mariadb/storage/ndb/tools/restore/Restore.cpp
2006-03-23 04:59:14 +01:00

1152 lines
29 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "Restore.hpp"
#include <NdbTCP.h>
#include <NdbMem.h>
#include <OutputStream.hpp>
#include <Bitmask.hpp>
#include <AttributeHeader.hpp>
#include <trigger_definitions.h>
#include <SimpleProperties.hpp>
#include <signaldata/DictTabInfo.hpp>
#include <ndb_limits.h>
#include "../../../../sql/ha_ndbcluster_tables.h"
Uint16 Twiddle16(Uint16 in); // Byte shift 16-bit data
Uint32 Twiddle32(Uint32 in); // Byte shift 32-bit data
Uint64 Twiddle64(Uint64 in); // Byte shift 64-bit data
bool
BackupFile::Twiddle(const AttributeDesc* attr_desc, AttributeData* attr_data, Uint32 arraySize){
Uint32 i;
if(m_hostByteOrder)
return true;
if(arraySize == 0){
arraySize = attr_desc->arraySize;
}
switch(attr_desc->size){
case 8:
return true;
case 16:
for(i = 0; i<arraySize; i++){
attr_data->u_int16_value[i] = Twiddle16(attr_data->u_int16_value[i]);
}
return true;
case 32:
for(i = 0; i<arraySize; i++){
attr_data->u_int32_value[i] = Twiddle32(attr_data->u_int32_value[i]);
}
return true;
case 64:
for(i = 0; i<arraySize; i++){
attr_data->u_int64_value[i] = Twiddle64(attr_data->u_int64_value[i]);
}
return true;
default:
return false;
} // switch
} // Twiddle
FilteredNdbOut err(* new FileOutputStream(stderr), 0, 0);
FilteredNdbOut info(* new FileOutputStream(stdout), 1, 1);
FilteredNdbOut debug(* new FileOutputStream(stdout), 2, 0);
// To decide in what byte order data is
const Uint32 magicByteOrder = 0x12345678;
const Uint32 swappedMagicByteOrder = 0x78563412;
RestoreMetaData::RestoreMetaData(const char* path, Uint32 nodeId, Uint32 bNo) {
debug << "RestoreMetaData constructor" << endl;
setCtlFile(nodeId, bNo, path);
}
RestoreMetaData::~RestoreMetaData(){
for(Uint32 i= 0; i < allTables.size(); i++)
delete allTables[i];
allTables.clear();
}
TableS *
RestoreMetaData::getTable(Uint32 tableId) const {
for(Uint32 i= 0; i < allTables.size(); i++)
if(allTables[i]->getTableId() == tableId)
return allTables[i];
return NULL;
}
Uint32
RestoreMetaData::getStopGCP() const {
return m_stopGCP;
}
int
RestoreMetaData::loadContent()
{
Uint32 noOfTables = readMetaTableList();
if(noOfTables == 0) {
return 1;
}
for(Uint32 i = 0; i<noOfTables; i++){
if(!readMetaTableDesc()){
return 0;
}
}
if (! markSysTables())
return 0;
if(!readGCPEntry())
return 0;
return 1;
}
Uint32
RestoreMetaData::readMetaTableList() {
Uint32 sectionInfo[2];
if (buffer_read(&sectionInfo, sizeof(sectionInfo), 1) != 1){
err << "readMetaTableList read header error" << endl;
return 0;
}
sectionInfo[0] = ntohl(sectionInfo[0]);
sectionInfo[1] = ntohl(sectionInfo[1]);
const Uint32 tabCount = sectionInfo[1] - 2;
void *tmp;
if (buffer_get_ptr(&tmp, 4, tabCount) != tabCount){
err << "readMetaTableList read tabCount error" << endl;
return 0;
}
return tabCount;
}
bool
RestoreMetaData::readMetaTableDesc() {
Uint32 sectionInfo[3];
// Read section header
Uint32 sz = sizeof(sectionInfo) >> 2;
if (m_fileHeader.NdbVersion < NDBD_ROWID_VERSION)
{
sz = 2;
sectionInfo[2] = htonl(DictTabInfo::UserTable);
}
if (buffer_read(&sectionInfo, 4*sz, 1) != 1){
