mariadb/sql/item_inetfunc.cc
2019-05-13 17:54:04 +03:00

832 lines
22 KiB
C++

/* Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2014 MariaDB Foundation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#include <my_global.h>
#include "item_inetfunc.h"
#include "my_net.h"
///////////////////////////////////////////////////////////////////////////
static const int IN_ADDR_SIZE= sizeof (in_addr);
static const int IN6_ADDR_SIZE= sizeof (in6_addr);
static const int IN6_ADDR_NUM_WORDS= IN6_ADDR_SIZE / 2;
static const char HEX_DIGITS[]= "0123456789abcdef";
///////////////////////////////////////////////////////////////////////////
longlong Item_func_inet_aton::val_int()
{
DBUG_ASSERT(fixed);
uint byte_result= 0;
ulonglong result= 0; // We are ready for 64 bit addresses
const char *p,* end;
char c= '.'; // we mark c to indicate invalid IP in case length is 0
int dot_count= 0;
StringBuffer<36> tmp;
String *s= args[0]->val_str_ascii(&tmp);
if (!s) // If null value
goto err;
null_value= 0;
end= (p = s->ptr()) + s->length();
while (p < end)
{
c= *p++;
int digit= (int) (c - '0');
if (digit >= 0 && digit <= 9)
{
if ((byte_result= byte_result * 10 + digit) > 255)
goto err; // Wrong address
}
else if (c == '.')
{
dot_count++;
result= (result << 8) + (ulonglong) byte_result;
byte_result= 0;
}
else
goto err; // Invalid character
}
if (c != '.') // IP number can't end on '.'
{
/*
Attempt to support short forms of IP-addresses. It's however pretty
basic one comparing to the BSD support.
Examples:
127 -> 0.0.0.127
127.255 -> 127.0.0.255
127.256 -> NULL (should have been 127.0.1.0)
127.2.1 -> 127.2.0.1
*/
switch (dot_count) {
case 1: result<<= 8; /* Fall through */
case 2: result<<= 8; /* Fall through */
}
return (result << 8) + (ulonglong) byte_result;
}
err:
null_value=1;
return 0;
}
///////////////////////////////////////////////////////////////////////////
String* Item_func_inet_ntoa::val_str(String* str)
{
DBUG_ASSERT(fixed);
ulonglong n= (ulonglong) args[0]->val_int();
/*
We do not know if args[0] is NULL until we have called
some val function on it if args[0] is not a constant!
Also return null if n > 255.255.255.255
*/
if ((null_value= (args[0]->null_value || n > 0xffffffff)))
return 0; // Null value
str->set_charset(collation.collation);
str->length(0);
uchar buf[8];
int4store(buf, n);
/* Now we can assume little endian. */
char num[4];
num[3]= '.';
for (uchar *p= buf + 4; p-- > buf;)
{
uint c= *p;
uint n1, n2; // Try to avoid divisions
n1= c / 100; // 100 digits
c-= n1 * 100;
n2= c / 10; // 10 digits
c-= n2 * 10; // last digit
num[0]= (char) n1 + '0';
num[1]= (char) n2 + '0';
num[2]= (char) c + '0';
uint length= (n1 ? 4 : n2 ? 3 : 2); // Remove pre-zero
uint dot_length= (p <= buf) ? 1 : 0;
(void) str->append(num + 4 - length, length - dot_length,
&my_charset_latin1);
}
return str;
}
///////////////////////////////////////////////////////////////////////////
/**
Check the function argument, handle errors properly.
@return The function value.
*/
longlong Item_func_inet_bool_base::val_int()
{
DBUG_ASSERT(fixed);
if (args[0]->result_type() != STRING_RESULT) // String argument expected
return 0;
String buffer;
String *arg_str= args[0]->val_str(&buffer);
if (!arg_str) // Out-of memory happened. The error has been reported.
return 0; // Or: the underlying field is NULL
return calc_value(arg_str) ? 1 : 0;
}
///////////////////////////////////////////////////////////////////////////
/**
Check the function argument, handle errors properly.
@param [out] buffer Buffer for string operations.
@return The function value.
*/
String *Item_func_inet_str_base::val_str_ascii(String *buffer)
{
DBUG_ASSERT(fixed);
if (args[0]->result_type() != STRING_RESULT) // String argument expected
{
null_value= true;
return NULL;
}
StringBuffer<STRING_BUFFER_USUAL_SIZE> tmp;
String *arg_str= args[0]->val_str(&tmp);
if (!arg_str) // Out-of memory happened. The error has been reported.
{ // Or: the underlying field is NULL
null_value= true;
return NULL;
}
null_value= !calc_value(arg_str, buffer);
return null_value ? NULL : buffer;
}
///////////////////////////////////////////////////////////////////////////
/**
Tries to convert given string to binary IPv4-address representation.
