ptr+= 2;
}
else if ((sep= *ptr++)) // A non-empty typelib
{
for ( ; ptr < end; )
{
// Now scan the next value+sep pair
char *vend= (char*) memchr(ptr, sep, end - ptr);
if (!vend)
return true; // Bad format
*((*typelib_value_names)++)= ptr;
*((*typelib_value_lengths)++)= (uint) (vend - ptr);
*vend= '\0'; // Change sep to '\0'
ptr= vend + 1; // Shift from sep to the next byte
/*
Now we can have either:
- the end-of-typelib marker (0x00)
- more value+sep pairs
*/
if (!*ptr)
{
/*
We have an ambiguity here. 0x00 can be an end-of-typelib marker,
but it can also be a part of the next value:
CREATE TABLE t1 (a ENUM(0x61, 0x0062) CHARACTER SET BINARY);
If this is the last ENUM/SET in the table and there is still more
packed data left after 0x00, then we know for sure that 0x00
is a part of the next value.
TODO-10.5+: we should eventually introduce a new unambiguous
typelib encoding for FRM.
*/
if (!types && ptr + 1 < end)
continue; // A binary value starting with 0x00
ptr++; // Consume the end-of-typelib marker
break; // End of the current typelib
}
}
}
point_to_type->count= (uint) (*typelib_value_names -
point_to_type->type_names);
point_to_type++;
*((*typelib_value_names)++)= NullS; /* End of type */
*((*typelib_value_lengths)++)= 0; /* End of type */
}
return ptr != end;
} /* fix_type_pointers */
/*
Search after a field with given start & length
If an exact field isn't found, return longest field with starts
at right position.
NOTES
This is needed because in some .frm fields 'fieldnr' was saved wrong
RETURN
0 error
# field number +1
*/
static uint find_field(Field **fields, uchar *record, uint start, uint length)
{
Field **field;
uint i, pos;
pos= 0;
for (field= fields, i=1 ; *field ; i++,field++)
{
if ((*field)->offset(record) == start)
{
if ((*field)->key_length() == length)
return (i);
if (!pos || fields[pos-1]->pack_length() <
(*field)->pack_length())
pos= i;
}
}
return (pos);
}
/*
Store an SQL quoted string.
SYNOPSIS
append_unescaped()
res result String
pos string to be quoted
length it's length
NOTE
This function works correctly with utf8 or single-byte charset strings.
May fail with some multibyte charsets though.
*/
void append_unescaped(String *res, const char *pos, size_t length)
{
const char *end= pos+length;
res->append('\'');
for (; pos != end ; pos++)
{
switch (*pos) {
case 0: /* Must be escaped for 'mysql' */
res->append('\\');
res->append('0');
break;
case '\n': /* Must be escaped for logs */
res->append('\\');
res->append('n');
break;
case '\r':
res->append('\\'); /* This gives better readability */
res->append('r');
break;
case '\\':
res->append('\\'); /* Because of the sql syntax */
res->append('\\');
break;
case '\'':
res->append('\''); /* Because of the sql syntax */
res->append('\'');
break;
default:
res->append(*pos);
break;
}
}
res->append('\'');
}
void prepare_frm_header(THD *thd, uint reclength, uchar *fileinfo,
HA_CREATE_INFO *create_info, uint keys, KEY *key_info)
{
size_t key_comment_total_bytes= 0;
uint i;
uchar frm_format= create_info->expression_length ? FRM_VER_EXPRESSSIONS
: FRM_VER_TRUE_VARCHAR;
DBUG_ENTER("prepare_frm_header");
/* Fix this when we have new .frm files; Current limit is 4G rows (TODO) */
if (create_info->max_rows > UINT_MAX32)
create_info->max_rows= UINT_MAX32;
if (create_info->min_rows > UINT_MAX32)
create_info->min_rows= UINT_MAX32;
/*
Keep in sync with pack_keys() in unireg.cc
For each key:
8 bytes for the key header
9 bytes for each key-part (MAX_REF_PARTS)
NAME_LEN bytes for the name
1 byte for the NAMES_SEP_CHAR (before the name)
For all keys:
6 bytes for the header
1 byte for the NAMES_SEP_CHAR (after the last name)
9 extra bytes (padding for safety? alignment?)
*/
for (i= 0; i < keys; i++)
{
DBUG_ASSERT(MY_TEST(key_info[i].flags & HA_USES_COMMENT) ==
(key_info[i].comment.length > 0));
if (key_info[i].flags & HA_USES_COMMENT)
key_comment_total_bytes += 2 + key_info[i].comment.length;
if (key_info[i].algorithm == HA_KEY_ALG_LONG_HASH)
frm_format= FRM_VER_EXPRESSSIONS;
}
size_t key_length, tmp_key_length, tmp, csid;
bzero((char*) fileinfo, FRM_HEADER_SIZE);
/* header */
fileinfo[0]=(uchar) 254;
fileinfo[1]= 1;
fileinfo[2]= frm_format;
DBUG_ASSERT(ha_storage_engine_is_enabled(create_info->db_type));
fileinfo[3]= (uchar) ha_legacy_type(create_info->db_type);
key_length= keys * (8 + MAX_REF_PARTS * 9 + NAME_LEN + 1) + 16
+ key_comment_total_bytes;
int2store(fileinfo+8,1);
tmp_key_length= (key_length < 0xffff) ? key_length : 0xffff;
int2store(fileinfo+14,tmp_key_length);
int2store(fileinfo+16,reclength);
int4store(fileinfo+18,create_info->max_rows);
int4store(fileinfo+22,create_info->min_rows);
/* fileinfo[26] is set in mysql_create_frm() */
fileinfo[27]=2; // Use long pack-fields
/* fileinfo[28 & 29] is set to key_info_length in mysql_create_frm() */
create_info->table_options|=HA_OPTION_LONG_BLOB_PTR; // Use portable blob pointers
int2store(fileinfo+30,create_info->table_options);
fileinfo[32]=0; // No filename anymore
fileinfo[33]=5; // Mark for 5.0 frm file
int4store(fileinfo+34,create_info->avg_row_length);
csid= (create_info->default_table_charset ?
create_info->default_table_charset->number : 0);
fileinfo[38]= (uchar) csid;
fileinfo[39]= (uchar) ((uint) create_info->transactional |
((uint) create_info->page_checksum << 2) |
((create_info->sequence ? HA_CHOICE_YES : 0) << 4));
fileinfo[40]= (uchar) create_info->row_type;
/* Bytes 41-46 were for RAID support; now reused for other purposes */
fileinfo[41]= (uchar) (csid >> 8);
int2store(fileinfo+42, create_info->stats_sample_pages & 0xffff);
fileinfo[44]= (uchar) create_info->stats_auto_recalc;
int2store(fileinfo+45, (create_info->check_constraint_list->elements+
create_info->field_check_constraints));
int4store(fileinfo+47, key_length);
tmp= MYSQL_VERSION_ID; // Store to avoid warning from int4store
int4store(fileinfo+51, tmp);
int4store(fileinfo+55, create_info->extra_size);
/*
59-60 is unused since 10.2.4
61 for default_part_db_type
*/
int2store(fileinfo+62, create_info->key_block_size);
DBUG_VOID_RETURN;
} /* prepare_fileinfo */
void update_create_info_from_table(HA_CREATE_INFO *create_info, TABLE *table)
{
TABLE_SHARE *share= table->s;
DBUG_ENTER("update_create_info_from_table");
create_info->max_rows= share->max_rows;
create_info->min_rows= share->min_rows;
create_info->table_options= share->db_create_options;
create_info->avg_row_length= share->avg_row_length;
create_info->row_type= share->row_type;
create_info->key_block_size= share->key_block_size;
create_info->default_table_charset= share->table_charset;
create_info->table_charset= 0;
create_info->comment= share->comment;
create_info->transactional= share->transactional;
create_info->page_checksum= share->page_checksum;
create_info->option_list= share->option_list;
create_info->sequence= MY_TEST(share->sequence);
DBUG_VOID_RETURN;
}
int
rename_file_ext(const char * from,const char * to,const char * ext)
{
char from_b[FN_REFLEN],to_b[FN_REFLEN];
(void) strxmov(from_b,from,ext,NullS);
(void) strxmov(to_b,to,ext,NullS);
return mysql_file_rename(key_file_frm, from_b, to_b, MYF(0));
}
/*
Allocate string field in MEM_ROOT and return it as String
SYNOPSIS
get_field()
mem MEM_ROOT for allocating
field Field for retrieving of string
res result String
RETURN VALUES
1 string is empty
0 all ok
*/
bool get_field(MEM_ROOT *mem, Field *field, String *res)
{
char *to;
StringBuffer<MAX_FIELD_WIDTH> str;
bool rc;
THD *thd= field->get_thd();
Sql_mode_instant_remove sms(thd, MODE_PAD_CHAR_TO_FULL_LENGTH);
field->val_str(&str);
if ((rc= !str.length() ||
!(to= strmake_root(mem, str.ptr(), str.length()))))
{
res->length(0);
return rc;
}
res->set(to, str.length(), field->charset());
return false;
}
/*
Allocate string field in MEM_ROOT and return it as NULL-terminated string
SYNOPSIS
get_field()
mem MEM_ROOT for allocating
field Field for retrieving of string
RETURN VALUES
NullS string is empty
# pointer to NULL-terminated string value of field
*/
char *get_field(MEM_ROOT *mem, Field *field)
{
String str;
bool rc= get_field(mem, field, &str);
DBUG_ASSERT(rc || str.ptr()[str.length()] == '\0');
return rc ? NullS : (char *) str.ptr();
}
/*
DESCRIPTION
given a buffer with a key value, and a map of keyparts
that are present in this value, returns the length of the value
*/
uint calculate_key_len(TABLE *table, uint key, const uchar *buf,
key_part_map keypart_map)
{
/* works only with key prefixes */
DBUG_ASSERT(((keypart_map + 1) & keypart_map) == 0);
KEY *key_info= table->key_info+key;
KEY_PART_INFO *key_part= key_info->key_part;
KEY_PART_INFO *end_key_part= key_part + table->actual_n_key_parts(key_info);
uint length= 0;
while (key_part < end_key_part && keypart_map)
{
length+= key_part->store_length;
keypart_map >>= 1;
key_part++;
}
return length;
}
#ifndef DBUG_OFF
/**
Verifies that database/table name is in lowercase, when it should be
This is supposed to be used only inside DBUG_ASSERT()
*/
bool ok_for_lower_case_names(const char *name)
{
if (!lower_case_table_names || !name)
return true;
char buf[SAFE_NAME_LEN];
strmake_buf(buf, name);
my_casedn_str(files_charset_info, buf);
return strcmp(name, buf) == 0;
}
#endif
/*
Check if database name is valid
SYNPOSIS
check_db_name()
org_name Name of database
NOTES
If lower_case_table_names is set to 1 then database name is converted
to lower case
RETURN
0 ok
1 error
*/
bool check_db_name(LEX_STRING *org_name)
{
char *name= org_name->str;
size_t name_length= org_name->length;
bool check_for_path_chars;
if ((check_for_path_chars= check_mysql50_prefix(name)))
{
name+= MYSQL50_TABLE_NAME_PREFIX_LENGTH;
name_length-= MYSQL50_TABLE_NAME_PREFIX_LENGTH;
}
if (!name_length || name_length > NAME_LEN)
return 1;
if (lower_case_table_names == 1 && name != any_db)
{
org_name->length= name_length= my_casedn_str(files_charset_info, name);
if (check_for_path_chars)
org_name->length+= MYSQL50_TABLE_NAME_PREFIX_LENGTH;
}
if (db_name_is_in_ignore_db_dirs_list(name))
return 1;
return check_table_name(name, name_length, check_for_path_chars);
}
/*
Allow anything as a table name, as long as it doesn't contain an
' ' at the end
returns 1 on error
*/
bool check_table_name(const char *name, size_t length, bool check_for_path_chars)
{
// name length in symbols
size_t name_length= 0;
const char *end= name+length;
if (!check_for_path_chars &&
(check_for_path_chars= check_mysql50_prefix(name)))
{
name+= MYSQL50_TABLE_NAME_PREFIX_LENGTH;
length-= MYSQL50_TABLE_NAME_PREFIX_LENGTH;
}
if (!length || length > NAME_LEN)
return 1;
#if defined(USE_MB) && defined(USE_MB_IDENT)
bool last_char_is_space= FALSE;
#else
if (name[length-1]==' ')
return 1;
#endif
while (name != end)
{
#if defined(USE_MB) && defined(USE_MB_IDENT)
last_char_is_space= my_isspace(system_charset_info, *name);
if (system_charset_info->use_mb())
{
int len=my_ismbchar(system_charset_info, name, end);
if (len)
{
name+= len;
name_length++;
continue;
}
}
#endif
if (check_for_path_chars &&
(*name == '/' || *name == '\\' || *name == '~' || *name == FN_EXTCHAR))
return 1;
name++;
name_length++;
}
#if defined(USE_MB) && defined(USE_MB_IDENT)
return last_char_is_space || (name_length > NAME_CHAR_LEN);
#else
return FALSE;
#endif
}
bool check_column_name(const char *name)
{
// name length in symbols
size_t name_length= 0;
bool last_char_is_space= TRUE;
while (*name)
{
#if defined(USE_MB) && defined(USE_MB_IDENT)
last_char_is_space= my_isspace(system_charset_info, *name);
if (system_charset_info->use_mb())
{
int len=my_ismbchar(system_charset_info, name,
name+system_charset_info->mbmaxlen);
if (len)
{
name += len;
name_length++;
continue;
}
}
#else
last_char_is_space= *name==' ';
if (*name == '\377')
return 1;
#endif
name++;
name_length++;
}
/* Error if empty or too long column name */
return last_char_is_space || (name_length > NAME_CHAR_LEN);
}
/**
Checks whether a table is intact. Should be done *just* after the table has
been opened.
@param[in] table The table to check
@param[in] table_def Expected structure of the table (column name
and type)
@retval FALSE OK
@retval TRUE There was an error. An error message is output
to the error log. We do not push an error
message into the error stack because this
function is currently only called at start up,
and such errors never reach the user.
*/
bool
Table_check_intact::check(TABLE *table, const TABLE_FIELD_DEF *table_def)
{
uint i;
my_bool error= FALSE;
const TABLE_FIELD_TYPE *field_def= table_def->field;
DBUG_ENTER("table_check_intact");
DBUG_PRINT("info",("table: %s expected_count: %d",
table->alias.c_ptr(), table_def->count));
/* Whether the table definition has already been validated. */
if (table->s->table_field_def_cache == table_def)
goto end;
if (table->s->fields != table_def->count)
{
THD *thd= current_thd;
DBUG_PRINT("info", ("Column count has changed, checking the definition"));
/* previous MySQL version */
if (MYSQL_VERSION_ID > table->s->mysql_version)
{
report_error(ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE,
ER_THD(thd, ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE),
table->alias.c_ptr(), table_def->count, table->s->fields,
static_cast<int>(table->s->mysql_version),
MYSQL_VERSION_ID);
DBUG_RETURN(TRUE);
}
else if (MYSQL_VERSION_ID == table->s->mysql_version)
{
report_error(ER_COL_COUNT_DOESNT_MATCH_CORRUPTED_V2,
ER_THD(thd, ER_COL_COUNT_DOESNT_MATCH_CORRUPTED_V2),
table->s->db.str, table->s->table_name.str,
table_def->count, table->s->fields);
DBUG_RETURN(TRUE);
}
/*
Something has definitely changed, but we're running an older
version of MySQL with new system tables.
Let's check column definitions. If a column was added at
the end of the table, then we don't care much since such change
is backward compatible.
*/
}
else
{
StringBuffer<1024> sql_type(system_charset_info);
sql_type.extra_allocation(256); // Allocate min 256 characters at once
for (i=0 ; i < table_def->count; i++, field_def++)
{
sql_type.length(0);
if (i < table->s->fields)
{
Field *field= table->field[i];
if (strncmp(field->field_name.str, field_def->name.str,
field_def->name.length))
{
/*
Name changes are not fatal, we use ordinal numbers to access columns.
Still this can be a sign of a tampered table, output an error
to the error log.
*/
report_error(0, "Incorrect definition of table %s.%s: "
"expected column '%s' at position %d, found '%s'.",
table->s->db.str, table->alias.c_ptr(),
field_def->name.str, i,
field->field_name.str);
}
field->sql_type(sql_type);
/*
Generally, if column types don't match, then something is
wrong.
However, we only compare column definitions up to the
length of the original definition, since we consider the
following definitions compatible:
1. DATETIME and DATETIM
2. INT(11) and INT(11
3. SET('one', 'two') and SET('one', 'two', 'more')
For SETs or ENUMs, if the same prefix is there it's OK to
add more elements - they will get higher ordinal numbers and
the new table definition is backward compatible with the
original one.
*/
if (strncmp(sql_type.c_ptr_safe(), field_def->type.str,
field_def->type.length - 1))
{
report_error(0, "Incorrect definition of table %s.%s: "
"expected column '%s' at position %d to have type "
"%s, found type %s.", table->s->db.str,
table->alias.c_ptr(),
field_def->name.str, i, field_def->type.str,
sql_type.c_ptr_safe());
error= TRUE;
}
else if (field_def->cset.str && !field->has_charset())
{
report_error(0, "Incorrect definition of table %s.%s: "
"expected the type of column '%s' at position %d "
"to have character set '%s' but the type has no "
"character set.", table->s->db.str,
table->alias.c_ptr(),
field_def->name.str, i, field_def->cset.str);
error= TRUE;
}
else if (field_def->cset.str &&
strcmp(field->charset()->csname, field_def->cset.str))
{
report_error(0, "Incorrect definition of table %s.%s: "
"expected the type of column '%s' at position %d "
"to have character set '%s' but found "
"character set '%s'.", table->s->db.str,
table->alias.c_ptr(),
field_def->name.str, i, field_def->cset.str,
field->charset()->csname);
error= TRUE;
}
}
else
{
report_error(0, "Incorrect definition of table %s.%s: "
"expected column '%s' at position %d to have type %s "
" but the column is not found.",
table->s->db.str, table->alias.c_ptr(),
field_def->name.str, i, field_def->type.str);
error= TRUE;
}
}
}
if (table_def->primary_key_parts)
{
if (table->s->primary_key == MAX_KEY)
{
report_error(0, "Incorrect definition of table %s.%s: "
"missing primary key.", table->s->db.str,
table->alias.c_ptr());
error= TRUE;
}
else
{
KEY *pk= &table->s->key_info[table->s->primary_key];
if (pk->user_defined_key_parts != table_def->primary_key_parts)
{
report_error(0, "Incorrect definition of table %s.%s: "
"Expected primary key to have %u columns, but instead "
"found %u columns.", table->s->db.str,
table->alias.c_ptr(), table_def->primary_key_parts,
pk->user_defined_key_parts);
error= TRUE;
}
else
{
for (i= 0; i < pk->user_defined_key_parts; ++i)
{
if (table_def->primary_key_columns[i] + 1 != pk->key_part[i].fieldnr)
{
report_error(0, "Incorrect definition of table %s.%s: Expected "
"primary key part %u to refer to column %u, but "
"instead found column %u.", table->s->db.str,
table->alias.c_ptr(), i + 1,
table_def->primary_key_columns[i] + 1,
pk->key_part[i].fieldnr);
error= TRUE;
}
}
}
}
}
if (likely(! error))
table->s->table_field_def_cache= table_def;
end:
if (has_keys && !error && !table->key_info)
{
report_error(0, "Incorrect definition of table %s.%s: "
"indexes are missing",
table->s->db.str, table->alias.c_ptr());
error= TRUE;
}
DBUG_RETURN(error);
}
void Table_check_intact_log_error::report_error(uint, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
error_log_print(ERROR_LEVEL, fmt, args);
va_end(args);
}
/**
Traverse portion of wait-for graph which is reachable through edge
represented by this flush ticket in search for deadlocks.
