mariadb/newbrt/tests/cachetable-test.c
Bradley C. Kuszmaul 885c83300b [t:3604] Merge everything from the tokudb.3312c+3524+msn branch. Refs #3604.
git-svn-id: file:///svn/toku/tokudb@32294 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-16 23:59:40 -04:00

767 lines
26 KiB
C

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
#include "includes.h"
#include "test.h"
// this mutex is used by some of the tests to serialize access to some
// global data, especially between the test thread and the cachetable
// writeback threads
toku_pthread_mutex_t test_mutex;
static inline void test_mutex_init(void) {
int r = toku_pthread_mutex_init(&test_mutex, 0); assert(r == 0);
}
static inline void test_mutex_destroy(void) {
int r = toku_pthread_mutex_destroy(&test_mutex); assert(r == 0);
}
static inline void test_mutex_lock(void) {
int r = toku_pthread_mutex_lock(&test_mutex); assert(r == 0);
}
static inline void test_mutex_unlock(void) {
int r = toku_pthread_mutex_unlock(&test_mutex); assert(r == 0);
}
// hook my_malloc_always_fails into malloc to control malloc and verify
// the correct recovery from malloc failures
#if defined(__linux__)
#define DO_MALLOC_HOOK 1
#else
#define DO_MALLOC_HOOK 0
#endif
#if DO_MALLOC_HOOK
static void *my_malloc_always_fails(size_t n, const __malloc_ptr_t p) {
n = n; p = p;
return 0;
}
#endif
// verify that cachetable creation and close works
static void
test_cachetable_create(void) {
CACHETABLE ct = 0;
int r;
r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
r = toku_cachetable_close(&ct);
assert(r == 0 && ct == 0);
}
// verify that cachetable create with no memory returns ENOMEM
#if DO_MALLOC_HOOK
static void
test_cachetable_create_no_memory (void) {
void *(*orig_malloc_hook)(size_t, const __malloc_ptr_t) = __malloc_hook;
__malloc_hook = my_malloc_always_fails;
CACHETABLE ct = 0;
int r;
r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == ENOMEM);
__malloc_hook = orig_malloc_hook;
}
#endif
static const int test_object_size = 1;
struct item {
CACHEKEY key;
char *something;
};
static volatile int expect_n_flushes=0;
static volatile CACHEKEY flushes[100];
static void expect_init(void) {
test_mutex_lock();
expect_n_flushes = 0;
test_mutex_unlock();
}
static void expect1(int64_t blocknum_n) {
test_mutex_lock();
expect_n_flushes=1;
flushes[0].b=blocknum_n;
//if (verbose) printf("%s:%d %lld\n", __FUNCTION__, 0, key.b);
test_mutex_unlock();
}
static void expectN(int64_t blocknum_n) {
test_mutex_lock();
//if (verbose) printf("%s:%d %lld\n", __FUNCTION__, expect_n_flushes, key);
flushes[expect_n_flushes++].b=blocknum_n;
test_mutex_unlock();
}
static CACHEFILE expect_f;
static void flush (CACHEFILE f,
int UU(fd),
CACHEKEY key,
void*value,
void *extra __attribute__((__unused__)),
long size __attribute__((__unused__)),
BOOL write_me __attribute__((__unused__)),
BOOL keep_me __attribute__((__unused__)),
BOOL for_checkpoint __attribute__((__unused__))) {
struct item *it = value;
int i;
if (keep_me) return;
if (verbose) printf("Flushing %" PRId64 " (it=>key=%" PRId64 ")\n", key.b, it->key.b);
test_mutex_lock();
assert(expect_f==f);
assert(strcmp(it->something,"something")==0);
assert(it->key.b==key.b);
/* Verify that we expected the flush. */
for (i=0; i<expect_n_flushes; i++) {
if (key.b==flushes[i].b) {
flushes[i] = flushes[expect_n_flushes-1];
expect_n_flushes--;
goto found_flush;
}
}
fprintf(stderr, "%" PRId64 " was flushed, but I didn't expect it\n", key.b);
abort();
found_flush:
test_mutex_unlock();
toku_free(value);
}
static struct item *make_item (u_int64_t key) {
struct item *MALLOC(it);
it->key.b=key;
it->something="something";
return it;
}
static CACHEKEY did_fetch={-1};