err << "readMetaTableDesc read header error" << endl;
return false;
} // if
sectionInfo[0] = ntohl(sectionInfo[0]);
sectionInfo[1] = ntohl(sectionInfo[1]);
sectionInfo[2] = ntohl(sectionInfo[2]);
assert(sectionInfo[0] == BackupFormat::TABLE_DESCRIPTION);
// Read dictTabInfo buffer
const Uint32 len = (sectionInfo[1] - sz);
void *ptr;
if (buffer_get_ptr(&ptr, 4, len) != len){
err << "readMetaTableDesc read error" << endl;
return false;
} // if
int errcode = 0;
DictObject obj = { sectionInfo[2], 0 };
switch(obj.m_objType){
case DictTabInfo::SystemTable:
case DictTabInfo::UserTable:
case DictTabInfo::UniqueHashIndex:
case DictTabInfo::OrderedIndex:
return parseTableDescriptor((Uint32*)ptr, len);
break;
case DictTabInfo::Tablespace:
{
NdbDictionary::Tablespace * dst = new NdbDictionary::Tablespace;
errcode =
NdbDictInterface::parseFilegroupInfo(NdbTablespaceImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getName() << endl;
break;
}
case DictTabInfo::LogfileGroup:
{
NdbDictionary::LogfileGroup * dst = new NdbDictionary::LogfileGroup;
errcode =
NdbDictInterface::parseFilegroupInfo(NdbLogfileGroupImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getName() << endl;
break;
}
case DictTabInfo::Datafile:
{
NdbDictionary::Datafile * dst = new NdbDictionary::Datafile;
errcode =
NdbDictInterface::parseFileInfo(NdbDatafileImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getPath() << endl;
break;
}
case DictTabInfo::Undofile:
{
NdbDictionary::Undofile * dst = new NdbDictionary::Undofile;
errcode =
NdbDictInterface::parseFileInfo(NdbUndofileImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getPath() << endl;
break;
}
default:
err << "Unsupported table type!! " << sectionInfo[2] << endl;
return false;
}
if (errcode)
{
err << "Unable to parse dict info..."
<< sectionInfo[2] << " " << errcode << endl;
return false;
}
/**
* DD objects need to be sorted...
*/
for(Uint32 i = 0; i<m_objects.size(); i++)
{
switch(sectionInfo[2]){
case DictTabInfo::Tablespace:
if (DictTabInfo::isFile(m_objects[i].m_objType))
{
m_objects.push(obj, i);
goto end;
}
break;
case DictTabInfo::LogfileGroup:
{
if (DictTabInfo::isFile(m_objects[i].m_objType) ||
m_objects[i].m_objType == DictTabInfo::Tablespace)
{
m_objects.push(obj, i);
goto end;
}
break;
}
default:
m_objects.push_back(obj);
goto end;
}
}
m_objects.push_back(obj);
end:
return true;
}
bool
RestoreMetaData::markSysTables()
{
Uint32 i;
for (i = 0; i < getNoOfTables(); i++) {
TableS* table = allTables[i];
const char* tableName = table->getTableName();
if ( // XXX should use type
strcmp(tableName, "SYSTAB_0") == 0 ||
strcmp(tableName, "NDB$EVENTS_0") == 0 ||
strcmp(tableName, "sys/def/SYSTAB_0") == 0 ||
strcmp(tableName, "sys/def/NDB$EVENTS_0") == 0 ||
strcmp(tableName, NDB_REP_DB "/def/" NDB_APPLY_TABLE) == 0 ||
strcmp(tableName, NDB_REP_DB "/def/" NDB_SCHEMA_TABLE)== 0 )
table->isSysTable = true;
}
for (i = 0; i < getNoOfTables(); i++) {
TableS* blobTable = allTables[i];
const char* blobTableName = blobTable->getTableName();
// yet another match blob
int cnt, id1, id2;
char buf[256];
cnt = sscanf(blobTableName, "%[^/]/%[^/]/NDB$BLOB_%d_%d",
buf, buf, &id1, &id2);
if (cnt == 4) {
