mariadb/sql/sql_list.h
Igor Babaev c9b63e6a49 Fixed bug mdev-3913.
The wrong result set returned by the left join query  from
the bug test case happened due to several inconsistencies 
and bugs of the legacy mysql code.

The bug test case uses an execution plan that employs a scan
of a materialized IN subquery from the WHERE condition.
When materializing such an IN- subquery the optimizer injects
additional equalities  into the WHERE clause. These equalities
express the constraints imposed by the subquery predicate.
The injected equality of the query in the  test case happens
to belong to the same equality class, and a new equality 
imposing a condition on the rows of the materialized subquery
is inferred from this class. Simultaneously the multiple
equality is added to the ON expression of the LEFT JOIN
used in the main query.
  
The inferred equality of the form f1=f2 is taken into account
when optimizing the scan of  the rows the temporary table 
that is the result of the subquery materialization: only the 
values of the field f1 are read from the table into the record 
buffer. Meanwhile the inferred equality is removed from the
WHERE conditions altogether as a constraint on the fields
of the temporary table that has been used when filling this table. 
This equality is supposed to be removed from the ON expression
when the multiple equalities of the ON expression are converted
into an optimal set of equality predicates. It supposed to be
removed from the ON expression as an equality inferred from only
equalities of the WHERE condition. Yet, it did not happened
due to the following bug in the code.

Erroneously the code tried to build multiple equality for ON
expression twice: the first time, when it called optimize_cond()
for the WHERE condition, the second time, when it called
this function for the HAVING condition. When executing
optimize_con() for the WHERE condition  a reference
to the multiple equality of the WHERE condition is set
in the multiple equality of the  ON expression. This reference
would allow later to convert multiple equalities of the
ON expression into equality predicates. However the 
the second call of build_equal_items() for the ON expression
that happened when optimize_cond() was called for the
HAVING condition reset this reference to NULL.

This bug fix blocks calling build_equal_items() for ON
expressions for the second time. In general, it will be
beneficial for many queries as it removes from ON 
expressions any equalities that are to be checked for the
WHERE condition.
The patch also fixes two bugs in the list manipulation
operations and a bug in the function  
substitute_for_best_equal_field() that resulted
in passing wrong reference to the multiple equalities
of where conditions when processing multiple
equalities  of ON expressions.

The code of substitute_for_best_equal_field() and
the code the helper function eliminate_item_equal()
were also streamlined and cleaned up.
Now the conversion of the multiple equalities into
an optimal set of equality predicates first produces
the sequence of the all equalities processing multiple
equalities one by one, and, only after this, it inserts
the equalities at the beginning of the other conditions.

The multiple changes in the output of EXPLAIN
EXTENDED are mainly the result of this streamlining,
but in some cases is the result of the removal of
unneeded equalities from ON expressions. In
some test cases this removal were reflected in the
output of EXPLAIN resulted in disappearance of 
“Using where” in some rows of the execution plans.
2013-02-20 18:01:36 -08:00

776 lines
19 KiB
C++

#ifndef INCLUDES_MYSQL_SQL_LIST_H
#define INCLUDES_MYSQL_SQL_LIST_H
/* Copyright (c) 2000, 2012, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
/* mysql standard class memory allocator */
class Sql_alloc
{
public:
static void *operator new(size_t size) throw ()
{
return sql_alloc(size);
}
static void *operator new[](size_t size) throw ()
{
return sql_alloc(size);
}
static void *operator new[](size_t size, MEM_ROOT *mem_root) throw ()
{ return alloc_root(mem_root, size); }
static void *operator new(size_t size, MEM_ROOT *mem_root) throw ()
{ return alloc_root(mem_root, size); }
static void operator delete(void *ptr, size_t size) { TRASH(ptr, size); }
static void operator delete(void *ptr, MEM_ROOT *mem_root)
{ /* never called */ }
static void operator delete[](void *ptr, MEM_ROOT *mem_root)
{ /* never called */ }
static void operator delete[](void *ptr, size_t size) { TRASH(ptr, size); }
#ifdef HAVE_valgrind
bool dummy;
inline Sql_alloc() :dummy(0) {}
inline ~Sql_alloc() {}
#else
inline Sql_alloc() {}
inline ~Sql_alloc() {}
#endif
};
/**
Simple intrusive linked list.
