mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 20:12:31 +01:00
2355 lines
63 KiB
C++
2355 lines
63 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2015, 2021, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/**************************************************//**
|
|
@file trx/trx0trx.cc
|
|
The transaction
|
|
|
|
Created 3/26/1996 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "trx0trx.h"
|
|
|
|
#ifdef WITH_WSREP
|
|
#include <mysql/service_wsrep.h>
|
|
#endif
|
|
|
|
#include <mysql/service_thd_error_context.h>
|
|
|
|
#include "btr0sea.h"
|
|
#include "lock0lock.h"
|
|
#include "log0log.h"
|
|
#include "os0proc.h"
|
|
#include "que0que.h"
|
|
#include "srv0mon.h"
|
|
#include "srv0srv.h"
|
|
#include "srv0start.h"
|
|
#include "trx0purge.h"
|
|
#include "trx0rec.h"
|
|
#include "trx0roll.h"
|
|
#include "trx0rseg.h"
|
|
#include "trx0undo.h"
|
|
#include "trx0xa.h"
|
|
#include "ut0pool.h"
|
|
#include "ut0vec.h"
|
|
|
|
#include <set>
|
|
#include <new>
|
|
|
|
/** The bit pattern corresponding to TRX_ID_MAX */
|
|
const byte trx_id_max_bytes[8] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
};
|
|
|
|
/** The bit pattern corresponding to max timestamp */
|
|
const byte timestamp_max_bytes[7] = {
|
|
0x7f, 0xff, 0xff, 0xff, 0x0f, 0x42, 0x3f
|
|
};
|
|
|
|
|
|
static const ulint MAX_DETAILED_ERROR_LEN = 256;
|
|
|
|
/** Set of table_id */
|
|
typedef std::set<
|
|
table_id_t,
|
|
std::less<table_id_t>,
|
|
ut_allocator<table_id_t> > table_id_set;
|
|
|
|
/*************************************************************//**
|
|
Set detailed error message for the transaction. */
|
|
void
|
|
trx_set_detailed_error(
|
|
/*===================*/
|
|
trx_t* trx, /*!< in: transaction struct */
|
|
const char* msg) /*!< in: detailed error message */
|
|
{
|
|
strncpy(trx->detailed_error, msg, MAX_DETAILED_ERROR_LEN - 1);
|
|
trx->detailed_error[MAX_DETAILED_ERROR_LEN - 1] = '\0';
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Set detailed error message for the transaction from a file. Note that the
|
|
file is rewinded before reading from it. */
|
|
void
|
|
trx_set_detailed_error_from_file(
|
|
/*=============================*/
|
|
trx_t* trx, /*!< in: transaction struct */
|
|
FILE* file) /*!< in: file to read message from */
|
|
{
|
|
os_file_read_string(file, trx->detailed_error, MAX_DETAILED_ERROR_LEN);
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Initialize transaction object.
|
|
@param trx trx to initialize */
|
|
static
|
|
void
|
|
trx_init(
|
|
/*=====*/
|
|
trx_t* trx)
|
|
{
|
|
trx->no = TRX_ID_MAX;
|
|
|
|
trx->state = TRX_STATE_NOT_STARTED;
|
|
|
|
trx->is_recovered = false;
|
|
|
|
trx->op_info = "";
|
|
|
|
trx->active_commit_ordered = false;
|
|
|
|
trx->isolation_level = TRX_ISO_REPEATABLE_READ;
|
|
|
|
trx->check_foreigns = true;
|
|
|
|
trx->check_unique_secondary = true;
|
|
|
|
trx->lock.n_rec_locks = 0;
|
|
|
|
trx->dict_operation = TRX_DICT_OP_NONE;
|
|
|
|
trx->table_id = 0;
|
|
|
|
trx->error_state = DB_SUCCESS;
|
|
|
|
trx->error_key_num = ULINT_UNDEFINED;
|
|
|
|
trx->undo_no = 0;
|
|
|
|
trx->rsegs.m_redo.rseg = NULL;
|
|
|
|
trx->rsegs.m_noredo.rseg = NULL;
|
|
|
|
trx->read_only = false;
|
|
|
|
trx->auto_commit = false;
|
|
|
|
trx->will_lock = false;
|
|
|
|
trx->ddl = false;
|
|
|
|
trx->internal = false;
|
|
|
|
ut_d(trx->start_file = 0);
|
|
|
|
ut_d(trx->start_line = 0);
|
|
|
|
trx->magic_n = TRX_MAGIC_N;
|
|
|
|
trx->lock.que_state = TRX_QUE_RUNNING;
|
|
|
|
trx->last_sql_stat_start.least_undo_no = 0;
|
|
|
|
ut_ad(!trx->read_view.is_open());
|
|
|
|
trx->lock.rec_cached = 0;
|
|
|
|
trx->lock.table_cached = 0;
|
|
#ifdef WITH_WSREP
|
|
ut_ad(!trx->wsrep);
|
|
ut_ad(!trx->wsrep_event);
|
|
ut_ad(!trx->wsrep_UK_scan);
|
|
#endif /* WITH_WSREP */
|
|
|
|
ut_ad(trx->get_flush_observer() == NULL);
|
|
}
|
|
|
|
/** For managing the life-cycle of the trx_t instance that we get
|
|
from the pool. */
|
|
struct TrxFactory {
|
|
|
|
/** Initializes a transaction object. It must be explicitly started
|
|
with trx_start_if_not_started() before using it. The default isolation
|
|
level is TRX_ISO_REPEATABLE_READ.
|
|
@param trx Transaction instance to initialise */
|
|
static void init(trx_t* trx)
|
|
{
|
|
/* Explicitly call the constructor of the already
|
|
allocated object. trx_t objects are allocated by
|
|
ut_zalloc_nokey() in Pool::Pool() which would not call
|
|
the constructors of the trx_t members. */
|
|
new(&trx->mod_tables) trx_mod_tables_t();
|
|
|
|
new(&trx->lock.table_locks) lock_list();
|
|
|
|
new(&trx->read_view) ReadView();
|
|
|
|
trx->rw_trx_hash_pins = 0;
|
|
trx_init(trx);
|
|
|
|
trx->dict_operation_lock_mode = 0;
|
|
|
|
trx->xid = UT_NEW_NOKEY(xid_t());
|
|
|
|
trx->detailed_error = reinterpret_cast<char*>(
|
|
ut_zalloc_nokey(MAX_DETAILED_ERROR_LEN));
|
|
|
|
trx->lock.lock_heap = mem_heap_create_typed(
|
|
1024, MEM_HEAP_FOR_LOCK_HEAP);
|
|
|
|
lock_trx_lock_list_init(&trx->lock.trx_locks);
|
|
|
|
UT_LIST_INIT(trx->lock.evicted_tables,
|
|
&dict_table_t::table_LRU);
|
|
|
|
UT_LIST_INIT(
|
|
trx->trx_savepoints,
|
|
&trx_named_savept_t::trx_savepoints);
|
|
|
|
mutex_create(LATCH_ID_TRX, &trx->mutex);
|
|
}
|
|
|
|
/** Release resources held by the transaction object.
|
|
@param trx the transaction for which to release resources */
|
|
static void destroy(trx_t* trx)
|
|
{
|
|
#ifdef __SANITIZE_ADDRESS__
|
|
/* Unpoison the memory for AddressSanitizer */
|
|
MEM_MAKE_ADDRESSABLE(trx, sizeof *trx);
|
|
#else
|
|
/* Declare the contents as initialized for Valgrind;
|
|
we checked this in trx_t::free(). */
|
|
MEM_MAKE_DEFINED(trx, sizeof *trx);
|
|
#endif
|
|
|
|
ut_a(trx->magic_n == TRX_MAGIC_N);
|
|
ut_ad(!trx->mysql_thd);
|
|
|
|
ut_a(trx->lock.wait_lock == NULL);
|
|
ut_a(trx->lock.wait_thr == NULL);
|
|
ut_a(trx->dict_operation_lock_mode == 0);
|
|
|
|
if (trx->lock.lock_heap != NULL) {
|
|
mem_heap_free(trx->lock.lock_heap);
|
|
trx->lock.lock_heap = NULL;
|
|
}
|
|
|
|
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
|
|
ut_ad(UT_LIST_GET_LEN(trx->lock.evicted_tables) == 0);
|
|
|
|
UT_DELETE(trx->xid);
|
|
ut_free(trx->detailed_error);
|
|
|
|
mutex_free(&trx->mutex);
|
|
|
|
trx->mod_tables.~trx_mod_tables_t();
|
|
|
|
ut_ad(!trx->read_view.is_open());
|
|
|
|
trx->lock.table_locks.~lock_list();
|
|
|
|
trx->read_view.~ReadView();
|
|
}
|
|
};
|
|
|
|
/** The lock strategy for TrxPool */
|
|
struct TrxPoolLock {
|
|
TrxPoolLock() { }
|
|
|
|
/** Create the mutex */
|
|
void create()
|
|
{
|
|
mutex_create(LATCH_ID_TRX_POOL, &m_mutex);
|
|
}
|
|
|
|
/** Acquire the mutex */
|
|
void enter() { mutex_enter(&m_mutex); }
|
|
|
|
/** Release the mutex */
|
|
void exit() { mutex_exit(&m_mutex); }
|
|
|
|
/** Free the mutex */
|
|
void destroy() { mutex_free(&m_mutex); }
|
|
|
|
/** Mutex to use */
|
|
ib_mutex_t m_mutex;
|
|
};
|
|
|
|
/** The lock strategy for the TrxPoolManager */
|
|
struct TrxPoolManagerLock {
|
|
TrxPoolManagerLock() { }
|
|
|
|
/** Create the mutex */
|
|
void create()
|
|
{
|
|
mutex_create(LATCH_ID_TRX_POOL_MANAGER, &m_mutex);
|
|
}
|
|
|
|
/** Acquire the mutex */
|
|
void enter() { mutex_enter(&m_mutex); }
|
|
|
|
/** Release the mutex */
|
|
void exit() { mutex_exit(&m_mutex); }
|
|
|
|
/** Free the mutex */
|
|
void destroy() { mutex_free(&m_mutex); }
|
|
|
|
/** Mutex to use */
|
|
ib_mutex_t m_mutex;
|
|
};
|
|
|
|
/** Use explicit mutexes for the trx_t pool and its manager. */
|
|
typedef Pool<trx_t, TrxFactory, TrxPoolLock> trx_pool_t;
|
|
typedef PoolManager<trx_pool_t, TrxPoolManagerLock > trx_pools_t;
|
|
|
|
/** The trx_t pool manager */
|
|
static trx_pools_t* trx_pools;
|
|
|
|
/** Size of on trx_t pool in bytes. */
|
|
static const ulint MAX_TRX_BLOCK_SIZE = 1024 * 1024 * 4;
|
|
|
|
/** Create the trx_t pool */
|
|
void
|
|
trx_pool_init()
|
|
{
|
|
trx_pools = UT_NEW_NOKEY(trx_pools_t(MAX_TRX_BLOCK_SIZE));
|
|
|
|
ut_a(trx_pools != 0);
|
|
}
|
|
|
|
/** Destroy the trx_t pool */
|
|
void
|
|
trx_pool_close()
|
|
{
|
|
UT_DELETE(trx_pools);
|
|
|
|
trx_pools = 0;
|
|
}
|
|
|
|
/** @return an allocated transaction */
|
|
trx_t *trx_create()
|
|
{
|
|
trx_t* trx = trx_pools->get();
|
|
|
|
#ifdef __SANITIZE_ADDRESS__
|
|
/* Unpoison the memory for AddressSanitizer.