Uint32 j;
for (j = 0; j < getNoOfTables(); j++) {
TableS* table = allTables[j];
if (table->getTableId() == id1) {
if (table->isSysTable)
blobTable->isSysTable = true;
break;
}
}
if (j == getNoOfTables()) {
err << "Restore: Bad primary table id in " << blobTableName << endl;
return false;
}
}
}
return true;
}
bool
RestoreMetaData::readGCPEntry() {
Uint32 data[4];
BackupFormat::CtlFile::GCPEntry * dst =
(BackupFormat::CtlFile::GCPEntry *)&data[0];
if(buffer_read(dst, 4, 4) != 4){
err << "readGCPEntry read error" << endl;
return false;
}
dst->SectionType = ntohl(dst->SectionType);
dst->SectionLength = ntohl(dst->SectionLength);
if(dst->SectionType != BackupFormat::GCP_ENTRY){
err << "readGCPEntry invalid format" << endl;
return false;
}
dst->StartGCP = ntohl(dst->StartGCP);
dst->StopGCP = ntohl(dst->StopGCP);
m_startGCP = dst->StartGCP;
m_stopGCP = dst->StopGCP;
return true;
}
TableS::TableS(Uint32 version, NdbTableImpl* tableImpl)
: m_dictTable(tableImpl)
{
m_dictTable = tableImpl;
m_noOfNullable = m_nullBitmaskSize = 0;
m_auto_val_id= ~(Uint32)0;
m_max_auto_val= 0;
backupVersion = version;
isSysTable = false;
for (int i = 0; i < tableImpl->getNoOfColumns(); i++)
createAttr(tableImpl->getColumn(i));
}
TableS::~TableS()
{
for (Uint32 i= 0; i < allAttributesDesc.size(); i++)
delete allAttributesDesc[i];
}
// Parse dictTabInfo buffer and pushback to to vector storage
bool
RestoreMetaData::parseTableDescriptor(const Uint32 * data, Uint32 len)
{
NdbTableImpl* tableImpl = 0;
int ret = NdbDictInterface::parseTableInfo(&tableImpl, data, len, false);
if (ret != 0) {
err << "parseTableInfo " << " failed" << endl;
return false;
}
if(tableImpl == 0)
return false;
debug << "parseTableInfo " << tableImpl->getName() << " done" << endl;
TableS * table = new TableS(m_fileHeader.NdbVersion, tableImpl);
if(table == NULL) {
return false;
}
debug << "Parsed table id " << table->getTableId() << endl;
debug << "Parsed table #attr " << table->getNoOfAttributes() << endl;
debug << "Parsed table schema version not used " << endl;
debug << "Pushing table " << table->getTableName() << endl;
debug << " with " << table->getNoOfAttributes() << " attributes" << endl;
allTables.push_back(table);
return true;
}
// Constructor
RestoreDataIterator::RestoreDataIterator(const RestoreMetaData & md, void (* _free_data_callback)())
: BackupFile(_free_data_callback), m_metaData(md)
{
debug << "RestoreDataIterator constructor" << endl;
setDataFile(md, 0);
}
TupleS & TupleS::operator=(const TupleS& tuple)
{
prepareRecord(*tuple.m_currentTable);
if (allAttrData)
memcpy(allAttrData, tuple.allAttrData, getNoOfAttributes()*sizeof(AttributeData));
return *this;
}
int TupleS::getNoOfAttributes() const {
if (m_currentTable == 0)
return 0;
return m_currentTable->getNoOfAttributes();
}
TableS * TupleS::getTable() const {
return m_currentTable;
}
const AttributeDesc * TupleS::getDesc(int i) const {
return m_currentTable->allAttributesDesc[i];
}
AttributeData * TupleS::getData(int i) const{
return &(allAttrData[i]);
}
bool
TupleS::prepareRecord(TableS & tab){
if (allAttrData) {
if (getNoOfAttributes() == tab.getNoOfAttributes())
{
m_currentTable = &tab;