static int fetch (CACHEFILE f, int UU(fd), CACHEKEY key, u_int32_t fullhash __attribute__((__unused__)), void**value, long *sizep __attribute__((__unused__)), int *dirtyp, void*extraargs) {
if (verbose) printf("Fetch %" PRId64 "\n", key.b);
assert (expect_f==f);
assert((long)extraargs==23);
*value = make_item(key.b);
*sizep = test_object_size;
*dirtyp = 0;
did_fetch=key;
return 0;
}
static int
pe_callback (
void *brtnode_pv __attribute__((__unused__)),
long bytes_to_free __attribute__((__unused__)),
long* bytes_freed,
void* extraargs __attribute__((__unused__))
)
{
*bytes_freed = 0;
return 0;
}
static void maybe_flush(CACHETABLE t) {
toku_cachetable_maybe_flush_some(t);
}
// verify that a sequence of cachetable operations causes a particular sequence of
// callbacks
static void test0 (void) {
void* t3=(void*)23;
CACHETABLE t;
CACHEFILE f;
int r;
char fname[] = __FILE__ "test.dat";
r=toku_create_cachetable(&t, 5, ZERO_LSN, NULL_LOGGER);
assert(r==0);
unlink(fname);
r = toku_cachetable_openf(&f, t, fname, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
assert(r==0);
TOKULOGGER logger = toku_cachefile_logger(f);
assert(logger == NULL_LOGGER);
expect_f = f;
expect_n_flushes=0;
u_int32_t h1 = toku_cachetable_hash(f, make_blocknum(1));
u_int32_t h2 = toku_cachetable_hash(f, make_blocknum(2));
u_int32_t h3 = toku_cachetable_hash(f, make_blocknum(3));
u_int32_t h4 = toku_cachetable_hash(f, make_blocknum(4));
u_int32_t h5 = toku_cachetable_hash(f, make_blocknum(5));
u_int32_t h6 = toku_cachetable_hash(f, make_blocknum(6));
u_int32_t h7 = toku_cachetable_hash(f, make_blocknum(7));
r=toku_cachetable_put(f, make_blocknum(1), h1, make_item(1), test_object_size, flush, fetch, pe_callback, t3); /* 1P */ /* this is the lru list. 1 is pinned. */
assert(r==0);
assert(expect_n_flushes==0);
expect_init();
r=toku_cachetable_put(f, make_blocknum(2), h2, make_item(2), test_object_size, flush, fetch, pe_callback, t3);
assert(r==0);
r=toku_cachetable_unpin(f, make_blocknum(2), h2, CACHETABLE_DIRTY, 1); /* 2U 1P */
assert(expect_n_flushes==0);
expect_init();
r=toku_cachetable_put(f, make_blocknum(3), h3, make_item(3), test_object_size, flush, fetch, pe_callback, t3);
assert(r==0);
assert(expect_n_flushes==0); /* 3P 2U 1P */ /* 3 is most recently used (pinned), 2 is next (unpinned), 1 is least recent (pinned) */
expect_init();
r=toku_cachetable_put(f, make_blocknum(4), h4, make_item(4), test_object_size, flush, fetch, pe_callback, t3);
assert(r==0);
assert(expect_n_flushes==0); /* 4P 3P 2U 1P */
expect_init();
r=toku_cachetable_put(f, make_blocknum(5), h5, make_item(5), test_object_size, flush, fetch, pe_callback, t3);
assert(r==0);
r=toku_cachetable_unpin(f, make_blocknum(5), h5, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
r=toku_cachetable_unpin(f, make_blocknum(3), h3, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
assert(expect_n_flushes==0); /* 5U 4P 3U 2U 1P */
expect1(2); /* 2 is the oldest unpinned item. */
r=toku_cachetable_put(f, make_blocknum(6), h6, make_item(6), test_object_size, flush, fetch, pe_callback, t3); /* 6P 5U 4P 3U 1P */
assert(r==0);
test_mutex_lock();
while (expect_n_flushes != 0) {
test_mutex_unlock(); toku_pthread_yield(); maybe_flush(t); test_mutex_lock();
}
assert(expect_n_flushes==0);
test_mutex_unlock();
expect1(3);
r=toku_cachetable_put(f, make_blocknum(7), h7, make_item(7), test_object_size, flush, fetch, pe_callback, t3);
assert(r==0);
test_mutex_lock();
while (expect_n_flushes != 0) {
test_mutex_unlock(); toku_pthread_yield(); maybe_flush(t); test_mutex_lock();
}
assert(expect_n_flushes==0);
test_mutex_unlock();
r=toku_cachetable_unpin(f, make_blocknum(7), h7, CACHETABLE_DIRTY, test_object_size); /* 7U 6P 5U 4P 1P */
assert(r==0);
{
void *item_v=0;
expect_init();