This is a portable alternative to inet_pton(AF_INET).
@param str String to convert.
@param str_len String length.
@param[out] ipv4_address Buffer to store IPv4-address.
@return Completion status.
@retval false Given string does not represent an IPv4-address.
@retval true The string has been converted sucessfully.
@note The problem with inet_pton() is that it treats leading zeros in
IPv4-part differently on different platforms.
*/
static bool str_to_ipv4(const char *str, size_t str_length, in_addr *ipv4_address)
{
if (str_length < 7)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): "
"invalid IPv4 address: too short.",
(int)str_length, str));
return false;
}
if (str_length > 15)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): "
"invalid IPv4 address: too long.",
(int)str_length, str));
return false;
}
unsigned char *ipv4_bytes= (unsigned char *) ipv4_address;
const char *p= str;
int byte_value= 0;
int chars_in_group= 0;
int dot_count= 0;
char c= 0;
while (((p - str) < (int)str_length) && *p)
{
c= *p++;
if (my_isdigit(&my_charset_latin1, c))
{
++chars_in_group;
if (chars_in_group > 3)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"too many characters in a group.",
(int)str_length, str));
return false;
}
byte_value= byte_value * 10 + (c - '0');
if (byte_value > 255)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"invalid byte value.",
(int)str_length, str));
return false;
}
}
else if (c == '.')
{
if (chars_in_group == 0)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"too few characters in a group.",
(int)str_length, str));
return false;
}
ipv4_bytes[dot_count]= (unsigned char) byte_value;
++dot_count;
byte_value= 0;
chars_in_group= 0;
if (dot_count > 3)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"too many dots.", (int)str_length, str));
return false;
}
}
else
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"invalid character at pos %d.",
(int)str_length, str, (int) (p - str)));
return false;
}
}
if (c == '.')
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"ending at '.'.",(int)str_length, str));
return false;
}
if (dot_count != 3)
{
DBUG_PRINT("error", ("str_to_ipv4(%.*s): invalid IPv4 address: "
"too few groups.",
(int)str_length, str));
return false;
}
ipv4_bytes[3]= (unsigned char) byte_value;
DBUG_PRINT("info", ("str_to_ipv4(%.*s): valid IPv4 address: %d.%d.%d.%d",
(int)str_length, str,
ipv4_bytes[0], ipv4_bytes[1],
ipv4_bytes[2], ipv4_bytes[3]));
return true;
}
///////////////////////////////////////////////////////////////////////////
/**
Tries to convert given string to binary IPv6-address representation.
This is a portable alternative to inet_pton(AF_INET6).
@param str String to convert.
@param str_len String length.
@param[out] ipv6_address Buffer to store IPv6-address.
@return Completion status.
@retval false Given string does not represent an IPv6-address.
@retval true The string has been converted sucessfully.
@note The problem with inet_pton() is that it treats leading zeros in
IPv4-part differently on different platforms.
*/
static bool str_to_ipv6(const char *str, int str_length, in6_addr *ipv6_address)
{
if (str_length < 2)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: too short.",
str_length, str));
return false;
}
if (str_length > 8 * 4 + 7)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: too long.",
str_length, str));
return false;
}
memset(ipv6_address, 0, IN6_ADDR_SIZE);
const char *p= str;
if (*p == ':')
{
++p;
if (*p != ':')
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"can not start with ':x'.", str_length, str));
return false;
}
}
char *ipv6_bytes= (char *) ipv6_address;
char *ipv6_bytes_end= ipv6_bytes + IN6_ADDR_SIZE;
char *dst= ipv6_bytes;
char *gap_ptr= NULL;
const char *group_start_ptr= p;
int chars_in_group= 0;
int group_value= 0;
while (((p - str) < str_length) && *p)
{
char c= *p++;
if (c == ':')
{
group_start_ptr= p;
if (!chars_in_group)
{
if (gap_ptr)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"too many gaps(::).", str_length, str));
return false;
}
gap_ptr= dst;
continue;
}
if (!*p || ((p - str) >= str_length))
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"ending at ':'.", str_length, str));
return false;
}
if (dst + 2 > ipv6_bytes_end)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"too many groups (1).", str_length, str));
return false;
}
dst[0]= (unsigned char) (group_value >> 8) & 0xff;
dst[1]= (unsigned char) group_value & 0xff;
dst += 2;
chars_in_group= 0;
group_value= 0;
}
else if (c == '.')