@remark Similar in nature to base_list, but intrusive. It keeps a
a pointer to the first element in the list and a indirect
reference to the last element.
*/
template <typename T>
class SQL_I_List :public Sql_alloc
{
public:
uint elements;
/** The first element in the list. */
T *first;
/** A reference to the next element in the list. */
T **next;
SQL_I_List() { empty(); }
SQL_I_List(const SQL_I_List &tmp) : Sql_alloc()
{
elements= tmp.elements;
first= tmp.first;
next= elements ? tmp.next : &first;
}
inline void empty()
{
elements= 0;
first= NULL;
next= &first;
}
inline void link_in_list(T *element, T **next_ptr)
{
elements++;
(*next)= element;
next= next_ptr;
*next= NULL;
}
inline void save_and_clear(SQL_I_List<T> *save)
{
*save= *this;
empty();
}
inline void push_front(SQL_I_List<T> *save)
{
/* link current list last */
*save->next= first;
first= save->first;
elements+= save->elements;
}
inline void push_back(SQL_I_List<T> *save)
{
if (save->first)
{
*next= save->first;
next= save->next;
elements+= save->elements;
}
}
};
/*
Basic single linked list
Used for item and item_buffs.
All list ends with a pointer to the 'end_of_list' element, which
data pointer is a null pointer and the next pointer points to itself.
This makes it very fast to traverse lists as we don't have to
test for a specialend condition for list that can't contain a null
pointer.
*/
/**
list_node - a node of a single-linked list.
@note We never call a destructor for instances of this class.
*/
struct list_node :public Sql_alloc
{
list_node *next;
void *info;
list_node(void *info_par,list_node *next_par)
:next(next_par),info(info_par)
{}
list_node() /* For end_of_list */
{
info= 0;
next= this;
}
};
typedef bool List_eq(void *a, void *b);
extern MYSQL_PLUGIN_IMPORT list_node end_of_list;
class base_list :public Sql_alloc
{
protected:
list_node *first,**last;
public:
uint elements;
bool operator==(const base_list &rhs) const
{
return
elements == rhs.elements &&
first == rhs.first &&
last == rhs.last;
}
inline void empty() { elements=0; first= &end_of_list; last=&first;}
inline base_list() { empty(); }
/**
This is a shallow copy constructor that implicitly passes the ownership
from the source list to the new instance. The old instance is not
updated, so both objects end up sharing the same nodes. If one of
the instances then adds or removes a node, the other becomes out of
sync ('last' pointer), while still operational. Some old code uses and
relies on this behaviour. This logic is quite tricky: please do not use
it in any new code.
*/
inline base_list(const base_list &tmp) :Sql_alloc()
{
elements= tmp.elements;
first= tmp.first;
last= elements ? tmp.last : &first;
}
/**
Construct a deep copy of the argument in memory root mem_root.
The elements themselves are copied by pointer. If you also
need to copy elements by value, you should employ
list_copy_and_replace_each_value after creating a copy.
*/
base_list(const base_list &rhs, MEM_ROOT *mem_root);
inline base_list(bool error) { }
inline bool push_back(void *info)
{
if (((*last)=new list_node(info, &end_of_list)))
{
last= &(*last)->next;
elements++;
return 0;
}
return 1;
}
inline bool push_back(void *info, MEM_ROOT *mem_root)
{
if (((*last)=new (mem_root) list_node(info, &end_of_list)))
{
last= &(*last)->next;
elements++;
return 0;
}
return 1;
}
inline bool push_front(void *info)
{
list_node *node=new list_node(info,first);
if (node)
{
if (last == &first)
last= &node->next;
first=node;
elements++;
return 0;
}
return 1;
}
void remove(list_node **prev)
{
list_node *node=(*prev)->next;
if (!--elements)
last= &first;
else if (last == &(*prev)->next)
last= prev;
delete *prev;
*prev=node;
}
inline void concat(base_list *list)
{
if (!list->is_empty())
{
if (is_empty())
{
*this= *list;
return;
}
*last= list->first;
last= list->last;
elements+= list->elements;
}
}
inline void *pop(void)
{
if (first == &end_of_list) return 0;
list_node *tmp=first;
first=first->next;
if (!--elements)
last= &first;
return tmp->info;
}
/*
Remove from this list elements that are contained in the passed list.