@retval TRUE A deadlock is found. A victim is remembered
by the visitor.
@retval FALSE Success, no deadlocks.
*/
bool Wait_for_flush::accept_visitor(MDL_wait_for_graph_visitor *gvisitor)
{
return m_share->visit_subgraph(this, gvisitor);
}
uint Wait_for_flush::get_deadlock_weight() const
{
return m_deadlock_weight;
}
/**
Traverse portion of wait-for graph which is reachable through this
table share in search for deadlocks.
@param waiting_ticket Ticket representing wait for this share.
@param dvisitor Deadlock detection visitor.
@retval TRUE A deadlock is found. A victim is remembered
by the visitor.
@retval FALSE No deadlocks, it's OK to begin wait.
*/
bool TABLE_SHARE::visit_subgraph(Wait_for_flush *wait_for_flush,
MDL_wait_for_graph_visitor *gvisitor)
{
TABLE *table;
MDL_context *src_ctx= wait_for_flush->get_ctx();
bool result= TRUE;
/*
To protect all_tables list from being concurrently modified
while we are iterating through it we increment tdc.all_tables_refs.
This does not introduce deadlocks in the deadlock detector
because we won't try to acquire tdc.LOCK_table_share while
holding a write-lock on MDL_lock::m_rwlock.
*/
mysql_mutex_lock(&tdc->LOCK_table_share);
tdc->all_tables_refs++;
mysql_mutex_unlock(&tdc->LOCK_table_share);
All_share_tables_list::Iterator tables_it(tdc->all_tables);
/*
In case of multiple searches running in parallel, avoid going
over the same loop twice and shortcut the search.
Do it after taking the lock to weed out unnecessary races.
*/
if (src_ctx->m_wait.get_status() != MDL_wait::EMPTY)
{
result= FALSE;
goto end;
}
if (gvisitor->enter_node(src_ctx))
goto end;
while ((table= tables_it++))
{
DBUG_ASSERT(table->in_use && tdc->flushed);
if (gvisitor->inspect_edge(&table->in_use->mdl_context))
{
goto end_leave_node;
}
}
tables_it.rewind();
while ((table= tables_it++))
{
DBUG_ASSERT(table->in_use && tdc->flushed);
if (table->in_use->mdl_context.visit_subgraph(gvisitor))
{
goto end_leave_node;
}
}
result= FALSE;
end_leave_node:
gvisitor->leave_node(src_ctx);
end:
mysql_mutex_lock(&tdc->LOCK_table_share);
if (!--tdc->all_tables_refs)
mysql_cond_broadcast(&tdc->COND_release);
mysql_mutex_unlock(&tdc->LOCK_table_share);
return result;
}
/**
Wait until the subject share is removed from the table
definition cache and make sure it's destroyed.
@param mdl_context MDL context for thread which is going to wait.
@param abstime Timeout for waiting as absolute time value.
@param deadlock_weight Weight of this wait for deadlock detector.
@pre LOCK_table_share is locked, the share is marked for flush and
this connection does not reference the share.
LOCK_table_share will be unlocked temporarily during execution.
It may happen that another FLUSH TABLES thread marked this share
for flush, but didn't yet purge it from table definition cache.
In this case we may start waiting for a table share that has no
references (ref_count == 0). We do this with assumption that this
another FLUSH TABLES thread is about to purge this share.
@retval FALSE - Success.
@retval TRUE - Error (OOM, deadlock, timeout, etc...).
*/
bool TABLE_SHARE::wait_for_old_version(THD *thd, struct timespec *abstime,
uint deadlock_weight)
{
MDL_context *mdl_context= &thd->mdl_context;
Wait_for_flush ticket(mdl_context, this, deadlock_weight);
MDL_wait::enum_wait_status wait_status;
mysql_mutex_assert_owner(&tdc->LOCK_table_share);
DBUG_ASSERT(tdc->flushed);
tdc->m_flush_tickets.push_front(&ticket);
mdl_context->m_wait.reset_status();
mysql_mutex_unlock(&tdc->LOCK_table_share);
mdl_context->will_wait_for(&ticket);
mdl_context->find_deadlock();
wait_status= mdl_context->m_wait.timed_wait(thd, abstime, TRUE,
&stage_waiting_for_table_flush);
mdl_context->done_waiting_for();
mysql_mutex_lock(&tdc->LOCK_table_share);
tdc->m_flush_tickets.remove(&ticket);
mysql_cond_broadcast(&tdc->COND_release);
mysql_mutex_unlock(&tdc->LOCK_table_share);
/*
In cases when our wait was aborted by KILL statement,
a deadlock or a timeout, the share might still be referenced,
so we don't delete it. Note, that we can't determine this
condition by checking wait_status alone, since, for example,
a timeout can happen after all references to the table share
were released, but before the share is removed from the
cache and we receive the notification. This is why
we first destroy the share, and then look at
wait_status.
*/
switch (wait_status)
{
case MDL_wait::GRANTED:
return FALSE;
case MDL_wait::VICTIM:
my_error(ER_LOCK_DEADLOCK, MYF(0));
return TRUE;
case MDL_wait::TIMEOUT:
my_error(ER_LOCK_WAIT_TIMEOUT, MYF(0));
return TRUE;
case MDL_wait::KILLED:
return TRUE;
default:
DBUG_ASSERT(0);
return TRUE;
}
}
/**
Initialize TABLE instance (newly created, or coming either from table
cache or THD::temporary_tables list) and prepare it for further use
during statement execution. Set the 'alias' attribute from the specified
TABLE_LIST element. Remember the TABLE_LIST element in the
TABLE::pos_in_table_list member.
@param thd Thread context.
@param tl TABLE_LIST element.
*/
void TABLE::init(THD *thd, TABLE_LIST *tl)
{
DBUG_ASSERT(s->tmp_table != NO_TMP_TABLE || s->tdc->ref_count > 0);
if (thd->lex->need_correct_ident())
alias_name_used= my_strcasecmp(table_alias_charset,
s->table_name.str,
tl->alias.str);
/* Fix alias if table name changes. */
if (!alias.alloced_length() || strcmp(alias.c_ptr(), tl->alias.str))
alias.copy(tl->alias.str, tl->alias.length, alias.charset());
tablenr= thd->current_tablenr++;
used_fields= 0;
const_table= 0;
null_row= 0;
maybe_null= 0;
force_index= 0;
force_index_order= 0;
force_index_group= 0;
status= STATUS_NO_RECORD;
insert_values= 0;
fulltext_searched= 0;
file->ft_handler= 0;
reginfo.impossible_range= 0;
created= TRUE;
cond_selectivity= 1.0;
cond_selectivity_sampling_explain= NULL;
range_rowid_filter_cost_info_elems= 0;
range_rowid_filter_cost_info_ptr= NULL;
range_rowid_filter_cost_info= NULL;
vers_write= s->versioned;
quick_condition_rows=0;
no_cache= false;
initialize_quick_structures();
#ifdef HAVE_REPLICATION
/* used in RBR Triggers */
master_had_triggers= 0;
#endif
/* Catch wrong handling of the auto_increment_field_not_null. */
DBUG_ASSERT(!auto_increment_field_not_null);
auto_increment_field_not_null= FALSE;
pos_in_table_list= tl;
clear_column_bitmaps();
for (Field **f_ptr= field ; *f_ptr ; f_ptr++)
{
(*f_ptr)->next_equal_field= NULL;
(*f_ptr)->cond_selectivity= 1.0;
}
notnull_cond= 0;
DBUG_ASSERT(!file->keyread_enabled());
restore_record(this, s->default_values);
/* Tables may be reused in a sub statement. */
DBUG_ASSERT(!file->extra(HA_EXTRA_IS_ATTACHED_CHILDREN));
}
/*
Create Item_field for each column in the table.
SYNPOSIS
TABLE::fill_item_list()
item_list a pointer to an empty list used to store items
DESCRIPTION
Create Item_field object for each column in the table and
initialize it with the corresponding Field. New items are
created in the current THD memory root.
RETURN VALUE
0 success
1 out of memory
*/
bool TABLE::fill_item_list(List<Item> *item_list) const
{
/*
All Item_field's created using a direct pointer to a field
are fixed in Item_field constructor.
*/
for (Field **ptr= field; *ptr; ptr++)
{
Item_field *item= new (in_use->mem_root) Item_field(in_use, *ptr);
if (!item || item_list->push_back(item))
return TRUE;
}
return FALSE;
}
/*
Reset an existing list of Item_field items to point to the
Fields of this table.
SYNPOSIS
TABLE::fill_item_list()
item_list a non-empty list with Item_fields
DESCRIPTION
This is a counterpart of fill_item_list used to redirect
Item_fields to the fields of a newly created table.
The caller must ensure that number of items in the item_list
is the same as the number of columns in the table.
*/
void TABLE::reset_item_list(List<Item> *item_list, uint skip) const
{
List_iterator_fast<Item> it(*item_list);
Field **ptr= field;
for ( ; skip && *ptr; skip--)
ptr++;
for (; *ptr; ptr++)
{
Item_field *item_field= (Item_field*) it++;
DBUG_ASSERT(item_field != 0);
item_field->reset_field(*ptr);
}
}
/*
calculate md5 of query
SYNOPSIS
TABLE_LIST::calc_md5()
buffer buffer for md5 writing
*/
void TABLE_LIST::calc_md5(const char *buffer)
{
uchar digest[16];
compute_md5_hash(digest, select_stmt.str,
select_stmt.length);
sprintf((char *) buffer,
"%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
digest[0], digest[1], digest[2], digest[3],
digest[4], digest[5], digest[6], digest[7],
digest[8], digest[9], digest[10], digest[11],
digest[12], digest[13], digest[14], digest[15]);
}
/**
@brief
Create field translation for mergeable derived table/view.
@param thd Thread handle
@details
Create field translation for mergeable derived table/view.
@return FALSE ok.
@return TRUE an error occur.
*/
bool TABLE_LIST::create_field_translation(THD *thd)
{
Item *item;
Field_translator *transl;
SELECT_LEX *select= get_single_select();
List_iterator_fast<Item> it(select->item_list);
uint field_count= 0;
Query_arena *arena, backup;
bool res= FALSE;
DBUG_ENTER("TABLE_LIST::create_field_translation");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(alias.str ? alias.str : "<NULL>"),
get_unit()));
if (thd->stmt_arena->is_conventional() ||
thd->stmt_arena->is_stmt_prepare_or_first_sp_execute())
{
/* initialize lists */
used_items.empty();
persistent_used_items.empty();
}
else
{
/*
Copy the list created by natural join procedure because the procedure
will not be repeated.
*/
used_items= persistent_used_items;
}
if (field_translation)
{
/*
Update items in the field translation after view have been prepared.
It's needed because some items in the select list, like IN subselects,
might be substituted for optimized ones.
*/
if (is_view() && get_unit()->prepared && !field_translation_updated)
{
field_translation_updated= TRUE;
if (static_cast<uint>(field_translation_end - field_translation) <
select->item_list.elements)
goto allocate;
while ((item= it++))
{
field_translation[field_count++].item= item;
}
}
DBUG_RETURN(FALSE);
}
allocate:
arena= thd->activate_stmt_arena_if_needed(&backup);
/* Create view fields translation table */
if (!(transl=
(Field_translator*)(thd->stmt_arena->
alloc(select->item_list.elements *
sizeof(Field_translator)))))
{
res= TRUE;
goto exit;
}
while ((item= it++))
{
DBUG_ASSERT(item->name.str && item->name.str[0]);
transl[field_count].name.str= thd->strmake(item->name.str, item->name.length);
transl[field_count].name.length= item->name.length;
transl[field_count++].item= item;
}
field_translation= transl;
field_translation_end= transl + field_count;
/* It's safe to cache this table for prepared statements */
cacheable_table= 1;
exit:
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(res);
}
/**
@brief
Create field translation for mergeable derived table/view.
@param thd Thread handle
@details
Create field translation for mergeable derived table/view.
@return FALSE ok.
@return TRUE an error occur.
*/
bool TABLE_LIST::setup_underlying(THD *thd)
{
DBUG_ENTER("TABLE_LIST::setup_underlying");
if (!view || (!field_translation && merge_underlying_list))
{
SELECT_LEX *select= get_single_select();
if (create_field_translation(thd))
DBUG_RETURN(TRUE);
/* full text function moving to current select */
if (select->ftfunc_list->elements)
{
Item_func_match *ifm;
SELECT_LEX *current_select= thd->lex->current_select;
List_iterator_fast<Item_func_match>
li(*(select_lex->ftfunc_list));
while ((ifm= li++))
current_select->ftfunc_list->push_front(ifm);
}
}
DBUG_RETURN(FALSE);
}
/*
Prepare where expression of derived table/view
SYNOPSIS
TABLE_LIST::prep_where()
thd - thread handler
conds - condition of this JOIN
no_where_clause - do not build WHERE or ON outer qwery do not need it
(it is INSERT), we do not need conds if this flag is set
NOTE: have to be called befor CHECK OPTION preparation, because it makes
fix_fields for view WHERE clause
RETURN
FALSE - OK
TRUE - error
*/
bool TABLE_LIST::prep_where(THD *thd, Item **conds,
bool no_where_clause)
{
DBUG_ENTER("TABLE_LIST::prep_where");
bool res= FALSE;
for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local)
{
if (tbl->is_view_or_derived() &&
tbl->prep_where(thd, conds, no_where_clause))
{
DBUG_RETURN(TRUE);
}
}
if (where)
{
if (where->is_fixed())
where->update_used_tables();
else if (where->fix_fields(thd, &where))
DBUG_RETURN(TRUE);
/*
check that it is not VIEW in which we insert with INSERT SELECT
(in this case we can't add view WHERE condition to main SELECT_LEX)
*/
if (!no_where_clause && !where_processed)
{
TABLE_LIST *tbl= this;
Query_arena *arena= thd->stmt_arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup); // For easier test
/* Go up to join tree and try to find left join */
for (; tbl; tbl= tbl->embedding)
{
if (tbl->outer_join)
{
/*
Store WHERE condition to ON expression for outer join, because
we can't use WHERE to correctly execute left joins on VIEWs and
this expression will not be moved to WHERE condition (i.e. will
be clean correctly for PS/SP)
*/
tbl->on_expr= and_conds(thd, tbl->on_expr,
where->copy_andor_structure(thd));
break;
}
}
if (tbl == 0)
{
if (*conds)
res= (*conds)->fix_fields_if_needed_for_bool(thd, conds);
if (!res)
*conds= and_conds(thd, *conds, where->copy_andor_structure(thd));
if (*conds && !res)
res= (*conds)->fix_fields_if_needed_for_bool(thd, conds);
}
if (arena)
thd->restore_active_arena(arena, &backup);
where_processed= TRUE;
}
}
DBUG_RETURN(res);
}
/**
Check that table/view is updatable and if it has single
underlying tables/views it is also updatable
@return Result of the check.
*/
bool TABLE_LIST::single_table_updatable()
{
if (!updatable)
return false;
if (view && view->first_select_lex()->table_list.elements == 1)
{
/*
We need to check deeply only single table views. Multi-table views
will be turned to multi-table updates and then checked by leaf tables
*/
return (((TABLE_LIST *)view->first_select_lex()->table_list.first)->
single_table_updatable());
}
return true;
}
/*
Merge ON expressions for a view
SYNOPSIS
merge_on_conds()
thd thread handle
table table for the VIEW
is_cascaded TRUE <=> merge ON expressions from underlying views
DESCRIPTION
This function returns the result of ANDing the ON expressions
of the given view and all underlying views. The ON expressions
of the underlying views are added only if is_cascaded is TRUE.
RETURN
Pointer to the built expression if there is any.
Otherwise and in the case of a failure NULL is returned.
*/
static Item *
merge_on_conds(THD *thd, TABLE_LIST *table, bool is_cascaded)
{
DBUG_ENTER("merge_on_conds");
Item *cond= NULL;
DBUG_PRINT("info", ("alias: %s", table->alias.str));
if (table->on_expr)
cond= table->on_expr->copy_andor_structure(thd);
if (!table->view)
DBUG_RETURN(cond);
for (TABLE_LIST *tbl=
(TABLE_LIST*)table->view->first_select_lex()->table_list.first;
tbl;
tbl= tbl->next_local)
{
if (tbl->view && !is_cascaded)
continue;
cond= and_conds(thd, cond, merge_on_conds(thd, tbl, is_cascaded));
}
DBUG_RETURN(cond);
}
/*
Prepare check option expression of table
SYNOPSIS
TABLE_LIST::prep_check_option()
thd - thread handler
check_opt_type - WITH CHECK OPTION type (VIEW_CHECK_NONE,
VIEW_CHECK_LOCAL, VIEW_CHECK_CASCADED)
we use this parameter instead of direct check of
effective_with_check to change type of underlying
views to VIEW_CHECK_CASCADED if outer view have
such option and prevent processing of underlying
view check options if outer view have just
VIEW_CHECK_LOCAL option.
NOTE
This method builds check option condition to use it later on
every call (usual execution or every SP/PS call).
This method have to be called after WHERE preparation
(TABLE_LIST::prep_where)
RETURN
FALSE - OK
TRUE - error
*/
bool TABLE_LIST::prep_check_option(THD *thd, uint8 check_opt_type)
{
DBUG_ENTER("TABLE_LIST::prep_check_option");
bool is_cascaded= check_opt_type == VIEW_CHECK_CASCADED;
TABLE_LIST *merge_underlying_list= view->first_select_lex()->get_table_list();
for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local)
{
/* see comment of check_opt_type parameter */
if (tbl->view && tbl->prep_check_option(thd, (is_cascaded ?
VIEW_CHECK_CASCADED :
VIEW_CHECK_NONE)))
DBUG_RETURN(TRUE);
}
if (check_opt_type && !check_option_processed)
{
Query_arena *arena= thd->stmt_arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup); // For easier test
if (where)
{
check_option= where->copy_andor_structure(thd);
}
if (is_cascaded)
{
for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local)
{
if (tbl->check_option)
check_option= and_conds(thd, check_option, tbl->check_option);
}
}
check_option= and_conds(thd, check_option,
merge_on_conds(thd, this, is_cascaded));
if (arena)
thd->restore_active_arena(arena, &backup);
check_option_processed= TRUE;
}
if (check_option)
{
const char *save_where= thd->where;
thd->where= "check option";
if (check_option->fix_fields_if_needed_for_bool(thd, &check_option))
DBUG_RETURN(TRUE);
thd->where= save_where;
}
DBUG_RETURN(FALSE);
}
/**
Hide errors which show view underlying table information.