|
|
It may have been poisoned in trx_t::free().*/
|
|
MEM_MAKE_ADDRESSABLE(trx, sizeof *trx);
|
|
#else
|
|
/* Declare the memory initialized for Valgrind.
|
|
The trx_t that are released to the pool are
|
|
actually initialized; we checked that by
|
|
MEM_CHECK_DEFINED() in trx_t::free(). */
|
|
MEM_MAKE_DEFINED(trx, sizeof *trx);
|
|
#endif
|
|
|
|
trx->assert_freed();
|
|
|
|
mem_heap_t* heap;
|
|
ib_alloc_t* alloc;
|
|
|
|
/* We just got trx from pool, it should be non locking */
|
|
ut_ad(!trx->will_lock);
|
|
ut_ad(!trx->rw_trx_hash_pins);
|
|
|
|
DBUG_LOG("trx", "Create: " << trx);
|
|
|
|
heap = mem_heap_create(sizeof(ib_vector_t) + sizeof(void*) * 8);
|
|
|
|
alloc = ib_heap_allocator_create(heap);
|
|
|
|
trx->autoinc_locks = ib_vector_create(alloc, sizeof(void**), 4);
|
|
|
|
ut_ad(trx->mod_tables.empty());
|
|
ut_ad(trx->lock.n_rec_locks == 0);
|
|
ut_ad(trx->lock.table_cached == 0);
|
|
ut_ad(trx->lock.rec_cached == 0);
|
|
ut_ad(UT_LIST_GET_LEN(trx->lock.evicted_tables) == 0);
|
|
|
|
#ifdef WITH_WSREP
|
|
trx->wsrep_event= NULL;
|
|
ut_ad(!trx->wsrep_UK_scan);
|
|
#endif /* WITH_WSREP */
|
|
|
|
trx_sys.register_trx(trx);
|
|
|
|
return(trx);
|
|
}
|
|
|
|
/** Free the memory to trx_pools */
|
|
void trx_t::free()
|
|
{
|
|
MEM_CHECK_DEFINED(this, sizeof *this);
|
|
|
|
ut_ad(!n_mysql_tables_in_use);
|
|
ut_ad(!mysql_n_tables_locked);
|
|
ut_ad(!internal);
|
|
ut_ad(!declared_to_be_inside_innodb);
|
|
ut_ad(!will_lock);
|
|
ut_ad(error_state == DB_SUCCESS);
|
|
ut_ad(magic_n == TRX_MAGIC_N);
|
|
ut_ad(!read_only);
|
|
ut_ad(!lock.wait_lock);
|
|
|
|
dict_operation= TRX_DICT_OP_NONE;
|
|
trx_sys.deregister_trx(this);
|
|
assert_freed();
|
|
trx_sys.rw_trx_hash.put_pins(this);
|
|
|
|
mysql_thd= NULL;
|
|
mysql_log_file_name= NULL;
|
|
|
|
// FIXME: We need to avoid this heap free/alloc for each commit.
|
|
if (autoinc_locks)
|
|
{
|
|
ut_ad(ib_vector_is_empty(autoinc_locks));
|
|
/* We allocated a dedicated heap for the vector. */
|
|
ib_vector_free(autoinc_locks);
|
|
autoinc_locks= NULL;
|
|
}
|
|
|
|
mod_tables.clear();
|
|
|
|
MEM_NOACCESS(&n_ref, sizeof n_ref);
|
|
/* do not poison mutex */
|
|
MEM_NOACCESS(&id, sizeof id);
|
|
MEM_NOACCESS(&no, sizeof no);
|
|
MEM_NOACCESS(&state, sizeof state);
|
|
MEM_NOACCESS(&is_recovered, sizeof is_recovered);
|
|
#ifdef WITH_WSREP
|
|
MEM_NOACCESS(&wsrep, sizeof wsrep);
|
|
#endif
|
|
MEM_NOACCESS(&read_view, sizeof read_view);
|
|
MEM_NOACCESS(&trx_list, sizeof trx_list);
|
|
MEM_NOACCESS(&lock, sizeof lock);
|
|
MEM_NOACCESS(&op_info, sizeof op_info);
|
|
MEM_NOACCESS(&isolation_level, sizeof isolation_level);
|
|
MEM_NOACCESS(&check_foreigns, sizeof check_foreigns);
|
|
MEM_NOACCESS(&is_registered, sizeof is_registered);
|
|
MEM_NOACCESS(&active_commit_ordered, sizeof active_commit_ordered);
|
|
MEM_NOACCESS(&check_unique_secondary, sizeof check_unique_secondary);
|
|
MEM_NOACCESS(&flush_log_later, sizeof flush_log_later);
|
|
MEM_NOACCESS(&must_flush_log_later, sizeof must_flush_log_later);
|
|
MEM_NOACCESS(&duplicates, sizeof duplicates);
|
|
MEM_NOACCESS(&dict_operation, sizeof dict_operation);
|
|
MEM_NOACCESS(&declared_to_be_inside_innodb, sizeof declared_to_be_inside_innodb);
|
|
MEM_NOACCESS(&n_tickets_to_enter_innodb, sizeof n_tickets_to_enter_innodb);
|
|
MEM_NOACCESS(&dict_operation_lock_mode, sizeof dict_operation_lock_mode);
|
|
MEM_NOACCESS(&start_time, sizeof start_time);
|
|
MEM_NOACCESS(&start_time_micro, sizeof start_time_micro);
|
|
MEM_NOACCESS(&commit_lsn, sizeof commit_lsn);
|
|
MEM_NOACCESS(&table_id, sizeof table_id);
|
|
MEM_NOACCESS(&mysql_thd, sizeof mysql_thd);
|
|
MEM_NOACCESS(&mysql_log_file_name, sizeof mysql_log_file_name);
|
|
MEM_NOACCESS(&mysql_log_offset, sizeof mysql_log_offset);
|
|
MEM_NOACCESS(&n_mysql_tables_in_use, sizeof n_mysql_tables_in_use);
|
|
MEM_NOACCESS(&mysql_n_tables_locked, sizeof mysql_n_tables_locked);
|
|
MEM_NOACCESS(&error_state, sizeof error_state);
|
|
MEM_NOACCESS(&error_info, sizeof error_info);
|
|
MEM_NOACCESS(&error_key_num, sizeof error_key_num);
|
|
MEM_NOACCESS(&graph, sizeof graph);
|
|
MEM_NOACCESS(&trx_savepoints, sizeof trx_savepoints);
|
|
MEM_NOACCESS(&undo_no, sizeof undo_no);
|
|
MEM_NOACCESS(&last_sql_stat_start, sizeof last_sql_stat_start);
|
|
MEM_NOACCESS(&rsegs, sizeof rsegs);
|
|
MEM_NOACCESS(&roll_limit, sizeof roll_limit);
|
|
MEM_NOACCESS(&in_rollback, sizeof in_rollback);
|
|
MEM_NOACCESS(&pages_undone, sizeof pages_undone);
|
|
MEM_NOACCESS(&n_autoinc_rows, sizeof n_autoinc_rows);
|
|
MEM_NOACCESS(&autoinc_locks, sizeof autoinc_locks);
|
|
MEM_NOACCESS(&read_only, sizeof read_only);
|
|
MEM_NOACCESS(&auto_commit, sizeof auto_commit);
|
|
MEM_NOACCESS(&will_lock, sizeof will_lock);
|
|
MEM_NOACCESS(&fts_trx, sizeof fts_trx);
|
|
MEM_NOACCESS(&fts_next_doc_id, sizeof fts_next_doc_id);
|
|
MEM_NOACCESS(&flush_tables, sizeof flush_tables);
|
|
MEM_NOACCESS(&ddl, sizeof ddl);
|
|
MEM_NOACCESS(&internal, sizeof internal);
|
|
#ifdef UNIV_DEBUG
|
|
MEM_NOACCESS(&start_line, sizeof start_line);
|
|
MEM_NOACCESS(&start_file, sizeof start_file);
|
|
#endif /* UNIV_DEBUG */
|
|
MEM_NOACCESS(&xid, sizeof xid);
|
|
MEM_NOACCESS(&mod_tables, sizeof mod_tables);
|
|
MEM_NOACCESS(&detailed_error, sizeof detailed_error);
|
|
MEM_NOACCESS(&flush_observer, sizeof flush_observer);
|
|
#ifdef WITH_WSREP
|
|
MEM_NOACCESS(&wsrep_event, sizeof wsrep_event);
|
|
ut_ad(!wsrep_UK_scan);
|
|
MEM_NOACCESS(&wsrep_UK_scan, sizeof wsrep_UK_scan);
|
|
#endif /* WITH_WSREP */
|
|
MEM_NOACCESS(&magic_n, sizeof magic_n);
|
|
trx_pools->mem_free(this);
|
|
}
|
|
|
|
/** Transition to committed state, to release implicit locks. */
|
|
inline void trx_t::commit_state()
|
|
{
|
|
ut_ad(state == TRX_STATE_PREPARED
|
|
|| state == TRX_STATE_PREPARED_RECOVERED
|
|
|| state == TRX_STATE_ACTIVE);
|
|
/* This makes the transaction committed in memory and makes its
|
|
changes to data visible to other transactions. NOTE that there is a
|
|
small discrepancy from the strict formal visibility rules here: a
|
|
user of the database can see modifications made by another
|
|
transaction T even before the necessary redo log segment has been
|
|
flushed to the disk. If the database happens to crash before the
|
|
flush, the user has seen modifications from T which will never be a
|
|
committed transaction. However, any transaction T2 which sees the
|
|
modifications of the committing transaction T, and which also itself
|
|
makes modifications to the database, will get an lsn larger than the
|
|
committing transaction T. In the case where the log flush fails, and
|
|
T never gets committed, also T2 will never get committed. */
|
|
trx_mutex_enter(this);
|
|
state= TRX_STATE_COMMITTED_IN_MEMORY;
|
|
trx_mutex_exit(this);
|
|
ut_ad(id || !is_referenced());
|
|
}
|
|
|
|
/** Release any explicit locks of a committing transaction. */
|
|
inline void trx_t::release_locks()
|
|
{
|
|
DBUG_ASSERT(state == TRX_STATE_COMMITTED_IN_MEMORY);
|
|
DBUG_ASSERT(!is_referenced());
|
|
|
|
if (UT_LIST_GET_LEN(lock.trx_locks))
|
|
{
|
|
lock_release(this);
|
|
lock.n_rec_locks = 0;
|
|
ut_ad(UT_LIST_GET_LEN(lock.trx_locks) == 0);
|
|
ut_ad(ib_vector_is_empty(autoinc_locks));
|
|
mem_heap_empty(lock.lock_heap);
|
|
}
|
|
|
|
lock.table_locks.clear();
|
|
}
|
|
|
|
/** At shutdown, frees a transaction object. */
|
|
void
|
