mariadb/storage/innobase/dict/dict0mem.cc
Marko Mäkelä f9cc391863 Merge 10.1 into 10.2
This only merges MDEV-12253, adapting it to MDEV-12602 which is already
present in 10.2 but not yet in the 10.1 revision that is being merged.

TODO: Error handling in crash recovery needs to be improved.
If a page cannot be decrypted (or read), we should cleanly abort
the startup. If innodb_force_recovery is specified, we should
ignore the problematic page and apply redo log to other pages.
Currently, the test encryption.innodb-redo-badkey randomly fails
like this (the last messages are from cmake -DWITH_ASAN):

2017-05-05 10:19:40 140037071685504 [Note] InnoDB: Starting crash recovery from checkpoint LSN=1635994
2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Missing MLOG_FILE_NAME or MLOG_FILE_DELETE before MLOG_CHECKPOINT for tablespace 1
2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Plugin initialization aborted at srv0start.cc[2201] with error Data structure corruption
2017-05-05 10:19:41 140037071685504 [Note] InnoDB: Starting shutdown...
i=================================================================
==5226==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x612000018588 in thread T0
    #0 0x736750 in operator delete(void*) (/mariadb/server/build/sql/mysqld+0x736750)
    #1 0x1e4833f in LatchCounter::~LatchCounter() /mariadb/server/storage/innobase/include/sync0types.h:599:4
    #2 0x1e480b8 in LatchMeta<LatchCounter>::~LatchMeta() /mariadb/server/storage/innobase/include/sync0types.h:786:17
    #3 0x1e35509 in sync_latch_meta_destroy() /mariadb/server/storage/innobase/sync/sync0debug.cc:1622:3
    #4 0x1e35314 in sync_check_close() /mariadb/server/storage/innobase/sync/sync0debug.cc:1839:2
    #5 0x1dfdc18 in innodb_shutdown() /mariadb/server/storage/innobase/srv/srv0start.cc:2888:2
    #6 0x197e5e6 in innobase_init(void*) /mariadb/server/storage/innobase/handler/ha_innodb.cc:4475:3
2017-05-05 10:38:53 +03:00

1132 lines
29 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2012, Facebook Inc.
Copyright (c) 2013, 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/******************************************************************//**
@file dict/dict0mem.cc
Data dictionary memory object creation
Created 1/8/1996 Heikki Tuuri
***********************************************************************/
#include "ha_prototypes.h"
#include <mysql_com.h>
#include "dict0mem.h"
#include "rem0rec.h"
#include "data0type.h"
#include "mach0data.h"
#include "dict0dict.h"
#include "fts0priv.h"
#include "ut0crc32.h"
#include "lock0lock.h"
#include "sync0sync.h"
#include <iostream>
#define DICT_HEAP_SIZE 100 /*!< initial memory heap size when
creating a table or index object */
/** System databases */
static const char* innobase_system_databases[] = {
"mysql/",
"information_schema/",
"performance_schema/",
NullS
};
/** An interger randomly initialized at startup used to make a temporary
table name as unuique as possible. */
static ib_uint32_t dict_temp_file_num;
/** Display an identifier.
@param[in,out] s output stream
@param[in] id_name SQL identifier (other than table name)
@return the output stream */
std::ostream&
operator<<(
std::ostream& s,
const id_name_t& id_name)
{
const char q = '`';
const char* c = id_name;
s << q;
for (; *c != 0; c++) {
if (*c == q) {
s << *c;
}
s << *c;
}
s << q;
return(s);
}
/** Display a table name.
@param[in,out] s output stream
@param[in] table_name table name
@return the output stream */
std::ostream&
operator<<(
std::ostream& s,
const table_name_t& table_name)
{
return(s << ut_get_name(NULL, table_name.m_name));
}
/**********************************************************************//**
Creates a table memory object.
