mariadb/row/row0row.c
inaam 48075f147c branches/zip: fixes issue# 36
Fixed the issue where an unchanged blob column that is part of the
primary key as well is lost if it is externally stored.

The fix is provided by Marko.

Reviewed by: Sunny
2008-06-18 22:20:53 +00:00

1225 lines
32 KiB
C

/******************************************************
General row routines
(c) 1996 Innobase Oy
Created 4/20/1996 Heikki Tuuri
*******************************************************/
#include "row0row.h"
#ifdef UNIV_NONINL
#include "row0row.ic"
#endif
#include "data0type.h"
#include "dict0dict.h"
#include "btr0btr.h"
#include "ha_prototypes.h"
#include "mach0data.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "trx0undo.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "que0que.h"
#include "row0ext.h"
#include "row0upd.h"
#include "rem0cmp.h"
#include "read0read.h"
#include "ut0mem.h"
/*************************************************************************
Gets the offset of trx id field, in bytes relative to the origin of
a clustered index record. */
UNIV_INTERN
ulint
row_get_trx_id_offset(
/*==================*/
/* out: offset of DATA_TRX_ID */
const rec_t* rec __attribute__((unused)),
/* in: record */
dict_index_t* index, /* in: clustered index */
const ulint* offsets)/* in: rec_get_offsets(rec, index) */
{
ulint pos;
ulint offset;
ulint len;
ut_ad(dict_index_is_clust(index));
ut_ad(rec_offs_validate(rec, index, offsets));
pos = dict_index_get_sys_col_pos(index, DATA_TRX_ID);
offset = rec_get_nth_field_offs(offsets, pos, &len);
ut_ad(len == DATA_TRX_ID_LEN);
return(offset);
}
/*********************************************************************
When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table. */
UNIV_INTERN
dtuple_t*
row_build_index_entry(
/*==================*/
/* out: index entry which should be
inserted or purged, or NULL if the
externally stored columns in the
clustered index record are unavailable
and ext != NULL */
const dtuple_t* row, /* in: row which should be
inserted or purged */
row_ext_t* ext, /* in: externally stored column prefixes,
or NULL */
dict_index_t* index, /* in: index on the table */
mem_heap_t* heap) /* in: memory heap from which the memory for
the index entry is allocated */
{
dtuple_t* entry;
ulint entry_len;
ulint i;
ut_ad(row && index && heap);
ut_ad(dtuple_check_typed(row));
entry_len = dict_index_get_n_fields(index);
entry = dtuple_create(heap, entry_len);
if (UNIV_UNLIKELY(index->type & DICT_UNIVERSAL)) {
dtuple_set_n_fields_cmp(entry, entry_len);
/* There may only be externally stored columns
in a clustered index B-tree of a user table. */
ut_a(!ext);
} else {
dtuple_set_n_fields_cmp(
entry, dict_index_get_n_unique_in_tree(index));
}
for (i = 0; i < entry_len; i++) {
const dict_field_t* ind_field
= dict_index_get_nth_field(index, i);
const dict_col_t* col
= ind_field->col;
ulint col_no
= dict_col_get_no(col);
dfield_t* dfield
= dtuple_get_nth_field(entry, i);
const dfield_t* dfield2
= dtuple_get_nth_field(row, col_no);
ulint len
= dfield_get_len(dfield2);
dfield_copy(dfield, dfield2);
if (dfield_is_null(dfield) || ind_field->prefix_len == 0) {
continue;
}
/* If a column prefix index, take only the prefix.