|
trx_free_at_shutdown(trx_t *trx)
|
|
{
|
|
ut_ad(trx->is_recovered);
|
|
ut_a(trx_state_eq(trx, TRX_STATE_PREPARED)
|
|
|| trx_state_eq(trx, TRX_STATE_PREPARED_RECOVERED)
|
|
|| (trx_state_eq(trx, TRX_STATE_ACTIVE)
|
|
&& (!srv_was_started || is_mariabackup_restore_or_export()
|
|
|| srv_read_only_mode
|
|
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO
|
|
|| (!srv_is_being_started
|
|
&& !srv_undo_sources && srv_fast_shutdown))));
|
|
ut_a(trx->magic_n == TRX_MAGIC_N);
|
|
|
|
trx->commit_state();
|
|
trx->release_locks();
|
|
trx_undo_free_at_shutdown(trx);
|
|
|
|
ut_a(!trx->read_only);
|
|
|
|
DBUG_LOG("trx", "Free prepared: " << trx);
|
|
trx->state = TRX_STATE_NOT_STARTED;
|
|
ut_ad(!UT_LIST_GET_LEN(trx->lock.trx_locks));
|
|
trx->id = 0;
|
|
trx->free();
|
|
}
|
|
|
|
|
|
/**
|
|
Disconnect a prepared transaction from MySQL
|
|
@param[in,out] trx transaction
|
|
*/
|
|
void trx_disconnect_prepared(trx_t *trx)
|
|
{
|
|
ut_ad(trx_state_eq(trx, TRX_STATE_PREPARED));
|
|
ut_ad(trx->mysql_thd);
|
|
trx->read_view.close();
|
|
mutex_enter(&trx_sys.mutex);
|
|
trx->is_recovered= true;
|
|
trx->mysql_thd= NULL;
|
|
mutex_exit(&trx_sys.mutex);
|
|
/* todo/fixme: suggest to do it at innodb prepare */
|
|
trx->will_lock= false;
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Resurrect the table locks for a resurrected transaction. */
|
|
static
|
|
void
|
|
trx_resurrect_table_locks(
|
|
/*======================*/
|
|
trx_t* trx, /*!< in/out: transaction */
|
|
const trx_undo_t* undo) /*!< in: undo log */
|
|
{
|
|
mtr_t mtr;
|
|
page_t* undo_page;
|
|
trx_undo_rec_t* undo_rec;
|
|
table_id_set tables;
|
|
|
|
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE) ||
|
|
trx_state_eq(trx, TRX_STATE_PREPARED));
|
|
ut_ad(undo->rseg == trx->rsegs.m_redo.rseg);
|
|
|
|
if (undo->empty()) {
|
|
return;
|
|
}
|
|
|
|
mtr_start(&mtr);
|
|
|
|
/* trx_rseg_mem_create() may have acquired an X-latch on this
|
|
page, so we cannot acquire an S-latch. */
|
|
undo_page = trx_undo_page_get(
|
|
page_id_t(trx->rsegs.m_redo.rseg->space->id,
|
|
undo->top_page_no), &mtr);
|
|
|
|
undo_rec = undo_page + undo->top_offset;
|
|
|
|
do {
|
|
ulint type;
|
|
undo_no_t undo_no;
|
|
table_id_t table_id;
|
|
ulint cmpl_info;
|
|
bool updated_extern;
|
|
|
|
page_t* undo_rec_page = page_align(undo_rec);
|
|
|
|
if (undo_rec_page != undo_page) {
|
|
mtr.release_page(undo_page, MTR_MEMO_PAGE_X_FIX);
|
|
undo_page = undo_rec_page;
|
|
}
|
|
|
|
trx_undo_rec_get_pars(
|
|
undo_rec, &type, &cmpl_info,
|
|
&updated_extern, &undo_no, &table_id);
|
|
tables.insert(table_id);
|
|
|
|
undo_rec = trx_undo_get_prev_rec(
|
|
undo_rec, undo->hdr_page_no,
|
|
undo->hdr_offset, false, &mtr);
|
|
} while (undo_rec);
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
for (table_id_set::const_iterator i = tables.begin();
|
|
i != tables.end(); i++) {
|
|
if (dict_table_t* table = dict_table_open_on_id(
|
|
*i, FALSE, DICT_TABLE_OP_LOAD_TABLESPACE)) {
|
|
if (!table->is_readable()) {
|
|
mutex_enter(&dict_sys.mutex);
|
|
dict_table_close(table, TRUE, FALSE);
|
|
dict_sys.remove(table);
|
|
mutex_exit(&dict_sys.mutex);
|
|
continue;
|
|
}
|
|
|
|
if (trx->state == TRX_STATE_PREPARED) {
|
|
trx->mod_tables.insert(
|
|
trx_mod_tables_t::value_type(table,
|
|
0));
|
|
}
|
|
lock_table_ix_resurrect(table, trx);
|
|
|
|
DBUG_LOG("ib_trx",
|
|
"resurrect " << ib::hex(trx->id)
|
|
<< " IX lock on " << table->name);
|
|
|
|
dict_table_close(table, FALSE, FALSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Resurrect the transactions that were doing inserts/updates the time of the
|
|
crash, they need to be undone.
|
|
*/
|
|
|
|
static void trx_resurrect(trx_undo_t *undo, trx_rseg_t *rseg,
|
|
time_t start_time, ulonglong start_time_micro,
|
|
uint64_t *rows_to_undo)
|
|
{
|
|
trx_state_t state;
|
|
/*
|
|
This is single-threaded startup code, we do not need the
|
|
protection of trx->mutex or trx_sys.mutex here.
|
|
*/
|
|
switch (undo->state)
|
|
{
|
|
case TRX_UNDO_ACTIVE:
|
|
state= TRX_STATE_ACTIVE;
|
|
break;
|
|
case TRX_UNDO_PREPARED:
|
|
/*
|
|
Prepared transactions are left in the prepared state
|
|
waiting for a commit or abort decision from MySQL
|
|
*/
|
|
ib::info() << "Transaction " << undo->trx_id
|
|
<< " was in the XA prepared state.";
|
|
|
|
state= TRX_STATE_PREPARED;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
trx_t *trx= trx_create();
|
|
trx->state= state;
|
|
ut_d(trx->start_file= __FILE__);
|
|
ut_d(trx->start_line= __LINE__);
|
|
ut_ad(trx->no == TRX_ID_MAX);
|
|
|
|
trx->rsegs.m_redo.undo= undo;
|
|
trx->undo_no= undo->top_undo_no + 1;
|
|
trx->rsegs.m_redo.rseg= rseg;
|
|
/*
|
|
For transactions with active data will not have rseg size = 1
|
|
or will not qualify for purge limit criteria. So it is safe to increment
|
|
this trx_ref_count w/o mutex protection.
|
|
*/
|
|
++trx->rsegs.m_redo.rseg->trx_ref_count;
|
|
*trx->xid= undo->xid;
|
|
trx->id= undo->trx_id;
|
|
trx->is_recovered= true;
|
|
trx->start_time= start_time;
|
|
trx->start_time_micro= start_time_micro;
|
|
|
|
if (undo->dict_operation)
|
|
{
|
|
trx_set_dict_operation(trx, TRX_DICT_OP_TABLE);
|
|
if (!trx->table_id)
|
|
trx->table_id= undo->table_id;
|
|
}
|
|
|
|
trx_sys.rw_trx_hash.insert(trx);
|
|
trx_sys.rw_trx_hash.put_pins(trx);
|
|
trx_resurrect_table_locks(trx, undo);
|
|
if (trx_state_eq(trx, TRX_STATE_ACTIVE))
|
|
*rows_to_undo+= trx->undo_no;
|
|
}
|
|
|
|
|
|
/** Initialize (resurrect) transactions at startup. */
|
|
dberr_t trx_lists_init_at_db_start()
|
|
{
|
|
ut_a(srv_is_being_started);
|
|
ut_ad(!srv_was_started);
|
|
|
|
if (srv_operation == SRV_OPERATION_RESTORE) {
|
|
/* mariabackup --prepare only deals with
|
|
the redo log and the data files, not with
|
|
transactions or the data dictionary. */
|
|
return trx_rseg_array_init();
|
|
}
|
|
|
|
if (srv_force_recovery >= SRV_FORCE_NO_UNDO_LOG_SCAN) {
|
|
return DB_SUCCESS;
|
|
}
|
|
|
|
purge_sys.create();
|
|
if (dberr_t err = trx_rseg_array_init()) {
|
|
ib::info() << "Retry with innodb_force_recovery=5";
|
|
return err;
|
|
}
|
|
|
|
/* Look from the rollback segments if there exist undo logs for
|
|
transactions. */
|
|
const time_t start_time = time(NULL);
|
|
const ulonglong start_time_micro= microsecond_interval_timer();
|
|
uint64_t rows_to_undo = 0;
|
|
|
|
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
|
|
trx_undo_t* undo;
|
|
trx_rseg_t* rseg = trx_sys.rseg_array[i];
|
|
|
|
/* Some rollback segment may be unavailable,
|
|
especially if the server was previously run with a
|
|
non-default value of innodb_undo_logs. */
|
|
if (rseg == NULL) {
|
|
continue;
|
|
}
|
|
/* Ressurrect other transactions. */
|
|
for (undo = UT_LIST_GET_FIRST(rseg->undo_list);
|
|
undo != NULL;
|
|
undo = UT_LIST_GET_NEXT(undo_list, undo)) {
|
|
trx_t *trx = trx_sys.find(0, undo->trx_id, false);
|
|
if (!trx) {
|
|
trx_resurrect(undo, rseg, start_time,
|
|
start_time_micro, &rows_to_undo);
|
|
} else {
|
|
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE) ||
|
|
trx_state_eq(trx, TRX_STATE_PREPARED));
|
|
ut_ad(trx->start_time == start_time);
|
|
ut_ad(trx->is_recovered);
|
|
ut_ad(trx->rsegs.m_redo.rseg == rseg);
|
|
ut_ad(trx->rsegs.m_redo.rseg->trx_ref_count);
|
|
|
|
trx->rsegs.m_redo.undo = undo;
|
|
if (undo->top_undo_no >= trx->undo_no) {
|
|
if (trx_state_eq(trx,