r=toku_cachetable_get_and_pin(f, make_blocknum(5), toku_cachetable_hash(f, make_blocknum(5)), &item_v, NULL, flush, fetch, pe_callback, t3); /* 5P 7U 6P 4P 1P */
assert(r==0);
assert(((struct item *)item_v)->key.b==5);
assert(strcmp(((struct item *)item_v)->something,"something")==0);
test_mutex_lock();
assert(expect_n_flushes==0);
test_mutex_unlock();
}
{
void *item_v=0;
r=toku_cachetable_unpin(f, make_blocknum(4), h4, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
expect1(4);
did_fetch=make_blocknum(-1);
r=toku_cachetable_get_and_pin(f, make_blocknum(2), toku_cachetable_hash(f, make_blocknum(2)), &item_v, NULL, flush, fetch, pe_callback, t3); /* 2p 5P 7U 6P 1P */
assert(r==0);
assert(did_fetch.b==2); /* Expect that 2 is fetched in. */
assert(((struct item *)item_v)->key.b==2);
assert(strcmp(((struct item *)item_v)->something,"something")==0);
test_mutex_lock();
while (expect_n_flushes != 0) {
test_mutex_unlock(); toku_pthread_yield(); maybe_flush(t); test_mutex_lock();
}
assert(expect_n_flushes==0);
test_mutex_unlock();
}
r=toku_cachetable_unpin(f, make_blocknum(2), h2, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
r=toku_cachetable_unpin(f, make_blocknum(5), h5, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
r=toku_cachetable_unpin(f, make_blocknum(6), h6, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
r=toku_cachetable_unpin(f, make_blocknum(1), h1, CACHETABLE_DIRTY, test_object_size);
assert(r==0);
r=toku_cachetable_assert_all_unpinned(t);
assert(r==0);
if (verbose) printf("Closing\n");
expect1(2);
expectN(5);
expectN(7);
expectN(6);
expectN(1);
r=toku_cachefile_close(&f, 0, FALSE, ZERO_LSN);
assert(r==0);
r=toku_cachetable_close(&t);
assert(r==0);
assert(expect_n_flushes==0);
expect_f = 0;
}
static void flush_n (CACHEFILE f __attribute__((__unused__)), int UU(fd), CACHEKEY key __attribute__((__unused__)),
void *value,
void *extra __attribute__((__unused__)),
long size __attribute__((__unused__)),
BOOL write_me __attribute__((__unused__)), BOOL keep_me __attribute__((__unused__)),
BOOL for_checkpoint __attribute__ ((__unused__))) {
int *v = value;
assert(*v==0);
}
static int fetch_n (CACHEFILE f __attribute__((__unused__)), int UU(fd), CACHEKEY key __attribute__((__unused__)),
u_int32_t fullhash __attribute__((__unused__)),
void**value, long *sizep __attribute__((__unused__)),
int * dirtyp, void*extraargs) {
assert((long)extraargs==42);
*value=0;
*dirtyp = 0;
return 0;
}
static void test_nested_pin (void) {
void *f2=(void*)42;
CACHETABLE t;
CACHEFILE f;
int i0, i1;
int r;
void *vv,*vv2;
char fname[] = __FILE__ "test_ct.dat";
r = toku_create_cachetable(&t, 1, ZERO_LSN, NULL_LOGGER);
assert(r==0);
unlink(fname);
r = toku_cachetable_openf(&f, t, fname, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
assert(r==0);
expect_f = f;
i0=0; i1=0;
u_int32_t f1hash = toku_cachetable_hash(f, make_blocknum(1));
r = toku_cachetable_put(f, make_blocknum(1), f1hash, &i0, 1, flush_n, fetch_n, pe_callback, f2);
assert(r==0);
r = toku_cachetable_get_and_pin(f, make_blocknum(1), f1hash, &vv, NULL, flush_n, fetch_n, pe_callback, f2);
assert(r==0);
assert(vv==&i0);
assert(i0==0);
r = toku_cachetable_unpin(f, make_blocknum(1), f1hash, CACHETABLE_CLEAN, test_object_size);
assert(r==0);
r = toku_cachetable_maybe_get_and_pin(f, make_blocknum(1), f1hash, &vv2);
assert(r==0);
assert(vv2==vv);
r = toku_cachetable_unpin(f, make_blocknum(1), f1hash, CACHETABLE_CLEAN, test_object_size);
assert(r==0);
u_int32_t f2hash = toku_cachetable_hash(f, make_blocknum(2));
r = toku_cachetable_put(f, make_blocknum(2), f2hash, &i1, test_object_size, flush_n, fetch_n, pe_callback, f2);
assert(r==0); // The other one is pinned, but now the cachetable fails gracefully: It allows the pin to happen