Prefix-indexed columns may be externally stored. */
ut_ad(col->ord_part);
if (UNIV_LIKELY_NULL(ext)) {
/* See if the column is stored externally. */
const byte* buf = row_ext_lookup(ext, col_no,
&len);
if (UNIV_LIKELY_NULL(buf)) {
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
return(NULL);
}
dfield_set_data(dfield, buf, len);
}
} else if (dfield_is_ext(dfield)) {
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
len -= BTR_EXTERN_FIELD_REF_SIZE;
ut_a(ind_field->prefix_len <= len
|| dict_index_is_clust(index));
}
len = dtype_get_at_most_n_mbchars(
col->prtype, col->mbminlen, col->mbmaxlen,
ind_field->prefix_len, len, dfield_get_data(dfield));
dfield_set_len(dfield, len);
}
ut_ad(dtuple_check_typed(entry));
return(entry);
}
/***********************************************************************
An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index. */
UNIV_INTERN
dtuple_t*
row_build(
/*======*/
/* out, own: row built;
see the NOTE below! */
ulint type, /* in: ROW_COPY_POINTERS or
ROW_COPY_DATA; the latter
copies also the data fields to
heap while the first only
places pointers to data fields
on the index page, and thus is
more efficient */
const dict_index_t* index, /* in: clustered index */
const rec_t* rec, /* in: record in the clustered
index; NOTE: in the case
ROW_COPY_POINTERS the data
fields in the row will point
directly into this record,
therefore, the buffer page of
this record must be at least
s-latched and the latch held
as long as the row dtuple is used! */
const ulint* offsets,/* in: rec_get_offsets(rec,index)
or NULL, in which case this function
will invoke rec_get_offsets() */
const dict_table_t* col_table,
/* in: table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead */
row_ext_t** ext, /* out, own: cache of
externally stored column
prefixes, or NULL */
mem_heap_t* heap) /* in: memory heap from which
the memory needed is allocated */
{
dtuple_t* row;
const dict_table_t* table;
ulint n_fields;
ulint n_ext_cols;
ulint* ext_cols = NULL; /* remove warning */
ulint len;
ulint row_len;
byte* buf;
ulint i;
ulint j;
mem_heap_t* tmp_heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
ut_ad(index && rec && heap);
ut_ad(dict_index_is_clust(index));
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &tmp_heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
if (type != ROW_COPY_POINTERS) {
/* Take a copy of rec to heap */
buf = mem_heap_alloc(heap, rec_offs_size(offsets));
rec = rec_copy(buf, rec, offsets);
/* Avoid a debug assertion in rec_offs_validate(). */
rec_offs_make_valid(rec, index, (ulint*) offsets);
}
table = index->table;
row_len = dict_table_get_n_cols(table);
row = dtuple_create(heap, row_len);
dict_table_copy_types(row, table);
dtuple_set_info_bits(row, rec_get_info_bits(
rec, dict_table_is_comp(table)));
n_fields = rec_offs_n_fields(offsets);
n_ext_cols = rec_offs_n_extern(offsets);
if (n_ext_cols) {
ext_cols = mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols);
}
for (i = j = 0; i < n_fields; i++) {
dict_field_t* ind_field
= dict_index_get_nth_field(index, i);
const dict_col_t* col
= dict_field_get_col(ind_field);
ulint col_no
= dict_col_get_no(col);
dfield_t* dfield
= dtuple_get_nth_field(row, col_no);
if (ind_field->prefix_len == 0) {
const byte* field = rec_get_nth_field(
rec, offsets, i, &len);
dfield_set_data(dfield, field, len);
}
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
if (UNIV_LIKELY_NULL(col_table)) {
ut_a(col_no
< dict_table_get_n_cols(col_table));
col = dict_table_get_nth_col(
col_table, col_no);
}
if (col->ord_part) {
/* We will have to fetch prefixes of
externally stored columns that are
referenced by column prefixes. */
ext_cols[j++] = col_no;
}
}
}
ut_ad(dtuple_check_typed(row));
if (j) {
*ext = row_ext_create(j, ext_cols, row,
dict_table_zip_size(index->table),
heap);
} else {
*ext = NULL;
}
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
return(row);
}
/***********************************************************************
Converts an index record to a typed data tuple. */
UNIV_INTERN
dtuple_t*
row_rec_to_index_entry_low(
/*=======================*/
/* out: index entry built; does not