There are currently two mechanisms at work that handle errors for views,
this one and a more general mechanism based on an Internal_error_handler,
see Show_create_error_handler. The latter handles errors encountered during
execution of SHOW CREATE VIEW, while the mechanism using this method is
handles SELECT from views. The two methods should not clash.
@param[in,out] thd thread handler
@pre This method can be called only if there is an error.
*/
void TABLE_LIST::hide_view_error(THD *thd)
{
if ((thd->killed && !thd->is_error())|| thd->get_internal_handler())
return;
/* Hide "Unknown column" or "Unknown function" error */
DBUG_ASSERT(thd->is_error());
switch (thd->get_stmt_da()->sql_errno()) {
case ER_BAD_FIELD_ERROR:
case ER_SP_DOES_NOT_EXIST:
case ER_FUNC_INEXISTENT_NAME_COLLISION:
case ER_PROCACCESS_DENIED_ERROR:
case ER_COLUMNACCESS_DENIED_ERROR:
case ER_TABLEACCESS_DENIED_ERROR:
case ER_TABLE_NOT_LOCKED:
case ER_NO_SUCH_TABLE:
{
TABLE_LIST *top= top_table();
thd->clear_error();
my_error(ER_VIEW_INVALID, MYF(0),
top->view_db.str, top->view_name.str);
break;
}
case ER_NO_DEFAULT_FOR_FIELD:
{
TABLE_LIST *top= top_table();
thd->clear_error();
// TODO: make correct error message
my_error(ER_NO_DEFAULT_FOR_VIEW_FIELD, MYF(0),
top->view_db.str, top->view_name.str);
break;
}
}
}
/*
Find underlying base tables (TABLE_LIST) which represent given
table_to_find (TABLE)
SYNOPSIS
TABLE_LIST::find_underlying_table()
table_to_find table to find
RETURN
0 table is not found
found table reference
*/
TABLE_LIST *TABLE_LIST::find_underlying_table(TABLE *table_to_find)
{
/* is this real table and table which we are looking for? */
if (table == table_to_find && view == 0)
return this;
if (!view)
return 0;
for (TABLE_LIST *tbl= view->first_select_lex()->get_table_list();
tbl;
tbl= tbl->next_local)
{
TABLE_LIST *result;
if ((result= tbl->find_underlying_table(table_to_find)))
return result;
}
return 0;
}
/*
cleanup items belonged to view fields translation table
SYNOPSIS
TABLE_LIST::cleanup_items()
*/
void TABLE_LIST::cleanup_items()
{
if (!field_translation)
return;
for (Field_translator *transl= field_translation;
transl < field_translation_end;
transl++)
transl->item->walk(&Item::cleanup_processor, 0, 0);
}
/*
check CHECK OPTION condition both for view and underlying table
SYNOPSIS
TABLE_LIST::view_check_option()
ignore_failure ignore check option fail
RETURN
VIEW_CHECK_OK OK
VIEW_CHECK_ERROR FAILED
VIEW_CHECK_SKIP FAILED, but continue
*/
int TABLE_LIST::view_check_option(THD *thd, bool ignore_failure)
{
if (check_option)
{
/* VIEW's CHECK OPTION CLAUSE */
Counting_error_handler ceh;
thd->push_internal_handler(&ceh);
bool res= check_option->val_int() == 0;
thd->pop_internal_handler();
if (ceh.errors)
return(VIEW_CHECK_ERROR);
if (res)
{
TABLE_LIST *main_view= top_table();
const char *name_db= (main_view->view ? main_view->view_db.str :
main_view->db.str);
const char *name_table= (main_view->view ? main_view->view_name.str :
main_view->table_name.str);
my_error(ER_VIEW_CHECK_FAILED, MYF(ignore_failure ? ME_WARNING : 0),
name_db, name_table);
return ignore_failure ? VIEW_CHECK_SKIP : VIEW_CHECK_ERROR;
}
}
return table->verify_constraints(ignore_failure);
}
int TABLE::verify_constraints(bool ignore_failure)
{
/*
We have to check is_error() first as we are checking it for each
constraint to catch fatal warnings.
*/
if (in_use->is_error())
return (VIEW_CHECK_ERROR);
/* go trough check option clauses for fields and table */
if (check_constraints &&
!(in_use->variables.option_bits & OPTION_NO_CHECK_CONSTRAINT_CHECKS))
{
if (versioned() && !vers_end_field()->is_max())
return VIEW_CHECK_OK;
for (Virtual_column_info **chk= check_constraints ; *chk ; chk++)
{
/*
yes! NULL is ok.
see 4.23.3.4 Table check constraints, part 2, SQL:2016
*/
if (((*chk)->expr->val_int() == 0 && !(*chk)->expr->null_value) ||
in_use->is_error())
{
StringBuffer<MAX_FIELD_WIDTH> field_error(system_charset_info);
enum_vcol_info_type vcol_type= (*chk)->get_vcol_type();
DBUG_ASSERT(vcol_type == VCOL_CHECK_TABLE ||
vcol_type == VCOL_CHECK_FIELD);
if (vcol_type == VCOL_CHECK_FIELD)
{
field_error.append(s->table_name.str);
field_error.append(".");
}
field_error.append((*chk)->name.str);
my_error(ER_CONSTRAINT_FAILED,
MYF(ignore_failure ? ME_WARNING : 0), field_error.c_ptr(),
s->db.str, s->table_name.str);
return ignore_failure ? VIEW_CHECK_SKIP : VIEW_CHECK_ERROR;
}
}
}
/*
We have to check in_use() as checking constraints may have generated
warnings that should be treated as errors
*/
return(!in_use->is_error() ? VIEW_CHECK_OK : VIEW_CHECK_ERROR);
}
/*
Find table in underlying tables by mask and check that only this
table belong to given mask
SYNOPSIS
TABLE_LIST::check_single_table()
table_arg reference on variable where to store found table
(should be 0 on call, to find table, or point to table for
unique test)
map bit mask of tables
view_arg view for which we are looking table
RETURN
FALSE table not found or found only one
TRUE found several tables
*/
bool TABLE_LIST::check_single_table(TABLE_LIST **table_arg,
table_map map,
TABLE_LIST *view_arg)
{
if (!select_lex)
return FALSE;
DBUG_ASSERT(is_merged_derived());
for (TABLE_LIST *tbl= get_single_select()->get_table_list();
tbl;
tbl= tbl->next_local)
{
/*
Merged view has also temporary table attached (in 5.2 if it has table
then it was real table), so we have filter such temporary tables out
by checking that it is not merged view
*/
if (tbl->table &&
!(tbl->is_view() &&
tbl->is_merged_derived()))
{
if (tbl->table->map & map)
{
if (*table_arg)
return TRUE;
*table_arg= tbl;
tbl->check_option= view_arg->check_option;
}
}
else if (tbl->check_single_table(table_arg, map, view_arg))
return TRUE;
}
return FALSE;
}
/*
Set insert_values buffer
SYNOPSIS
set_insert_values()
mem_root memory pool for allocating
RETURN
FALSE - OK
TRUE - out of memory
*/
bool TABLE_LIST::set_insert_values(MEM_ROOT *mem_root)
{
DBUG_ENTER("set_insert_values");
if (table)
{
DBUG_PRINT("info", ("setting insert_value for table"));
if (!table->insert_values &&
!(table->insert_values= (uchar *)alloc_root(mem_root,
table->s->rec_buff_length)))
DBUG_RETURN(TRUE);
}
else
{
DBUG_PRINT("info", ("setting insert_value for view"));
DBUG_ASSERT(is_view_or_derived() && is_merged_derived());
for (TABLE_LIST *tbl=
(TABLE_LIST*)view->first_select_lex()->table_list.first;
tbl;
tbl= tbl->next_local)
if (tbl->set_insert_values(mem_root))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
/*
Test if this is a leaf with respect to name resolution.
SYNOPSIS
TABLE_LIST::is_leaf_for_name_resolution()
DESCRIPTION
A table reference is a leaf with respect to name resolution if
it is either a leaf node in a nested join tree (table, view,
schema table, subquery), or an inner node that represents a
NATURAL/USING join, or a nested join with materialized join
columns.
RETURN
TRUE if a leaf, FALSE otherwise.
*/
bool TABLE_LIST::is_leaf_for_name_resolution()
{
return (is_merged_derived() || is_natural_join || is_join_columns_complete ||
!nested_join);
}
/*
Retrieve the first (left-most) leaf in a nested join tree with
respect to name resolution.
SYNOPSIS
TABLE_LIST::first_leaf_for_name_resolution()
DESCRIPTION
Given that 'this' is a nested table reference, recursively walk
down the left-most children of 'this' until we reach a leaf
table reference with respect to name resolution.
IMPLEMENTATION
The left-most child of a nested table reference is the last element
in the list of children because the children are inserted in
reverse order.
RETURN
If 'this' is a nested table reference - the left-most child of
the tree rooted in 'this',
else return 'this'
*/
TABLE_LIST *TABLE_LIST::first_leaf_for_name_resolution()
{
TABLE_LIST *UNINIT_VAR(cur_table_ref);
NESTED_JOIN *cur_nested_join;
if (is_leaf_for_name_resolution())
return this;
DBUG_ASSERT(nested_join);
for (cur_nested_join= nested_join;
cur_nested_join;
cur_nested_join= cur_table_ref->nested_join)
{
List_iterator_fast<TABLE_LIST> it(cur_nested_join->join_list);
cur_table_ref= it++;
/*
If the current nested join is a RIGHT JOIN, the operands in
'join_list' are in reverse order, thus the first operand is
already at the front of the list. Otherwise the first operand
is in the end of the list of join operands.
*/
if (!(cur_table_ref->outer_join & JOIN_TYPE_RIGHT))
{
TABLE_LIST *next;
while ((next= it++))
cur_table_ref= next;
}
if (cur_table_ref->is_leaf_for_name_resolution())
break;
}
return cur_table_ref;
}
/*
Retrieve the last (right-most) leaf in a nested join tree with
respect to name resolution.
SYNOPSIS
TABLE_LIST::last_leaf_for_name_resolution()
DESCRIPTION
Given that 'this' is a nested table reference, recursively walk
down the right-most children of 'this' until we reach a leaf
table reference with respect to name resolution.
IMPLEMENTATION
The right-most child of a nested table reference is the first
element in the list of children because the children are inserted
in reverse order.
RETURN
- If 'this' is a nested table reference - the right-most child of
the tree rooted in 'this',
- else - 'this'
*/
TABLE_LIST *TABLE_LIST::last_leaf_for_name_resolution()
{
TABLE_LIST *cur_table_ref= this;
NESTED_JOIN *cur_nested_join;
if (is_leaf_for_name_resolution())
return this;
DBUG_ASSERT(nested_join);
for (cur_nested_join= nested_join;
cur_nested_join;
cur_nested_join= cur_table_ref->nested_join)
{
cur_table_ref= cur_nested_join->join_list.head();
/*
If the current nested is a RIGHT JOIN, the operands in
'join_list' are in reverse order, thus the last operand is in the
end of the list.
*/
if ((cur_table_ref->outer_join & JOIN_TYPE_RIGHT))
{
List_iterator_fast<TABLE_LIST> it(cur_nested_join->join_list);
TABLE_LIST *next;
cur_table_ref= it++;
while ((next= it++))
cur_table_ref= next;
}
if (cur_table_ref->is_leaf_for_name_resolution())
break;
}
return cur_table_ref;
}
/*
Register access mode which we need for underlying tables
SYNOPSIS
register_want_access()
want_access Acess which we require
*/
void TABLE_LIST::register_want_access(privilege_t want_access)
{
/* Remove SHOW_VIEW_ACL, because it will be checked during making view */
want_access&= ~SHOW_VIEW_ACL;
if (belong_to_view)
{
grant.want_privilege= want_access;
if (table)
table->grant.want_privilege= want_access;
}
if (!view)
return;
for (TABLE_LIST *tbl= view->first_select_lex()->get_table_list();
tbl;
tbl= tbl->next_local)
tbl->register_want_access(want_access);
}
/*
Load security context information for this view
SYNOPSIS
TABLE_LIST::prepare_view_security_context()
thd [in] thread handler
RETURN
FALSE OK
TRUE Error
*/
#ifndef NO_EMBEDDED_ACCESS_CHECKS
bool TABLE_LIST::prepare_view_security_context(THD *thd)
{
DBUG_ENTER("TABLE_LIST::prepare_view_security_context");
DBUG_PRINT("enter", ("table: %s", alias.str));
DBUG_ASSERT(!prelocking_placeholder && view);
if (view_suid)
{
DBUG_PRINT("info", ("This table is suid view => load contest"));
DBUG_ASSERT(view && view_sctx);
if (acl_getroot(view_sctx, definer.user.str, definer.host.str,
definer.host.str, thd->db.str))
{
if ((thd->lex->sql_command == SQLCOM_SHOW_CREATE) ||
(thd->lex->sql_command == SQLCOM_SHOW_FIELDS))
{
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_NO_SUCH_USER,
ER_THD(thd, ER_NO_SUCH_USER),
definer.user.str, definer.host.str);
}
else
{
if (thd->security_ctx->master_access & PRIV_REVEAL_MISSING_DEFINER)
{
my_error(ER_NO_SUCH_USER, MYF(0), definer.user.str, definer.host.str);
}
else
{
if (thd->password == 2)
my_error(ER_ACCESS_DENIED_NO_PASSWORD_ERROR, MYF(0),
thd->security_ctx->priv_user,
thd->security_ctx->priv_host);
else
my_error(ER_ACCESS_DENIED_ERROR, MYF(0),
thd->security_ctx->priv_user,
thd->security_ctx->priv_host,
(thd->password ? ER_THD(thd, ER_YES) :
ER_THD(thd, ER_NO)));
}
DBUG_RETURN(TRUE);
}
}
}
DBUG_RETURN(FALSE);
}
#endif
/*
Find security context of current view
SYNOPSIS
TABLE_LIST::find_view_security_context()
thd [in] thread handler
*/
#ifndef NO_EMBEDDED_ACCESS_CHECKS
Security_context *TABLE_LIST::find_view_security_context(THD *thd)
{
Security_context *sctx;
TABLE_LIST *upper_view= this;
DBUG_ENTER("TABLE_LIST::find_view_security_context");
DBUG_ASSERT(view);
while (upper_view && !upper_view->view_suid)
{
DBUG_ASSERT(!upper_view->prelocking_placeholder);
upper_view= upper_view->referencing_view;
}
if (upper_view)
{
DBUG_PRINT("info", ("Securety context of view %s will be used",
upper_view->alias.str));
sctx= upper_view->view_sctx;
DBUG_ASSERT(sctx);
}
else
{
DBUG_PRINT("info", ("Current global context will be used"));
sctx= thd->security_ctx;
}
DBUG_RETURN(sctx);
}
#endif
/*
Prepare security context and load underlying tables priveleges for view
SYNOPSIS
TABLE_LIST::prepare_security()
thd [in] thread handler
RETURN
FALSE OK
TRUE Error
*/
bool TABLE_LIST::prepare_security(THD *thd)
{
List_iterator_fast<TABLE_LIST> tb(*view_tables);
TABLE_LIST *tbl;
DBUG_ENTER("TABLE_LIST::prepare_security");
#ifndef NO_EMBEDDED_ACCESS_CHECKS
Security_context *save_security_ctx= thd->security_ctx;
DBUG_ASSERT(!prelocking_placeholder);
if (prepare_view_security_context(thd))
DBUG_RETURN(TRUE);
thd->security_ctx= find_view_security_context(thd);
opt_trace_disable_if_no_security_context_access(thd);
while ((tbl= tb++))
{
DBUG_ASSERT(tbl->referencing_view);
const char *local_db, *local_table_name;
if (tbl->view)
{
local_db= tbl->view_db.str;
local_table_name= tbl->view_name.str;
}
else
{
local_db= tbl->db.str;
local_table_name= tbl->table_name.str;
}
fill_effective_table_privileges(thd, &tbl->grant, local_db,
local_table_name);
if (tbl->table)
tbl->table->grant= grant;
}
thd->security_ctx= save_security_ctx;
#else
while ((tbl= tb++))
tbl->grant.privilege= ALL_KNOWN_ACL;
#endif
DBUG_RETURN(FALSE);
}
#ifndef DBUG_OFF
void TABLE_LIST::set_check_merged()
{
DBUG_ASSERT(derived);
/*
It is not simple to check all, but at least this should be checked:
this select is not excluded or the exclusion came from above.
*/
DBUG_ASSERT(derived->is_excluded() ||
!derived->first_select()->exclude_from_table_unique_test ||
derived->outer_select()->
exclude_from_table_unique_test);
}
#endif
void TABLE_LIST::set_check_materialized()
{
DBUG_ENTER("TABLE_LIST::set_check_materialized");
SELECT_LEX_UNIT *derived= this->derived;
if (view)
derived= &view->unit;
DBUG_ASSERT(derived);
DBUG_ASSERT(!derived->is_excluded());
if (!derived->first_select()->exclude_from_table_unique_test)
derived->set_unique_exclude();
else
{
/*
The subtree should be already excluded
*/
DBUG_ASSERT(!derived->first_select()->first_inner_unit() ||
derived->first_select()->first_inner_unit()->with_element ||
derived->first_select()->first_inner_unit()->first_select()->
exclude_from_table_unique_test);
}
DBUG_VOID_RETURN;
}
TABLE *TABLE_LIST::get_real_join_table()
{
TABLE_LIST *tbl= this;
while (tbl->table == NULL || tbl->table->reginfo.join_tab == NULL)
{
if ((tbl->view == NULL && tbl->derived == NULL) ||
tbl->is_materialized_derived())
break;
/* we do not support merging of union yet */
DBUG_ASSERT(tbl->view == NULL ||
tbl->view->first_select_lex()->next_select() == NULL);
DBUG_ASSERT(tbl->derived == NULL ||
tbl->derived->first_select()->next_select() == NULL);
{
List_iterator_fast<TABLE_LIST>
ti(tbl->view != NULL ?
tbl->view->first_select_lex()->top_join_list :
tbl->derived->first_select()->top_join_list);
for (;;)
{
tbl= NULL;
/*
Find left table in outer join on this level
(the list is reverted).
*/
for (TABLE_LIST *t= ti++; t; t= ti++)
tbl= t;
if (!tbl)
return NULL; // view/derived with no tables
if (!tbl->nested_join)
break;
/* go deeper if we've found nested join */
ti= tbl->nested_join->join_list;
}
}
}
return tbl->table;
}
Natural_join_column::Natural_join_column(Field_translator *field_param,
TABLE_LIST *tab)
{
DBUG_ASSERT(tab->field_translation);
view_field= field_param;
table_field= NULL;
table_ref= tab;
is_common= FALSE;
}
Natural_join_column::Natural_join_column(Item_field *field_param,
TABLE_LIST *tab)
{
DBUG_ASSERT(tab->table == field_param->field->table);
table_field= field_param;
view_field= NULL;
table_ref= tab;
is_common= FALSE;
}
LEX_CSTRING *Natural_join_column::name()
{
if (view_field)
{
DBUG_ASSERT(table_field == NULL);
return &view_field->name;
}
return &table_field->field_name;
}
Item *Natural_join_column::create_item(THD *thd)
{
if (view_field)
{
DBUG_ASSERT(table_field == NULL);
return create_view_field(thd, table_ref, &view_field->item,
&view_field->name);
}
return table_field;
}
Field *Natural_join_column::field()
{
if (view_field)
{
DBUG_ASSERT(table_field == NULL);
return NULL;
}
return table_field->field;
}
const char *Natural_join_column::safe_table_name()
{
DBUG_ASSERT(table_ref);
return table_ref->alias.str ? table_ref->alias.str : "";
}
const char *Natural_join_column::safe_db_name()
{
if (view_field)
return table_ref->view_db.str ? table_ref->view_db.str : "";
/*
Test that TABLE_LIST::db is the same as TABLE_SHARE::db to
ensure consistency. An exception are I_S schema tables, which
are inconsistent in this respect.