We assume that the passed list is a tail of this list (that is, the whole
list_node* elements are shared).
*/
inline void disjoin(const base_list *list)
{
list_node **prev= &first;
list_node *node= first;
list_node *list_first= list->first;
elements=0;
while (node != &end_of_list && node != list_first)
{
prev= &node->next;
node= node->next;
elements++;
if (node == &end_of_list)
return;
}
*prev= &end_of_list;
last= prev;
}
inline void prepand(base_list *list)
{
if (!list->is_empty())
{
if (is_empty())
last= list->last;
*list->last= first;
first= list->first;
elements+= list->elements;
}
}
/**
Swap two lists.
*/
inline void swap(base_list &rhs)
{
swap_variables(list_node *, first, rhs.first);
swap_variables(list_node **, last, rhs.last);
swap_variables(uint, elements, rhs.elements);
}
inline list_node* last_node() { return *last; }
inline list_node* first_node() { return first;}
inline void *head() { return first->info; }
inline void **head_ref() { return first != &end_of_list ? &first->info : 0; }
inline bool is_empty() { return first == &end_of_list ; }
inline list_node *last_ref() { return &end_of_list; }
inline bool add_unique(void *info, List_eq *eq)
{
list_node *node= first;
for (;
node != &end_of_list && (!(*eq)(node->info, info));
node= node->next) ;
if (node == &end_of_list)
return push_back(info);
return 1;
}
friend class base_list_iterator;
friend class error_list;
friend class error_list_iterator;
/*
Debugging help: return N-th element in the list, or NULL if the list has
less than N elements.
*/
inline void *nth_element(int n)
{
list_node *node= first;
void *data= NULL;
for (int i=0; i <= n; i++)
{
if (node == &end_of_list)
{
data= NULL;
break;
}
data= node->info;
node= node->next;
}
return data;
}
#ifdef LIST_EXTRA_DEBUG
/*
Check list invariants and print results into trace. Invariants are:
- (*last) points to end_of_list
- There are no NULLs in the list.
- base_list::elements is the number of elements in the list.
SYNOPSIS
check_list()
name Name to print to trace file
RETURN
1 The list is Ok.
0 List invariants are not met.
*/
bool check_list(const char *name)
{
base_list *list= this;
list_node *node= first;
uint cnt= 0;
while (node->next != &end_of_list)
{
if (!node->info)
{
DBUG_PRINT("list_invariants",("%s: error: NULL element in the list",
name));
return FALSE;
}
node= node->next;
cnt++;
}
if (last != &(node->next))
{
DBUG_PRINT("list_invariants", ("%s: error: wrong last pointer", name));
return FALSE;
}
if (cnt+1 != elements)
{
DBUG_PRINT("list_invariants", ("%s: error: wrong element count", name));
return FALSE;
}
DBUG_PRINT("list_invariants", ("%s: list is ok", name));
return TRUE;
}
#endif // LIST_EXTRA_DEBUG
protected:
void after(void *info,list_node *node)
{
list_node *new_node=new list_node(info,node->next);
node->next=new_node;
elements++;
if (last == &(node->next))
last= &new_node->next;
}
};
class base_list_iterator
{
protected:
base_list *list;
list_node **el,**prev,*current;
void sublist(base_list &ls, uint elm)
{
ls.first= *el;
ls.last= list->last;
ls.elements= elm;
}
public:
base_list_iterator()
:list(0), el(0), prev(0), current(0)
{}
base_list_iterator(base_list &list_par)
{ init(list_par); }
inline void init(base_list &list_par)
{
list= &list_par;
el= &list_par.first;
prev= 0;
current= 0;
}
inline void *next(void)
{
prev=el;
current= *el;
el= &current->next;
return current->info;
}
inline void *next_fast(void)
{
list_node *tmp;
tmp= *el;
el= &tmp->next;
return tmp->info;
}
inline void rewind(void)
{
el= &list->first;
}
inline void *replace(void *element)
{ // Return old element
void *tmp=current->info;