set info_bits, and the data fields in
the entry will point directly to rec */
const rec_t* rec, /* in: record in the index */
const dict_index_t* index, /* in: index */
const ulint* offsets,/* in: rec_get_offsets(rec, index) */
ulint* n_ext, /* out: number of externally
stored columns */
mem_heap_t* heap) /* in: memory heap from which
the memory needed is allocated */
{
dtuple_t* entry;
dfield_t* dfield;
ulint i;
const byte* field;
ulint len;
ulint rec_len;
ut_ad(rec && heap && index);
/* Because this function may be invoked by row0merge.c
on a record whose header is in different format, the check
rec_offs_validate(rec, index, offsets) must be avoided here. */
ut_ad(n_ext);
*n_ext = 0;
rec_len = rec_offs_n_fields(offsets);
entry = dtuple_create(heap, rec_len);
dtuple_set_n_fields_cmp(entry,
dict_index_get_n_unique_in_tree(index));
ut_ad(rec_len == dict_index_get_n_fields(index));
dict_index_copy_types(entry, index, rec_len);
for (i = 0; i < rec_len; i++) {
dfield = dtuple_get_nth_field(entry, i);
field = rec_get_nth_field(rec, offsets, i, &len);
dfield_set_data(dfield, field, len);
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
(*n_ext)++;
}
}
ut_ad(dtuple_check_typed(entry));
return(entry);
}
/***********************************************************************
Converts an index record to a typed data tuple. NOTE that externally
stored (often big) fields are NOT copied to heap. */
UNIV_INTERN
dtuple_t*
row_rec_to_index_entry(
/*===================*/
/* out, own: index entry
built; see the NOTE below! */
ulint type, /* in: ROW_COPY_DATA, or
ROW_COPY_POINTERS: the former
copies also the data fields to
heap as the latter only places
pointers to data fields on the
index page */
const rec_t* rec, /* in: record in the index;
NOTE: in the case
ROW_COPY_POINTERS the data
fields in the row will point
directly into this record,
therefore, the buffer page of
this record must be at least
s-latched and the latch held
as long as the dtuple is used! */
const dict_index_t* index, /* in: index */
ulint* offsets,/* in/out: rec_get_offsets(rec) */
ulint* n_ext, /* out: number of externally
stored columns */
mem_heap_t* heap) /* in: memory heap from which
the memory needed is allocated */
{
dtuple_t* entry;
byte* buf;
ut_ad(rec && heap && index);
ut_ad(rec_offs_validate(rec, index, offsets));
if (type == ROW_COPY_DATA) {
/* Take a copy of rec to heap */
buf = mem_heap_alloc(heap, rec_offs_size(offsets));
rec = rec_copy(buf, rec, offsets);
/* Avoid a debug assertion in rec_offs_validate(). */
rec_offs_make_valid(rec, index, offsets);
}
entry = row_rec_to_index_entry_low(rec, index, offsets, n_ext, heap);
dtuple_set_info_bits(entry,
rec_get_info_bits(rec, rec_offs_comp(offsets)));
return(entry);
}
/***********************************************************************
Builds from a secondary index record a row reference with which we can
search the clustered index record. */
UNIV_INTERN
dtuple_t*
row_build_row_ref(
/*==============*/
/* out, own: row reference built; see the
NOTE below! */
ulint type, /* in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
the former copies also the data fields to
heap, whereas the latter only places pointers
to data fields on the index page */
dict_index_t* index, /* in: secondary index */
const rec_t* rec, /* in: record in the index;
NOTE: in the case ROW_COPY_POINTERS
the data fields in the row will point
directly into this record, therefore,
the buffer page of this record must be
at least s-latched and the latch held
as long as the row reference is used! */
mem_heap_t* heap) /* in: memory heap from which the memory
needed is allocated */
{
dict_table_t* table;
dict_index_t* clust_index;
dfield_t* dfield;
dtuple_t* ref;
const byte* field;
ulint len;
ulint ref_len;
ulint pos;
byte* buf;
ulint clust_col_prefix_len;
ulint i;
mem_heap_t* tmp_heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
ut_ad(index && rec && heap);
ut_ad(!dict_index_is_clust(index));
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &tmp_heap);
/* Secondary indexes must not contain externally stored columns. */
ut_ad(!rec_offs_any_extern(offsets));
if (type == ROW_COPY_DATA) {