return true;
}
delete [] allAttrData;
m_currentTable= 0;
}
allAttrData = new AttributeData[tab.getNoOfAttributes()];
if (allAttrData == 0)
return false;
m_currentTable = &tab;
return true;
}
const TupleS *
RestoreDataIterator::getNextTuple(int & res)
{
Uint32 dataLength = 0;
// Read record length
if (buffer_read(&dataLength, sizeof(dataLength), 1) != 1){
err << "getNextTuple:Error reading length of data part" << endl;
res = -1;
return NULL;
} // if
// Convert length from network byte order
dataLength = ntohl(dataLength);
const Uint32 dataLenBytes = 4 * dataLength;
if (dataLength == 0) {
// Zero length for last tuple
// End of this data fragment
debug << "End of fragment" << endl;
res = 0;
return NULL;
} // if
// Read tuple data
void *_buf_ptr;
if (buffer_get_ptr(&_buf_ptr, 1, dataLenBytes) != dataLenBytes) {
err << "getNextTuple:Read error: " << endl;
res = -1;
return NULL;
}
//if (m_currentTable->getTableId() >= 2) { for (uint ii=0; ii<dataLenBytes; ii+=4) ndbout << "*" << hex << *(Uint32*)( (char*)_buf_ptr+ii ); ndbout << endl; }
Uint32 *buf_ptr = (Uint32*)_buf_ptr, *ptr = buf_ptr;
ptr += m_currentTable->m_nullBitmaskSize;
Uint32 i;
for(i= 0; i < m_currentTable->m_fixedKeys.size(); i++){
assert(ptr < buf_ptr + dataLength);
const Uint32 attrId = m_currentTable->m_fixedKeys[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
const Uint32 sz = attr_desc->getSizeInWords();
attr_data->null = false;
attr_data->void_value = ptr;
attr_data->size = 4*sz;
if(!Twiddle(attr_desc, attr_data))
{
res = -1;
return NULL;
}
ptr += sz;
}
for(i = 0; i < m_currentTable->m_fixedAttribs.size(); i++){
assert(ptr < buf_ptr + dataLength);
const Uint32 attrId = m_currentTable->m_fixedAttribs[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
const Uint32 sz = attr_desc->getSizeInWords();
attr_data->null = false;
attr_data->void_value = ptr;
attr_data->size = 4*sz;
//if (m_currentTable->getTableId() >= 2) { ndbout << "fix i=" << i << " off=" << ptr-buf_ptr << " attrId=" << attrId << endl; }
if(!Twiddle(attr_desc, attr_data))
{
res = -1;
return NULL;
}
ptr += sz;
}
// init to NULL
for(i = 0; i < m_currentTable->m_variableAttribs.size(); i++){
const Uint32 attrId = m_currentTable->m_variableAttribs[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
attr_data->null = true;
attr_data->void_value = NULL;
}
while (ptr + 2 < buf_ptr + dataLength) {
typedef BackupFormat::DataFile::VariableData VarData;
VarData * data = (VarData *)ptr;
Uint32 sz = ntohl(data->Sz);
Uint32 attrId = ntohl(data->Id); // column_no
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
// just a reminder - remove when backwards compat implemented
if(m_currentTable->backupVersion < MAKE_VERSION(5,1,3) &&
attr_desc->m_column->getNullable()){
const Uint32 ind = attr_desc->m_nullBitIndex;
if(BitmaskImpl::get(m_currentTable->m_nullBitmaskSize,
buf_ptr,ind)){
attr_data->null = true;
attr_data->void_value = NULL;
continue;
}
}
if (m_currentTable->backupVersion < MAKE_VERSION(5,1,3))
{
sz *= 4;
}
attr_data->null = false;
attr_data->void_value = &data->Data[0];
attr_data->size = sz;
//if (m_currentTable->getTableId() >= 2) { ndbout << "var off=" << ptr-buf_ptr << " attrId=" << attrId << endl; }