|
|
TRX_STATE_ACTIVE)) {
|
|
rows_to_undo -= trx->undo_no;
|
|
rows_to_undo +=
|
|
undo->top_undo_no + 1;
|
|
}
|
|
|
|
trx->undo_no = undo->top_undo_no + 1;
|
|
}
|
|
trx_resurrect_table_locks(trx, undo);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (trx_sys.rw_trx_hash.size()) {
|
|
|
|
ib::info() << trx_sys.rw_trx_hash.size()
|
|
<< " transaction(s) which must be rolled back or"
|
|
" cleaned up in total " << rows_to_undo
|
|
<< " row operations to undo";
|
|
|
|
ib::info() << "Trx id counter is " << trx_sys.get_max_trx_id();
|
|
}
|
|
trx_sys.clone_oldest_view();
|
|
return DB_SUCCESS;
|
|
}
|
|
|
|
/** Assign a persistent rollback segment in a round-robin fashion,
|
|
evenly distributed between 0 and innodb_undo_logs-1
|
|
@return persistent rollback segment
|
|
@retval NULL if innodb_read_only */
|
|
static trx_rseg_t* trx_assign_rseg_low()
|
|
{
|
|
if (srv_read_only_mode) {
|
|
ut_ad(srv_undo_logs == ULONG_UNDEFINED);
|
|
return(NULL);
|
|
}
|
|
|
|
/* The first slot is always assigned to the system tablespace. */
|
|
ut_ad(trx_sys.rseg_array[0]->space == fil_system.sys_space);
|
|
|
|
/* Choose a rollback segment evenly distributed between 0 and
|
|
innodb_undo_logs-1 in a round-robin fashion, skipping those
|
|
undo tablespaces that are scheduled for truncation. */
|
|
static Atomic_counter<unsigned> rseg_slot;
|
|
ulong slot = ulong{rseg_slot++} % srv_undo_logs;
|
|
trx_rseg_t* rseg;
|
|
|
|
#ifdef UNIV_DEBUG
|
|
ulint start_scan_slot = slot;
|
|
bool look_for_rollover = false;
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
bool allocated = false;
|
|
|
|
do {
|
|
for (;;) {
|
|
rseg = trx_sys.rseg_array[slot];
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/* Ensure that we are not revisiting the same
|
|
slot that we have already inspected. */
|
|
if (look_for_rollover) {
|
|
ut_ad(start_scan_slot != slot);
|
|
}
|
|
look_for_rollover = true;
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
slot = (slot + 1) % srv_undo_logs;
|
|
|
|
if (rseg == NULL) {
|
|
continue;
|
|
}
|
|
|
|
ut_ad(rseg->is_persistent());
|
|
|
|
if (rseg->space != fil_system.sys_space) {
|
|
if (rseg->skip_allocation
|
|
|| !srv_undo_tablespaces) {
|
|
continue;
|
|
}
|
|
} else if (trx_rseg_t* next
|
|
= trx_sys.rseg_array[slot]) {
|
|
if (next->space != fil_system.sys_space
|
|
&& srv_undo_tablespaces > 0) {
|
|
/** If dedicated
|
|
innodb_undo_tablespaces have
|
|
been configured, try to use them
|
|
instead of the system tablespace. */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* By now we have only selected the rseg but not marked it
|
|
allocated. By marking it allocated we are ensuring that it will
|
|
never be selected for UNDO truncate purge. */
|
|
mutex_enter(&rseg->mutex);
|
|
if (!rseg->skip_allocation) {
|
|
rseg->trx_ref_count++;
|
|
allocated = true;
|
|
}
|
|
mutex_exit(&rseg->mutex);
|
|
} while (!allocated);
|
|
|
|
ut_ad(rseg->trx_ref_count > 0);
|
|
ut_ad(rseg->is_persistent());
|
|
return(rseg);
|
|
}
|
|
|
|
/** Set the innodb_log_optimize_ddl page flush observer
|
|
@param[in,out] space tablespace
|
|
@param[in,out] stage performance_schema accounting */
|
|
void trx_t::set_flush_observer(fil_space_t* space, ut_stage_alter_t* stage)
|
|
{
|
|
flush_observer = UT_NEW_NOKEY(FlushObserver(space, this, stage));
|
|
}
|
|
|
|
/** Remove the flush observer */
|
|
void trx_t::remove_flush_observer()
|
|
{
|
|
UT_DELETE(flush_observer);
|
|
flush_observer = NULL;
|
|
}
|
|
|
|
/** Assign a rollback segment for modifying temporary tables.
|
|
@return the assigned rollback segment */
|
|
trx_rseg_t *trx_t::assign_temp_rseg()
|
|
{
|
|
ut_ad(!rsegs.m_noredo.rseg);
|
|
ut_ad(!is_autocommit_non_locking());
|
|
compile_time_assert(ut_is_2pow(TRX_SYS_N_RSEGS));
|
|
|
|
/* Choose a temporary rollback segment between 0 and 127
|
|
in a round-robin fashion. */
|
|
static Atomic_counter<unsigned> rseg_slot;
|
|
trx_rseg_t* rseg = trx_sys.temp_rsegs[
|
|
rseg_slot++ & (TRX_SYS_N_RSEGS - 1)];
|
|
ut_ad(!rseg->is_persistent());
|
|
rsegs.m_noredo.rseg = rseg;
|
|
|
|
if (id == 0) {
|
|
trx_sys.register_rw(this);
|
|
}
|
|
|
|
ut_ad(!rseg->is_persistent());
|
|
return(rseg);
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Starts a transaction. */
|
|
static
|
|
void
|
|
trx_start_low(
|
|
/*==========*/
|
|
trx_t* trx, /*!< in: transaction */
|
|
bool read_write) /*!< in: true if read-write transaction */
|
|
{
|
|
ut_ad(!trx->in_rollback);
|
|
ut_ad(!trx->is_recovered);
|
|
ut_ad(trx->start_line != 0);
|
|
ut_ad(trx->start_file != 0);
|
|
ut_ad(trx->roll_limit == 0);
|
|
ut_ad(trx->error_state == DB_SUCCESS);
|
|
ut_ad(trx->rsegs.m_redo.rseg == NULL);
|
|
ut_ad(trx->rsegs.m_noredo.rseg == NULL);
|
|
ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED));
|
|
ut_ad(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
|
|
|
|
/* Check whether it is an AUTOCOMMIT SELECT */
|
|
trx->auto_commit = thd_trx_is_auto_commit(trx->mysql_thd);
|
|
|
|
trx->read_only = srv_read_only_mode
|
|
|| (!trx->ddl && !trx->internal
|
|
&& thd_trx_is_read_only(trx->mysql_thd));
|
|
|
|
if (!trx->auto_commit) {
|
|
trx->will_lock = true;
|
|
} else if (!trx->will_lock) {
|
|
trx->read_only = true;
|
|
}
|
|
|
|
#ifdef WITH_WSREP
|
|
trx->xid->null();
|
|
#endif /* WITH_WSREP */
|
|
|
|
/* The initial value for trx->no: TRX_ID_MAX is used in
|
|
read_view_open_now: */
|
|
|
|
trx->no = TRX_ID_MAX;
|
|
|
|
ut_a(ib_vector_is_empty(trx->autoinc_locks));
|
|
ut_a(trx->lock.table_locks.empty());
|
|
|
|
/* No other thread can access this trx object through rw_trx_hash, thus
|
|
we don't need trx_sys.mutex protection for that purpose. Still this
|
|
trx can be found through trx_sys.trx_list, which means state
|
|
change must be protected by e.g. trx->mutex.
|
|
|
|
For now we update it without mutex protection, because original code
|
|
did it this way. It has to be reviewed and fixed properly. */
|
|
trx->state = TRX_STATE_ACTIVE;
|
|
|
|
/* By default all transactions are in the read-only list unless they
|
|
are non-locking auto-commit read only transactions or background
|
|
(internal) transactions. Note: Transactions marked explicitly as
|
|
read only can write to temporary tables, we put those on the RO
|
|
list too. */
|
|
|
|
if (!trx->read_only
|
|
&& (trx->mysql_thd == 0 || read_write || trx->ddl)) {
|
|
|
|
/* Temporary rseg is assigned only if the transaction
|
|
updates a temporary table */
|
|
trx->rsegs.m_redo.rseg = trx_assign_rseg_low();
|
|
ut_ad(trx->rsegs.m_redo.rseg != 0
|
|
|| srv_read_only_mode
|
|
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO);
|
|
|
|
trx_sys.register_rw(trx);
|
|
} else {
|
|
if (!trx->is_autocommit_non_locking()) {
|
|
|
|
/* If this is a read-only transaction that is writing
|
|
to a temporary table then it needs a transaction id
|
|
to write to the temporary table. */
|
|
|
|
if (read_write) {
|
|
ut_ad(!srv_read_only_mode);
|
|
trx_sys.register_rw(trx);
|
|
}
|
|
} else {
|
|
ut_ad(!read_write);
|
|
}
|
|
}
|
|
|
|
trx->start_time = time(NULL);
|
|
trx->start_time_micro = trx->mysql_thd
|
|
? thd_query_start_micro(trx->mysql_thd)
|
|
: microsecond_interval_timer();
|
|
|
|
ut_a(trx->error_state == DB_SUCCESS);
|
|
|
|
MONITOR_INC(MONITOR_TRX_ACTIVE);
|
|
}
|
|
|
|
/** Set the serialisation number for a persistent committed transaction.