*/
DBUG_ASSERT(!cmp(&table_ref->db,
&table_ref->table->s->db) ||
(table_ref->schema_table &&
is_infoschema_db(&table_ref->table->s->db)) ||
table_ref->is_materialized_derived());
return table_ref->db.str ? table_ref->db.str : "";
}
GRANT_INFO *Natural_join_column::grant()
{
/* if (view_field)
return &(table_ref->grant);
return &(table_ref->table->grant);*/
/*
Have to check algorithm because merged derived also has
field_translation.
*/
//if (table_ref->effective_algorithm == DTYPE_ALGORITHM_MERGE)
if (table_ref->is_merged_derived())
return &(table_ref->grant);
return &(table_ref->table->grant);
}
void Field_iterator_view::set(TABLE_LIST *table)
{
DBUG_ASSERT(table->field_translation);
view= table;
ptr= table->field_translation;
array_end= table->field_translation_end;
}
LEX_CSTRING *Field_iterator_table::name()
{
return &(*ptr)->field_name;
}
Item *Field_iterator_table::create_item(THD *thd)
{
SELECT_LEX *select= thd->lex->current_select;
Item_field *item= new (thd->mem_root) Item_field(thd, &select->context, *ptr);
DBUG_ASSERT(strlen(item->name.str) == item->name.length);
if (item && thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY &&
!thd->lex->in_sum_func && select->cur_pos_in_select_list != UNDEF_POS &&
select->join)
{
select->join->non_agg_fields.push_back(item);
item->marker= select->cur_pos_in_select_list;
select->set_non_agg_field_used(true);
}
return item;
}
LEX_CSTRING *Field_iterator_view::name()
{
return &ptr->name;
}
Item *Field_iterator_view::create_item(THD *thd)
{
return create_view_field(thd, view, &ptr->item, &ptr->name);
}
Item *create_view_field(THD *thd, TABLE_LIST *view, Item **field_ref,
LEX_CSTRING *name)
{
bool save_wrapper= thd->lex->first_select_lex()->no_wrap_view_item;
Item *field= *field_ref;
DBUG_ENTER("create_view_field");
if (view->schema_table_reformed)
{
/*
Translation table items are always Item_fields and already fixed
('mysql_schema_table' function). So we can return directly the
field. This case happens only for 'show & where' commands.
*/
DBUG_ASSERT(field && field->is_fixed());
DBUG_RETURN(field);
}
DBUG_ASSERT(field);
thd->lex->current_select->no_wrap_view_item= TRUE;
if (!field->is_fixed())
{
if (field->fix_fields(thd, field_ref))
{
thd->lex->current_select->no_wrap_view_item= save_wrapper;
DBUG_RETURN(0);
}
field= *field_ref;
}
thd->lex->current_select->no_wrap_view_item= save_wrapper;
if (save_wrapper)
{
DBUG_RETURN(field);
}
Name_resolution_context *context= (view->view ?
&view->view->first_select_lex()->context:
&thd->lex->first_select_lex()->context);
Item *item= (new (thd->mem_root)
Item_direct_view_ref(thd, context, field_ref, view->alias,
*name, view));
if (!item)
return NULL;
/*
Force creation of nullable item for the result tmp table for outer joined
views/derived tables.
*/
if (view->table && view->table->maybe_null)
item->maybe_null= TRUE;
/* Save item in case we will need to fall back to materialization. */
view->used_items.push_front(item, thd->mem_root);
/*
If we create this reference on persistent memory then it should be
present in persistent list
*/
if (thd->mem_root == thd->stmt_arena->mem_root)
view->persistent_used_items.push_front(item, thd->mem_root);
DBUG_RETURN(item);
}
void Field_iterator_natural_join::set(TABLE_LIST *table_ref)
{
DBUG_ASSERT(table_ref->join_columns);
column_ref_it.init(*(table_ref->join_columns));
cur_column_ref= column_ref_it++;
}
void Field_iterator_natural_join::next()
{
cur_column_ref= column_ref_it++;
DBUG_ASSERT(!cur_column_ref || ! cur_column_ref->table_field ||
cur_column_ref->table_ref->table ==
cur_column_ref->table_field->field->table);
}
void Field_iterator_table_ref::set_field_iterator()
{
DBUG_ENTER("Field_iterator_table_ref::set_field_iterator");
/*
If the table reference we are iterating over is a natural join, or it is
an operand of a natural join, and TABLE_LIST::join_columns contains all
the columns of the join operand, then we pick the columns from
TABLE_LIST::join_columns, instead of the orginial container of the
columns of the join operator.
*/
if (table_ref->is_join_columns_complete)
{
/* Necesary, but insufficient conditions. */
DBUG_ASSERT(table_ref->is_natural_join ||
table_ref->nested_join ||
(table_ref->join_columns &&
/* This is a merge view. */
((table_ref->field_translation &&
table_ref->join_columns->elements ==
(ulong)(table_ref->field_translation_end -
table_ref->field_translation)) ||
/* This is stored table or a tmptable view. */
(!table_ref->field_translation &&
table_ref->join_columns->elements ==
table_ref->table->s->fields))));
field_it= &natural_join_it;
DBUG_PRINT("info",("field_it for '%s' is Field_iterator_natural_join",
table_ref->alias.str));
}
/* This is a merge view, so use field_translation. */
else if (table_ref->field_translation)
{
DBUG_ASSERT(table_ref->is_merged_derived());
field_it= &view_field_it;
DBUG_PRINT("info", ("field_it for '%s' is Field_iterator_view",
table_ref->alias.str));
}
/* This is a base table or stored view. */
else
{
DBUG_ASSERT(table_ref->table || table_ref->view);
field_it= &table_field_it;
DBUG_PRINT("info", ("field_it for '%s' is Field_iterator_table",
table_ref->alias.str));
}
field_it->set(table_ref);
DBUG_VOID_RETURN;
}
void Field_iterator_table_ref::set(TABLE_LIST *table)
{
DBUG_ASSERT(table);
first_leaf= table->first_leaf_for_name_resolution();
last_leaf= table->last_leaf_for_name_resolution();
DBUG_ASSERT(first_leaf && last_leaf);
table_ref= first_leaf;
set_field_iterator();
}
void Field_iterator_table_ref::next()
{
/* Move to the next field in the current table reference. */
field_it->next();
/*
If all fields of the current table reference are exhausted, move to
the next leaf table reference.
*/
if (field_it->end_of_fields() && table_ref != last_leaf)
{
table_ref= table_ref->next_name_resolution_table;
DBUG_ASSERT(table_ref);
set_field_iterator();
}
}
const char *Field_iterator_table_ref::get_table_name()
{
if (table_ref->view)
return table_ref->view_name.str;
if (table_ref->is_derived())
return table_ref->table->s->table_name.str;
else if (table_ref->is_natural_join)
return natural_join_it.column_ref()->safe_table_name();
DBUG_ASSERT(!strcmp(table_ref->table_name.str,
table_ref->table->s->table_name.str) ||
table_ref->schema_table);
return table_ref->table_name.str;
}
const char *Field_iterator_table_ref::get_db_name()
{
if (table_ref->view)
return table_ref->view_db.str;
else if (table_ref->is_natural_join)
return natural_join_it.column_ref()->safe_db_name();
/*
Test that TABLE_LIST::db is the same as TABLE_SHARE::db to
ensure consistency. An exception are I_S schema tables, which
are inconsistent in this respect.
*/
DBUG_ASSERT(!cmp(&table_ref->db, &table_ref->table->s->db) ||
(table_ref->schema_table &&
is_infoschema_db(&table_ref->table->s->db)));
return table_ref->db.str;
}
GRANT_INFO *Field_iterator_table_ref::grant()
{
if (table_ref->view)
return &(table_ref->grant);
else if (table_ref->is_natural_join)
return natural_join_it.column_ref()->grant();
return &(table_ref->table->grant);
}
/*
Create new or return existing column reference to a column of a
natural/using join.
SYNOPSIS
Field_iterator_table_ref::get_or_create_column_ref()
parent_table_ref the parent table reference over which the
iterator is iterating
DESCRIPTION
Create a new natural join column for the current field of the
iterator if no such column was created, or return an already
created natural join column. The former happens for base tables or
views, and the latter for natural/using joins. If a new field is
created, then the field is added to 'parent_table_ref' if it is
given, or to the original table referene of the field if
parent_table_ref == NULL.
NOTES
This method is designed so that when a Field_iterator_table_ref
walks through the fields of a table reference, all its fields
are created and stored as follows:
- If the table reference being iterated is a stored table, view or
natural/using join, store all natural join columns in a list
attached to that table reference.
- If the table reference being iterated is a nested join that is
not natural/using join, then do not materialize its result
fields. This is OK because for such table references
Field_iterator_table_ref iterates over the fields of the nested
table references (recursively). In this way we avoid the storage
of unnecessay copies of result columns of nested joins.
RETURN
# Pointer to a column of a natural join (or its operand)
NULL No memory to allocate the column
*/
Natural_join_column *
Field_iterator_table_ref::get_or_create_column_ref(THD *thd, TABLE_LIST *parent_table_ref)
{
Natural_join_column *nj_col;
bool is_created= TRUE;
uint UNINIT_VAR(field_count);
TABLE_LIST *add_table_ref= parent_table_ref ?
parent_table_ref : table_ref;
if (field_it == &table_field_it)
{
/* The field belongs to a stored table. */
Field *tmp_field= table_field_it.field();
Item_field *tmp_item=
new (thd->mem_root) Item_field(thd, &thd->lex->current_select->context, tmp_field);
if (!tmp_item)
return NULL;
nj_col= new Natural_join_column(tmp_item, table_ref);
field_count= table_ref->table->s->fields;
}
else if (field_it == &view_field_it)
{
/* The field belongs to a merge view or information schema table. */
Field_translator *translated_field= view_field_it.field_translator();
nj_col= new Natural_join_column(translated_field, table_ref);
field_count= (uint)(table_ref->field_translation_end -
table_ref->field_translation);
}
else
{
/*
The field belongs to a NATURAL join, therefore the column reference was
already created via one of the two constructor calls above. In this case
we just return the already created column reference.
*/
DBUG_ASSERT(table_ref->is_join_columns_complete);
is_created= FALSE;
nj_col= natural_join_it.column_ref();
DBUG_ASSERT(nj_col);
}
DBUG_ASSERT(!nj_col->table_field || !nj_col->table_field->field ||
nj_col->table_ref->table == nj_col->table_field->field->table);
/*
If the natural join column was just created add it to the list of
natural join columns of either 'parent_table_ref' or to the table
reference that directly contains the original field.
*/
if (is_created)
{
/* Make sure not all columns were materialized. */
DBUG_ASSERT(!add_table_ref->is_join_columns_complete);
if (!add_table_ref->join_columns)
{
/* Create a list of natural join columns on demand. */
if (!(add_table_ref->join_columns= new List<Natural_join_column>))
return NULL;
add_table_ref->is_join_columns_complete= FALSE;
}
add_table_ref->join_columns->push_back(nj_col);
/*
If new fields are added to their original table reference, mark if
all fields were added. We do it here as the caller has no easy way
of knowing when to do it.
If the fields are being added to parent_table_ref, then the caller
must take care to mark when all fields are created/added.
*/
if (!parent_table_ref &&
add_table_ref->join_columns->elements == field_count)
add_table_ref->is_join_columns_complete= TRUE;
}
return nj_col;
}
/*
Return an existing reference to a column of a natural/using join.
SYNOPSIS
Field_iterator_table_ref::get_natural_column_ref()
DESCRIPTION
The method should be called in contexts where it is expected that
all natural join columns are already created, and that the column
being retrieved is a Natural_join_column.
RETURN
# Pointer to a column of a natural join (or its operand)
NULL We didn't originally have memory to allocate the column
*/
Natural_join_column *
Field_iterator_table_ref::get_natural_column_ref()
{
Natural_join_column *nj_col;
DBUG_ASSERT(field_it == &natural_join_it);
/*
The field belongs to a NATURAL join, therefore the column reference was
already created via one of the two constructor calls above. In this case
we just return the already created column reference.
*/
nj_col= natural_join_it.column_ref();
DBUG_ASSERT(nj_col &&
(!nj_col->table_field || !nj_col->table_field->field ||
nj_col->table_ref->table == nj_col->table_field->field->table));
return nj_col;
}
/*****************************************************************************
Functions to handle column usage bitmaps (read_set, write_set etc...)
*****************************************************************************/
/* Reset all columns bitmaps */
void TABLE::clear_column_bitmaps()
{
/*
Reset column read/write usage. It's identical to:
bitmap_clear_all(&table->def_read_set);
bitmap_clear_all(&table->def_write_set);
The code assumes that the bitmaps are allocated after each other, as
guaranteed by open_table_from_share()
*/
bzero((char*) def_read_set.bitmap,
s->column_bitmap_size * (s->virtual_fields ? 3 : 2));
column_bitmaps_set(&def_read_set, &def_write_set);
rpl_write_set= 0; // Safety
}
/*
Tell handler we are going to call position() and rnd_pos() later.
NOTES:
This is needed for handlers that uses the primary key to find the
row. In this case we have to extend the read bitmap with the primary
key fields.
*/
void TABLE::prepare_for_position()
{
DBUG_ENTER("TABLE::prepare_for_position");
if ((file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) &&
s->primary_key < MAX_KEY)
{
mark_columns_used_by_index_no_reset(s->primary_key, read_set);
/* signal change */
file->column_bitmaps_signal();
}
DBUG_VOID_RETURN;
}
MY_BITMAP *TABLE::prepare_for_keyread(uint index, MY_BITMAP *map)
{
MY_BITMAP *backup= read_set;
DBUG_ENTER("TABLE::prepare_for_keyread");
if (!no_keyread)
file->ha_start_keyread(index);
if (map != read_set || !(file->index_flags(index, 0, 1) & HA_CLUSTERED_INDEX))
{
mark_columns_used_by_index(index, map);
column_bitmaps_set(map);
}
DBUG_RETURN(backup);
}
/*
Mark that only fields from one key is used. Useful before keyread.
*/
void TABLE::mark_columns_used_by_index(uint index, MY_BITMAP *bitmap)
{
DBUG_ENTER("TABLE::mark_columns_used_by_index");
bitmap_clear_all(bitmap);
mark_columns_used_by_index_no_reset(index, bitmap);
DBUG_VOID_RETURN;
}
/*
Restore to use normal column maps after key read
NOTES
This reverse the change done by mark_columns_used_by_index
WARNING
For this to work, one must have the normal table maps in place
when calling mark_columns_used_by_index
*/
void TABLE::restore_column_maps_after_keyread(MY_BITMAP *backup)
{
DBUG_ENTER("TABLE::restore_column_maps_after_mark_index");
file->ha_end_keyread();
read_set= backup;
file->column_bitmaps_signal();
DBUG_VOID_RETURN;
}
/*
mark columns used by key, but don't reset other fields
*/
void TABLE::mark_columns_used_by_index_no_reset(uint index, MY_BITMAP *bitmap)
{
KEY_PART_INFO *key_part= key_info[index].key_part;
KEY_PART_INFO *key_part_end= (key_part + key_info[index].user_defined_key_parts);
for (;key_part != key_part_end; key_part++)
bitmap_set_bit(bitmap, key_part->fieldnr-1);
if (file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX &&
s->primary_key != MAX_KEY && s->primary_key != index)
mark_columns_used_by_index_no_reset(s->primary_key, bitmap);
}
/*
Mark auto-increment fields as used fields in both read and write maps
NOTES
This is needed in insert & update as the auto-increment field is
always set and sometimes read.
*/
void TABLE::mark_auto_increment_column()
{
DBUG_ASSERT(found_next_number_field);
/*
We must set bit in read set as update_auto_increment() is using the
store() to check overflow of auto_increment values
*/
bitmap_set_bit(read_set, found_next_number_field->field_index);
bitmap_set_bit(write_set, found_next_number_field->field_index);
if (s->next_number_keypart)
mark_columns_used_by_index_no_reset(s->next_number_index, read_set);
file->column_bitmaps_signal();
}
/*
Mark columns needed for doing an delete of a row
DESCRIPTON
Some table engines don't have a cursor on the retrieve rows
so they need either to use the primary key or all columns to
be able to delete a row.
If the engine needs this, the function works as follows:
- If primary key exits, mark the primary key columns to be read.
- If not, mark all columns to be read
If the engine has HA_REQUIRES_KEY_COLUMNS_FOR_DELETE, we will
mark all key columns as 'to-be-read'. This allows the engine to
loop over the given record to find all keys and doesn't have to
retrieve the row again.
*/
void TABLE::mark_columns_needed_for_delete()
{
bool need_signal= false;
mark_columns_per_binlog_row_image();
if (triggers)
triggers->mark_fields_used(TRG_EVENT_DELETE);
if (file->ha_table_flags() & HA_REQUIRES_KEY_COLUMNS_FOR_DELETE)
{
Field **reg_field;
for (reg_field= field ; *reg_field ; reg_field++)
{
if ((*reg_field)->flags & (PART_KEY_FLAG | PART_INDIRECT_KEY_FLAG))
mark_column_with_deps(*reg_field);
}
need_signal= true;
}
if (file->ha_table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_DELETE)
{
/*
If the handler has no cursor capabilites, we have to read either
the primary key, the hidden primary key or all columns to be
able to do an delete
*/
if (s->primary_key == MAX_KEY)
file->use_hidden_primary_key();
else
{
mark_columns_used_by_index_no_reset(s->primary_key, read_set);
need_signal= true;
}
}
if (s->versioned)
{
bitmap_set_bit(read_set, s->vers.start_fieldno);
bitmap_set_bit(read_set, s->vers.end_fieldno);
bitmap_set_bit(write_set, s->vers.end_fieldno);
need_signal= true;
}
if (need_signal)
file->column_bitmaps_signal();
}
/*
Mark columns needed for doing an update of a row
DESCRIPTON
Some engines needs to have all columns in an update (to be able to
build a complete row). If this is the case, we mark all not
updated columns to be read.
If this is no the case, we do like in the delete case and mark
if needed, either the primary key column or all columns to be read.
(see mark_columns_needed_for_delete() for details)
If the engine has HA_REQUIRES_KEY_COLUMNS_FOR_DELETE, we will
mark all USED key columns as 'to-be-read'. This allows the engine to
loop over the given record to find all changed keys and doesn't have to
retrieve the row again.