/**
* Compute array size
*/
const Uint32 arraySize = sz / (attr_desc->size / 8);
assert(arraySize <= attr_desc->arraySize);
if(!Twiddle(attr_desc, attr_data, attr_desc->arraySize))
{
res = -1;
return NULL;
}
ptr += ((sz + 3) >> 2) + 2;
}
assert(ptr == buf_ptr + dataLength);
m_count ++;
res = 0;
return &m_tuple;
} // RestoreDataIterator::getNextTuple
BackupFile::BackupFile(void (* _free_data_callback)())
: free_data_callback(_free_data_callback)
{
m_file = 0;
m_path[0] = 0;
m_fileName[0] = 0;
m_buffer_sz = 64*1024;
m_buffer = malloc(m_buffer_sz);
m_buffer_ptr = m_buffer;
m_buffer_data_left = 0;
}
BackupFile::~BackupFile(){
if(m_file != 0)
fclose(m_file);
if(m_buffer != 0)
free(m_buffer);
}
bool
BackupFile::openFile(){
if(m_file != NULL){
fclose(m_file);
m_file = 0;
}
m_file = fopen(m_fileName, "r");
return m_file != 0;
}
Uint32 BackupFile::buffer_get_ptr_ahead(void **p_buf_ptr, Uint32 size, Uint32 nmemb)
{
Uint32 sz = size*nmemb;
if (sz > m_buffer_data_left) {
if (free_data_callback)
(*free_data_callback)();
memcpy(m_buffer, m_buffer_ptr, m_buffer_data_left);
size_t r = fread(((char *)m_buffer) + m_buffer_data_left, 1, m_buffer_sz - m_buffer_data_left, m_file);
m_buffer_data_left += r;
m_buffer_ptr = m_buffer;
if (sz > m_buffer_data_left)
sz = size * (m_buffer_data_left / size);
}
*p_buf_ptr = m_buffer_ptr;
return sz/size;
}
Uint32 BackupFile::buffer_get_ptr(void **p_buf_ptr, Uint32 size, Uint32 nmemb)
{
Uint32 r = buffer_get_ptr_ahead(p_buf_ptr, size, nmemb);
m_buffer_ptr = ((char*)m_buffer_ptr)+(r*size);
m_buffer_data_left -= (r*size);
return r;
}
Uint32 BackupFile::buffer_read_ahead(void *ptr, Uint32 size, Uint32 nmemb)
{
void *buf_ptr;
Uint32 r = buffer_get_ptr_ahead(&buf_ptr, size, nmemb);
memcpy(ptr, buf_ptr, r*size);
return r;
}
Uint32 BackupFile::buffer_read(void *ptr, Uint32 size, Uint32 nmemb)
{
void *buf_ptr;
Uint32 r = buffer_get_ptr(&buf_ptr, size, nmemb);
memcpy(ptr, buf_ptr, r*size);
return r;
}
void
BackupFile::setCtlFile(Uint32 nodeId, Uint32 backupId, const char * path){
m_nodeId = nodeId;
m_expectedFileHeader.BackupId = backupId;
m_expectedFileHeader.FileType = BackupFormat::CTL_FILE;
char name[PATH_MAX]; const Uint32 sz = sizeof(name);
BaseString::snprintf(name, sz, "BACKUP-%d.%d.ctl", backupId, nodeId);
setName(path, name);
}
void
BackupFile::setDataFile(const BackupFile & bf, Uint32 no){
m_nodeId = bf.m_nodeId;
m_expectedFileHeader = bf.m_fileHeader;
m_expectedFileHeader.FileType = BackupFormat::DATA_FILE;
char name[PATH_MAX]; const Uint32 sz = sizeof(name);
BaseString::snprintf(name, sz, "BACKUP-%d-%d.%d.Data",
m_expectedFileHeader.BackupId, no, m_nodeId);
setName(bf.m_path, name);
}
void
BackupFile::setLogFile(const BackupFile & bf, Uint32 no){
m_nodeId = bf.m_nodeId;
m_expectedFileHeader = bf.m_fileHeader;
m_expectedFileHeader.FileType = BackupFormat::LOG_FILE;
char name[PATH_MAX]; const Uint32 sz = sizeof(name);
BaseString::snprintf(name, sz, "BACKUP-%d.%d.log",
m_expectedFileHeader.BackupId, m_nodeId);
setName(bf.m_path, name);
}
void
BackupFile::setName(const char * p, const char * n){
const Uint32 sz = sizeof(m_path);
if(p != 0 && strlen(p) > 0){