@return own: table object */
dict_table_t*
dict_mem_table_create(
/*==================*/
const char* name, /*!< in: table name */
ulint space, /*!< in: space where the clustered index of
the table is placed */
ulint n_cols, /*!< in: total number of columns including
virtual and non-virtual columns */
ulint n_v_cols,/*!< in: number of virtual columns */
ulint flags, /*!< in: table flags */
ulint flags2) /*!< in: table flags2 */
{
dict_table_t* table;
mem_heap_t* heap;
ut_ad(name);
ut_a(dict_tf2_is_valid(flags, flags2));
ut_a(!(flags2 & DICT_TF2_UNUSED_BIT_MASK));
heap = mem_heap_create(DICT_HEAP_SIZE);
table = static_cast<dict_table_t*>(
mem_heap_zalloc(heap, sizeof(*table)));
lock_table_lock_list_init(&table->locks);
UT_LIST_INIT(table->indexes, &dict_index_t::indexes);
table->heap = heap;
ut_d(table->magic_n = DICT_TABLE_MAGIC_N);
table->flags = (unsigned int) flags;
table->flags2 = (unsigned int) flags2;
table->name.m_name = mem_strdup(name);
table->is_system_db = dict_mem_table_is_system(table->name.m_name);
table->space = (unsigned int) space;
table->n_t_cols = (unsigned int) (n_cols +
dict_table_get_n_sys_cols(table));
table->n_v_cols = (unsigned int) (n_v_cols);
table->n_cols = table->n_t_cols - table->n_v_cols;
table->cols = static_cast<dict_col_t*>(
mem_heap_alloc(heap, table->n_cols * sizeof(dict_col_t)));
table->v_cols = static_cast<dict_v_col_t*>(
mem_heap_alloc(heap, n_v_cols * sizeof(*table->v_cols)));
/* true means that the stats latch will be enabled -
dict_table_stats_lock() will not be noop. */
dict_table_stats_latch_create(table, true);
table->autoinc_lock = static_cast<ib_lock_t*>(
mem_heap_alloc(heap, lock_get_size()));
/* lazy creation of table autoinc latch */
dict_table_autoinc_create_lazy(table);
/* If the table has an FTS index or we are in the process
of building one, create the table->fts */
if (dict_table_has_fts_index(table)
|| DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID)
|| DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_ADD_DOC_ID)) {
table->fts = fts_create(table);
table->fts->cache = fts_cache_create(table);
} else {
table->fts = NULL;
}
new(&table->foreign_set) dict_foreign_set();
new(&table->referenced_set) dict_foreign_set();
return(table);
}
/****************************************************************//**
Free a table memory object. */
void
dict_mem_table_free(
/*================*/
dict_table_t* table) /*!< in: table */
{
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_d(table->cached = FALSE);
if (dict_table_has_fts_index(table)
|| DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID)
|| DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_ADD_DOC_ID)) {
if (table->fts) {
fts_optimize_remove_table(table);
fts_free(table);
}
}
dict_table_autoinc_destroy(table);
dict_mem_table_free_foreign_vcol_set(table);
dict_table_stats_latch_destroy(table);
table->foreign_set.~dict_foreign_set();
table->referenced_set.~dict_foreign_set();
ut_free(table->name.m_name);
table->name.m_name = NULL;
/* Clean up virtual index info structures that are registered
with virtual columns */
for (ulint i = 0; i < table->n_v_def; i++) {
dict_v_col_t* vcol
= dict_table_get_nth_v_col(table, i);
UT_DELETE(vcol->v_indexes);
}
if (table->s_cols != NULL) {
UT_DELETE(table->s_cols);
}
mem_heap_free(table->heap);
}
/****************************************************************//**
Append 'name' to 'col_names'. @see dict_table_t::col_names
@return new column names array */
static
const char*
dict_add_col_name(
/*==============*/
const char* col_names, /*!< in: existing column names, or
NULL */
ulint cols, /*!< in: number of existing columns */
const char* name, /*!< in: new column name */
mem_heap_t* heap) /*!< in: heap */
{
ulint old_len;
ulint new_len;
ulint total_len;
char* res;
ut_ad(!cols == !col_names);
/* Find out length of existing array. */
if (col_names) {
const char* s = col_names;
ulint i;
for (i = 0; i < cols; i++) {
s += strlen(s) + 1;
}
old_len = s - col_names;
} else {
old_len = 0;
}
new_len = strlen(name) + 1;
total_len = old_len + new_len;
res = static_cast<char*>(mem_heap_alloc(heap, total_len));
if (old_len > 0) {
memcpy(res, col_names, old_len);
}
memcpy(res + old_len, name, new_len);
return(res);
}
/**********************************************************************//**
Adds a column definition to a table. */
void
dict_mem_table_add_col(
/*===================*/
dict_table_t* table, /*!< in: table */
mem_heap_t* heap, /*!< in: temporary memory heap, or NULL */
const char* name, /*!< in: column name, or NULL */
ulint mtype, /*!< in: main datatype */
ulint prtype, /*!< in: precise type */
ulint len) /*!< in: precision */
{
dict_col_t* col;
ulint i;
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_ad(!heap == !name);
ut_ad(!(prtype & DATA_VIRTUAL));
i = table->n_def++;
table->n_t_def++;
if (name) {
if (table->n_def == table->n_cols) {
heap = table->heap;
}
if (i && !table->col_names) {
/* All preceding column names are empty. */
char* s = static_cast<char*>(
mem_heap_zalloc(heap, table->n_def));
table->col_names = s;
}
table->col_names = dict_add_col_name(table->col_names,
i, name, heap);
}
col = dict_table_get_nth_col(table, i);
dict_mem_fill_column_struct(col, i, mtype, prtype, len);
}
/** Adds a virtual column definition to a table.