DBUG_ASSERT(current->info != 0);
current->info=element;
return tmp;
}
void *replace(base_list &new_list)
{
void *ret_value=current->info;
if (!new_list.is_empty())
{
*new_list.last=current->next;
current->info=new_list.first->info;
current->next=new_list.first->next;
if ((list->last == &current->next) && (new_list.elements > 1))
list->last= new_list.last;
list->elements+=new_list.elements-1;
}
return ret_value; // return old element
}
inline void remove(void) // Remove current
{
list->remove(prev);
el=prev;
current=0; // Safeguard
}
void after(void *element) // Insert element after current
{
list->after(element,current);
current=current->next;
el= &current->next;
}
inline void **ref(void) // Get reference pointer
{
return &current->info;
}
inline bool is_last(void)
{
return el == &list->last_ref()->next;
}
friend class error_list_iterator;
};
template <class T> class List :public base_list
{
public:
inline List() :base_list() {}
inline List(const List<T> &tmp) :base_list(tmp) {}
inline List(const List<T> &tmp, MEM_ROOT *mem_root) :
base_list(tmp, mem_root) {}
inline bool push_back(T *a) { return base_list::push_back(a); }
inline bool push_back(T *a, MEM_ROOT *mem_root)
{ return base_list::push_back(a, mem_root); }
inline bool push_front(T *a) { return base_list::push_front(a); }
inline T* head() {return (T*) base_list::head(); }
inline T** head_ref() {return (T**) base_list::head_ref(); }
inline T* pop() {return (T*) base_list::pop(); }
inline void concat(List<T> *list) { base_list::concat(list); }
inline void disjoin(List<T> *list) { base_list::disjoin(list); }
inline void prepand(List<T> *list) { base_list::prepand(list); }
inline bool add_unique(T *a, bool (*eq)(T *a, T *b))
{ return base_list::add_unique(a, (List_eq *)eq); }
void delete_elements(void)
{
list_node *element,*next;
for (element=first; element != &end_of_list; element=next)
{
next=element->next;
delete (T*) element->info;
}
empty();
}
inline T *nth_element(int n) { return (T*)base_list::nth_element(n); }
};
template <class T> class List_iterator :public base_list_iterator
{
public:
List_iterator(List<T> &a) : base_list_iterator(a) {}
List_iterator() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T* operator++(int) { return (T*) base_list_iterator::next(); }
inline T *replace(T *a) { return (T*) base_list_iterator::replace(a); }
inline T *replace(List<T> &a) { return (T*) base_list_iterator::replace(a); }
inline void rewind(void) { base_list_iterator::rewind(); }
inline void remove() { base_list_iterator::remove(); }
inline void after(T *a) { base_list_iterator::after(a); }
inline T** ref(void) { return (T**) base_list_iterator::ref(); }
};
template <class T> class List_iterator_fast :public base_list_iterator
{
protected:
inline T *replace(T *a) { return (T*) 0; }
inline T *replace(List<T> &a) { return (T*) 0; }
inline void remove(void) { }
inline void after(T *a) { }
inline T** ref(void) { return (T**) 0; }
public:
inline List_iterator_fast(List<T> &a) : base_list_iterator(a) {}
inline List_iterator_fast() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T* operator++(int) { return (T*) base_list_iterator::next_fast(); }
inline void rewind(void) { base_list_iterator::rewind(); }
void sublist(List<T> &list_arg, uint el_arg)
{
base_list_iterator::sublist(list_arg, el_arg);
}
};
/*
Bubble sort algorithm for List<T>.
This sort function is supposed to be used only for very short list.
Currently it is used for the lists of Item_equal objects and
for some lists in the table elimination algorithms. In both
cases the sorted lists are very short.