if(p[strlen(p)-1] == '/'){
BaseString::snprintf(m_path, sz, "%s", p);
} else {
BaseString::snprintf(m_path, sz, "%s%s", p, "/");
}
} else {
m_path[0] = 0;
}
BaseString::snprintf(m_fileName, sizeof(m_fileName), "%s%s", m_path, n);
debug << "Filename = " << m_fileName << endl;
}
bool
BackupFile::readHeader(){
if(!openFile()){
return false;
}
if(buffer_read(&m_fileHeader, sizeof(m_fileHeader), 1) != 1){
err << "readDataFileHeader: Error reading header" << endl;
return false;
}
// Convert from network to host byte order for platform compatibility
m_fileHeader.NdbVersion = ntohl(m_fileHeader.NdbVersion);
m_fileHeader.SectionType = ntohl(m_fileHeader.SectionType);
m_fileHeader.SectionLength = ntohl(m_fileHeader.SectionLength);
m_fileHeader.FileType = ntohl(m_fileHeader.FileType);
m_fileHeader.BackupId = ntohl(m_fileHeader.BackupId);
m_fileHeader.BackupKey_0 = ntohl(m_fileHeader.BackupKey_0);
m_fileHeader.BackupKey_1 = ntohl(m_fileHeader.BackupKey_1);
debug << "FileHeader: " << m_fileHeader.Magic << " " <<
m_fileHeader.NdbVersion << " " <<
m_fileHeader.SectionType << " " <<
m_fileHeader.SectionLength << " " <<
m_fileHeader.FileType << " " <<
m_fileHeader.BackupId << " " <<
m_fileHeader.BackupKey_0 << " " <<
m_fileHeader.BackupKey_1 << " " <<
m_fileHeader.ByteOrder << endl;
debug << "ByteOrder is " << m_fileHeader.ByteOrder << endl;
debug << "magicByteOrder is " << magicByteOrder << endl;
if (m_fileHeader.FileType != m_expectedFileHeader.FileType){
abort();
}
// Check for BackupFormat::FileHeader::ByteOrder if swapping is needed
if (m_fileHeader.ByteOrder == magicByteOrder) {
m_hostByteOrder = true;
} else if (m_fileHeader.ByteOrder == swappedMagicByteOrder){
m_hostByteOrder = false;
} else {
abort();
}
return true;
} // BackupFile::readHeader
bool
BackupFile::validateFooter(){
return true;
}
bool RestoreDataIterator::readFragmentHeader(int & ret, Uint32 *fragmentId)
{
BackupFormat::DataFile::FragmentHeader Header;
debug << "RestoreDataIterator::getNextFragment" << endl;
if (buffer_read(&Header, sizeof(Header), 1) != 1){
ret = 0;
return false;
} // if
Header.SectionType = ntohl(Header.SectionType);
Header.SectionLength = ntohl(Header.SectionLength);
Header.TableId = ntohl(Header.TableId);
Header.FragmentNo = ntohl(Header.FragmentNo);
Header.ChecksumType = ntohl(Header.ChecksumType);
debug << "FragmentHeader: " << Header.SectionType
<< " " << Header.SectionLength
<< " " << Header.TableId
<< " " << Header.FragmentNo
<< " " << Header.ChecksumType << endl;
m_currentTable = m_metaData.getTable(Header.TableId);
if(m_currentTable == 0){
ret = -1;
return false;
}
if(!m_tuple.prepareRecord(*m_currentTable))
{
ret =-1;
return false;
}
info << "_____________________________________________________" << endl
<< "Processing data in table: " << m_currentTable->getTableName()
<< "(" << Header.TableId << ") fragment "
<< Header.FragmentNo << endl;
m_count = 0;
ret = 0;
*fragmentId = Header.FragmentNo;
return true;
} // RestoreDataIterator::getNextFragment
bool
RestoreDataIterator::validateFragmentFooter() {
BackupFormat::DataFile::FragmentFooter footer;
if (buffer_read(&footer, sizeof(footer), 1) != 1){