|
|
@param[in,out] trx committed transaction with persistent changes */
|
|
static
|
|
void
|
|
trx_serialise(trx_t* trx)
|
|
{
|
|
trx_rseg_t *rseg = trx->rsegs.m_redo.rseg;
|
|
ut_ad(rseg);
|
|
ut_ad(mutex_own(&rseg->mutex));
|
|
|
|
if (rseg->last_page_no == FIL_NULL) {
|
|
mutex_enter(&purge_sys.pq_mutex);
|
|
}
|
|
|
|
trx_sys.assign_new_trx_no(trx);
|
|
|
|
/* If the rollback segment is not empty then the
|
|
new trx_t::no can't be less than any trx_t::no
|
|
already in the rollback segment. User threads only
|
|
produce events when a rollback segment is empty. */
|
|
if (rseg->last_page_no == FIL_NULL) {
|
|
purge_sys.purge_queue.push(TrxUndoRsegs(trx->no, *rseg));
|
|
mutex_exit(&purge_sys.pq_mutex);
|
|
}
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Assign the transaction its history serialisation number and write the
|
|
update UNDO log record to the assigned rollback segment. */
|
|
static
|
|
void
|
|
trx_write_serialisation_history(
|
|
/*============================*/
|
|
trx_t* trx, /*!< in/out: transaction */
|
|
mtr_t* mtr) /*!< in/out: mini-transaction */
|
|
{
|
|
/* Change the undo log segment states from TRX_UNDO_ACTIVE to some
|
|
other state: these modifications to the file data structure define
|
|
the transaction as committed in the file based domain, at the
|
|
serialization point of the log sequence number lsn obtained below. */
|
|
|
|
/* We have to hold the rseg mutex because update log headers have
|
|
to be put to the history list in the (serialisation) order of the
|
|
UNDO trx number. This is required for the purge in-memory data
|
|
structures too. */
|
|
|
|
if (trx_undo_t* undo = trx->rsegs.m_noredo.undo) {
|
|
/* Undo log for temporary tables is discarded at transaction
|
|
commit. There is no purge for temporary tables, and also no
|
|
MVCC, because they are private to a session. */
|
|
|
|
mtr_t temp_mtr;
|
|
temp_mtr.start();
|
|
temp_mtr.set_log_mode(MTR_LOG_NO_REDO);
|
|
|
|
mutex_enter(&trx->rsegs.m_noredo.rseg->mutex);
|
|
trx_undo_set_state_at_finish(undo, &temp_mtr);
|
|
mutex_exit(&trx->rsegs.m_noredo.rseg->mutex);
|
|
temp_mtr.commit();
|
|
}
|
|
|
|
trx_rseg_t* rseg = trx->rsegs.m_redo.rseg;
|
|
if (!rseg) {
|
|
ut_ad(!trx->rsegs.m_redo.undo);
|
|
return;
|
|
}
|
|
|
|
trx_undo_t*& undo = trx->rsegs.m_redo.undo;
|
|
|
|
if (!undo) {
|
|
return;
|
|
}
|
|
|
|
ut_ad(!trx->read_only);
|
|
ut_ad(!undo || undo->rseg == rseg);
|
|
mutex_enter(&rseg->mutex);
|
|
|
|
/* Assign the transaction serialisation number and add any
|
|
undo log to the purge queue. */
|
|
trx_serialise(trx);
|
|
if (undo) {
|
|
UT_LIST_REMOVE(rseg->undo_list, undo);
|
|
trx_purge_add_undo_to_history(trx, undo, mtr);
|
|
}
|
|
|
|
mutex_exit(&rseg->mutex);
|
|
|
|
MONITOR_INC(MONITOR_TRX_COMMIT_UNDO);
|
|
|
|
trx->mysql_log_file_name = NULL;
|
|
}
|
|
|
|
/********************************************************************
|
|
Finalize a transaction containing updates for a FTS table. */
|
|
static
|
|
void
|
|
trx_finalize_for_fts_table(
|
|
/*=======================*/
|
|
fts_trx_table_t* ftt) /* in: FTS trx table */
|
|
{
|
|
fts_t* fts = ftt->table->fts;
|
|
fts_doc_ids_t* doc_ids = ftt->added_doc_ids;
|
|
|
|
ut_a(fts->add_wq);
|
|
|
|
mem_heap_t* heap = static_cast<mem_heap_t*>(doc_ids->self_heap->arg);
|
|
|
|
ib_wqueue_add(fts->add_wq, doc_ids, heap);
|
|
|
|
/* fts_trx_table_t no longer owns the list. */
|
|
ftt->added_doc_ids = NULL;
|
|
}
|
|
|
|
/******************************************************************//**
|
|
Finalize a transaction containing updates to FTS tables. */
|
|
static
|
|
void
|
|
trx_finalize_for_fts(
|
|
/*=================*/
|
|
trx_t* trx, /*!< in/out: transaction */
|
|
bool is_commit) /*!< in: true if the transaction was
|
|
committed, false if it was rolled back. */
|
|
{
|
|
if (is_commit) {
|
|
const ib_rbt_node_t* node;
|
|
ib_rbt_t* tables;
|
|
fts_savepoint_t* savepoint;
|
|
|
|
savepoint = static_cast<fts_savepoint_t*>(
|
|
ib_vector_last(trx->fts_trx->savepoints));
|
|
|
|
tables = savepoint->tables;
|
|
|
|
for (node = rbt_first(tables);
|
|
node;
|
|
node = rbt_next(tables, node)) {
|
|
fts_trx_table_t** ftt;
|
|
|
|
ftt = rbt_value(fts_trx_table_t*, node);
|
|
|
|
if ((*ftt)->added_doc_ids) {
|
|
trx_finalize_for_fts_table(*ftt);
|
|
}
|
|
}
|
|
}
|
|
|
|
fts_trx_free(trx->fts_trx);
|
|
trx->fts_trx = NULL;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
If required, flushes the log to disk based on the value of
|
|
innodb_flush_log_at_trx_commit. */
|
|
static
|
|
void
|
|
trx_flush_log_if_needed_low(
|
|
/*========================*/
|
|
lsn_t lsn) /*!< in: lsn up to which logs are to be
|
|
flushed. */
|
|
{
|
|
bool flush = srv_file_flush_method != SRV_NOSYNC;
|
|
|
|
switch (srv_flush_log_at_trx_commit) {
|
|
case 2:
|
|
/* Write the log but do not flush it to disk */
|
|
flush = false;
|
|
/* fall through */
|
|
case 1:
|
|
case 3:
|
|
/* Write the log and optionally flush it to disk */
|
|
log_write_up_to(lsn, flush);
|
|
return;
|
|
case 0:
|
|
/* Do nothing */
|
|
return;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
If required, flushes the log to disk based on the value of
|
|
innodb_flush_log_at_trx_commit. */
|
|
static
|
|
void
|
|
trx_flush_log_if_needed(
|
|
/*====================*/
|
|
lsn_t lsn, /*!< in: lsn up to which logs are to be
|
|
flushed. */
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
{
|
|
trx->op_info = "flushing log";
|
|
trx_flush_log_if_needed_low(lsn);
|
|
trx->op_info = "";
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
For each table that has been modified by the given transaction: update
|
|
its dict_table_t::update_time with the current timestamp. Clear the list
|
|
of the modified tables at the end. */
|
|
static
|
|
void
|
|
trx_update_mod_tables_timestamp(
|
|
/*============================*/
|
|
trx_t* trx) /*!< in: transaction */
|
|
{
|
|
/* consider using trx->start_time if calling time() is too
|
|
expensive here */
|
|
const time_t now = time(NULL);
|
|
|
|
trx_mod_tables_t::const_iterator end = trx->mod_tables.end();
|
|
|
|
for (trx_mod_tables_t::const_iterator it = trx->mod_tables.begin();
|
|
it != end;
|
|
++it) {
|
|
|
|
/* This could be executed by multiple threads concurrently
|
|
on the same table object. This is fine because time_t is
|
|
word size or less. And _purely_ _theoretically_, even if
|
|
time_t write is not atomic, likely the value of 'now' is
|
|
the same in all threads and even if it is not, getting a
|
|
"garbage" in table->update_time is justified because
|
|
protecting it with a latch here would be too performance
|
|
intrusive. */
|
|
dict_table_t* table = it->first;
|
|
table->update_time = now;
|
|
}
|
|
|
|
trx->mod_tables.clear();
|
|
}
|
|
|
|
/** Evict a table definition due to the rollback of ALTER TABLE.
|
|
@param[in] table_id table identifier */
|
|
void trx_t::evict_table(table_id_t table_id)
|
|
{
|
|
ut_ad(in_rollback);
|
|
|
|
dict_table_t* table = dict_table_open_on_id(
|
|
table_id, true, DICT_TABLE_OP_OPEN_ONLY_IF_CACHED);
|
|
if (!table) {
|
|
return;
|
|
}
|
|
|
|
if (!table->release()) {
|
|
/* This must be a DDL operation that is being rolled
|
|
back in an active connection. */
|
|
ut_a(table->get_ref_count() == 1);
|
|
ut_ad(!is_recovered);
|
|
ut_ad(mysql_thd);
|
|
return;
|
|
}
|
|
|
|
/* This table should only be locked by this transaction, if at all. */
|
|
ut_ad(UT_LIST_GET_LEN(table->locks) <= 1);
|
|
const bool locked = UT_LIST_GET_LEN(table->locks);
|
|
ut_ad(!locked || UT_LIST_GET_FIRST(table->locks)->trx == this);
|
|
dict_sys.remove(table, true, locked);
|
|
if (locked) {
|
|
UT_LIST_ADD_FIRST(lock.evicted_tables, table);
|
|
}
|
|
}
|
|
|
|
/** Mark a transaction committed in the main memory data structures. */
|
|
inline void trx_t::commit_in_memory(const mtr_t *mtr)
|
|
{
|
|
must_flush_log_later= false;
|
|
read_view.close();
|
|
|
|
if (is_autocommit_non_locking())
|
|
{
|
|
ut_ad(id == 0);
|
|
ut_ad(read_only);
|
|
ut_ad(!will_lock);
|
|
ut_a(!is_recovered);
|
|
ut_ad(!rsegs.m_redo.rseg);
|
|
ut_ad(mysql_thd);
|
|
ut_ad(state == TRX_STATE_ACTIVE);
|
|
|
|
/* Note: We are asserting without holding the lock mutex. But
|
|
that is OK because this transaction is not waiting and cannot
|
|
be rolled back and no new locks can (or should) be added
|
|
because it is flagged as a non-locking read-only transaction. */
|
|
ut_a(UT_LIST_GET_LEN(lock.trx_locks) == 0);
|
|
|
|
/* This state change is not protected by any mutex, therefore
|
|
there is an inherent race here around state transition during
|
|
printouts. We ignore this race for the sake of efficiency.
|
|
However, the trx_sys_t::mutex will protect the trx_t instance
|
|
and it cannot be removed from the trx_list and freed
|
|
without first acquiring the trx_sys_t::mutex. */
|
|
state= TRX_STATE_NOT_STARTED;
|
|
|
|
MONITOR_INC(MONITOR_TRX_NL_RO_COMMIT);
|
|
|
|
DBUG_LOG("trx", "Autocommit in memory: " << this);
|
|
}
|
|
else
|
|
{
|
|
#ifdef UNIV_DEBUG
|
|
if (!UT_LIST_GET_LEN(lock.trx_locks))
|
|
for (auto l : lock.table_locks)
|
|
ut_ad(!l);
|
|
#endif /* UNIV_DEBUG */
|
|
commit_state();
|
|
|
|
if (id)
|
|
{
|
|
trx_sys.deregister_rw(this);
|
|
|
|
/* Wait for any implicit-to-explicit lock conversions to cease,
|
|
so that there will be no race condition in lock_release(). */
|
|
while (UNIV_UNLIKELY(is_referenced()))
|
|
ut_delay(srv_spin_wait_delay);
|
|
}
|
|
else
|
|
ut_ad(read_only || !rsegs.m_redo.rseg);
|
|
|
|
if (read_only || !rsegs.m_redo.rseg)
|
|
{
|
|
MONITOR_INC(MONITOR_TRX_RO_COMMIT);
|
|
}
|
|
else
|
|
{
|
|
trx_update_mod_tables_timestamp(this);
|
|
MONITOR_INC(MONITOR_TRX_RW_COMMIT);
|
|
is_recovered= false;
|
|
}
|
|
|
|
release_locks();
|
|
id= 0;
|
|
DEBUG_SYNC_C("after_trx_committed_in_memory");
|
|
|
|
while (dict_table_t *table= UT_LIST_GET_FIRST(lock.evicted_tables))
|
|
{
|
|
UT_LIST_REMOVE(lock.evicted_tables, table);
|
|
dict_mem_table_free(table);
|
|
}
|
|
}
|
|
|
|
ut_ad(!rsegs.m_redo.undo);
|
|
ut_ad(UT_LIST_GET_LEN(lock.evicted_tables) == 0);
|
|
|
|
if (mtr)
|
|
{
|
|
if (trx_undo_t *&undo= rsegs.m_noredo.undo)
|
|
{
|
|
ut_ad(undo->rseg == rsegs.m_noredo.rseg);
|
|
trx_undo_commit_cleanup(undo);
|
|
undo= nullptr;
|
|
}
|
|
|
|
/* NOTE that we could possibly make a group commit more efficient
|
|
here: call os_thread_yield here to allow also other trxs to come
|
|
to commit! */
|
|
|
|
/*-------------------------------------*/
|
|
|
|
/* Depending on the my.cnf options, we may now write the log
|
|
buffer to the log files, making the transaction durable if the OS
|
|
does not crash. We may also flush the log files to disk, making
|
|
the transaction durable also at an OS crash or a power outage.
|
|
|
|
The idea in InnoDB's group commit is that a group of transactions
|
|
gather behind a trx doing a physical disk write to log files, and
|
|
when that physical write has been completed, one of those
|
|
transactions does a write which commits the whole group. Note that
|
|
this group commit will only bring benefit if there are > 2 users
|
|
in the database. Then at least 2 users can gather behind one doing
|
|
the physical log write to disk.