/* Take a copy of rec to heap */
buf = mem_heap_alloc(heap, rec_offs_size(offsets));
rec = rec_copy(buf, rec, offsets);
/* Avoid a debug assertion in rec_offs_validate(). */
rec_offs_make_valid(rec, index, offsets);
}
table = index->table;
clust_index = dict_table_get_first_index(table);
ref_len = dict_index_get_n_unique(clust_index);
ref = dtuple_create(heap, ref_len);
dict_index_copy_types(ref, clust_index, ref_len);
for (i = 0; i < ref_len; i++) {
dfield = dtuple_get_nth_field(ref, i);
pos = dict_index_get_nth_field_pos(index, clust_index, i);
ut_a(pos != ULINT_UNDEFINED);
field = rec_get_nth_field(rec, offsets, pos, &len);
dfield_set_data(dfield, field, len);
/* If the primary key contains a column prefix, then the
secondary index may contain a longer prefix of the same
column, or the full column, and we must adjust the length
accordingly. */
clust_col_prefix_len = dict_index_get_nth_field(
clust_index, i)->prefix_len;
if (clust_col_prefix_len > 0) {
if (len != UNIV_SQL_NULL) {
const dtype_t* dtype
= dfield_get_type(dfield);
dfield_set_len(dfield,
dtype_get_at_most_n_mbchars(
dtype->prtype,
dtype->mbminlen,
dtype->mbmaxlen,
clust_col_prefix_len,
len, (char*) field));
}
}
}
ut_ad(dtuple_check_typed(ref));
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
return(ref);
}
/***********************************************************************
Builds from a secondary index record a row reference with which we can
search the clustered index record. */
UNIV_INTERN
void
row_build_row_ref_in_tuple(
/*=======================*/
dtuple_t* ref, /* in/out: row reference built;
see the NOTE below! */
const rec_t* rec, /* in: record in the index;
NOTE: the data fields in ref
will point directly into this
record, therefore, the buffer
page of this record must be at
least s-latched and the latch
held as long as the row
reference is used! */
const dict_index_t* index, /* in: secondary index */
ulint* offsets,/* in: rec_get_offsets(rec, index)
or NULL */
trx_t* trx) /* in: transaction */
{
const dict_index_t* clust_index;
dfield_t* dfield;
const byte* field;
ulint len;
ulint ref_len;
ulint pos;
ulint clust_col_prefix_len;
ulint i;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
ut_a(ref);
ut_a(index);
ut_a(rec);
ut_ad(!dict_index_is_clust(index));
if (UNIV_UNLIKELY(!index->table)) {
fputs("InnoDB: table ", stderr);
notfound:
ut_print_name(stderr, trx, TRUE, index->table_name);
fputs(" for index ", stderr);
ut_print_name(stderr, trx, FALSE, index->name);
fputs(" not found\n", stderr);
ut_error;
}
clust_index = dict_table_get_first_index(index->table);
if (UNIV_UNLIKELY(!clust_index)) {
fputs("InnoDB: clust index for table ", stderr);
goto notfound;
}
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
/* Secondary indexes must not contain externally stored columns. */
ut_ad(!rec_offs_any_extern(offsets));
ref_len = dict_index_get_n_unique(clust_index);
ut_ad(ref_len == dtuple_get_n_fields(ref));
dict_index_copy_types(ref, clust_index, ref_len);
for (i = 0; i < ref_len; i++) {
dfield = dtuple_get_nth_field(ref, i);
pos = dict_index_get_nth_field_pos(index, clust_index, i);
ut_a(pos != ULINT_UNDEFINED);
field = rec_get_nth_field(rec, offsets, pos, &len);
dfield_set_data(dfield, field, len);
/* If the primary key contains a column prefix, then the
secondary index may contain a longer prefix of the same
column, or the full column, and we must adjust the length
accordingly. */
clust_col_prefix_len = dict_index_get_nth_field(
clust_index, i)->prefix_len;
if (clust_col_prefix_len > 0) {
if (len != UNIV_SQL_NULL) {
const dtype_t* dtype
= dfield_get_type(dfield);
dfield_set_len(dfield,
dtype_get_at_most_n_mbchars(
dtype->prtype,
dtype->mbminlen,
dtype->mbmaxlen,
clust_col_prefix_len,
len, (char*) field));
}
}
}
ut_ad(dtuple_check_typed(ref));
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
/***********************************************************************
From a row build a row reference with which we can search the clustered
index record. */
UNIV_INTERN
void
row_build_row_ref_from_row(
/*=======================*/
dtuple_t* ref, /* in/out: row reference built;
see the NOTE below!