r = toku_cachetable_unpin(f, make_blocknum(1), f1hash, CACHETABLE_CLEAN, test_object_size);
assert(r==0);
r = toku_cachetable_unpin(f, make_blocknum(2), f2hash, CACHETABLE_CLEAN, test_object_size);
assert(r==0);
// toku_os_usleep(1*1000000);
r = toku_cachefile_close(&f, 0, FALSE, ZERO_LSN); assert(r==0);
r = toku_cachetable_close(&t); assert(r==0);
}
static void null_flush (CACHEFILE cf __attribute__((__unused__)),
int UU(fd),
CACHEKEY k __attribute__((__unused__)),
void *v __attribute__((__unused__)),
void *extra __attribute__((__unused__)),
long size __attribute__((__unused__)),
BOOL write_me __attribute__((__unused__)),
BOOL keep_me __attribute__((__unused__)),
BOOL for_checkpoint __attribute__((__unused__))) {
}
static int add123_fetch (CACHEFILE cf, int UU(fd), CACHEKEY key, u_int32_t fullhash, void **value, long *sizep __attribute__((__unused__)), int * dirtyp, void*extraargs) {
assert(fullhash==toku_cachetable_hash(cf,key));
assert((long)extraargs==123);
*value = (void*)((unsigned long)key.b+123L);
*dirtyp = 0;
return 0;
}
static int add222_fetch (CACHEFILE cf, int UU(fd), CACHEKEY key, u_int32_t fullhash, void **value, long *sizep __attribute__((__unused__)), int * dirtyp, void*extraargs) {
assert(fullhash==toku_cachetable_hash(cf,key));
assert((long)extraargs==222);
*value = (void*)((unsigned long)key.b+222L);
*dirtyp = 0;
return 0;
}
#if !TOKU_WINDOWS
static void test_multi_filehandles (void) {
CACHETABLE t;
CACHEFILE f1,f2,f3;
char fname1[]= __FILE__ "test_ct.dat";
char fname2[]= __FILE__ "test2_ct.dat";
char fname3[]= __FILE__ "test3_ct.dat";
int r;
void *v;
unlink(fname1);
unlink(fname2);
r = toku_create_cachetable(&t, 4, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_cachetable_openf(&f1, t, fname1, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO); assert(r==0);
r = link(fname1, fname2); assert(r==0);
r = toku_cachetable_openf(&f2, t, fname2, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO); assert(r==0);
r = toku_cachetable_openf(&f3, t, fname3, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO); assert(r==0);
assert(f1==f2);
assert(f1!=f3);
r = toku_cachetable_put(f1, make_blocknum(1), toku_cachetable_hash(f1, make_blocknum(1)), (void*)124, test_object_size, null_flush, add123_fetch, pe_callback, (void*)123); assert(r==0);
r = toku_cachetable_get_and_pin(f2, make_blocknum(1), toku_cachetable_hash(f2, make_blocknum(1)), &v, NULL, null_flush, add123_fetch, pe_callback, (void*)123); assert(r==0);
assert((unsigned long)v==124);
r = toku_cachetable_get_and_pin(f2, make_blocknum(2), toku_cachetable_hash(f2, make_blocknum(2)), &v, NULL, null_flush, add123_fetch, pe_callback, (void*)123); assert(r==0);
assert((unsigned long)v==125);
r = toku_cachetable_get_and_pin(f3, make_blocknum(2), toku_cachetable_hash(f3, make_blocknum(2)), &v, NULL, null_flush, add222_fetch, pe_callback, (void*)222); assert(r==0);
assert((unsigned long)v==224);
r = toku_cachetable_unpin(f1, make_blocknum(1), toku_cachetable_hash(f1, make_blocknum(1)), CACHETABLE_CLEAN, 0); assert(r==0);
// r = toku_cachetable_unpin(f1, make_blocknum(2), toku_cachetable_hash(f1, make_blocknum(2)), CACHETABLE_CLEAN, 0); assert(r==0);
r = toku_cachefile_close(&f1, 0, FALSE, ZERO_LSN); assert(r==0);
r = toku_cachetable_unpin(f2, make_blocknum(1), toku_cachetable_hash(f2, make_blocknum(1)), CACHETABLE_CLEAN, 0); assert(r==0);
r = toku_cachetable_unpin(f2, make_blocknum(2), toku_cachetable_hash(f2, make_blocknum(2)), CACHETABLE_CLEAN, 0); assert(r==0);
r = toku_cachefile_close(&f2, 0, FALSE, ZERO_LSN); assert(r==0);
r = toku_cachetable_unpin(f3, make_blocknum(2), toku_cachetable_hash(f3, make_blocknum(2)), CACHETABLE_CLEAN, 0); assert(r==0);
r = toku_cachefile_close(&f3, 0, FALSE, ZERO_LSN); assert(r==0);
r = toku_cachetable_close(&t); assert(r==0);