|
|
|
|
If we are calling trx_t::commit() under prepare_commit_mutex, we
|
|
will delay possible log write and flush to a separate function
|
|
trx_commit_complete_for_mysql(), which is only called when the
|
|
thread has released the mutex. This is to make the group commit
|
|
algorithm to work. Otherwise, the prepare_commit mutex would
|
|
serialize all commits and prevent a group of transactions from
|
|
gathering. */
|
|
|
|
commit_lsn= mtr->commit_lsn();
|
|
if (!commit_lsn)
|
|
/* Nothing to be done. */;
|
|
else if (flush_log_later)
|
|
/* Do nothing yet */
|
|
must_flush_log_later= true;
|
|
else if (srv_flush_log_at_trx_commit)
|
|
trx_flush_log_if_needed(commit_lsn, this);
|
|
|
|
/* Tell server some activity has happened, since the trx does
|
|
changes something. Background utility threads like master thread,
|
|
purge thread or page_cleaner thread might have some work to do. */
|
|
srv_active_wake_master_thread();
|
|
}
|
|
|
|
ut_ad(!rsegs.m_noredo.undo);
|
|
|
|
/* Only after trx_undo_commit_cleanup() it is safe to release
|
|
our rseg reference. */
|
|
if (trx_rseg_t *rseg= rsegs.m_redo.rseg)
|
|
{
|
|
mutex_enter(&rseg->mutex);
|
|
ut_ad(rseg->trx_ref_count > 0);
|
|
--rseg->trx_ref_count;
|
|
mutex_exit(&rseg->mutex);
|
|
}
|
|
|
|
/* Free all savepoints, starting from the first. */
|
|
trx_named_savept_t *savep= UT_LIST_GET_FIRST(trx_savepoints);
|
|
|
|
trx_roll_savepoints_free(this, savep);
|
|
|
|
if (fts_trx)
|
|
trx_finalize_for_fts(this, undo_no != 0);
|
|
|
|
#ifdef WITH_WSREP
|
|
/* Serialization history has been written and the transaction is
|
|
committed in memory, which makes this commit ordered. Release commit
|
|
order critical section. */
|
|
if (wsrep)
|
|
{
|
|
wsrep= false;
|
|
wsrep_commit_ordered(mysql_thd);
|
|
}
|
|
lock.was_chosen_as_wsrep_victim= false;
|
|
#endif /* WITH_WSREP */
|
|
trx_mutex_enter(this);
|
|
dict_operation= TRX_DICT_OP_NONE;
|
|
|
|
DBUG_LOG("trx", "Commit in memory: " << this);
|
|
state= TRX_STATE_NOT_STARTED;
|
|
|
|
assert_freed();
|
|
trx_init(this);
|
|
trx_mutex_exit(this);
|
|
|
|
ut_a(error_state == DB_SUCCESS);
|
|
if (!srv_read_only_mode)
|
|
srv_wake_purge_thread_if_not_active();
|
|
}
|
|
|
|
/** Commit the transaction in a mini-transaction.
|
|
@param mtr mini-transaction (if there are any persistent modifications) */
|
|
void trx_t::commit_low(mtr_t *mtr)
|
|
{
|
|
ut_ad(!mtr || mtr->is_active());
|
|
ut_d(bool aborted = in_rollback && error_state == DB_DEADLOCK);
|
|
ut_ad(!mtr == (aborted || !has_logged()));
|
|
ut_ad(!mtr || !aborted);
|
|
|
|
/* undo_no is non-zero if we're doing the final commit. */
|
|
if (fts_trx && undo_no)
|
|
{
|
|
ut_a(!is_autocommit_non_locking());
|
|
/* FTS-FIXME: Temporarily tolerate DB_DUPLICATE_KEY instead of
|
|
dying. This is a possible scenario if there is a crash between
|
|
insert to DELETED table committing and transaction committing. The
|
|
fix would be able to return error from this function */
|
|
if (dberr_t error= fts_commit(this))
|
|
ut_a(error == DB_DUPLICATE_KEY);
|
|
}
|
|
|
|
#ifndef DBUG_OFF
|
|
const bool debug_sync= mysql_thd && has_logged_persistent();
|
|
#endif
|
|
|
|
if (mtr)
|
|
{
|
|
trx_write_serialisation_history(this, mtr);
|
|
|
|
/* The following call commits the mini-transaction, making the
|
|
whole transaction committed in the file-based world, at this log
|
|
sequence number. The transaction becomes 'durable' when we write
|
|
the log to disk, but in the logical sense the commit in the
|
|
file-based data structures (undo logs etc.) happens here.
|
|
|
|
NOTE that transaction numbers, which are assigned only to
|
|
transactions with an update undo log, do not necessarily come in
|
|
exactly the same order as commit lsn's, if the transactions have
|
|
different rollback segments. To get exactly the same order we
|
|
should hold the kernel mutex up to this point, adding to the
|
|
contention of the kernel mutex. However, if a transaction T2 is
|
|
able to see modifications made by a transaction T1, T2 will always
|
|
get a bigger transaction number and a bigger commit lsn than T1. */
|
|
|
|
mtr->commit();
|
|
}
|
|
#ifndef DBUG_OFF
|
|
if (debug_sync)
|
|
DEBUG_SYNC_C("before_trx_state_committed_in_memory");
|
|
#endif
|
|
|
|
commit_in_memory(mtr);
|
|
}
|
|
|
|
|
|
void trx_t::commit()
|
|
{
|
|
mtr_t *mtr= nullptr;
|
|
mtr_t local_mtr;
|
|
|
|
if (has_logged())
|
|
{
|
|
mtr= &local_mtr;
|
|
local_mtr.start();
|
|
}
|
|
commit_low(mtr);
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Prepares a transaction for commit/rollback. */
|
|
void
|
|
trx_commit_or_rollback_prepare(
|
|
/*===========================*/
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
{
|
|
/* We are reading trx->state without holding trx_sys.mutex
|
|
here, because the commit or rollback should be invoked for a
|
|
running (or recovered prepared) transaction that is associated
|
|
with the current thread. */
|
|
|
|
switch (trx->state) {
|
|
case TRX_STATE_NOT_STARTED:
|
|
trx_start_low(trx, true);
|
|
/* fall through */
|
|
|
|
case TRX_STATE_ACTIVE:
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
/* If the trx is in a lock wait state, moves the waiting
|
|
query thread to the suspended state */
|
|
|
|
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
|
|
|
ut_a(trx->lock.wait_thr != NULL);
|
|
trx->lock.wait_thr->state = QUE_THR_SUSPENDED;
|
|
trx->lock.wait_thr = NULL;
|
|
|
|
trx->lock.que_state = TRX_QUE_RUNNING;
|
|
}
|
|
|
|
ut_a(trx->lock.n_active_thrs == 1);
|
|
return;
|
|
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
break;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Creates a commit command node struct.
|
|
@return own: commit node struct */
|
|
commit_node_t*
|
|
trx_commit_node_create(
|
|
/*===================*/
|
|
mem_heap_t* heap) /*!< in: mem heap where created */
|
|
{
|
|
commit_node_t* node;
|
|
|
|
node = static_cast<commit_node_t*>(mem_heap_alloc(heap, sizeof(*node)));
|
|
node->common.type = QUE_NODE_COMMIT;
|
|
node->state = COMMIT_NODE_SEND;
|
|
|
|
return(node);
|
|
}
|
|
|
|
/***********************************************************//**
|
|
Performs an execution step for a commit type node in a query graph.
|
|
@return query thread to run next, or NULL */
|
|
que_thr_t*
|
|
trx_commit_step(
|
|
/*============*/
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
{
|
|
commit_node_t* node;
|
|
|
|
node = static_cast<commit_node_t*>(thr->run_node);
|
|
|
|
ut_ad(que_node_get_type(node) == QUE_NODE_COMMIT);
|
|
|
|
if (thr->prev_node == que_node_get_parent(node)) {
|
|
node->state = COMMIT_NODE_SEND;
|
|
}
|
|
|
|
if (node->state == COMMIT_NODE_SEND) {
|
|
trx_t* trx;
|
|
|
|
node->state = COMMIT_NODE_WAIT;
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
ut_a(trx->lock.wait_thr == NULL);
|
|
ut_a(trx->lock.que_state != TRX_QUE_LOCK_WAIT);
|
|
|
|
trx_commit_or_rollback_prepare(trx);
|
|
|
|
trx->lock.que_state = TRX_QUE_COMMITTING;
|
|
trx->commit();
|
|
ut_ad(trx->lock.wait_thr == NULL);
|
|
trx->lock.que_state = TRX_QUE_RUNNING;
|
|
|
|
thr = NULL;
|
|
} else {
|
|
ut_ad(node->state == COMMIT_NODE_WAIT);
|
|
|
|
node->state = COMMIT_NODE_SEND;
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
}
|
|
|
|
return(thr);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Does the transaction commit for MySQL.