*/
void TABLE::mark_columns_needed_for_update()
{
DBUG_ENTER("TABLE::mark_columns_needed_for_update");
bool need_signal= false;
if (triggers)
triggers->mark_fields_used(TRG_EVENT_UPDATE);
if (default_field)
mark_default_fields_for_write(FALSE);
if (vfield)
need_signal|= mark_virtual_columns_for_write(FALSE);
if (file->ha_table_flags() & HA_REQUIRES_KEY_COLUMNS_FOR_DELETE)
{
KEY *end= key_info + s->keys;
for (KEY *k= key_info; k < end; k++)
{
KEY_PART_INFO *kpend= k->key_part + k->ext_key_parts;
int any_written= 0, all_read= 1;
for (KEY_PART_INFO *kp= k->key_part; kp < kpend; kp++)
{
int idx= kp->fieldnr - 1;
any_written|= bitmap_is_set(write_set, idx);
all_read&= bitmap_is_set(read_set, idx);
}
if (any_written && !all_read)
{
for (KEY_PART_INFO *kp= k->key_part; kp < kpend; kp++)
mark_column_with_deps(field[kp->fieldnr - 1]);
}
}
need_signal= true;
}
else
{
if (found_next_number_field)
mark_auto_increment_column();
}
if (file->ha_table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_DELETE)
{
/*
If the handler has no cursor capabilites, we have to read either
the primary key, the hidden primary key or all columns to be
able to do an update
*/
if (s->primary_key == MAX_KEY)
file->use_hidden_primary_key();
else
{
mark_columns_used_by_index_no_reset(s->primary_key, read_set);
need_signal= true;
}
}
if (s->versioned)
{
/*
For System Versioning we have to read all columns since we store
a copy of previous row with modified row_end back to a table.
*/
bitmap_union(read_set, &s->all_set);
need_signal= true;
}
if (check_constraints)
{
mark_check_constraint_columns_for_read();
need_signal= true;
}
/*
If a timestamp field settable on UPDATE is present then to avoid wrong
update force the table handler to retrieve write-only fields to be able
to compare records and detect data change.
*/
if ((file->ha_table_flags() & HA_PARTIAL_COLUMN_READ) &&
default_field && s->has_update_default_function)
{
bitmap_union(read_set, write_set);
need_signal= true;
}
mark_columns_per_binlog_row_image();
if (need_signal)
file->column_bitmaps_signal();
DBUG_VOID_RETURN;
}
/*
Mark columns the handler needs for doing an insert
For now, this is used to mark fields used by the trigger
as changed.
*/
void TABLE::mark_columns_needed_for_insert()
{
DBUG_ENTER("mark_columns_needed_for_insert");
if (triggers)
{
/*
We don't need to mark columns which are used by ON DELETE and
ON UPDATE triggers, which may be invoked in case of REPLACE or
INSERT ... ON DUPLICATE KEY UPDATE, since before doing actual
row replacement or update write_record() will mark all table
fields as used.
*/
triggers->mark_fields_used(TRG_EVENT_INSERT);
}
if (found_next_number_field)
mark_auto_increment_column();
if (default_field)
mark_default_fields_for_write(TRUE);
/* Mark virtual columns for insert */
if (vfield)
mark_virtual_columns_for_write(TRUE);
mark_columns_per_binlog_row_image();
if (check_constraints)
mark_check_constraint_columns_for_read();
DBUG_VOID_RETURN;
}
/*
Mark columns according the binlog row image option.
Columns to be written are stored in 'rpl_write_set'
When logging in RBR, the user can select whether to
log partial or full rows, depending on the table
definition, and the value of binlog_row_image.
Semantics of the binlog_row_image are the following
(PKE - primary key equivalent, ie, PK fields if PK
exists, all fields otherwise):
binlog_row_image= MINIMAL
- This marks the PKE fields in the read_set
- This marks all fields where a value was specified
in the rpl_write_set
binlog_row_image= NOBLOB
- This marks PKE + all non-blob fields in the read_set
- This marks all fields where a value was specified
and all non-blob fields in the rpl_write_set
binlog_row_image= FULL
- all columns in the read_set
- all columns in the rpl_write_set
This marking is done without resetting the original
bitmaps. This means that we will strip extra fields in
the read_set at binlogging time (for those cases that
we only want to log a PK and we needed other fields for
execution).
*/
void TABLE::mark_columns_per_binlog_row_image()
{
THD *thd= in_use;
DBUG_ENTER("mark_columns_per_binlog_row_image");
DBUG_ASSERT(read_set->bitmap);
DBUG_ASSERT(write_set->bitmap);
/* If not using row format */
rpl_write_set= write_set;
/**
If in RBR we may need to mark some extra columns,
depending on the binlog-row-image command line argument.
*/
if (file->row_logging &&
!ha_check_storage_engine_flag(s->db_type(), HTON_NO_BINLOG_ROW_OPT))
{
/* if there is no PK, then mark all columns for the BI. */
if (s->primary_key >= MAX_KEY)
{
bitmap_set_all(read_set);
rpl_write_set= read_set;
}
else
{
switch (thd->variables.binlog_row_image) {
case BINLOG_ROW_IMAGE_FULL:
bitmap_set_all(read_set);
/* Set of columns that should be written (all) */
rpl_write_set= read_set;
break;
case BINLOG_ROW_IMAGE_NOBLOB:
/* Only write changed columns + not blobs */
rpl_write_set= &def_rpl_write_set;
bitmap_copy(rpl_write_set, write_set);
/*
for every field that is not set, mark it unless it is a blob or
part of a primary key
*/
for (Field **ptr=field ; *ptr ; ptr++)
{
Field *my_field= *ptr;
/*
bypass blob fields. These can be set or not set, we don't care.
Later, at binlogging time, if we don't need them in the before
image, we will discard them.
If set in the AI, then the blob is really needed, there is
nothing we can do about it.
*/
if ((my_field->flags & PRI_KEY_FLAG) ||
(my_field->type() != MYSQL_TYPE_BLOB))
{
bitmap_set_bit(read_set, my_field->field_index);
bitmap_set_bit(rpl_write_set, my_field->field_index);
}
}
break;
case BINLOG_ROW_IMAGE_MINIMAL:
/*
mark the primary key in the read set so that we can find the row
that is updated / deleted.
We don't need to mark the primary key in the rpl_write_set as the
binary log will include all columns read anyway.
*/
mark_columns_used_by_index_no_reset(s->primary_key, read_set);
if (versioned())
{
// TODO: After MDEV-18432 we don't pass history rows, so remove this:
rpl_write_set= &s->all_set;
}
else
{
/* Only write columns that have changed */
rpl_write_set= write_set;
}
break;
default:
DBUG_ASSERT(FALSE);
}
}
file->column_bitmaps_signal();
}
DBUG_VOID_RETURN;
}
/*
@brief Mark virtual columns for update/insert commands
@param insert_fl true if virtual columns are marked for insert command
For the moment this is not used, may be used in future.
@details
The function marks virtual columns used in a update/insert commands
in the vcol_set bitmap.
For an insert command a virtual column is always marked in write_set if
it is a stored column.
If a virtual column is from write_set it is always marked in vcol_set.
If a stored virtual column is not from write_set but it is computed
through columns from write_set it is also marked in vcol_set, and,
besides, it is added to write_set.
@return whether a bitmap was updated
@note
Let table t1 have columns a,b,c and let column c be a stored virtual
column computed through columns a and b. Then for the query
UPDATE t1 SET a=1
column c will be placed into vcol_set and into write_set while
column b will be placed into read_set.
If column c was a virtual column, but not a stored virtual column
then it would not be added to any of the sets. Column b would not
be added to read_set either.
*/
bool TABLE::mark_virtual_columns_for_write(bool insert_fl
__attribute__((unused)))
{
Field **vfield_ptr, *tmp_vfield;
bool bitmap_updated= false;
DBUG_ENTER("mark_virtual_columns_for_write");
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
tmp_vfield= *vfield_ptr;
if (bitmap_is_set(write_set, tmp_vfield->field_index))
bitmap_updated|= mark_virtual_column_with_deps(tmp_vfield);
else if (tmp_vfield->vcol_info->stored_in_db ||
(tmp_vfield->flags & (PART_KEY_FLAG | FIELD_IN_PART_FUNC_FLAG |
PART_INDIRECT_KEY_FLAG)))
{
bitmap_set_bit(write_set, tmp_vfield->field_index);
mark_virtual_column_with_deps(tmp_vfield);
bitmap_updated= true;
}
}
if (bitmap_updated)
file->column_bitmaps_signal();
DBUG_RETURN(bitmap_updated);
}
/**
Check if a virtual not stored column field is in read set
@retval FALSE No virtual not stored column is used
@retval TRUE At least one virtual not stored column is used
*/
bool TABLE::check_virtual_columns_marked_for_read()
{
if (vfield)
{
Field **vfield_ptr;
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
Field *tmp_vfield= *vfield_ptr;
if (bitmap_is_set(read_set, tmp_vfield->field_index) &&
!tmp_vfield->vcol_info->stored_in_db)
return TRUE;
}
}
return FALSE;
}
/**
Check if a stored virtual column field is marked for write
This can be used to check if any column that is part of a virtual
stored column is changed
@retval FALSE No stored virtual column is used
@retval TRUE At least one stored virtual column is used
*/
bool TABLE::check_virtual_columns_marked_for_write()
{
if (vfield)
{
Field **vfield_ptr;
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
Field *tmp_vfield= *vfield_ptr;
if (bitmap_is_set(write_set, tmp_vfield->field_index) &&
tmp_vfield->vcol_info->stored_in_db)
return TRUE;
}
}
return FALSE;
}
/*
Mark fields used by check constraints into s->check_set.
Mark all fields used in an expression that is part of an index
with PART_INDIRECT_KEY_FLAG
This is done once for the TABLE_SHARE the first time the table is opened.
The marking must be done non-destructively to handle the case when
this could be run in parallely by two threads
*/
void TABLE::mark_columns_used_by_virtual_fields(void)
{
MY_BITMAP *save_read_set;
Field **vfield_ptr;
TABLE_SHARE::enum_v_keys v_keys= TABLE_SHARE::NO_V_KEYS;
/* If there is virtual fields are already initialized */
if (s->check_set_initialized)
return;
if (s->tmp_table == NO_TMP_TABLE)
mysql_mutex_lock(&s->LOCK_share);
if (s->check_set)
{
/* Mark fields used by check constraint */
save_read_set= read_set;
read_set= s->check_set;
for (Virtual_column_info **chk= check_constraints ; *chk ; chk++)
(*chk)->expr->walk(&Item::register_field_in_read_map, 1, 0);
read_set= save_read_set;
}
/*
mark all fields that part of a virtual indexed field with
PART_INDIRECT_KEY_FLAG. This is used to ensure that all fields
that are part of an index exits before write/delete/update.
As this code is only executed once per open share, it's reusing
existing functionality instead of adding an extra argument to
add_field_to_set_processor or adding another processor.
*/
if (vfield)
{
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
if ((*vfield_ptr)->flags & PART_KEY_FLAG)
(*vfield_ptr)->vcol_info->expr->walk(&Item::add_field_to_set_processor,
1, this);
}
for (uint i= 0 ; i < s->fields ; i++)
{
if (bitmap_is_set(&tmp_set, i))
{
s->field[i]->flags|= PART_INDIRECT_KEY_FLAG;
v_keys= TABLE_SHARE::V_KEYS;
}
}
bitmap_clear_all(&tmp_set);
}
s->check_set_initialized= v_keys;
if (s->tmp_table == NO_TMP_TABLE)
mysql_mutex_unlock(&s->LOCK_share);
}
/* Add fields used by CHECK CONSTRAINT to read map */
void TABLE::mark_check_constraint_columns_for_read(void)
{
bitmap_union(read_set, s->check_set);
}
/**
Add all fields that have a default function to the table write set.
*/
void TABLE::mark_default_fields_for_write(bool is_insert)
{
DBUG_ENTER("mark_default_fields_for_write");
Field **field_ptr, *field;
for (field_ptr= default_field; *field_ptr; field_ptr++)
{
field= (*field_ptr);
if (is_insert && field->default_value)
{
bitmap_set_bit(write_set, field->field_index);
field->default_value->expr->
walk(&Item::register_field_in_read_map, 1, 0);
}
else if (!is_insert && field->has_update_default_function())
bitmap_set_bit(write_set, field->field_index);
}
DBUG_VOID_RETURN;
}
void TABLE::move_fields(Field **ptr, const uchar *to, const uchar *from)
{
my_ptrdiff_t diff= to - from;
if (diff)
{
do
{
(*ptr)->move_field_offset(diff);
} while (*(++ptr));
}
}
/*
Store all allocated virtual fields blob values
Used by InnoDB when calculating virtual fields for it's own internal
records
*/
void TABLE::remember_blob_values(String *blob_storage)
{
Field **vfield_ptr;
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
if ((*vfield_ptr)->type() == MYSQL_TYPE_BLOB &&
!(*vfield_ptr)->vcol_info->stored_in_db)
{
Field_blob *blob= ((Field_blob*) *vfield_ptr);
memcpy((void*) blob_storage, (void*) &blob->value, sizeof(blob->value));
blob_storage++;
blob->value.release();
}
}
}
/*
Restore all allocated virtual fields blob values
Used by InnoDB when calculating virtual fields for it's own internal
records
*/
void TABLE::restore_blob_values(String *blob_storage)
{
Field **vfield_ptr;
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
if ((*vfield_ptr)->type() == MYSQL_TYPE_BLOB &&
!(*vfield_ptr)->vcol_info->stored_in_db)
{
Field_blob *blob= ((Field_blob*) *vfield_ptr);
blob->value.free();
memcpy((void*) &blob->value, (void*) blob_storage, sizeof(blob->value));
blob_storage++;
}
}
}
/**
@brief
Allocate space for keys
@param key_count number of keys to allocate additionally
@details
The function allocates memory to fit additionally 'key_count' keys
for this table.
@return FALSE space was successfully allocated
@return TRUE an error occur
*/
bool TABLE::alloc_keys(uint key_count)
{
key_info= (KEY*) alloc_root(&mem_root, sizeof(KEY)*(s->keys+key_count));
if (s->keys)
memmove(key_info, s->key_info, sizeof(KEY)*s->keys);
s->key_info= key_info;
max_keys= s->keys+key_count;
return !(key_info);
}
/**
@brief
Populate a KEY_PART_INFO structure with the data related to a field entry.
@param key_part_info The structure to fill.
@param field The field entry that represents the key part.
@param fleldnr The number of the field, count starting from 1.
TODO: This method does not make use of any table specific fields. It
could be refactored to act as a constructor for KEY_PART_INFO instead.
*/
void TABLE::create_key_part_by_field(KEY_PART_INFO *key_part_info,
Field *field, uint fieldnr)
{
DBUG_ASSERT(field->field_index + 1 == (int)fieldnr);
key_part_info->null_bit= field->null_bit;
key_part_info->null_offset= (uint) (field->null_ptr -
(uchar*) record[0]);
key_part_info->field= field;
key_part_info->fieldnr= fieldnr;
key_part_info->offset= field->offset(record[0]);
/*
field->key_length() accounts for the raw length of the field, excluding
any metadata such as length of field or the NULL flag.
*/
key_part_info->length= (uint16) field->key_length();
key_part_info->key_part_flag= 0;
/* TODO:
The below method of computing the key format length of the
key part is a copy/paste from opt_range.cc, and table.cc.
This should be factored out, e.g. as a method of Field.
In addition it is not clear if any of the Field::*_length
methods is supposed to compute the same length. If so, it
might be reused.
*/
key_part_info->store_length= key_part_info->length;
/*
For BIT fields null_bit is not set to 0 even if the field is defined
as NOT NULL, look at Field_bit::Field_bit
*/
if (!field->real_maybe_null())
{
key_part_info->null_bit= 0;
}
/*
The total store length of the key part is the raw length of the field +
any metadata information, such as its length for strings and/or the null
flag.
*/
if (field->real_maybe_null())
{
key_part_info->store_length+= HA_KEY_NULL_LENGTH;
}
key_part_info->key_part_flag|= field->key_part_flag();
key_part_info->store_length+= field->key_part_length_bytes();
key_part_info->type= (uint8) field->key_type();
key_part_info->key_type =
((ha_base_keytype) key_part_info->type == HA_KEYTYPE_TEXT ||
(ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
(ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
0 : FIELDFLAG_BINARY;
}
/**
@brief
Check validity of a possible key for the derived table
@param key the number of the key
@param key_parts number of components of the key
@param next_field_no the call-back function that returns the number of
the field used as the next component of the key
@param arg the argument for the above function
@details
The function checks whether a possible key satisfies the constraints
imposed on the keys of any temporary table.
We need to filter out BLOB columns here, because ref access optimizer creates
KEYUSE objects for equalities for non-key columns for two puproses:
1. To discover possible keys for derived_with_keys optimization
2. To do hash joins
For the purpose of #1, KEYUSE objects are not created for "blob_column=..." .
However, they might be created for #2. In order to catch that case, we filter
them out here.
@return TRUE if the key is valid
@return FALSE otherwise
*/
bool TABLE::check_tmp_key(uint key, uint key_parts,
uint (*next_field_no) (uchar *), uchar *arg)
{
Field **reg_field;
uint i;
uint key_len= 0;
for (i= 0; i < key_parts; i++)
{
uint fld_idx= next_field_no(arg);
reg_field= field + fld_idx;
if ((*reg_field)->type() == MYSQL_TYPE_BLOB)
return FALSE;
uint fld_store_len= (uint16) (*reg_field)->key_length();
if ((*reg_field)->real_maybe_null())
fld_store_len+= HA_KEY_NULL_LENGTH;
if ((*reg_field)->real_type() == MYSQL_TYPE_VARCHAR ||
(*reg_field)->type() == MYSQL_TYPE_GEOMETRY)
fld_store_len+= HA_KEY_BLOB_LENGTH;
key_len+= fld_store_len;
}
/*
We use MI_MAX_KEY_LENGTH (myisam's default) below because it is
smaller than MAX_KEY_LENGTH (heap's default) and it's unknown whether
myisam or heap will be used for the temporary table.
*/
return key_len <= MI_MAX_KEY_LENGTH;
}
/**
@brief
Add one key to a temporary table
@param key the number of the key
@param key_parts number of components of the key
@param next_field_no the call-back function that returns the number of
the field used as the next component of the key
@param arg the argument for the above function
@param unique TRUE <=> it is a unique index
@details
The function adds a new key to the table that is assumed to be a temporary
table. At each its invocation the call-back function must return
the number of the field that is used as the next component of this key.