ref must have the right number
of fields! */
const dict_table_t* table, /* in: table */
const dtuple_t* row) /* in: row
NOTE: the data fields in ref will point
directly into data of this row */
{
const dict_index_t* clust_index;
ulint ref_len;
ulint i;
ut_ad(ref && table && row);
clust_index = dict_table_get_first_index(table);
ref_len = dict_index_get_n_unique(clust_index);
ut_ad(ref_len == dtuple_get_n_fields(ref));
for (i = 0; i < ref_len; i++) {
const dict_col_t* col;
const dict_field_t* field;
dfield_t* dfield;
const dfield_t* dfield2;
dfield = dtuple_get_nth_field(ref, i);
field = dict_index_get_nth_field(clust_index, i);
col = dict_field_get_col(field);
dfield2 = dtuple_get_nth_field(row, dict_col_get_no(col));
dfield_copy(dfield, dfield2);
ut_ad(!dfield_is_ext(dfield));
if (field->prefix_len > 0 && !dfield_is_null(dfield)) {
ulint len = dfield_get_len(dfield);
len = dtype_get_at_most_n_mbchars(
col->prtype, col->mbminlen, col->mbmaxlen,
field->prefix_len,
len, dfield_get_data(dfield));
dfield_set_len(dfield, len);
}
}
ut_ad(dtuple_check_typed(ref));
}
/*******************************************************************
Searches the clustered index record for a row, if we have the row reference. */
UNIV_INTERN
ibool
row_search_on_row_ref(
/*==================*/
/* out: TRUE if found */
btr_pcur_t* pcur, /* out: persistent cursor, which must
be closed by the caller */
ulint mode, /* in: BTR_MODIFY_LEAF, ... */
const dict_table_t* table, /* in: table */
const dtuple_t* ref, /* in: row reference */
mtr_t* mtr) /* in/out: mtr */
{
ulint low_match;
rec_t* rec;
dict_index_t* index;
ut_ad(dtuple_check_typed(ref));
index = dict_table_get_first_index(table);
ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));
btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr);
low_match = btr_pcur_get_low_match(pcur);
rec = btr_pcur_get_rec(pcur);
if (page_rec_is_infimum(rec)) {
return(FALSE);
}
if (low_match != dtuple_get_n_fields(ref)) {
return(FALSE);
}
return(TRUE);
}
/*************************************************************************
Fetches the clustered index record for a secondary index record. The latches
on the secondary index record are preserved. */
UNIV_INTERN
rec_t*
row_get_clust_rec(
/*==============*/
/* out: record or NULL, if no record found */
ulint mode, /* in: BTR_MODIFY_LEAF, ... */
const rec_t* rec, /* in: record in a secondary index */
dict_index_t* index, /* in: secondary index */
dict_index_t** clust_index,/* out: clustered index */
mtr_t* mtr) /* in: mtr */
{
mem_heap_t* heap;
dtuple_t* ref;
dict_table_t* table;
btr_pcur_t pcur;
ibool found;
rec_t* clust_rec;
ut_ad(!dict_index_is_clust(index));
table = index->table;
heap = mem_heap_create(256);
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;
mem_heap_free(heap);
btr_pcur_close(&pcur);
*clust_index = dict_table_get_first_index(table);
return(clust_rec);
}
/*******************************************************************
Searches an index record. */
UNIV_INTERN
ibool
row_search_index_entry(
/*===================*/
/* out: TRUE if found */
dict_index_t* index, /* in: index */
const dtuple_t* entry, /* in: index entry */
ulint mode, /* in: BTR_MODIFY_LEAF, ... */
btr_pcur_t* pcur, /* in/out: persistent cursor, which must
be closed by the caller */
mtr_t* mtr) /* in: mtr */
{
ulint n_fields;
ulint low_match;
rec_t* rec;
ut_ad(dtuple_check_typed(entry));
btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
low_match = btr_pcur_get_low_match(pcur);
rec = btr_pcur_get_rec(pcur);
n_fields = dtuple_get_n_fields(entry);
return(!page_rec_is_infimum(rec) && low_match == n_fields);
}
#ifndef UNIV_HOTBACKUP
#include <my_sys.h>
/***********************************************************************
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_INT using "prtype" and writes the result to "buf".