@param[in,out] table table
@param[in,out] heap temporary memory heap, or NULL. It is
used to store name when we have not finished
adding all columns. When all columns are
added, the whole name will copy to memory from
table->heap
@param[in] name column name
@param[in] mtype main datatype
@param[in] prtype precise type
@param[in] len length
@param[in] pos position in a table
@param[in] num_base number of base columns
@return the virtual column definition */
dict_v_col_t*
dict_mem_table_add_v_col(
dict_table_t* table,
mem_heap_t* heap,
const char* name,
ulint mtype,
ulint prtype,
ulint len,
ulint pos,
ulint num_base)
{
dict_v_col_t* v_col;
ulint i;
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_ad(!heap == !name);
ut_ad(prtype & DATA_VIRTUAL);
i = table->n_v_def++;
table->n_t_def++;
if (name != NULL) {
if (table->n_v_def == table->n_v_cols) {
heap = table->heap;
}
if (i && !table->v_col_names) {
/* All preceding column names are empty. */
char* s = static_cast<char*>(
mem_heap_zalloc(heap, table->n_v_def));
table->v_col_names = s;
}
table->v_col_names = dict_add_col_name(table->v_col_names,
i, name, heap);
}
v_col = dict_table_get_nth_v_col(table, i);
dict_mem_fill_column_struct(&v_col->m_col, pos, mtype, prtype, len);
v_col->v_pos = i;
if (num_base != 0) {
v_col->base_col = static_cast<dict_col_t**>(mem_heap_zalloc(
table->heap, num_base * sizeof(
*v_col->base_col)));
} else {
v_col->base_col = NULL;
}
v_col->num_base = num_base;
/* Initialize the index list for virtual columns */
v_col->v_indexes = UT_NEW_NOKEY(dict_v_idx_list());
return(v_col);
}
/** Adds a stored column definition to a table.