@return FALSE is a success
@return TRUE if a failure
*/
bool TABLE::add_tmp_key(uint key, uint key_parts,
uint (*next_field_no) (uchar *), uchar *arg,
bool unique)
{
DBUG_ASSERT(key < max_keys);
char buf[NAME_CHAR_LEN];
KEY* keyinfo;
Field **reg_field;
uint i;
bool key_start= TRUE;
KEY_PART_INFO* key_part_info=
(KEY_PART_INFO*) alloc_root(&mem_root, sizeof(KEY_PART_INFO)*key_parts);
if (!key_part_info)
return TRUE;
keyinfo= key_info + key;
keyinfo->key_part= key_part_info;
keyinfo->usable_key_parts= keyinfo->user_defined_key_parts = key_parts;
keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
keyinfo->key_length=0;
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
keyinfo->flags= HA_GENERATED_KEY;
keyinfo->ext_key_flags= keyinfo->flags;
keyinfo->is_statistics_from_stat_tables= FALSE;
if (unique)
keyinfo->flags|= HA_NOSAME;
sprintf(buf, "key%i", key);
keyinfo->name.length= strlen(buf);
if (!(keyinfo->name.str= strmake_root(&mem_root, buf, keyinfo->name.length)))
return TRUE;
keyinfo->rec_per_key= (ulong*) alloc_root(&mem_root,
sizeof(ulong)*key_parts);
if (!keyinfo->rec_per_key)
return TRUE;
bzero(keyinfo->rec_per_key, sizeof(ulong)*key_parts);
keyinfo->read_stats= NULL;
keyinfo->collected_stats= NULL;
for (i= 0; i < key_parts; i++)
{
uint fld_idx= next_field_no(arg);
reg_field= field + fld_idx;
if (key_start)
(*reg_field)->key_start.set_bit(key);
(*reg_field)->part_of_key.set_bit(key);
create_key_part_by_field(key_part_info, *reg_field, fld_idx+1);
keyinfo->key_length += key_part_info->store_length;
(*reg_field)->flags|= PART_KEY_FLAG;
key_start= FALSE;
key_part_info++;
}
/*
For the case when there is a derived table that would give distinct rows,
the index statistics are passed to the join optimizer to tell that a ref
access to all the fields of the derived table will produce only one row.
*/
st_select_lex_unit* derived= pos_in_table_list ?
pos_in_table_list->derived: NULL;
if (derived)
{
st_select_lex* first= derived->first_select();
uint select_list_items= first->get_item_list()->elements;
if (key_parts == select_list_items)
{
if ((!first->is_part_of_union() && (first->options & SELECT_DISTINCT)) ||
derived->check_distinct_in_union())
keyinfo->rec_per_key[key_parts - 1]= 1;
}
}
set_if_bigger(s->max_key_length, keyinfo->key_length);
s->keys++;
return FALSE;
}
/*
@brief
Drop all indexes except specified one.
@param key_to_save the key to save
@details
Drop all indexes on this table except 'key_to_save'. The saved key becomes
key #0. Memory occupied by key parts of dropped keys are freed.
If the 'key_to_save' is negative then all keys are freed.
*/
void TABLE::use_index(int key_to_save)
{
uint i= 1;
DBUG_ASSERT(!created && key_to_save < (int)s->keys);
if (key_to_save >= 0)
/* Save the given key. */
memmove(key_info, key_info + key_to_save, sizeof(KEY));
else
/* Drop all keys; */
i= 0;
s->keys= i;
}
/*
Return TRUE if the table is filled at execution phase
(and so, the optimizer must not do anything that depends on the contents of
the table, like range analysis or constant table detection)
*/
bool TABLE::is_filled_at_execution()
{
/*
pos_in_table_list == NULL for internal temporary tables because they
do not have a corresponding table reference. Such tables are filled
during execution.
*/
return MY_TEST(!pos_in_table_list ||
pos_in_table_list->jtbm_subselect ||
pos_in_table_list->is_active_sjm());
}
/**
@brief
Get actual number of key components
@param keyinfo
@details
The function calculates actual number of key components, possibly including
components of extended keys, taken into consideration by the optimizer for the
key described by the parameter keyinfo.
@return number of considered key components
*/
uint TABLE::actual_n_key_parts(KEY *keyinfo)
{
return optimizer_flag(in_use, OPTIMIZER_SWITCH_EXTENDED_KEYS) ?
keyinfo->ext_key_parts : keyinfo->user_defined_key_parts;
}
/**
@brief
Get actual key flags for a table key
@param keyinfo
@details
The function finds out actual key flags taken into consideration by the
optimizer for the key described by the parameter keyinfo.
@return actual key flags
*/
ulong TABLE::actual_key_flags(KEY *keyinfo)
{
return optimizer_flag(in_use, OPTIMIZER_SWITCH_EXTENDED_KEYS) ?
keyinfo->ext_key_flags : keyinfo->flags;
}
/*
Cleanup this table for re-execution.
SYNOPSIS
TABLE_LIST::reinit_before_use()
*/
void TABLE_LIST::reinit_before_use(THD *thd)
{
/*
Reset old pointers to TABLEs: they are not valid since the tables
were closed in the end of previous prepare or execute call.
*/
table= 0;
/* Reset is_schema_table_processed value(needed for I_S tables */
schema_table_state= NOT_PROCESSED;
TABLE_LIST *embedded; /* The table at the current level of nesting. */
TABLE_LIST *parent_embedding= this; /* The parent nested table reference. */
do
{
embedded= parent_embedding;
if (embedded->prep_on_expr)
embedded->on_expr= embedded->prep_on_expr->copy_andor_structure(thd);
parent_embedding= embedded->embedding;
}
while (parent_embedding &&
parent_embedding->nested_join->join_list.head() == embedded);
mdl_request.ticket= NULL;
}
/*
Return subselect that contains the FROM list this table is taken from
SYNOPSIS
TABLE_LIST::containing_subselect()
RETURN
Subselect item for the subquery that contains the FROM list
this table is taken from if there is any
0 - otherwise
*/
Item_subselect *TABLE_LIST::containing_subselect()
{
return (select_lex ? select_lex->master_unit()->item : 0);
}
/*
Compiles the tagged hints list and fills up the bitmasks.
SYNOPSIS
process_index_hints()
table the TABLE to operate on.
DESCRIPTION
The parser collects the index hints for each table in a "tagged list"
(TABLE_LIST::index_hints). Using the information in this tagged list
this function sets the members TABLE::keys_in_use_for_query,
TABLE::keys_in_use_for_group_by, TABLE::keys_in_use_for_order_by,
TABLE::force_index, TABLE::force_index_order,
TABLE::force_index_group and TABLE::covering_keys.
Current implementation of the runtime does not allow mixing FORCE INDEX
and USE INDEX, so this is checked here. Then the FORCE INDEX list
(if non-empty) is appended to the USE INDEX list and a flag is set.
Multiple hints of the same kind are processed so that each clause
is applied to what is computed in the previous clause.
For example:
USE INDEX (i1) USE INDEX (i2)
is equivalent to
USE INDEX (i1,i2)
and means "consider only i1 and i2".
Similarly
USE INDEX () USE INDEX (i1)
is equivalent to
USE INDEX (i1)
and means "consider only the index i1"
It is OK to have the same index several times, e.g. "USE INDEX (i1,i1)" is
not an error.
Different kind of hints (USE/FORCE/IGNORE) are processed in the following
order:
1. All indexes in USE (or FORCE) INDEX are added to the mask.
2. All IGNORE INDEX
e.g. "USE INDEX i1, IGNORE INDEX i1, USE INDEX i1" will not use i1 at all
as if we had "USE INDEX i1, USE INDEX i1, IGNORE INDEX i1".
As an optimization if there is a covering index, and we have
IGNORE INDEX FOR GROUP/ORDER, and this index is used for the JOIN part,
then we have to ignore the IGNORE INDEX FROM GROUP/ORDER.
RETURN VALUE
FALSE no errors found
TRUE found and reported an error.
*/
bool TABLE_LIST::process_index_hints(TABLE *tbl)
{
/* initialize the result variables */
tbl->keys_in_use_for_query= tbl->keys_in_use_for_group_by=
tbl->keys_in_use_for_order_by= tbl->s->keys_in_use;
/* index hint list processing */
if (index_hints)
{
key_map index_join[INDEX_HINT_FORCE + 1];
key_map index_order[INDEX_HINT_FORCE + 1];
key_map index_group[INDEX_HINT_FORCE + 1];
Index_hint *hint;
int type;
bool have_empty_use_join= FALSE, have_empty_use_order= FALSE,
have_empty_use_group= FALSE;
List_iterator <Index_hint> iter(*index_hints);
/* initialize temporary variables used to collect hints of each kind */
for (type= INDEX_HINT_IGNORE; type <= INDEX_HINT_FORCE; type++)
{
index_join[type].clear_all();
index_order[type].clear_all();
index_group[type].clear_all();
}
/* iterate over the hints list */
while ((hint= iter++))
{
uint pos;
/* process empty USE INDEX () */
if (hint->type == INDEX_HINT_USE && !hint->key_name.str)
{
if (hint->clause & INDEX_HINT_MASK_JOIN)
{
index_join[hint->type].clear_all();
have_empty_use_join= TRUE;
}
if (hint->clause & INDEX_HINT_MASK_ORDER)
{
index_order[hint->type].clear_all();
have_empty_use_order= TRUE;
}
if (hint->clause & INDEX_HINT_MASK_GROUP)
{
index_group[hint->type].clear_all();
have_empty_use_group= TRUE;
}
continue;
}
/*
Check if an index with the given name exists and get his offset in
the keys bitmask for the table
*/
if (tbl->s->keynames.type_names == 0 ||
(pos= find_type(&tbl->s->keynames, hint->key_name.str,
hint->key_name.length, 1)) <= 0)
{
my_error(ER_KEY_DOES_NOT_EXISTS, MYF(0), hint->key_name.str, alias.str);
return 1;
}
pos--;
/* add to the appropriate clause mask */
if (hint->clause & INDEX_HINT_MASK_JOIN)
index_join[hint->type].set_bit (pos);
if (hint->clause & INDEX_HINT_MASK_ORDER)
index_order[hint->type].set_bit (pos);
if (hint->clause & INDEX_HINT_MASK_GROUP)
index_group[hint->type].set_bit (pos);
}
/* cannot mix USE INDEX and FORCE INDEX */
if ((!index_join[INDEX_HINT_FORCE].is_clear_all() ||
!index_order[INDEX_HINT_FORCE].is_clear_all() ||
!index_group[INDEX_HINT_FORCE].is_clear_all()) &&
(!index_join[INDEX_HINT_USE].is_clear_all() || have_empty_use_join ||
!index_order[INDEX_HINT_USE].is_clear_all() || have_empty_use_order ||
!index_group[INDEX_HINT_USE].is_clear_all() || have_empty_use_group))
{
my_error(ER_WRONG_USAGE, MYF(0), index_hint_type_name[INDEX_HINT_USE],
index_hint_type_name[INDEX_HINT_FORCE]);
return 1;
}
/* process FORCE INDEX as USE INDEX with a flag */
if (!index_order[INDEX_HINT_FORCE].is_clear_all())
{
tbl->force_index_order= TRUE;
index_order[INDEX_HINT_USE].merge(index_order[INDEX_HINT_FORCE]);
}
if (!index_group[INDEX_HINT_FORCE].is_clear_all())
{
tbl->force_index_group= TRUE;
index_group[INDEX_HINT_USE].merge(index_group[INDEX_HINT_FORCE]);
}
/*
TODO: get rid of tbl->force_index (on if any FORCE INDEX is specified)
and create tbl->force_index_join instead.
Then use the correct force_index_XX instead of the global one.
*/
if (!index_join[INDEX_HINT_FORCE].is_clear_all() ||
tbl->force_index_group || tbl->force_index_order)
{
tbl->force_index= TRUE;
index_join[INDEX_HINT_USE].merge(index_join[INDEX_HINT_FORCE]);
}
/* apply USE INDEX */
if (!index_join[INDEX_HINT_USE].is_clear_all() || have_empty_use_join)
tbl->keys_in_use_for_query.intersect(index_join[INDEX_HINT_USE]);
if (!index_order[INDEX_HINT_USE].is_clear_all() || have_empty_use_order)
tbl->keys_in_use_for_order_by.intersect (index_order[INDEX_HINT_USE]);
if (!index_group[INDEX_HINT_USE].is_clear_all() || have_empty_use_group)
tbl->keys_in_use_for_group_by.intersect (index_group[INDEX_HINT_USE]);
/* apply IGNORE INDEX */
tbl->keys_in_use_for_query.subtract (index_join[INDEX_HINT_IGNORE]);
tbl->keys_in_use_for_order_by.subtract (index_order[INDEX_HINT_IGNORE]);
tbl->keys_in_use_for_group_by.subtract (index_group[INDEX_HINT_IGNORE]);
}
/* make sure covering_keys don't include indexes disabled with a hint */
tbl->covering_keys.intersect(tbl->keys_in_use_for_query);
return 0;
}
size_t max_row_length(TABLE *table, MY_BITMAP const *cols, const uchar *data)
{
TABLE_SHARE *table_s= table->s;
size_t length= table_s->reclength + 2 * table_s->fields;
uint *const beg= table_s->blob_field;
uint *const end= beg + table_s->blob_fields;
my_ptrdiff_t const rec_offset= (my_ptrdiff_t) (data - table->record[0]);
DBUG_ENTER("max_row_length");
for (uint *ptr= beg ; ptr != end ; ++ptr)
{
Field * const field= table->field[*ptr];
if (bitmap_is_set(cols, field->field_index) &&
!field->is_null(rec_offset))
{
Field_blob * const blob= (Field_blob*) field;
length+= blob->get_length(rec_offset) + 8; /* max blob store length */
}
}
DBUG_PRINT("exit", ("length: %lld", (longlong) length));
DBUG_RETURN(length);
}
/**
Helper function which allows to allocate metadata lock request
objects for all elements of table list.
*/
void init_mdl_requests(TABLE_LIST *table_list)
{
for ( ; table_list ; table_list= table_list->next_global)
MDL_REQUEST_INIT(&table_list->mdl_request, MDL_key::TABLE,
table_list->db.str, table_list->table_name.str,
table_list->lock_type >= TL_WRITE_ALLOW_WRITE
? MDL_SHARED_WRITE : MDL_SHARED_READ, MDL_TRANSACTION);
}
/**
Update TABLE::const_key_parts for single table UPDATE/DELETE query
@param conds WHERE clause expression
@retval TRUE error (OOM)
@retval FALSE success
@note
Set const_key_parts bits if key fields are equal to constants in
the WHERE expression.
*/
bool TABLE::update_const_key_parts(COND *conds)
{
bzero((char*) const_key_parts, sizeof(key_part_map) * s->keys);
if (conds == NULL)
return FALSE;
for (uint index= 0; index < s->keys; index++)
{
KEY_PART_INFO *keyinfo= key_info[index].key_part;
KEY_PART_INFO *keyinfo_end= keyinfo + key_info[index].user_defined_key_parts;
for (key_part_map part_map= (key_part_map)1;
keyinfo < keyinfo_end;
keyinfo++, part_map<<= 1)
{
if (const_expression_in_where(conds, NULL, keyinfo->field))
const_key_parts[index]|= part_map;
}
}
return FALSE;
}
/**
Test if the order list consists of simple field expressions
@param order Linked list of ORDER BY arguments
@return TRUE if @a order is empty or consist of simple field expressions
*/
bool is_simple_order(ORDER *order)
{
for (ORDER *ord= order; ord; ord= ord->next)
{
if (ord->item[0]->real_item()->type() != Item::FIELD_ITEM)
return FALSE;
}
return TRUE;
}
class Turn_errors_to_warnings_handler : public Internal_error_handler
{
public:
Turn_errors_to_warnings_handler() {}
bool handle_condition(THD *thd,
uint sql_errno,
const char* sqlstate,
Sql_condition::enum_warning_level *level,
const char* msg,
Sql_condition ** cond_hdl)
{
*cond_hdl= NULL;
if (*level == Sql_condition::WARN_LEVEL_ERROR)
*level= Sql_condition::WARN_LEVEL_WARN;
return(0);
}
};
/*
to satisfy marked_for_write_or_computed() Field's assert we temporarily
mark field for write before storing the generated value in it
*/
#ifdef DBUG_ASSERT_EXISTS
#define DBUG_FIX_WRITE_SET(f) bool _write_set_fixed= !bitmap_fast_test_and_set(write_set, (f)->field_index)
#define DBUG_RESTORE_WRITE_SET(f) if (_write_set_fixed) bitmap_clear_bit(write_set, (f)->field_index)
#else
#define DBUG_FIX_WRITE_SET(f)
#define DBUG_RESTORE_WRITE_SET(f)
#endif
/*
@brief Compute values for virtual columns used in query
@param update_mode Specifies what virtual column are computed
@details
The function computes the values of the virtual columns of the table and
stores them in the table record buffer.
@retval
0 Success
@retval
>0 Error occurred when storing a virtual field value
*/
int TABLE::update_virtual_fields(handler *h, enum_vcol_update_mode update_mode)
{
DBUG_ENTER("TABLE::update_virtual_fields");
DBUG_PRINT("enter", ("update_mode: %d", update_mode));
Field **vfield_ptr, *vf;
Query_arena backup_arena;
Turn_errors_to_warnings_handler Suppress_errors;
int error;
bool handler_pushed= 0, update_all_columns= 1;
DBUG_ASSERT(vfield);
if (h->keyread_enabled())
DBUG_RETURN(0);
error= 0;
in_use->set_n_backup_active_arena(expr_arena, &backup_arena);
/* When reading or deleting row, ignore errors from virtual columns */
if (update_mode == VCOL_UPDATE_FOR_READ ||
update_mode == VCOL_UPDATE_FOR_DELETE ||
update_mode == VCOL_UPDATE_INDEXED)
{
in_use->push_internal_handler(&Suppress_errors);
handler_pushed= 1;
}
else if (update_mode == VCOL_UPDATE_FOR_REPLACE &&
in_use->is_current_stmt_binlog_format_row() &&
in_use->variables.binlog_row_image != BINLOG_ROW_IMAGE_MINIMAL)
{
/*
If we are doing a replace with not minimal binary logging, we have to
calculate all virtual columns.
*/
update_all_columns= 1;
}
/* Iterate over virtual fields in the table */
for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++)
{
vf= (*vfield_ptr);
Virtual_column_info *vcol_info= vf->vcol_info;
DBUG_ASSERT(vcol_info);
DBUG_ASSERT(vcol_info->expr);
bool update= 0, swap_values= 0;
switch (update_mode) {
case VCOL_UPDATE_FOR_READ:
update= (!vcol_info->stored_in_db &&
bitmap_is_set(read_set, vf->field_index));
swap_values= 1;
break;
case VCOL_UPDATE_FOR_DELETE:
case VCOL_UPDATE_FOR_WRITE:
update= bitmap_is_set(read_set, vf->field_index);
break;
case VCOL_UPDATE_FOR_REPLACE:
update= ((!vcol_info->stored_in_db &&
(vf->flags & (PART_KEY_FLAG | PART_INDIRECT_KEY_FLAG)) &&
bitmap_is_set(read_set, vf->field_index)) ||
update_all_columns);
if (update && (vf->flags & BLOB_FLAG))
{
/*
The row has been read into record[1] and Field_blob::value
contains the value for record[0]. Swap value and read_value
to ensure that the virtual column data for the read row will
be in read_value at the end of this function
*/
((Field_blob*) vf)->swap_value_and_read_value();
/* Ensure we call swap_value_and_read_value() after update */
swap_values= 1;
}
break;
case VCOL_UPDATE_INDEXED:
case VCOL_UPDATE_INDEXED_FOR_UPDATE:
/* Read indexed fields that was not updated in VCOL_UPDATE_FOR_READ */
update= (!vcol_info->stored_in_db &&
(vf->flags & (PART_KEY_FLAG | PART_INDIRECT_KEY_FLAG)) &&
!bitmap_is_set(read_set, vf->field_index));
swap_values= 1;
break;
}
if (update)
{
int field_error __attribute__((unused)) = 0;
/* Compute the actual value of the virtual fields */
DBUG_FIX_WRITE_SET(vf);
if (vcol_info->expr->save_in_field(vf, 0))
field_error= error= 1;
DBUG_RESTORE_WRITE_SET(vf);
DBUG_PRINT("info", ("field '%s' - updated error: %d",
vf->field_name.str, field_error));
if (swap_values && (vf->flags & BLOB_FLAG))
{
/*
Remember the read value to allow other update_virtual_field() calls
for the same blob field for the row to be updated.