If the data is in unknown format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0'). */
static
ulint
row_raw_format_int(
/*===============*/
/* out: number of bytes
that were written */
const char* data, /* in: raw data */
ulint data_len, /* in: raw data length
in bytes */
ulint prtype, /* in: precise type */
char* buf, /* out: output buffer */
ulint buf_size, /* in: output buffer size
in bytes */
ibool* format_in_hex) /* out: should the data be
formated in hex */
{
ulint ret;
if (data_len <= sizeof(ullint)) {
ullint value;
ibool unsigned_type = prtype & DATA_UNSIGNED;
value = mach_read_int_type((const byte*) data,
data_len, unsigned_type);
if (unsigned_type) {
ret = ut_snprintf(buf, buf_size, "%llu",
value) + 1;
} else {
ret = ut_snprintf(buf, buf_size, "%lld",
(long long) value) + 1;
}
} else {
*format_in_hex = TRUE;
ret = 0;
}
return(ut_min(ret, buf_size));
}
/***********************************************************************
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
result to "buf".
If the data is in binary format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0'). */
static
ulint
row_raw_format_str(
/*===============*/
/* out: number of bytes
that were written */
const char* data, /* in: raw data */
ulint data_len, /* in: raw data length
in bytes */
ulint prtype, /* in: precise type */
char* buf, /* out: output buffer */
ulint buf_size, /* in: output buffer size
in bytes */
ibool* format_in_hex) /* out: should the data be
formated in hex */
{
ulint charset_coll;
if (buf_size == 0) {
return(0);
}
/* we assume system_charset_info is UTF-8 */
charset_coll = dtype_get_charset_coll(prtype);
if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
return(ut_str_sql_format(data, data_len, buf, buf_size));
}
/* else */
if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
*format_in_hex = TRUE;
return(0);
}
/* else */
return(innobase_raw_format(data, data_len, charset_coll,
buf, buf_size));
}
/***********************************************************************
Formats the raw data in "data" (in InnoDB on-disk format) using
"dict_field" and writes the result to "buf".
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0'). */
UNIV_INTERN
ulint
row_raw_format(
/*===========*/
/* out: number of bytes
that were written */
const char* data, /* in: raw data */
ulint data_len, /* in: raw data length
in bytes */
const dict_field_t* dict_field, /* in: index field */
char* buf, /* out: output buffer */
ulint buf_size) /* in: output buffer size
in bytes */
{
ulint mtype;
ulint prtype;
ulint ret;
ibool format_in_hex;
if (buf_size == 0) {
return(0);
}
if (data_len == UNIV_SQL_NULL) {
ret = ut_snprintf((char*) buf, buf_size, "NULL") + 1;
return(ut_min(ret, buf_size));
}
mtype = dict_field->col->mtype;
prtype = dict_field->col->prtype;
format_in_hex = FALSE;
switch (mtype) {
case DATA_INT:
ret = row_raw_format_int(data, data_len, prtype,
buf, buf_size, &format_in_hex);
break;
case DATA_CHAR:
case DATA_VARCHAR:
case DATA_MYSQL:
case DATA_VARMYSQL:
ret = row_raw_format_str(data, data_len, prtype,
buf, buf_size, &format_in_hex);
break;
/* XXX support more data types */
default:
format_in_hex = TRUE;
}
if (format_in_hex) {
if (UNIV_LIKELY(buf_size > 2)) {
memcpy(buf, "0x", 2);
buf += 2;
buf_size -= 2;
ret = 2 + ut_raw_to_hex(data, data_len,
buf, buf_size);
} else {
buf[0] = '\0';
ret = 1;
}
}
return(ret);
}
#endif /* !UNIV_HOTBACKUP */
#ifdef UNIV_COMPILE_TEST_FUNCS
#include "ut0dbg.h"
void
test_row_raw_format_int()
{
ulint ret;
char buf[128];
ibool format_in_hex;
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
ret_expected, buf_expected, format_in_hex_expected)\
do {\
ibool ok = TRUE;\
ulint i;\
memset(buf, 'x', 10);\
buf[10] = '\0';\
format_in_hex = FALSE;\
fprintf(stderr, "TESTING \"\\x");\
for (i = 0; i < data_len; i++) {\
fprintf(stderr, "%02hhX", data[i]);\
}\
fprintf(stderr, "\", %lu, %lu, %lu\n",\
(ulint) data_len, (ulint) prtype,\
(ulint) buf_size);\
ret = row_raw_format_int(data, data_len, prtype,\
buf, buf_size, &format_in_hex);\
if (ret != ret_expected) {\
fprintf(stderr, "expected ret %lu, got %lu\n",\