}
#endif
static void test_dirty_flush(CACHEFILE f,
int UU(fd),
CACHEKEY key,
void *value,
void *extra __attribute__((__unused__)),
long size,
BOOL do_write,
BOOL keep,
BOOL for_checkpoint __attribute__((__unused__))) {
if (verbose) printf("test_dirty_flush %p %" PRId64 " %p %ld %u %u\n", f, key.b, value, size, (unsigned)do_write, (unsigned)keep);
}
static int test_dirty_fetch(CACHEFILE f, int UU(fd), CACHEKEY key, u_int32_t fullhash, void **value_ptr, long *size_ptr, int * dirtyp, void *arg) {
*value_ptr = arg;
*dirtyp = 0;
assert(fullhash==toku_cachetable_hash(f,key));
if (verbose) printf("test_dirty_fetch %p %" PRId64 " %p %ld %p\n", f, key.b, *value_ptr, *size_ptr, arg);
return 0;
}
static void test_dirty(void) {
if (verbose) printf("test_dirty\n");
CACHETABLE t;
CACHEFILE f;
CACHEKEY key; void *value;
int dirty; long long pinned; long entry_size;
int r;
r = toku_create_cachetable(&t, 4, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
char *fname = __FILE__ "test.dat";
unlink(fname);
r = toku_cachetable_openf(&f, t, fname, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
assert(r == 0);
key = make_blocknum(1); value = (void*)1;
u_int32_t hkey = toku_cachetable_hash(f, key);
r = toku_cachetable_put(f, key, hkey, value, test_object_size, test_dirty_flush, 0, pe_callback, 0);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 1);
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_CLEAN, 0);
assert(r == 0);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 0);
r = toku_cachetable_get_and_pin(f, key, hkey, &value, NULL, test_dirty_flush,
test_dirty_fetch, pe_callback, 0);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 1);
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_CLEAN, test_object_size);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 0);
key = make_blocknum(2);
hkey = toku_cachetable_hash(f, key);
r = toku_cachetable_get_and_pin(f, key, hkey,
&value, NULL, test_dirty_flush,
test_dirty_fetch, pe_callback, 0);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 0);
assert(pinned == 1);
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_CLEAN, test_object_size);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 0);
assert(pinned == 0);
r = toku_cachetable_get_and_pin(f, key, hkey,
&value, NULL, test_dirty_flush,
test_dirty_fetch, pe_callback, 0);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 0);
assert(pinned == 1);
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_DIRTY, test_object_size);
assert(r == 0);
// cachetable_print_state(t);
r = toku_cachetable_get_key_state(t, key, f, &value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 0);
r = toku_cachefile_close(&f, 0, FALSE, ZERO_LSN);
assert(r == 0);
r = toku_cachetable_close(&t);
assert(r == 0);
}
static int test_size_debug;
static CACHEKEY test_size_flush_key;
static void test_size_flush_callback(CACHEFILE f,
int UU(fd),
CACHEKEY key,
void *value,
void *extra __attribute__((__unused__)),
long size,
BOOL do_write,
BOOL keep,
BOOL for_checkpoint __attribute__((__unused__))) {
if (test_size_debug && verbose) printf("test_size_flush %p %" PRId64 " %p %ld %u %u\n", f, key.b, value, size, (unsigned)do_write, (unsigned)keep);
if (keep) {
if (do_write) {
test_mutex_lock();
test_size_flush_key = key;
test_mutex_unlock();
}
} else {
assert(!do_write);
}
}
static void test_size_resize(void) {
if (verbose) printf("test_size_resize\n");
CACHETABLE t;
CACHEFILE f;
int r;
int n = 3;
long size = 1;
r = toku_create_cachetable(&t, n*size, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
char *fname = __FILE__ "test.dat";
unlink(fname);
r = toku_cachetable_openf(&f, t, fname, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
assert(r == 0);
CACHEKEY key = make_blocknum(42);