Field_blob->read_value always contains the virtual column data for
any read row.
*/
((Field_blob*) vf)->swap_value_and_read_value();
}
}
else
{
DBUG_PRINT("info", ("field '%s' - skipped", vf->field_name.str));
}
}
if (handler_pushed)
in_use->pop_internal_handler();
in_use->restore_active_arena(expr_arena, &backup_arena);
/* Return 1 only of we got a fatal error, not a warning */
DBUG_RETURN(in_use->is_error());
}
int TABLE::update_virtual_field(Field *vf)
{
DBUG_ENTER("TABLE::update_virtual_field");
Query_arena backup_arena;
Counting_error_handler count_errors;
in_use->push_internal_handler(&count_errors);
in_use->set_n_backup_active_arena(expr_arena, &backup_arena);
bitmap_clear_all(&tmp_set);
vf->vcol_info->expr->walk(&Item::update_vcol_processor, 0, &tmp_set);
DBUG_FIX_WRITE_SET(vf);
vf->vcol_info->expr->save_in_field(vf, 0);
DBUG_RESTORE_WRITE_SET(vf);
in_use->restore_active_arena(expr_arena, &backup_arena);
in_use->pop_internal_handler();
DBUG_RETURN(count_errors.errors);
}
/**
Update all DEFAULT and/or ON INSERT fields.
@details
Compute and set the default value of all fields with a default function.
There are two kinds of default functions - one is used for INSERT-like
operations, the other for UPDATE-like operations. Depending on the field
definition and the current operation one or the other kind of update
function is evaluated.
@param update_command True if command was an update else insert
@param ignore_errors True if we should ignore errors
@retval
0 Success
@retval
>0 Error occurred when storing a virtual field value and
ignore_errors == 0. If set then an error was generated.
*/
int TABLE::update_default_fields(bool ignore_errors)
{
Query_arena backup_arena;
Field **field_ptr;
int res= 0;
DBUG_ENTER("TABLE::update_default_fields");
DBUG_ASSERT(default_field);
in_use->set_n_backup_active_arena(expr_arena, &backup_arena);
/* Iterate over fields with default functions in the table */
for (field_ptr= default_field; *field_ptr ; field_ptr++)
{
Field *field= (*field_ptr);
/*
If an explicit default value for a field overrides the default,
do not update the field with its automatic default value.
*/
if (!field->has_explicit_value())
{
if (field->default_value &&
(field->default_value->flags || field->flags & BLOB_FLAG))
res|= (field->default_value->expr->save_in_field(field, 0) < 0);
if (!ignore_errors && res)
{
my_error(ER_CALCULATING_DEFAULT_VALUE, MYF(0), field->field_name.str);
break;
}
res= 0;
}
}
in_use->restore_active_arena(expr_arena, &backup_arena);
DBUG_RETURN(res);
}
int TABLE::update_generated_fields()
{
int res= 0;
if (found_next_number_field)
{
next_number_field= found_next_number_field;
res= found_next_number_field->set_default();
if (likely(!res))
res= file->update_auto_increment();
}
if (likely(!res) && vfield)
res= update_virtual_fields(file, VCOL_UPDATE_FOR_WRITE);
if (likely(!res) && versioned())
vers_update_fields();
if (likely(!res))
res= verify_constraints(false) == VIEW_CHECK_ERROR;
return res;
}
int TABLE::period_make_insert(Item *src, Field *dst)
{
THD *thd= in_use;
store_record(this, record[1]);
int res= src->save_in_field(dst, true);
if (likely(!res))
res= update_generated_fields();
if (likely(!res) && triggers)
res= triggers->process_triggers(thd, TRG_EVENT_INSERT,
TRG_ACTION_BEFORE, true);
if (likely(!res))
res = file->ha_write_row(record[0]);
if (likely(!res) && triggers)
res= triggers->process_triggers(thd, TRG_EVENT_INSERT,
TRG_ACTION_AFTER, true);
restore_record(this, record[1]);
return res;
}
int TABLE::insert_portion_of_time(THD *thd,
const vers_select_conds_t &period_conds,
ha_rows *rows_inserted)
{
bool lcond= period_conds.field_start->val_datetime_packed(thd)
< period_conds.start.item->val_datetime_packed(thd);
bool rcond= period_conds.field_end->val_datetime_packed(thd)
> period_conds.end.item->val_datetime_packed(thd);
int res= 0;
if (lcond)
{
res= period_make_insert(period_conds.start.item,
field[s->period.end_fieldno]);
if (likely(!res))
++*rows_inserted;
}
if (likely(!res) && rcond)
{
res= period_make_insert(period_conds.end.item,
field[s->period.start_fieldno]);
if (likely(!res))
++*rows_inserted;
}
return res;
}
void TABLE::evaluate_update_default_function()
{
DBUG_ENTER("TABLE::evaluate_update_default_function");
if (s->has_update_default_function)
for (Field **field_ptr= default_field; *field_ptr ; field_ptr++)
{
Field *field= (*field_ptr);
if (!field->has_explicit_value() && field->has_update_default_function())
field->set_time();
}
DBUG_VOID_RETURN;
}
/**
Compare two records by a specific key (that has WITHOUT OVERLAPS clause)
@return true, key values are equal and periods overlap
false, either key values differ or periods don't overlap
*/
bool TABLE::check_period_overlaps(const KEY &key,
const uchar *lhs, const uchar *rhs)
{
DBUG_ASSERT(key.without_overlaps);
uint base_part_nr= key.user_defined_key_parts - 2;
for (uint part_nr= 0; part_nr < base_part_nr; part_nr++)
{
Field *f= key.key_part[part_nr].field;
if (key.key_part[part_nr].null_bit)
if (f->is_null_in_record(lhs) || f->is_null_in_record(rhs))
return false;
uint kp_len= key.key_part[part_nr].length;
if (f->cmp_max(f->ptr_in_record(lhs), f->ptr_in_record(rhs), kp_len) != 0)
return false;
}
uint period_start= key.user_defined_key_parts - 1;
uint period_end= key.user_defined_key_parts - 2;
const Field *fs= key.key_part[period_start].field;
const Field *fe= key.key_part[period_end].field;
if (fs->cmp(fe->ptr_in_record(lhs), fs->ptr_in_record(rhs)) <= 0)
return false;
if (fs->cmp(fs->ptr_in_record(lhs), fe->ptr_in_record(rhs)) >= 0)
return false;
return true;
}
void TABLE::vers_update_fields()
{
bitmap_set_bit(write_set, vers_start_field()->field_index);
bitmap_set_bit(write_set, vers_end_field()->field_index);
if (versioned(VERS_TIMESTAMP))
{
if (!vers_write)
{
file->column_bitmaps_signal();
return;
}
if (vers_start_field()->store_timestamp(in_use->query_start(),
in_use->query_start_sec_part()))
DBUG_ASSERT(0);
}
else
{
if (!vers_write)
{
file->column_bitmaps_signal();
return;
}
}
vers_end_field()->set_max();
bitmap_set_bit(read_set, vers_end_field()->field_index);
file->column_bitmaps_signal();
}
void TABLE::vers_update_end()
{
if (vers_end_field()->store_timestamp(in_use->query_start(),
in_use->query_start_sec_part()))
DBUG_ASSERT(0);
}
/**
Reset markers that fields are being updated
*/
void TABLE::reset_default_fields()
{
DBUG_ENTER("reset_default_fields");
bitmap_clear_all(&has_value_set);
DBUG_VOID_RETURN;
}
/*
Prepare triggers for INSERT-like statement.
SYNOPSIS
prepare_triggers_for_insert_stmt_or_event()
NOTE
Prepare triggers for INSERT-like statement by marking fields
used by triggers and inform handlers that batching of UPDATE/DELETE
cannot be done if there are BEFORE UPDATE/DELETE triggers.
*/
void TABLE::prepare_triggers_for_insert_stmt_or_event()
{
if (triggers)
{
if (triggers->has_triggers(TRG_EVENT_DELETE,
TRG_ACTION_AFTER))
{
/*
The table has AFTER DELETE triggers that might access to
subject table and therefore might need delete to be done
immediately. So we turn-off the batching.
*/
(void) file->extra(HA_EXTRA_DELETE_CANNOT_BATCH);
}
if (triggers->has_triggers(TRG_EVENT_UPDATE,
TRG_ACTION_AFTER))
{
/*
The table has AFTER UPDATE triggers that might access to subject
table and therefore might need update to be done immediately.
So we turn-off the batching.
*/
(void) file->extra(HA_EXTRA_UPDATE_CANNOT_BATCH);
}
}
}
bool TABLE::prepare_triggers_for_delete_stmt_or_event()
{
if (triggers &&
triggers->has_triggers(TRG_EVENT_DELETE,
TRG_ACTION_AFTER))
{
/*
The table has AFTER DELETE triggers that might access to subject table
and therefore might need delete to be done immediately. So we turn-off
the batching.
*/
(void) file->extra(HA_EXTRA_DELETE_CANNOT_BATCH);
return TRUE;
}
return FALSE;
}
bool TABLE::prepare_triggers_for_update_stmt_or_event()
{
if (triggers &&
triggers->has_triggers(TRG_EVENT_UPDATE,
TRG_ACTION_AFTER))
{
/*
The table has AFTER UPDATE triggers that might access to subject
table and therefore might need update to be done immediately.
So we turn-off the batching.
*/
(void) file->extra(HA_EXTRA_UPDATE_CANNOT_BATCH);
return TRUE;
}
return FALSE;
}
/**
Validates default value of fields which are not specified in
the column list of INSERT/LOAD statement.
@Note s->default_values should be properly populated
before calling this function.
@param thd thread context
@param record the record to check values in
@return
@retval false Success.
@retval true Failure.
*/
bool TABLE::validate_default_values_of_unset_fields(THD *thd) const
{
DBUG_ENTER("TABLE::validate_default_values_of_unset_fields");
for (Field **fld= field; *fld; fld++)
{
if (!bitmap_is_set(write_set, (*fld)->field_index) &&
!((*fld)->flags & (NO_DEFAULT_VALUE_FLAG | VERS_SYSTEM_FIELD)))
{
if (!(*fld)->is_null_in_record(s->default_values) &&
(*fld)->validate_value_in_record_with_warn(thd, s->default_values) &&
thd->is_error())
{
/*
We're here if:
- validate_value_in_record_with_warn() failed and
strict mo validate_default_values_of_unset_fieldsde converted WARN to ERROR
- or the connection was killed, or closed unexpectedly
*/
DBUG_RETURN(true);
}
}
}
DBUG_RETURN(false);
}
bool TABLE::insert_all_rows_into_tmp_table(THD *thd,
TABLE *tmp_table,
TMP_TABLE_PARAM *tmp_table_param,
bool with_cleanup)
{
int write_err= 0;
DBUG_ENTER("TABLE::insert_all_rows_into_tmp_table");
if (with_cleanup)
{
if ((write_err= tmp_table->file->ha_delete_all_rows()))
goto err;
}
if (file->indexes_are_disabled())
tmp_table->file->ha_disable_indexes(HA_KEY_SWITCH_ALL);
file->ha_index_or_rnd_end();
if (unlikely(file->ha_rnd_init_with_error(1)))
DBUG_RETURN(1);
if (tmp_table->no_rows)
tmp_table->file->extra(HA_EXTRA_NO_ROWS);
else
{
/* update table->file->stats.records */
file->info(HA_STATUS_VARIABLE);
tmp_table->file->ha_start_bulk_insert(file->stats.records);
}
while (likely(!file->ha_rnd_next(tmp_table->record[0])))
{
write_err= tmp_table->file->ha_write_tmp_row(tmp_table->record[0]);
if (unlikely(write_err))
{
bool is_duplicate;
if (tmp_table->file->is_fatal_error(write_err, HA_CHECK_DUP) &&
create_internal_tmp_table_from_heap(thd, tmp_table,
tmp_table_param->start_recinfo,
&tmp_table_param->recinfo,
write_err, 1, &is_duplicate))
DBUG_RETURN(1);
}
if (unlikely(thd->check_killed()))
goto err_killed;
}
if (!tmp_table->no_rows && tmp_table->file->ha_end_bulk_insert())
goto err;
DBUG_RETURN(0);
err:
DBUG_PRINT("error",("Got error: %d",write_err));
file->print_error(write_err, MYF(0));
err_killed:
(void) file->ha_rnd_end();
DBUG_RETURN(1);
}
/*
@brief Reset const_table flag
@detail
Reset const_table flag for this table. If this table is a merged derived
table/view the flag is recursively reseted for all tables of the underlying
select.
*/
void TABLE_LIST::reset_const_table()
{
table->const_table= 0;
if (is_merged_derived())
{
SELECT_LEX *select_lex= get_unit()->first_select();
TABLE_LIST *tl;
List_iterator<TABLE_LIST> ti(select_lex->leaf_tables);
while ((tl= ti++))
tl->reset_const_table();
}
}
/*
@brief Run derived tables/view handling phases on underlying select_lex.
@param lex LEX for this thread
@param phases derived tables/views handling phases to run
(set of DT_XXX constants)
@details
This function runs this derived table through specified 'phases'.
Underlying tables of this select are handled prior to this derived.
'lex' is passed as an argument to called functions.
@return TRUE on error
@return FALSE ok
*/
bool TABLE_LIST::handle_derived(LEX *lex, uint phases)
{
SELECT_LEX_UNIT *unit= get_unit();
DBUG_ENTER("handle_derived");
DBUG_PRINT("enter", ("phases: 0x%x", phases));
if (unit)
{
if (!is_with_table_recursive_reference())
{
for (SELECT_LEX *sl= unit->first_select(); sl; sl= sl->next_select())
if (sl->handle_derived(lex, phases))
DBUG_RETURN(TRUE);
}
if (mysql_handle_single_derived(lex, this, phases))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
/**
@brief
Return unit of this derived table/view
@return reference to a unit if it's a derived table/view.
@return 0 when it's not a derived table/view.
*/
st_select_lex_unit *TABLE_LIST::get_unit()
{
return (view ? &view->unit : derived);
}
/**
@brief
Return select_lex of this derived table/view
@return select_lex of this derived table/view.
@return 0 when it's not a derived table.
*/
st_select_lex *TABLE_LIST::get_single_select()
{
SELECT_LEX_UNIT *unit= get_unit();
return (unit ? unit->first_select() : 0);
}
/**
@brief
Attach a join table list as a nested join to this TABLE_LIST.
@param join_list join table list to attach
@details
This function wraps 'join_list' into a nested_join of this table, thus
turning it to a nested join leaf.
*/
void TABLE_LIST::wrap_into_nested_join(List<TABLE_LIST> &join_list)
{
TABLE_LIST *tl;
/*
Walk through derived table top list and set 'embedding' to point to
the nesting table.
*/
nested_join->join_list.empty();
List_iterator_fast<TABLE_LIST> li(join_list);
nested_join->join_list= join_list;
while ((tl= li++))
{
tl->embedding= this;
tl->join_list= &nested_join->join_list;
}
}
/**
@brief
Initialize this derived table/view
@param thd Thread handle
@details
This function makes initial preparations of this derived table/view for
further processing:
if it's a derived table this function marks it either as mergeable or
materializable
creates temporary table for name resolution purposes
creates field translation for mergeable derived table/view
@return TRUE an error occur
@return FALSE ok
*/
bool TABLE_LIST::init_derived(THD *thd, bool init_view)
{
SELECT_LEX *first_select= get_single_select();
SELECT_LEX_UNIT *unit= get_unit();
if (!unit)
return FALSE;
/*
Check whether we can merge this derived table into main select.
Depending on the result field translation will or will not
be created.
*/
TABLE_LIST *first_table= (TABLE_LIST *) first_select->table_list.first;
if (first_select->table_list.elements > 1 ||
(first_table && first_table->is_multitable()))
set_multitable();
if (!unit->derived)
unit->derived= this;
else if (!is_with_table_recursive_reference() && unit->derived != this)
{
if (unit->derived->is_with_table_recursive_reference())
unit->derived= this;
else if (vers_conditions.eq(unit->derived->vers_conditions))
vers_conditions.empty();
else
{
my_error(ER_CONFLICTING_FOR_SYSTEM_TIME, MYF(0));
return TRUE;
}
}
if (init_view && !view)
{
/* This is all what we can do for a derived table for now. */
set_derived();
}
if (!is_view())
{
/* A subquery might be forced to be materialized due to a side-effect. */
if (!is_materialized_derived() && first_select->is_mergeable() &&
optimizer_flag(thd, OPTIMIZER_SWITCH_DERIVED_MERGE) &&
!thd->lex->can_not_use_merged() &&
!(thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
thd->lex->sql_command == SQLCOM_DELETE_MULTI) &&
!is_recursive_with_table())
set_merged_derived();
else
set_materialized_derived();
}
/*
Derived tables/view are materialized prior to UPDATE, thus we can skip
them from table uniqueness check
*/
if (is_materialized_derived())
{
set_check_materialized();
}
/*
Create field translation for mergeable derived tables/views.
For derived tables field translation can be created only after
unit is prepared so all '*' are get unrolled.
*/
if (is_merged_derived())
{
if (is_view() ||
(unit->prepared &&
!(thd->lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_VIEW)))
create_field_translation(thd);
}
return FALSE;
}
/**
@brief
Retrieve number of rows in the table
@details
Retrieve number of rows in the table referred by this TABLE_LIST and
store it in the table's stats.records variable. If this TABLE_LIST refers
to a materialized derived table/view then the estimated number of rows of
the derived table/view is used instead.
@return 0 ok
@return non zero error
*/
int TABLE_LIST::fetch_number_of_rows()
{
int error= 0;
if (jtbm_subselect)
{
if (jtbm_subselect->is_jtbm_merged)
{
table->file->stats.records= (ha_rows)jtbm_subselect->jtbm_record_count;
set_if_bigger(table->file->stats.records, 2);
table->used_stat_records= table->file->stats.records;
}
return 0;
}
if (is_materialized_derived() && !fill_me)
{
table->file->stats.records= get_unit()->result->est_records;
set_if_bigger(table->file->stats.records, 2);
table->used_stat_records= table->file->stats.records;
}
else
error= table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
return error;
}
/*
Procedure of keys generation for result tables of materialized derived
tables/views.
A key is generated for each equi-join pair derived table-another table.
Each generated key consists of fields of derived table used in equi-join.
Example:
SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN
t1 ON tt.f1=t1.f3 and tt.f2.=t1.f4;
In this case for the derived table tt one key will be generated. It will
consist of two parts f1 and f2.