(ulint) ret_expected, ret);\
ok = FALSE;\
}\
if (strcmp((char*) buf, buf_expected) != 0) {\
fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
buf_expected, buf);\
ok = FALSE;\
}\
if (format_in_hex != format_in_hex_expected) {\
fprintf(stderr, "expected format_in_hex %d, got %d\n",\
(int) format_in_hex_expected,\
(int) format_in_hex);\
ok = FALSE;\
}\
if (ok) {\
fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
(ulint) ret, buf, (int) format_in_hex);\
} else {\
return;\
}\
} while (0)
#if 1
/* min values for signed 1-8 byte integers */
CALL_AND_TEST("\x00", 1, 0,
buf, sizeof(buf), 5, "-128", 0);
CALL_AND_TEST("\x00\x00", 2, 0,
buf, sizeof(buf), 7, "-32768", 0);
CALL_AND_TEST("\x00\x00\x00", 3, 0,
buf, sizeof(buf), 9, "-8388608", 0);
CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
buf, sizeof(buf), 12, "-2147483648", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
buf, sizeof(buf), 14, "-549755813888", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
buf, sizeof(buf), 17, "-140737488355328", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
buf, sizeof(buf), 19, "-36028797018963968", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
buf, sizeof(buf), 21, "-9223372036854775808", 0);
/* min values for unsigned 1-8 byte integers */
CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
/* max values for signed 1-8 byte integers */
CALL_AND_TEST("\xFF", 1, 0,
buf, sizeof(buf), 4, "127", 0);
CALL_AND_TEST("\xFF\xFF", 2, 0,
buf, sizeof(buf), 6, "32767", 0);
CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
buf, sizeof(buf), 8, "8388607", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
buf, sizeof(buf), 11, "2147483647", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
buf, sizeof(buf), 13, "549755813887", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
buf, sizeof(buf), 16, "140737488355327", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
buf, sizeof(buf), 18, "36028797018963967", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
buf, sizeof(buf), 20, "9223372036854775807", 0);
/* max values for unsigned 1-8 byte integers */
CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
buf, sizeof(buf), 4, "255", 0);
CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
buf, sizeof(buf), 6, "65535", 0);
CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
buf, sizeof(buf), 9, "16777215", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
buf, sizeof(buf), 11, "4294967295", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
buf, sizeof(buf), 14, "1099511627775", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
buf, sizeof(buf), 16, "281474976710655", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
buf, sizeof(buf), 18, "72057594037927935", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
buf, sizeof(buf), 21, "18446744073709551615", 0);
/* some random values */
CALL_AND_TEST("\x52", 1, 0,
buf, sizeof(buf), 4, "-46", 0);
CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
buf, sizeof(buf), 3, "14", 0);
CALL_AND_TEST("\x62\xCE", 2, 0,
buf, sizeof(buf), 6, "-7474", 0);
CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
buf, sizeof(buf), 6, "10710", 0);
CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
buf, sizeof(buf), 5, "-112", 0);
CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
buf, sizeof(buf), 6, "41238", 0);
CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
buf, sizeof(buf), 3, "-9", 0);
CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
buf, sizeof(buf), 3, "92", 0);
CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
buf, sizeof(buf), 6, "-9117", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
buf, sizeof(buf), 6, "91234", 0);
#endif
/* speed test */
speedo_t speedo;
ulint i;
speedo_reset(&speedo);
for (i = 0; i < 1000000; i++) {
row_raw_format_int("\x23", 1,
0, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x23", 1,
DATA_UNSIGNED, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
0, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
DATA_UNSIGNED, buf, sizeof(buf),
&format_in_hex);
}
speedo_show(&speedo);
}
#endif /* UNIV_COMPILE_TEST_FUNCS */