*/
template <class T>
inline void bubble_sort(List<T> *list_to_sort,
int (*sort_func)(T *a, T *b, void *arg), void *arg)
{
bool swap;
T **ref1= 0;
T **ref2= 0;
List_iterator<T> it(*list_to_sort);
do
{
T **last_ref= ref1;
T *item1= it++;
ref1= it.ref();
T *item2;
swap= FALSE;
while ((item2= it++) && (ref2= it.ref()) != last_ref)
{
if (sort_func(item1, item2, arg) < 0)
{
*ref1= item2;
*ref2= item1;
swap= TRUE;
}
else
item1= item2;
ref1= ref2;
}
it.rewind();
} while (swap);
}
/*
A simple intrusive list which automaticly removes element from list
on delete (for THD element)
*/
struct ilink
{
struct ilink **prev,*next;
static void *operator new(size_t size) throw ()
{
return (void*)my_malloc((uint)size, MYF(MY_WME | MY_FAE));
}
static void operator delete(void* ptr_arg, size_t size)
{
my_free((uchar*)ptr_arg, MYF(MY_WME|MY_ALLOW_ZERO_PTR));
}
inline ilink()
{
prev=0; next=0;
}
inline void unlink()
{
/* Extra tests because element doesn't have to be linked */
if (prev) *prev= next;
if (next) next->prev=prev;
prev=0 ; next=0;
}
virtual ~ilink() { unlink(); } /*lint -e1740 */
};
/* Needed to be able to have an I_List of char* strings in mysqld.cc. */
class i_string: public ilink
{
public:
const char* ptr;
i_string():ptr(0) { }
i_string(const char* s) : ptr(s) {}
};
/* needed for linked list of two strings for replicate-rewrite-db */
class i_string_pair: public ilink
{
public:
const char* key;
const char* val;
i_string_pair():key(0),val(0) { }
i_string_pair(const char* key_arg, const char* val_arg) :
key(key_arg),val(val_arg) {}
};
template <class T> class I_List_iterator;
/*
WARNING: copy constructor of this class does not create a usable
copy, as its members may point at each other.
*/
class base_ilist
{
public:
struct ilink *first,last;
inline void empty() { first= &last; last.prev= &first; }
base_ilist() { empty(); }
inline bool is_empty() { return first == &last; }
inline void append(ilink *a)
{
first->prev= &a->next;
a->next=first; a->prev= &first; first=a;
}
inline void push_back(ilink *a)
{
*last.prev= a;
a->next= &last;
a->prev= last.prev;
last.prev= &a->next;
}
inline struct ilink *get()
{
struct ilink *first_link=first;
if (first_link == &last)
return 0;
first_link->unlink(); // Unlink from list
return first_link;
}
inline struct ilink *head()
{
return (first != &last) ? first : 0;
}
friend class base_list_iterator;
};
class base_ilist_iterator
{
base_ilist *list;
struct ilink **el,*current;
public:
base_ilist_iterator(base_ilist &list_par) :list(&list_par),
el(&list_par.first),current(0) {}
void *next(void)
{
/* This is coded to allow push_back() while iterating */
current= *el;
if (current == &list->last) return 0;
el= &current->next;
return current;
}
};
template <class T>
class I_List :private base_ilist
{
public:
I_List() :base_ilist() {}
inline void empty() { base_ilist::empty(); }
inline bool is_empty() { return base_ilist::is_empty(); }
inline void append(T* a) { base_ilist::append(a); }
inline void push_back(T* a) { base_ilist::push_back(a); }
inline T* get() { return (T*) base_ilist::get(); }
inline T* head() { return (T*) base_ilist::head(); }
#ifndef _lint
friend class I_List_iterator<T>;
#endif
};
template <class T> class I_List_iterator :public base_ilist_iterator
{
public:
I_List_iterator(I_List<T> &a) : base_ilist_iterator(a) {}
inline T* operator++(int) { return (T*) base_ilist_iterator::next(); }
};
/**
Make a deep copy of each list element.
@note A template function and not a template method of class List
is employed because of explicit template instantiation:
in server code there are explicit instantiations of List<T> and
an explicit instantiation of a template requires that any method
of the instantiated class used in the template can be resolved.
Evidently not all template arguments have clone() method with
the right signature.
@return You must query the error state in THD for out-of-memory
situation after calling this function.
*/
template <typename T>
inline
void
list_copy_and_replace_each_value(List<T> &list, MEM_ROOT *mem_root)
{
/* Make a deep copy of each element */
List_iterator<T> it(list);
T *el;
while ((el= it++))
it.replace(el->clone(mem_root));
}
#endif // INCLUDES_MYSQL_SQL_LIST_H