{
if (dst + IN_ADDR_SIZE > ipv6_bytes_end)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"unexpected IPv4-part.", str_length, str));
return false;
}
if (!str_to_ipv4(group_start_ptr,
str + str_length - group_start_ptr,
(in_addr *) dst))
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"invalid IPv4-part.", str_length, str));
return false;
}
dst += IN_ADDR_SIZE;
chars_in_group= 0;
break;
}
else
{
const char *hdp= strchr(HEX_DIGITS, my_tolower(&my_charset_latin1, c));
if (!hdp)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"invalid character at pos %d.",
str_length, str, (int) (p - str)));
return false;
}
if (chars_in_group >= 4)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"too many digits in group.",
str_length, str));
return false;
}
group_value <<= 4;
group_value |= hdp - HEX_DIGITS;
DBUG_ASSERT(group_value <= 0xffff);
++chars_in_group;
}
}
if (chars_in_group > 0)
{
if (dst + 2 > ipv6_bytes_end)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"too many groups (2).", str_length, str));
return false;
}
dst[0]= (unsigned char) (group_value >> 8) & 0xff;
dst[1]= (unsigned char) group_value & 0xff;
dst += 2;
}
if (gap_ptr)
{
if (dst == ipv6_bytes_end)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"no room for a gap (::).", str_length, str));
return false;
}
int bytes_to_move= (int)(dst - gap_ptr);
for (int i= 1; i <= bytes_to_move; ++i)
{
ipv6_bytes_end[-i]= gap_ptr[bytes_to_move - i];
gap_ptr[bytes_to_move - i]= 0;
}
dst= ipv6_bytes_end;
}
if (dst < ipv6_bytes_end)
{
DBUG_PRINT("error", ("str_to_ipv6(%.*s): invalid IPv6 address: "
"too few groups.", str_length, str));
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////
/**
Converts IPv4-binary-address to a string. This function is a portable
alternative to inet_ntop(AF_INET).
@param[in] ipv4 IPv4-address data (byte array)
@param[out] str A buffer to store string representation of IPv4-address.
It must be at least of INET_ADDRSTRLEN.
@note The problem with inet_ntop() is that it is available starting from
Windows Vista, but the minimum supported version is Windows 2000.
*/
static void ipv4_to_str(const in_addr *ipv4, char *str)
{
const unsigned char *ipv4_bytes= (const unsigned char *) ipv4;
sprintf(str, "%d.%d.%d.%d",
ipv4_bytes[0], ipv4_bytes[1], ipv4_bytes[2], ipv4_bytes[3]);
}
///////////////////////////////////////////////////////////////////////////
/**
Converts IPv6-binary-address to a string. This function is a portable
alternative to inet_ntop(AF_INET6).
@param[in] ipv6 IPv6-address data (byte array)
@param[out] str A buffer to store string representation of IPv6-address.
It must be at least of INET6_ADDRSTRLEN.
@note The problem with inet_ntop() is that it is available starting from
Windows Vista, but out the minimum supported version is Windows 2000.
*/
static void ipv6_to_str(const in6_addr *ipv6, char *str)
{
struct Region
{
int pos;
int length;
};
const unsigned char *ipv6_bytes= (const unsigned char *) ipv6;
// 1. Translate IPv6-address bytes to words.
// We can't just cast to short, because it's not guaranteed
// that sizeof (short) == 2. So, we have to make a copy.
uint16 ipv6_words[IN6_ADDR_NUM_WORDS];
for (int i= 0; i < IN6_ADDR_NUM_WORDS; ++i)
ipv6_words[i]= (ipv6_bytes[2 * i] << 8) + ipv6_bytes[2 * i + 1];
// 2. Find "the gap" -- longest sequence of zeros in IPv6-address.
Region gap= { -1, -1 };
{
Region rg= { -1, -1 };
for (int i = 0; i < IN6_ADDR_NUM_WORDS; ++i)
{
if (ipv6_words[i] != 0)
{
if (rg.pos >= 0)
{
if (rg.length > gap.length)
gap= rg;
rg.pos= -1;
rg.length= -1;
}
}
else
{
if (rg.pos >= 0)
{
++rg.length;
}
else
{
rg.pos= i;
rg.length= 1;
}
}
}
if (rg.pos >= 0)
{
if (rg.length > gap.length)
gap= rg;
}
}
// 3. Convert binary data to string.
char *p= str;
for (int i = 0; i < IN6_ADDR_NUM_WORDS; ++i)
{
if (i == gap.pos)
{
// We're at the gap position. We should put trailing ':' and jump to
// the end of the gap.
if (i == 0)
{
// The gap starts from the beginning of the data -- leading ':'
// should be put additionally.
*p= ':';
++p;
}
*p= ':';
++p;
i += gap.length - 1;
}
else if (i == 6 && gap.pos == 0 &&
(gap.length == 6 || // IPv4-compatible
(gap.length == 5 && ipv6_words[5] == 0xffff) // IPv4-mapped
))
{
// The data represents either IPv4-compatible or IPv4-mapped address.