|
|
@return DB_SUCCESS or error number */
|
|
dberr_t
|
|
trx_commit_for_mysql(
|
|
/*=================*/
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
{
|
|
/* Because we do not do the commit by sending an Innobase
|
|
sig to the transaction, we must here make sure that trx has been
|
|
started. */
|
|
|
|
switch (trx->state) {
|
|
case TRX_STATE_NOT_STARTED:
|
|
ut_d(trx->start_file = __FILE__);
|
|
ut_d(trx->start_line = __LINE__);
|
|
|
|
trx_start_low(trx, true);
|
|
/* fall through */
|
|
case TRX_STATE_ACTIVE:
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
trx->op_info = "committing";
|
|
trx->commit();
|
|
MONITOR_DEC(MONITOR_TRX_ACTIVE);
|
|
trx->op_info = "";
|
|
return(DB_SUCCESS);
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
break;
|
|
}
|
|
ut_error;
|
|
return(DB_CORRUPTION);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
If required, flushes the log to disk if we called trx_commit_for_mysql()
|
|
with trx->flush_log_later == TRUE. */
|
|
void
|
|
trx_commit_complete_for_mysql(
|
|
/*==========================*/
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
{
|
|
if (trx->id != 0
|
|
|| !trx->must_flush_log_later
|
|
|| (srv_flush_log_at_trx_commit == 1 && trx->active_commit_ordered)) {
|
|
|
|
return;
|
|
}
|
|
|
|
trx_flush_log_if_needed(trx->commit_lsn, trx);
|
|
|
|
trx->must_flush_log_later = false;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Marks the latest SQL statement ended. */
|
|
void
|
|
trx_mark_sql_stat_end(
|
|
/*==================*/
|
|
trx_t* trx) /*!< in: trx handle */
|
|
{
|
|
ut_a(trx);
|
|
|
|
switch (trx->state) {
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
break;
|
|
case TRX_STATE_NOT_STARTED:
|
|
trx->undo_no = 0;
|
|
/* fall through */
|
|
case TRX_STATE_ACTIVE:
|
|
trx->last_sql_stat_start.least_undo_no = trx->undo_no;
|
|
|
|
if (trx->fts_trx != NULL) {
|
|
fts_savepoint_laststmt_refresh(trx);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Prints info about a transaction. */
|
|
void
|
|
trx_print_low(
|
|
/*==========*/
|
|
FILE* f,
|
|
/*!< in: output stream */
|
|
const trx_t* trx,
|
|
/*!< in: transaction */
|
|
ulint max_query_len,
|
|
/*!< in: max query length to print,
|
|
or 0 to use the default max length */
|
|
ulint n_rec_locks,
|
|
/*!< in: lock_number_of_rows_locked(&trx->lock) */
|
|
ulint n_trx_locks,
|
|
/*!< in: length of trx->lock.trx_locks */
|
|
ulint heap_size)
|
|
/*!< in: mem_heap_get_size(trx->lock.lock_heap) */
|
|
{
|
|
ibool newline;
|
|
|
|
fprintf(f, "TRANSACTION " TRX_ID_FMT, trx_get_id_for_print(trx));
|
|
|
|
/* trx->state cannot change from or to NOT_STARTED while we
|
|
are holding the trx_sys.mutex. It may change from ACTIVE to
|
|
PREPARED or COMMITTED. */
|
|
switch (trx->state) {
|
|
case TRX_STATE_NOT_STARTED:
|
|
fputs(", not started", f);
|
|
goto state_ok;
|
|
case TRX_STATE_ACTIVE:
|
|
fprintf(f, ", ACTIVE %lu sec",
|
|
(ulong) difftime(time(NULL), trx->start_time));
|
|
goto state_ok;
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
fprintf(f, ", ACTIVE (PREPARED) %lu sec",
|
|
(ulong) difftime(time(NULL), trx->start_time));
|
|
goto state_ok;
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
fputs(", COMMITTED IN MEMORY", f);
|
|
goto state_ok;
|
|
}
|
|
fprintf(f, ", state %lu", (ulong) trx->state);
|
|
ut_ad(0);
|
|
state_ok:
|
|
const char* op_info = trx->op_info;
|
|
|
|
if (*op_info) {
|
|
putc(' ', f);
|
|
fputs(op_info, f);
|
|
}
|
|
|
|
if (trx->is_recovered) {
|
|
fputs(" recovered trx", f);
|
|
}
|
|
|
|
if (trx->declared_to_be_inside_innodb) {
|
|
fprintf(f, ", thread declared inside InnoDB %lu",
|
|
(ulong) trx->n_tickets_to_enter_innodb);
|
|
}
|
|
|
|
putc('\n', f);
|
|
|
|
if (trx->n_mysql_tables_in_use > 0 || trx->mysql_n_tables_locked > 0) {
|
|
fprintf(f, "mysql tables in use %lu, locked %lu\n",
|
|
(ulong) trx->n_mysql_tables_in_use,
|
|
(ulong) trx->mysql_n_tables_locked);
|
|
}
|
|
|
|
newline = TRUE;
|
|
|
|
/* trx->lock.que_state of an ACTIVE transaction may change
|
|
while we are not holding trx->mutex. We perform a dirty read
|
|
for performance reasons. */
|
|
|
|
switch (trx->lock.que_state) {
|
|
case TRX_QUE_RUNNING:
|
|
newline = FALSE; break;
|
|
case TRX_QUE_LOCK_WAIT:
|
|
fputs("LOCK WAIT ", f); break;
|
|
case TRX_QUE_ROLLING_BACK:
|
|
fputs("ROLLING BACK ", f); break;
|
|
case TRX_QUE_COMMITTING:
|
|
fputs("COMMITTING ", f); break;
|
|
default:
|
|
fprintf(f, "que state %lu ", (ulong) trx->lock.que_state);
|
|
}
|
|
|
|
if (n_trx_locks > 0 || heap_size > 400) {
|
|
newline = TRUE;
|
|
|
|
fprintf(f, "%lu lock struct(s), heap size %lu,"
|
|
" %lu row lock(s)",
|
|
(ulong) n_trx_locks,
|
|
(ulong) heap_size,
|
|
(ulong) n_rec_locks);
|
|
}
|
|
|
|
if (trx->undo_no != 0) {
|
|
newline = TRUE;
|
|
fprintf(f, ", undo log entries " TRX_ID_FMT, trx->undo_no);
|
|
}
|
|
|
|
if (newline) {
|
|
putc('\n', f);
|
|
}
|
|
|
|
if (trx->state != TRX_STATE_NOT_STARTED && trx->mysql_thd != NULL) {
|
|
innobase_mysql_print_thd(
|
|
f, trx->mysql_thd, static_cast<uint>(max_query_len));
|
|
}
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Prints info about a transaction.
|
|
The caller must hold lock_sys.mutex.
|
|
When possible, use trx_print() instead. */
|
|
void
|
|
trx_print_latched(
|
|
/*==============*/
|
|
FILE* f, /*!< in: output stream */
|
|
const trx_t* trx, /*!< in: transaction */
|
|
ulint max_query_len) /*!< in: max query length to print,
|
|
or 0 to use the default max length */
|
|
{
|
|
ut_ad(lock_mutex_own());
|
|
|
|
trx_print_low(f, trx, max_query_len,
|
|
lock_number_of_rows_locked(&trx->lock),
|
|
UT_LIST_GET_LEN(trx->lock.trx_locks),
|
|
mem_heap_get_size(trx->lock.lock_heap));
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Prints info about a transaction.
|
|
Acquires and releases lock_sys.mutex. */
|
|
void
|
|
trx_print(
|
|
/*======*/
|
|
FILE* f, /*!< in: output stream */
|
|
const trx_t* trx, /*!< in: transaction */
|
|
ulint max_query_len) /*!< in: max query length to print,
|
|
or 0 to use the default max length */
|
|
{
|
|
ulint n_rec_locks;
|
|
ulint n_trx_locks;
|
|
ulint heap_size;
|
|
|
|
lock_mutex_enter();
|
|
n_rec_locks = lock_number_of_rows_locked(&trx->lock);
|
|
n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks);
|
|
heap_size = mem_heap_get_size(trx->lock.lock_heap);
|
|
lock_mutex_exit();
|
|
|
|
trx_print_low(f, trx, max_query_len,
|
|
n_rec_locks, n_trx_locks, heap_size);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Compares the "weight" (or size) of two transactions. Transactions that
|
|
have edited non-transactional tables are considered heavier than ones
|
|
that have not.
|
|
@return TRUE if weight(a) >= weight(b) */
|
|
bool
|
|
trx_weight_ge(
|
|
/*==========*/
|
|
const trx_t* a, /*!< in: transaction to be compared */
|
|
const trx_t* b) /*!< in: transaction to be compared */
|
|
{
|
|
ibool a_notrans_edit;
|
|
ibool b_notrans_edit;
|
|
|
|
/* If mysql_thd is NULL for a transaction we assume that it has
|
|
not edited non-transactional tables. */
|
|
|
|
a_notrans_edit = a->mysql_thd != NULL
|
|
&& thd_has_edited_nontrans_tables(a->mysql_thd);
|
|
|
|
b_notrans_edit = b->mysql_thd != NULL
|
|
&& thd_has_edited_nontrans_tables(b->mysql_thd);
|
|
|
|
if (a_notrans_edit != b_notrans_edit) {
|
|
|
|
return(a_notrans_edit);
|
|
}
|
|
|
|
/* Either both had edited non-transactional tables or both had
|
|
not, we fall back to comparing the number of altered/locked
|
|
rows. */
|
|
|
|
return(TRX_WEIGHT(a) >= TRX_WEIGHT(b));
|
|
}
|
|
|
|
/** Prepare a transaction.
|
|
@return log sequence number that makes the XA PREPARE durable
|
|
@retval 0 if no changes needed to be made durable */
|
|
static lsn_t trx_prepare_low(trx_t *trx)
|
|
{
|
|
ut_ad(!trx->is_recovered);
|
|
|
|
mtr_t mtr;
|
|
|
|
if (trx_undo_t* undo = trx->rsegs.m_noredo.undo) {
|
|
ut_ad(undo->rseg == trx->rsegs.m_noredo.rseg);
|
|
|
|
mtr.start();
|
|
mtr.set_log_mode(MTR_LOG_NO_REDO);
|
|
|
|
mutex_enter(&undo->rseg->mutex);
|
|
trx_undo_set_state_at_prepare(trx, undo, false, &mtr);
|
|
mutex_exit(&undo->rseg->mutex);
|
|
|
|
mtr.commit();
|
|
}
|
|
|
|
trx_undo_t* undo = trx->rsegs.m_redo.undo;
|
|
|
|
if (!undo) {
|
|
/* There were no changes to persistent tables. */
|
|
return(0);
|
|
}
|
|
|
|
trx_rseg_t* rseg = trx->rsegs.m_redo.rseg;
|
|
ut_ad(undo->rseg == rseg);
|
|
|
|
mtr.start();
|
|
|
|
/* Change the undo log segment states from TRX_UNDO_ACTIVE to
|
|
TRX_UNDO_PREPARED: these modifications to the file data
|
|
structure define the transaction as prepared in the file-based
|
|
world, at the serialization point of lsn. */
|
|
|
|
mutex_enter(&rseg->mutex);
|
|
trx_undo_set_state_at_prepare(trx, undo, false, &mtr);
|
|
mutex_exit(&rseg->mutex);
|
|
|
|
/* Make the XA PREPARE durable. */
|
|
mtr.commit();
|
|
ut_ad(mtr.commit_lsn() > 0);
|
|
return(mtr.commit_lsn());
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Prepares a transaction. */
|
|
static
|
|
void
|
|
trx_prepare(
|
|
/*========*/
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
{
|
|
/* Only fresh user transactions can be prepared.
|
|
Recovered transactions cannot. */
|
|
ut_a(!trx->is_recovered);
|
|
|
|
lsn_t lsn = trx_prepare_low(trx);
|
|
|
|
DBUG_EXECUTE_IF("ib_trx_crash_during_xa_prepare_step", DBUG_SUICIDE(););
|
|
|
|
ut_a(trx->state == TRX_STATE_ACTIVE);
|
|
trx_mutex_enter(trx);
|
|
trx->state = TRX_STATE_PREPARED;
|
|
trx_mutex_exit(trx);
|
|
|
|
if (lsn) {
|
|
/* Depending on the my.cnf options, we may now write the log
|
|
buffer to the log files, making the prepared state of the
|
|
transaction durable if the OS does not crash. We may also
|
|
flush the log files to disk, making the prepared state of the
|
|
transaction durable also at an OS crash or a power outage.
|
|
|
|
The idea in InnoDB's group prepare is that a group of
|
|
transactions gather behind a trx doing a physical disk write
|
|
to log files, and when that physical write has been completed,
|
|
one of those transactions does a write which prepares the whole
|
|
group. Note that this group prepare will only bring benefit if
|
|
there are > 2 users in the database. Then at least 2 users can
|
|
gather behind one doing the physical log write to disk.
|
|
|
|
We must not be holding any mutexes or latches here. */
|
|
|
|
trx_flush_log_if_needed(lsn, trx);
|
|
}
|
|
}
|
|
|
|
/** XA PREPARE a transaction.