void *value = (void *) -42;
u_int32_t hkey = toku_cachetable_hash(f, key);
r = toku_cachetable_put(f, key, hkey, value, size, test_size_flush_callback, 0, pe_callback, 0);
assert(r == 0);
void *entry_value; int dirty; long long pinned; long entry_size;
r = toku_cachetable_get_key_state(t, key, f, &entry_value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 1);
assert(entry_value == value);
assert(entry_size == size);
long long new_size = 2*size;
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_CLEAN, new_size);
assert(r == 0);
void *current_value;
long current_size;
r = toku_cachetable_get_and_pin(f, key, hkey, &current_value, &current_size, test_size_flush_callback, 0, pe_callback, 0);
assert(r == 0);
assert(current_value == value);
assert(current_size == new_size);
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_CLEAN, new_size);
assert(r == 0);
r = toku_cachefile_close(&f, 0, FALSE, ZERO_LSN);
assert(r == 0);
r = toku_cachetable_close(&t);
assert(r == 0);
}
static int min2(int a, int b) { return a < b ? a : b; }
__attribute__((unused))
static void test_size_flush(void) {
if (verbose) printf("test_size_flush\n");
CACHETABLE t;
CACHEFILE f;
int r;
const int n = 8;
long long size = 1*1024*1024;
r = toku_create_cachetable(&t, n*size, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
char *fname = __FILE__ "test.dat";
unlink(fname);
r = toku_cachetable_openf(&f, t, fname, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
assert(r == 0);
/* put 2*n keys into the table, ensure flushes occur in key order */
test_mutex_lock();
test_size_flush_key = make_blocknum(-1);
test_mutex_unlock();
int i;
CACHEKEY expect_flush_key = make_blocknum(0);
for (i=0; i<2*n; i++) {
CACHEKEY key = make_blocknum(i);
void *value = (void *)(long)-i;
// printf("test_size put %lld %p %lld\n", key, value, size);
u_int32_t hkey = toku_cachetable_hash(f, key);
r = toku_cachetable_put(f, key, hkey, value, size, test_size_flush_callback, 0, pe_callback, 0);
assert(r == 0);
int n_entries, hash_size; long size_current, size_limit;
toku_cachetable_get_state(t, &n_entries, &hash_size, &size_current, &size_limit);
while (n_entries != min2(i+1, n)) {
toku_pthread_yield(); maybe_flush(t);
toku_cachetable_get_state(t, &n_entries, 0, 0, 0);
}
assert(n_entries == min2(i+1, n));
void *entry_value; int dirty; long long pinned; long entry_size;
r = toku_cachetable_get_key_state(t, key, f, &entry_value, &dirty, &pinned, &entry_size);
assert(r == 0);
assert(dirty == 1);
assert(pinned == 1);
assert(entry_value == value);
assert(entry_size == size);
test_mutex_lock();
if (test_size_flush_key.b != -1) {
assert(test_size_flush_key.b == expect_flush_key.b);
assert(expect_flush_key.b == i-n);
expect_flush_key.b += 1;
}
test_mutex_unlock();
r = toku_cachetable_unpin(f, key, hkey, CACHETABLE_CLEAN, size);
assert(r == 0);
}
r = toku_cachefile_close(&f, 0, FALSE, ZERO_LSN);
assert(r == 0);
r = toku_cachetable_close(&t);
assert(r == 0);
}
int
test_main (int argc, const char *argv[]) {
// defaults
#if defined(__linux__)
int do_malloc_fail = 0;
#endif
// parse args
default_parse_args(argc, argv);
int i;
for (i=1; i<argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
#if defined(__linux__)
if (strcmp(arg, "-malloc-fail") == 0) {
do_malloc_fail = 1;
continue;
}
#endif
}
test_mutex_init();
// run tests
#if !TOKU_WINDOWS
test_multi_filehandles();
#endif
test_cachetable_create();
#if DO_MALLOC_HOOK
if (do_malloc_fail)
test_cachetable_create_no_memory(); // fails with valgrind
#endif
for (i=0; i<1; i++) {
test0();
test_nested_pin();
#if !TOKU_WINDOWS
test_multi_filehandles ();
#endif
test_dirty();
test_size_resize();
//test_size_flush();
}
test_mutex_destroy();
if (verbose) printf("ok\n");
return 0;
}