err << "getFragmentFooter:Error reading fragment footer" << endl;
return false;
}
// TODO: Handle footer, nothing yet
footer.SectionType = ntohl(footer.SectionType);
footer.SectionLength = ntohl(footer.SectionLength);
footer.TableId = ntohl(footer.TableId);
footer.FragmentNo = ntohl(footer.FragmentNo);
footer.NoOfRecords = ntohl(footer.NoOfRecords);
footer.Checksum = ntohl(footer.Checksum);
assert(m_count == footer.NoOfRecords);
return true;
} // RestoreDataIterator::getFragmentFooter
AttributeDesc::AttributeDesc(NdbDictionary::Column *c)
: m_column(c)
{
size = 8*NdbColumnImpl::getImpl(* c).m_attrSize;
arraySize = NdbColumnImpl::getImpl(* c).m_arraySize;
}
void TableS::createAttr(NdbDictionary::Column *column)
{
AttributeDesc * d = new AttributeDesc(column);
if(d == NULL) {
ndbout_c("Restore: Failed to allocate memory");
abort();
}
d->attrId = allAttributesDesc.size();
allAttributesDesc.push_back(d);
if (d->m_column->getAutoIncrement())
m_auto_val_id= d->attrId;
if(d->m_column->getPrimaryKey() && backupVersion <= MAKE_VERSION(4,1,7))
{
m_fixedKeys.push_back(d);
return;
}
if (d->m_column->getArrayType() == NDB_ARRAYTYPE_FIXED &&
! d->m_column->getNullable())
{
m_fixedAttribs.push_back(d);
return;
}
// just a reminder - does not solve backwards compat
if (backupVersion < MAKE_VERSION(5,1,3))
{
d->m_nullBitIndex = m_noOfNullable;
m_noOfNullable++;
m_nullBitmaskSize = (m_noOfNullable + 31) / 32;
}
m_variableAttribs.push_back(d);
} // TableS::createAttr
Uint16 Twiddle16(Uint16 in)
{
Uint16 retVal = 0;
retVal = ((in & 0xFF00) >> 8) |
((in & 0x00FF) << 8);
return(retVal);
} // Twiddle16
Uint32 Twiddle32(Uint32 in)
{
Uint32 retVal = 0;
retVal = ((in & 0x000000FF) << 24) |
((in & 0x0000FF00) << 8) |
((in & 0x00FF0000) >> 8) |
((in & 0xFF000000) >> 24);
return(retVal);
} // Twiddle32
Uint64 Twiddle64(Uint64 in)
{
Uint64 retVal = 0;
retVal =
((in & (Uint64)0x00000000000000FFLL) << 56) |
((in & (Uint64)0x000000000000FF00LL) << 40) |
((in & (Uint64)0x0000000000FF0000LL) << 24) |
((in & (Uint64)0x00000000FF000000LL) << 8) |
((in & (Uint64)0x000000FF00000000LL) >> 8) |
((in & (Uint64)0x0000FF0000000000LL) >> 24) |
((in & (Uint64)0x00FF000000000000LL) >> 40) |
((in & (Uint64)0xFF00000000000000LL) >> 56);
return(retVal);
} // Twiddle64
RestoreLogIterator::RestoreLogIterator(const RestoreMetaData & md)
: m_metaData(md)
{
debug << "RestoreLog constructor" << endl;
setLogFile(md, 0);
m_count = 0;
m_last_gci = 0;
}
const LogEntry *
RestoreLogIterator::getNextLogEntry(int & res, bool *alloc_flag) {
// Read record length
typedef BackupFormat::LogFile::LogEntry LogE;
LogE * logE= 0;
Uint32 len= ~0;
const Uint32 stopGCP = m_metaData.getStopGCP();
do {
if (buffer_read_ahead(&len, sizeof(Uint32), 1) != 1){
res= -1;
return 0;
}
len= ntohl(len);
Uint32 data_len = sizeof(Uint32) + len*4;
if (buffer_get_ptr((void **)(&logE), 1, data_len) != data_len) {
res= -2;
return 0;
}
if(len == 0){
res= 0;
return 0;
}
if (m_metaData.getFileHeader().NdbVersion < NDBD_FRAGID_VERSION)
{
/*
FragId was introduced in LogEntry in version
5.1.6
We set FragId to 0 in older versions (these versions
do not support restore of user defined partitioned
tables.