|
|
@param[in,out] trx transaction to prepare */
|
|
void trx_prepare_for_mysql(trx_t* trx)
|
|
{
|
|
trx_start_if_not_started_xa(trx, false);
|
|
|
|
trx->op_info = "preparing";
|
|
|
|
trx_prepare(trx);
|
|
|
|
trx->op_info = "";
|
|
}
|
|
|
|
|
|
struct trx_recover_for_mysql_callback_arg
|
|
{
|
|
XID *xid_list;
|
|
uint len;
|
|
uint count;
|
|
};
|
|
|
|
|
|
static my_bool trx_recover_for_mysql_callback(rw_trx_hash_element_t *element,
|
|
trx_recover_for_mysql_callback_arg *arg)
|
|
{
|
|
DBUG_ASSERT(arg->len > 0);
|
|
mutex_enter(&element->mutex);
|
|
if (trx_t *trx= element->trx)
|
|
{
|
|
/*
|
|
The state of a read-write transaction can only change from ACTIVE to
|
|
PREPARED while we are holding the element->mutex. But since it is
|
|
executed at startup no state change should occur.
|
|
*/
|
|
if (trx_state_eq(trx, TRX_STATE_PREPARED))
|
|
{
|
|
ut_ad(trx->is_recovered);
|
|
ut_ad(trx->id);
|
|
if (arg->count == 0)
|
|
ib::info() << "Starting recovery for XA transactions...";
|
|
XID& xid= arg->xid_list[arg->count];
|
|
if (arg->count++ < arg->len)
|
|
{
|
|
trx->state= TRX_STATE_PREPARED_RECOVERED;
|
|
ib::info() << "Transaction " << trx->id
|
|
<< " in prepared state after recovery";
|
|
ib::info() << "Transaction contains changes to " << trx->undo_no
|
|
<< " rows";
|
|
xid= *trx->xid;
|
|
}
|
|
}
|
|
}
|
|
mutex_exit(&element->mutex);
|
|
/* Do not terminate upon reaching arg->len; count all transactions */
|
|
return false;
|
|
}
|
|
|
|
|
|
static my_bool trx_recover_reset_callback(rw_trx_hash_element_t *element,
|
|
void*)
|
|
{
|
|
mutex_enter(&element->mutex);
|
|
if (trx_t *trx= element->trx)
|
|
{
|
|
if (trx_state_eq(trx, TRX_STATE_PREPARED_RECOVERED))
|
|
trx->state= TRX_STATE_PREPARED;
|
|
}
|
|
mutex_exit(&element->mutex);
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
Find prepared transaction objects for recovery.
|
|
|
|
@param[out] xid_list prepared transactions
|
|
@param[in] len number of slots in xid_list
|
|
|
|
@return number of prepared transactions stored in xid_list
|
|
*/
|
|
|
|
int trx_recover_for_mysql(XID *xid_list, uint len)
|
|
{
|
|
trx_recover_for_mysql_callback_arg arg= { xid_list, len, 0 };
|
|
|
|
ut_ad(xid_list);
|
|
ut_ad(len);
|
|
|
|
/* Fill xid_list with PREPARED transactions. */
|
|
trx_sys.rw_trx_hash.iterate_no_dups(reinterpret_cast<my_hash_walk_action>
|
|
(trx_recover_for_mysql_callback), &arg);
|
|
if (arg.count)
|
|
{
|
|
ib::info() << arg.count
|
|
<< " transactions in prepared state after recovery";
|
|
/* After returning the full list, reset the state, because
|
|
init_server_components() wants to recover the collection of
|
|
transactions twice, by first calling tc_log->open() and then
|
|
ha_recover() directly. */
|
|
if (arg.count <= len)
|
|
trx_sys.rw_trx_hash.iterate(reinterpret_cast<my_hash_walk_action>
|
|
(trx_recover_reset_callback), NULL);
|
|
}
|
|
return int(std::min(arg.count, len));
|
|
}
|
|
|
|
|
|
struct trx_get_trx_by_xid_callback_arg
|
|
{
|
|
const XID *xid;
|
|
trx_t *trx;
|
|
};
|
|
|
|
|
|
static my_bool trx_get_trx_by_xid_callback(rw_trx_hash_element_t *element,
|
|
trx_get_trx_by_xid_callback_arg *arg)
|
|
{
|
|
my_bool found= 0;
|
|
mutex_enter(&element->mutex);
|
|
if (trx_t *trx= element->trx)
|
|
{
|
|
trx_mutex_enter(trx);
|
|
if (trx->is_recovered &&
|
|
(trx_state_eq(trx, TRX_STATE_PREPARED) ||
|
|
trx_state_eq(trx, TRX_STATE_PREPARED_RECOVERED)) &&
|
|
arg->xid->eq(reinterpret_cast<XID*>(trx->xid)))
|
|
{
|
|
#ifdef WITH_WSREP
|
|
/* The commit of a prepared recovered Galera
|
|
transaction needs a valid trx->xid for
|
|
invoking trx_sys_update_wsrep_checkpoint(). */
|
|
if (!wsrep_is_wsrep_xid(trx->xid))
|
|
#endif /* WITH_WSREP */
|
|
/* Invalidate the XID, so that subsequent calls will not find it. */
|
|
trx->xid->null();
|
|
arg->trx= trx;
|
|
found= 1;
|
|
}
|
|
trx_mutex_exit(trx);
|
|
}
|
|
mutex_exit(&element->mutex);
|
|
return found;
|
|
}
|
|
|
|
/** Look up an X/Open distributed transaction in XA PREPARE state.
|
|
@param[in] xid X/Open XA transaction identifier
|
|
@return transaction on match (the trx_t::xid will be invalidated);
|
|
note that the trx may have been committed before the caller acquires
|
|
trx_t::mutex
|
|
@retval NULL if no match */
|
|
trx_t* trx_get_trx_by_xid(const XID* xid)
|
|
{
|
|
trx_get_trx_by_xid_callback_arg arg= { xid, 0 };
|
|
|
|
if (xid)
|
|
trx_sys.rw_trx_hash.iterate(reinterpret_cast<my_hash_walk_action>
|
|
(trx_get_trx_by_xid_callback), &arg);
|
|
return arg.trx;
|
|
}
|
|
|
|
|
|
/*************************************************************//**
|
|
Starts the transaction if it is not yet started. */
|
|
void
|
|
trx_start_if_not_started_xa_low(
|
|
/*============================*/
|
|
trx_t* trx, /*!< in/out: transaction */
|
|
bool read_write) /*!< in: true if read write transaction */
|
|
{
|
|
switch (trx->state) {
|
|
case TRX_STATE_NOT_STARTED:
|
|
trx_start_low(trx, read_write);
|
|
return;
|
|
|
|
case TRX_STATE_ACTIVE:
|
|
if (trx->id == 0 && read_write) {
|
|
/* If the transaction is tagged as read-only then
|
|
it can only write to temp tables and for such
|
|
transactions we don't want to move them to the
|
|
trx_sys_t::rw_trx_hash. */
|
|
if (!trx->read_only) {
|
|
trx_set_rw_mode(trx);
|
|
}
|
|
}
|
|
return;
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
break;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Starts the transaction if it is not yet started. */
|
|
void
|
|
trx_start_if_not_started_low(
|
|
/*==========================*/
|
|
trx_t* trx, /*!< in: transaction */
|
|
bool read_write) /*!< in: true if read write transaction */
|
|
{
|
|
switch (trx->state) {
|
|
case TRX_STATE_NOT_STARTED:
|
|
trx_start_low(trx, read_write);
|
|
return;
|
|
|
|
case TRX_STATE_ACTIVE:
|
|
if (read_write && trx->id == 0 && !trx->read_only) {
|
|
trx_set_rw_mode(trx);
|
|
}
|
|
return;
|
|
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
break;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Starts a transaction for internal processing. */
|
|
void
|
|
trx_start_internal_low(
|
|
/*===================*/
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
{
|
|
/* Ensure it is not flagged as an auto-commit-non-locking
|
|
transaction. */
|
|
|
|
trx->will_lock = true;
|
|
|
|
trx->internal = true;
|
|
|
|
trx_start_low(trx, true);
|
|
}
|
|
|
|
/** Starts a read-only transaction for internal processing.
|
|
@param[in,out] trx transaction to be started */
|
|
void
|
|
trx_start_internal_read_only_low(
|
|
trx_t* trx)
|
|
{
|
|
/* Ensure it is not flagged as an auto-commit-non-locking
|
|
transaction. */
|
|
|
|
trx->will_lock = true;
|
|
|
|
trx->internal = true;
|
|
|
|
trx_start_low(trx, false);
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Starts the transaction for a DDL operation. */
|
|
void
|
|
trx_start_for_ddl_low(
|
|
/*==================*/
|
|
trx_t* trx, /*!< in/out: transaction */
|
|
trx_dict_op_t op) /*!< in: dictionary operation type */
|
|
{
|
|
switch (trx->state) {
|
|
case TRX_STATE_NOT_STARTED:
|
|
/* Flag this transaction as a dictionary operation, so that
|
|
the data dictionary will be locked in crash recovery. */
|
|
|
|
trx_set_dict_operation(trx, op);
|
|
trx->ddl= true;
|
|
trx_start_internal_low(trx);
|
|
return;
|
|
|
|
case TRX_STATE_ACTIVE:
|
|
case TRX_STATE_PREPARED:
|
|
case TRX_STATE_PREPARED_RECOVERED:
|
|
case TRX_STATE_COMMITTED_IN_MEMORY:
|
|
break;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Set the transaction as a read-write transaction if it is not already
|
|
tagged as such. Read-only transactions that are writing to temporary
|
|
tables are assigned an ID and a rollback segment but are not added
|
|
to the trx read-write list because their updates should not be visible
|
|
to other transactions and therefore their changes can be ignored by
|
|
by MVCC. */
|
|
void
|
|
trx_set_rw_mode(
|
|
/*============*/
|
|
trx_t* trx) /*!< in/out: transaction that is RW */
|
|
{
|
|
ut_ad(trx->rsegs.m_redo.rseg == 0);
|
|
ut_ad(!trx->is_autocommit_non_locking());
|
|
ut_ad(!trx->read_only);
|
|
ut_ad(trx->id == 0);
|
|
|
|
if (high_level_read_only) {
|
|
return;
|
|
}
|
|
|
|
/* Function is promoting existing trx from ro mode to rw mode.
|
|
In this process it has acquired trx_sys.mutex as it plan to
|
|
move trx from ro list to rw list. If in future, some other thread
|
|
looks at this trx object while it is being promoted then ensure
|
|
that both threads are synced by acquring trx->mutex to avoid decision
|
|
based on in-consistent view formed during promotion. */
|
|
|
|
trx->rsegs.m_redo.rseg = trx_assign_rseg_low();
|
|
ut_ad(trx->rsegs.m_redo.rseg != 0);
|
|
|
|
trx_sys.register_rw(trx);
|
|
|
|
/* So that we can see our own changes. */
|
|
if (trx->read_view.is_open()) {
|
|
trx->read_view.set_creator_trx_id(trx->id);
|
|
}
|
|
}
|
|
|
|
bool trx_t::has_stats_table_lock() const
|
|
{
|
|
for (lock_list::const_iterator it= lock.table_locks.begin(),
|
|
end= lock.table_locks.end(); it != end; ++it)
|
|
{
|
|
const lock_t *lock= *it;
|
|
if (lock && lock->un_member.tab_lock.table->is_stats_table())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|