Example:
SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN
t1 ON tt.f1=t1.f3 JOIN
t2 ON tt.f2=t2.f4;
In this case for the derived table tt two keys will be generated.
One key over f1 field, and another key over f2 field.
Currently optimizer may choose to use only one such key, thus the second
one will be dropped after range optimizer is finished.
See also JOIN::drop_unused_derived_keys function.
Example:
SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN
t1 ON tt.f1=a_function(t1.f3);
In this case for the derived table tt one key will be generated. It will
consist of one field - f1.
*/
/*
@brief
Change references to underlying items of a merged derived table/view
for fields in derived table's result table.
@return FALSE ok
@return TRUE Out of memory
*/
bool TABLE_LIST::change_refs_to_fields()
{
List_iterator<Item> li(used_items);
Item_direct_ref *ref;
Field_iterator_view field_it;
THD *thd= table->in_use;
DBUG_ASSERT(is_merged_derived());
if (!used_items.elements)
return FALSE;
Item **materialized_items=
(Item **)thd->calloc(sizeof(void *) * table->s->fields);
if (!materialized_items)
return TRUE;
while ((ref= (Item_direct_ref*)li++))
{
uint idx;
Item *orig_item= *ref->ref;
field_it.set(this);
for (idx= 0; !field_it.end_of_fields(); field_it.next(), idx++)
{
if (field_it.item() == orig_item)
break;
}
DBUG_ASSERT(!field_it.end_of_fields());
if (!materialized_items[idx])
{
materialized_items[idx]= new (thd->mem_root) Item_field(thd, table->field[idx]);
if (!materialized_items[idx])
return TRUE;
}
/*
We need to restore the pointers after the execution of the
prepared statement.
*/
thd->change_item_tree((Item **)&ref->ref,
(Item*)(materialized_items + idx));
}
return FALSE;
}
void TABLE_LIST::set_lock_type(THD *thd, enum thr_lock_type lock)
{
if (check_stack_overrun(thd, STACK_MIN_SIZE, (uchar *)&lock))
return;
/* we call it only when table is opened and it is "leaf" table*/
DBUG_ASSERT(table);
lock_type= lock;
/* If not derived tables */
if (table->file && table->file->is_open())
table->file->set_lock_type(lock);
if (is_merged_derived())
{
for (TABLE_LIST *table= get_single_select()->get_table_list();
table;
table= table->next_local)
{
table->set_lock_type(thd, lock);
}
}
}
bool TABLE_LIST::is_with_table()
{
return derived && derived->with_element;
}
uint TABLE_SHARE::actual_n_key_parts(THD *thd)
{
return use_ext_keys &&
optimizer_flag(thd, OPTIMIZER_SWITCH_EXTENDED_KEYS) ?
ext_key_parts : key_parts;
}
double KEY::actual_rec_per_key(uint i)
{
if (rec_per_key == 0)
return 0;
return (is_statistics_from_stat_tables ?
read_stats->get_avg_frequency(i) : (double) rec_per_key[i]);
}
/*
find total number of field in hash expr
*/
int fields_in_hash_keyinfo(KEY *keyinfo)
{
Item_func_hash * temp= (Item_func_hash *)
keyinfo->key_part->field->vcol_info->expr;
return temp->argument_count();
}
/*
setup_keyinfo_hash changes the key_info->key_part
to be same as defined by user
*/
void setup_keyinfo_hash(KEY *key_info)
{
DBUG_ASSERT(key_info->algorithm == HA_KEY_ALG_LONG_HASH);
DBUG_ASSERT(key_info->key_part->field->flags & LONG_UNIQUE_HASH_FIELD);
uint no_of_keyparts= fields_in_hash_keyinfo(key_info);
key_info->key_part-= no_of_keyparts;
key_info->user_defined_key_parts= key_info->usable_key_parts=
key_info->ext_key_parts= no_of_keyparts;
key_info->flags|= HA_NOSAME;
}
/*
re_setup_keyinfo_hash reverts th setup_keyinfo_hash and this type of
arrangement is expected by storage engine
*/
void re_setup_keyinfo_hash(KEY *key_info)
{
DBUG_ASSERT(key_info->algorithm == HA_KEY_ALG_LONG_HASH);
DBUG_ASSERT(!(key_info->key_part->field->flags & LONG_UNIQUE_HASH_FIELD));
while(!(key_info->key_part->field->flags & LONG_UNIQUE_HASH_FIELD))
key_info->key_part++;
key_info->user_defined_key_parts= key_info->usable_key_parts=
key_info->ext_key_parts= 1;
key_info->flags&= ~HA_NOSAME;
}
LEX_CSTRING *fk_option_name(enum_fk_option opt)
{
static LEX_CSTRING names[]=
{
{ STRING_WITH_LEN("???") },
{ STRING_WITH_LEN("RESTRICT") },
{ STRING_WITH_LEN("CASCADE") },
{ STRING_WITH_LEN("SET NULL") },
{ STRING_WITH_LEN("NO ACTION") },
{ STRING_WITH_LEN("SET DEFAULT") }
};
return names + opt;
}
bool fk_modifies_child(enum_fk_option opt)
{
static bool can_write[]= { false, false, true, true, false, true };
return can_write[opt];
}
enum TR_table::enabled TR_table::use_transaction_registry= TR_table::MAYBE;
TR_table::TR_table(THD* _thd, bool rw) :
thd(_thd), open_tables_backup(NULL)
{
init_one_table(&MYSQL_SCHEMA_NAME, &TRANSACTION_REG_NAME,
NULL, rw ? TL_WRITE : TL_READ);
}
bool TR_table::open()
{
DBUG_ASSERT(!table);
open_tables_backup= new Open_tables_backup;
if (!open_tables_backup)
{
my_error(ER_OUT_OF_RESOURCES, MYF(0));
return true;
}
All_tmp_tables_list *temporary_tables= thd->temporary_tables;
bool error= !open_log_table(thd, this, open_tables_backup);
thd->temporary_tables= temporary_tables;
if (use_transaction_registry == MAYBE)
error= check(error);
use_transaction_registry= error ? NO : YES;
return error;
}
TR_table::~TR_table()
{
if (table)
{
thd->temporary_tables= NULL;
close_log_table(thd, open_tables_backup);
}
delete open_tables_backup;
}
void TR_table::store(uint field_id, ulonglong val)
{
table->field[field_id]->store(val, true);
table->field[field_id]->set_notnull();
}
void TR_table::store(uint field_id, timeval ts)
{
table->field[field_id]->store_timestamp(ts.tv_sec, ts.tv_usec);
table->field[field_id]->set_notnull();
}
enum_tx_isolation TR_table::iso_level() const
{
enum_tx_isolation res= (enum_tx_isolation) ((*this)[FLD_ISO_LEVEL]->val_int() - 1);
DBUG_ASSERT(res <= ISO_SERIALIZABLE);
return res;
}
bool TR_table::update(ulonglong start_id, ulonglong end_id)
{
if (!table && open())
return true;
store(FLD_BEGIN_TS, thd->transaction_time());
thd->set_time();
timeval end_time= {thd->query_start(), int(thd->query_start_sec_part())};
store(FLD_TRX_ID, start_id);
store(FLD_COMMIT_ID, end_id);
store(FLD_COMMIT_TS, end_time);
store_iso_level(thd->tx_isolation);
int error= table->file->ha_write_row(table->record[0]);
if (unlikely(error))
table->file->print_error(error, MYF(0));
return error;
}
#define newx new (thd->mem_root)
bool TR_table::query(ulonglong trx_id)
{
if (!table && open())
return false;
SQL_SELECT_auto select;
READ_RECORD info;
int error;
List<TABLE_LIST> dummy;
SELECT_LEX &slex= *(thd->lex->first_select_lex());
Name_resolution_context_backup backup(slex.context, *this);
Item *field= newx Item_field(thd, &slex.context, (*this)[FLD_TRX_ID]);
Item *value= newx Item_int(thd, trx_id);
COND *conds= newx Item_func_eq(thd, field, value);
if (unlikely((error= setup_conds(thd, this, dummy, &conds))))
return false;
select= make_select(table, 0, 0, conds, NULL, 0, &error);
if (unlikely(error || !select))
{
my_error(ER_OUT_OF_RESOURCES, MYF(0));
return false;
}
// FIXME: (performance) force index 'transaction_id'
error= init_read_record(&info, thd, table, select, NULL,
1 /* use_record_cache */, true /* print_error */,
false /* disable_rr_cache */);
while (!(error= info.read_record()) && !thd->killed && !thd->is_error())
{
if (select->skip_record(thd) > 0)
return true;
}
my_error(ER_VERS_NO_TRX_ID, MYF(0), (longlong) trx_id);
return false;
}
bool TR_table::query(MYSQL_TIME &commit_time, bool backwards)
{
if (!table && open())
return false;
SQL_SELECT_auto select;
READ_RECORD info;
int error;
List<TABLE_LIST> dummy;
SELECT_LEX &slex= *(thd->lex->first_select_lex());
Name_resolution_context_backup backup(slex.context, *this);
Item *field= newx Item_field(thd, &slex.context, (*this)[FLD_COMMIT_TS]);
Item *value= newx Item_datetime_literal(thd, &commit_time, 6);
COND *conds;
if (backwards)
conds= newx Item_func_ge(thd, field, value);
else
conds= newx Item_func_le(thd, field, value);
if (unlikely((error= setup_conds(thd, this, dummy, &conds))))
return false;
// FIXME: (performance) force index 'commit_timestamp'
select= make_select(table, 0, 0, conds, NULL, 0, &error);
if (unlikely(error || !select))
return false;
error= init_read_record(&info, thd, table, select, NULL,
1 /* use_record_cache */, true /* print_error */,
false /* disable_rr_cache */);
// With PK by transaction_id the records are ordered by PK, so we have to
// scan TRT fully and collect min (backwards == true)
// or max (backwards == false) stats.
bool found= false;
MYSQL_TIME found_ts;
while (!(error= info.read_record()) && !thd->killed && !thd->is_error())
{
int res= select->skip_record(thd);
if (res > 0)
{
MYSQL_TIME commit_ts;
if ((*this)[FLD_COMMIT_TS]->get_date(&commit_ts, date_mode_t(0)))
{
found= false;
break;
}
int c;
if (!found || ((c= my_time_compare(&commit_ts, &found_ts)) &&
(backwards ? c < 0 : c > 0)))
{
found_ts= commit_ts;
found= true;
// TODO: (performance) make ORDER DESC and break after first found.
// Otherwise it is O(n) scan (+copy)!
store_record(table, record[1]);
}
}
else if (res < 0)
{
found= false;
break;
}
}
if (found)
restore_record(table, record[1]);
return found;
}
#undef newx
bool TR_table::query_sees(bool &result, ulonglong trx_id1, ulonglong trx_id0,
ulonglong commit_id1, enum_tx_isolation iso_level1,
ulonglong commit_id0)
{
if (trx_id1 == trx_id0)
{
return false;
}
if (trx_id1 == ULONGLONG_MAX || trx_id0 == 0)
{
result= true;
return false;
}
if (trx_id0 == ULONGLONG_MAX || trx_id1 == 0)
{
result= false;
return false;
}
if (!commit_id1)
{
if (!query(trx_id1))
return true;
commit_id1= (*this)[FLD_COMMIT_ID]->val_int();
iso_level1= iso_level();
}
if (!commit_id0)
{
if (!query(trx_id0))
return true;
commit_id0= (*this)[FLD_COMMIT_ID]->val_int();
}
// Trivial case: TX1 started after TX0 committed
if (trx_id1 > commit_id0
// Concurrent transactions: TX1 committed after TX0 and TX1 is read (un)committed
|| (commit_id1 > commit_id0 && iso_level1 < ISO_REPEATABLE_READ))
{
result= true;
}
else // All other cases: TX1 does not see TX0
{
result= false;
}
return false;
}
void TR_table::warn_schema_incorrect(const char *reason)
{
if (MYSQL_VERSION_ID == table->s->mysql_version)
{
sql_print_error("%`s.%`s schema is incorrect: %s.",
db.str, table_name.str, reason);
}
else
{
sql_print_error("%`s.%`s schema is incorrect: %s. Created with MariaDB %d, "
"now running %d.",
db.str, table_name.str, reason, MYSQL_VERSION_ID,
static_cast<int>(table->s->mysql_version));
}
}
bool TR_table::check(bool error)
{
if (error)
{
sql_print_warning("%`s.%`s does not exist (open failed).", db.str,
table_name.str);
return true;
}
if (table->file->ht->db_type != DB_TYPE_INNODB)
{
warn_schema_incorrect("Wrong table engine (expected InnoDB)");
return true;
}
#define WARN_SCHEMA(...) \
char reason[128]; \
snprintf(reason, 128, __VA_ARGS__); \
warn_schema_incorrect(reason);
if (table->s->fields != FIELD_COUNT)
{
WARN_SCHEMA("Wrong field count (expected %d)", FIELD_COUNT);
return true;
}
if (table->field[FLD_TRX_ID]->type() != MYSQL_TYPE_LONGLONG)
{
WARN_SCHEMA("Wrong field %d type (expected BIGINT UNSIGNED)", FLD_TRX_ID);
return true;
}
if (table->field[FLD_COMMIT_ID]->type() != MYSQL_TYPE_LONGLONG)
{
WARN_SCHEMA("Wrong field %d type (expected BIGINT UNSIGNED)", FLD_COMMIT_ID);
return true;
}
if (table->field[FLD_BEGIN_TS]->type() != MYSQL_TYPE_TIMESTAMP)
{
WARN_SCHEMA("Wrong field %d type (expected TIMESTAMP(6))", FLD_BEGIN_TS);
return true;
}
if (table->field[FLD_COMMIT_TS]->type() != MYSQL_TYPE_TIMESTAMP)
{
WARN_SCHEMA("Wrong field %d type (expected TIMESTAMP(6))", FLD_COMMIT_TS);
return true;
}
if (table->field[FLD_ISO_LEVEL]->type() != MYSQL_TYPE_STRING ||
!(table->field[FLD_ISO_LEVEL]->flags & ENUM_FLAG))
{
wrong_enum:
WARN_SCHEMA("Wrong field %d type (expected ENUM('READ-UNCOMMITTED', "
"'READ-COMMITTED', 'REPEATABLE-READ', 'SERIALIZABLE'))",
FLD_ISO_LEVEL);
return true;
}
Field_enum *iso_level= static_cast<Field_enum *>(table->field[FLD_ISO_LEVEL]);
const st_typelib *typelib= iso_level->typelib;
if (typelib->count != 4)
goto wrong_enum;
if (strcmp(typelib->type_names[0], "READ-UNCOMMITTED") ||
strcmp(typelib->type_names[1], "READ-COMMITTED") ||
strcmp(typelib->type_names[2], "REPEATABLE-READ") ||
strcmp(typelib->type_names[3], "SERIALIZABLE"))
{
goto wrong_enum;
}
if (!table->key_info || !table->key_info->key_part)
goto wrong_pk;
if (strcmp(table->key_info->key_part->field->field_name.str, "transaction_id"))
{
wrong_pk:
WARN_SCHEMA("Wrong PRIMARY KEY (expected `transaction_id`)");
return true;
}
return false;
}
bool vers_select_conds_t::check_units(THD *thd)
{
DBUG_ASSERT(type != SYSTEM_TIME_UNSPECIFIED);
DBUG_ASSERT(start.item);
return start.check_unit(thd) ||
end.check_unit(thd);
}
bool vers_select_conds_t::eq(const vers_select_conds_t &conds) const
{
if (type != conds.type)
return false;
switch (type) {
case SYSTEM_TIME_UNSPECIFIED:
case SYSTEM_TIME_ALL:
return true;
case SYSTEM_TIME_BEFORE:
break;
case SYSTEM_TIME_HISTORY:
break;
case SYSTEM_TIME_AS_OF:
return start.eq(conds.start);
case SYSTEM_TIME_FROM_TO:
case SYSTEM_TIME_BETWEEN:
return start.eq(conds.start) && end.eq(conds.end);
}
DBUG_ASSERT(0);
return false;
}
bool Vers_history_point::check_unit(THD *thd)
{
if (!item)
return false;
if (item->fix_fields_if_needed(thd, &item))
return true;
const Type_handler *t= item->this_item()->real_type_handler();
DBUG_ASSERT(t);
if (!t->vers())
{
my_error(ER_ILLEGAL_PARAMETER_DATA_TYPE_FOR_OPERATION, MYF(0),
t->name().ptr(), "FOR SYSTEM_TIME");
return true;
}
return false;
}
void Vers_history_point::fix_item()
{
if (item && item->decimals == 0 && item->type() == Item::FUNC_ITEM &&
((Item_func*)item)->functype() == Item_func::NOW_FUNC)
item->decimals= 6;
}
bool Vers_history_point::eq(const vers_history_point_t &point) const
{
return unit == point.unit && item->eq(point.item, false);
}
void Vers_history_point::print(String *str, enum_query_type query_type,
const char *prefix, size_t plen) const
{
const static LEX_CSTRING unit_type[]=
{
{ STRING_WITH_LEN("") },
{ STRING_WITH_LEN("TIMESTAMP ") },
{ STRING_WITH_LEN("TRANSACTION ") }
};
str->append(prefix, plen);
str->append(unit_type + unit);
item->print(str, query_type);
}
Field *TABLE::find_field_by_name(LEX_CSTRING *str) const
{
Field **tmp;
size_t length= str->length;
if (s->name_hash.records)
{
tmp= (Field**) my_hash_search(&s->name_hash, (uchar*) str->str, length);
return tmp ? field[tmp - s->field] : NULL;
}
else
{
for (tmp= field; *tmp; tmp++)
{
if ((*tmp)->field_name.length == length &&
!lex_string_cmp(system_charset_info, &(*tmp)->field_name, str))
return *tmp;
}
}
return NULL;
}
bool TABLE::export_structure(THD *thd, Row_definition_list *defs)
{
for (Field **src= field; *src; src++)
{
uint offs;
if (defs->find_row_field_by_name(&src[0]->field_name, &offs))
{
my_error(ER_DUP_FIELDNAME, MYF(0), src[0]->field_name.str);
return true;
}
Spvar_definition *def= new (thd->mem_root) Spvar_definition(thd, *src);
if (!def)
return true;
def->flags&= (uint) ~NOT_NULL_FLAG;
if ((def->sp_prepare_create_field(thd, thd->mem_root)) ||
(defs->push_back(def, thd->mem_root)))
return true;
}
return false;
}
/*
@brief
Initialize all the quick structures that are used to stored the
estimates when the range optimizer is run.
@details
This is specifically needed when we read the TABLE structure from the
table cache. There can be some garbage data from previous queries
that need to be reset here.
*/
void TABLE::initialize_quick_structures()
{
bzero(quick_rows, sizeof(quick_rows));
bzero(quick_key_parts, sizeof(quick_key_parts));
bzero(quick_costs, sizeof(quick_costs));
bzero(quick_n_ranges, sizeof(quick_n_ranges));
}
/*
Mark table to be reopened after query
*/
void TABLE::mark_table_for_reopen()
{
THD *thd= in_use;
DBUG_ASSERT(thd);
thd->locked_tables_list.mark_table_for_reopen(thd, this);
}