*/
int i;
LogE *tmpLogE = (LogE*)NdbMem_Allocate(data_len + 4);
if (!tmpLogE)
{
res = -2;
return 0;
}
tmpLogE->Length = logE->Length;
tmpLogE->TableId = logE->TableId;
tmpLogE->TriggerEvent = logE->TriggerEvent;
tmpLogE->FragId = 0;
for (i = 0; i < len - 3; i++)
tmpLogE->Data[i] = logE->Data[i-1];
*alloc_flag= true;
}
logE->TableId= ntohl(logE->TableId);
logE->TriggerEvent= ntohl(logE->TriggerEvent);
const bool hasGcp= (logE->TriggerEvent & 0x10000) != 0;
logE->TriggerEvent &= 0xFFFF;
if(hasGcp){
len--;
m_last_gci = ntohl(logE->Data[len-2]);
}
} while(m_last_gci > stopGCP + 1);
m_logEntry.m_table = m_metaData.getTable(logE->TableId);
switch(logE->TriggerEvent){
case TriggerEvent::TE_INSERT:
m_logEntry.m_type = LogEntry::LE_INSERT;
break;
case TriggerEvent::TE_UPDATE:
m_logEntry.m_type = LogEntry::LE_UPDATE;
break;
case TriggerEvent::TE_DELETE:
m_logEntry.m_type = LogEntry::LE_DELETE;
break;
default:
res = -1;
return NULL;
}
const TableS * tab = m_logEntry.m_table;
m_logEntry.clear();
AttributeHeader * ah = (AttributeHeader *)&logE->Data[0];
AttributeHeader *end = (AttributeHeader *)&logE->Data[len - 2];
AttributeS * attr;
m_logEntry.m_frag_id = ntohl(logE->FragId);
while(ah < end){
attr= m_logEntry.add_attr();
if(attr == NULL) {
ndbout_c("Restore: Failed to allocate memory");
res = -1;
return 0;
}
attr->Desc = (* tab)[ah->getAttributeId()];
assert(attr->Desc != 0);
const Uint32 sz = ah->getDataSize();
if(sz == 0){
attr->Data.null = true;
attr->Data.void_value = NULL;
} else {
attr->Data.null = false;
attr->Data.void_value = ah->getDataPtr();
}
Twiddle(attr->Desc, &(attr->Data));
ah = ah->getNext();
}
m_count ++;
res = 0;
return &m_logEntry;
}
NdbOut &
operator<<(NdbOut& ndbout, const AttributeS& attr){
const AttributeData & data = attr.Data;
const AttributeDesc & desc = *(attr.Desc);
if (data.null)
{
ndbout << "<NULL>";
return ndbout;
}
NdbRecAttr tmprec(0);
tmprec.setup(desc.m_column, (char *)data.void_value);
tmprec.receive_data((Uint32*)data.void_value, data.size);
ndbout << tmprec;
return ndbout;
}
// Print tuple data
NdbOut&
operator<<(NdbOut& ndbout, const TupleS& tuple)
{
ndbout << tuple.getTable()->getTableName() << "; ";
for (int i = 0; i < tuple.getNoOfAttributes(); i++)
{
AttributeData * attr_data = tuple.getData(i);
const AttributeDesc * attr_desc = tuple.getDesc(i);
const AttributeS attr = {attr_desc, *attr_data};
debug << i << " " << attr_desc->m_column->getName();
ndbout << attr;
if (i != (tuple.getNoOfAttributes() - 1))
ndbout << delimiter << " ";
} // for
return ndbout;
}
// Print tuple data
NdbOut&
operator<<(NdbOut& ndbout, const LogEntry& logE)
{
switch(logE.m_type)
{
case LogEntry::LE_INSERT:
ndbout << "INSERT " << logE.m_table->getTableName() << " ";
break;
case LogEntry::LE_DELETE:
ndbout << "DELETE " << logE.m_table->getTableName() << " ";
break;
case LogEntry::LE_UPDATE:
ndbout << "UPDATE " << logE.m_table->getTableName() << " ";
break;
default:
ndbout << "Unknown log entry type (not insert, delete or update)" ;
}
for (Uint32 i= 0; i < logE.size();i++)
{
const AttributeS * attr = logE[i];
ndbout << attr->Desc->m_column->getName() << "=";
ndbout << (* attr);
if (i < (logE.size() - 1))
ndbout << ", ";
}
return ndbout;
}
#include <NDBT.hpp>
NdbOut &
operator<<(NdbOut& ndbout, const TableS & table){
ndbout << (* (NDBT_Table*)table.m_dictTable) << endl;
return ndbout;
}
template class Vector<TableS*>;
template class Vector<AttributeS*>;
template class Vector<AttributeDesc*>;
template class Vector<DictObject>;