// The IPv6-part (zeros or zeros + ffff) has been already put into
// the string (str). Now it's time to dump IPv4-part.
ipv4_to_str((const in_addr *) (ipv6_bytes + 12), p);
return;
}
else
{
// Usual IPv6-address-field. Print it out using lower-case
// hex-letters without leading zeros (recommended IPv6-format).
//
// If it is not the last field, append closing ':'.
p += sprintf(p, "%x", ipv6_words[i]);
if (i != IN6_ADDR_NUM_WORDS - 1)
{
*p= ':';
++p;
}
}
}
*p= 0;
}
///////////////////////////////////////////////////////////////////////////
/**
Converts IP-address-string to IP-address-data.
@param arg IP-address-string.
@param [out] buffer Buffer to store IP-address-data.
@return Completion status.
@retval false Given string does not represent an IP-address.
@retval true The string has been converted sucessfully.
*/
bool Item_func_inet6_aton::calc_value(const String *arg, String *buffer)
{
// ipv4-string -> varbinary(4)
// ipv6-string -> varbinary(16)
in_addr ipv4_address;
in6_addr ipv6_address;
if (str_to_ipv4(arg->ptr(), arg->length(), &ipv4_address))
{
buffer->length(0);
buffer->append((char *) &ipv4_address, sizeof (in_addr), &my_charset_bin);
return true;
}
if (str_to_ipv6(arg->ptr(), arg->length(), &ipv6_address))
{
buffer->length(0);
buffer->append((char *) &ipv6_address, sizeof (in6_addr), &my_charset_bin);
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////
/**
Converts IP-address-data to IP-address-string.
@param arg IP-address-data.
@param [out] buffer Buffer to store IP-address-string.
@return Completion status.
@retval false The argument does not correspond to IP-address.
@retval true The string has been converted sucessfully.
*/
bool Item_func_inet6_ntoa::calc_value(const String *arg, String *buffer)
{
if (arg->charset() != &my_charset_bin)
return false;
if ((int) arg->length() == IN_ADDR_SIZE)
{
char str[INET_ADDRSTRLEN];
ipv4_to_str((const in_addr *) arg->ptr(), str);
buffer->length(0);
buffer->append(str, (uint32) strlen(str), &my_charset_latin1);
return true;
}
else if ((int) arg->length() == IN6_ADDR_SIZE)
{
char str[INET6_ADDRSTRLEN];
ipv6_to_str((const in6_addr *) arg->ptr(), str);
buffer->length(0);
buffer->append(str, (uint32) strlen(str), &my_charset_latin1);
return true;
}
DBUG_PRINT("info",
("INET6_NTOA(): varbinary(4) or varbinary(16) expected."));
return false;
}
///////////////////////////////////////////////////////////////////////////
/**
Checks if the passed string represents an IPv4-address.
@param arg The string to check.
@return Check status.
@retval false The passed string does not represent an IPv4-address.
@retval true The passed string represents an IPv4-address.
*/
bool Item_func_is_ipv4::calc_value(const String *arg)
{
in_addr ipv4_address;
return str_to_ipv4(arg->ptr(), arg->length(), &ipv4_address);
}
///////////////////////////////////////////////////////////////////////////
/**
Checks if the passed string represents an IPv6-address.
@param arg The string to check.
@return Check status.
@retval false The passed string does not represent an IPv6-address.
@retval true The passed string represents an IPv6-address.
*/
bool Item_func_is_ipv6::calc_value(const String *arg)
{
in6_addr ipv6_address;
return str_to_ipv6(arg->ptr(), arg->length(), &ipv6_address);
}
///////////////////////////////////////////////////////////////////////////
/**
Checks if the passed IPv6-address is an IPv4-compat IPv6-address.
@param arg The IPv6-address to check.
@return Check status.
@retval false The passed IPv6-address is not an IPv4-compatible IPv6-address.
@retval true The passed IPv6-address is an IPv4-compatible IPv6-address.
*/
bool Item_func_is_ipv4_compat::calc_value(const String *arg)
{
if ((int) arg->length() != IN6_ADDR_SIZE || arg->charset() != &my_charset_bin)
return false;
return IN6_IS_ADDR_V4COMPAT((struct in6_addr *) arg->ptr());
}
///////////////////////////////////////////////////////////////////////////
/**
Checks if the passed IPv6-address is an IPv4-mapped IPv6-address.
@param arg The IPv6-address to check.
@return Check status.
@retval false The passed IPv6-address is not an IPv4-mapped IPv6-address.
@retval true The passed IPv6-address is an IPv4-mapped IPv6-address.
*/
bool Item_func_is_ipv4_mapped::calc_value(const String *arg)
{
if ((int) arg->length() != IN6_ADDR_SIZE || arg->charset() != &my_charset_bin)
return false;
return IN6_IS_ADDR_V4MAPPED((struct in6_addr *) arg->ptr());
}