@param[in] table table
@param[in] num_base number of base columns. */
void
dict_mem_table_add_s_col(
dict_table_t* table,
ulint num_base)
{
ulint i = table->n_def - 1;
dict_col_t* col = dict_table_get_nth_col(table, i);
dict_s_col_t s_col;
ut_ad(col != NULL);
if (table->s_cols == NULL) {
table->s_cols = UT_NEW_NOKEY(dict_s_col_list());
}
s_col.m_col = col;
s_col.s_pos = i + table->n_v_def;
if (num_base != 0) {
s_col.base_col = static_cast<dict_col_t**>(mem_heap_zalloc(
table->heap, num_base * sizeof(dict_col_t*)));
} else {
s_col.base_col = NULL;
}
s_col.num_base = num_base;
table->s_cols->push_back(s_col);
}
/**********************************************************************//**
Renames a column of a table in the data dictionary cache. */
static MY_ATTRIBUTE((nonnull))
void
dict_mem_table_col_rename_low(
/*==========================*/
dict_table_t* table, /*!< in/out: table */
unsigned i, /*!< in: column offset corresponding to s */
const char* to, /*!< in: new column name */
const char* s, /*!< in: pointer to table->col_names */
bool is_virtual)
/*!< in: if this is a virtual column */
{
char* t_col_names = const_cast<char*>(
is_virtual ? table->v_col_names : table->col_names);
ulint n_col = is_virtual ? table->n_v_def : table->n_def;
size_t from_len = strlen(s), to_len = strlen(to);
ut_ad(i < table->n_def || is_virtual);
ut_ad(i < table->n_v_def || !is_virtual);
ut_ad(from_len <= NAME_LEN);
ut_ad(to_len <= NAME_LEN);
if (from_len == to_len) {
/* The easy case: simply replace the column name in
table->col_names. */
strcpy(const_cast<char*>(s), to);
} else {
/* We need to adjust all affected index->field
pointers, as in dict_index_add_col(). First, copy
table->col_names. */
ulint prefix_len = s - t_col_names;
for (; i < n_col; i++) {
s += strlen(s) + 1;
}
ulint full_len = s - t_col_names;
char* col_names;
if (to_len > from_len) {
col_names = static_cast<char*>(
mem_heap_alloc(
table->heap,
full_len + to_len - from_len));
memcpy(col_names, t_col_names, prefix_len);
} else {
col_names = const_cast<char*>(t_col_names);
}
memcpy(col_names + prefix_len, to, to_len);
memmove(col_names + prefix_len + to_len,
t_col_names + (prefix_len + from_len),
full_len - (prefix_len + from_len));
/* Replace the field names in every index. */
for (dict_index_t* index = dict_table_get_first_index(table);
index != NULL;
index = dict_table_get_next_index(index)) {
ulint n_fields = dict_index_get_n_fields(index);
for (ulint i = 0; i < n_fields; i++) {
dict_field_t* field
= dict_index_get_nth_field(
index, i);
/* if is_virtual and that in field->col does
not match, continue */
if ((!is_virtual) !=
(!dict_col_is_virtual(field->col))) {
continue;
}
ulint name_ofs
= field->name - t_col_names;
if (name_ofs <= prefix_len) {
field->name = col_names + name_ofs;
} else {
ut_a(name_ofs < full_len);
field->name = col_names
+ name_ofs + to_len - from_len;
}
}
}
if (is_virtual) {
table->v_col_names = col_names;
} else {
table->col_names = col_names;
}
}
/* Virtual columns are not allowed for foreign key */
if (is_virtual) {
return;
}
dict_foreign_t* foreign;
/* Replace the field names in every foreign key constraint. */
for (dict_foreign_set::iterator it = table->foreign_set.begin();
it != table->foreign_set.end();
++it) {
foreign = *it;
for (unsigned f = 0; f < foreign->n_fields; f++) {
/* These can point straight to
table->col_names, because the foreign key
constraints will be freed at the same time
when the table object is freed. */
foreign->foreign_col_names[f]
= dict_index_get_nth_field(
foreign->foreign_index, f)->name;
}
}
for (dict_foreign_set::iterator it = table->referenced_set.begin();
it != table->referenced_set.end();
++it) {
foreign = *it;
for (unsigned f = 0; f < foreign->n_fields; f++) {
/* foreign->referenced_col_names[] need to be
copies, because the constraint may become
orphan when foreign_key_checks=0 and the
parent table is dropped. */
const char* col_name = dict_index_get_nth_field(
foreign->referenced_index, f)->name;
if (strcmp(foreign->referenced_col_names[f],
col_name)) {
char** rc = const_cast<char**>(
foreign->referenced_col_names + f);
size_t col_name_len_1 = strlen(col_name) + 1;
if (col_name_len_1 <= strlen(*rc) + 1) {
memcpy(*rc, col_name, col_name_len_1);
} else {
*rc = static_cast<char*>(
mem_heap_dup(
foreign->heap,
col_name,
col_name_len_1));
}
}
}
}
}
/**********************************************************************//**
Renames a column of a table in the data dictionary cache. */
void
dict_mem_table_col_rename(
/*======================*/
dict_table_t* table, /*!< in/out: table */
ulint nth_col,/*!< in: column index */
const char* from, /*!< in: old column name */
const char* to, /*!< in: new column name */
bool is_virtual)
/*!< in: if this is a virtual column */
{
const char* s = is_virtual ? table->v_col_names : table->col_names;
ut_ad((!is_virtual && nth_col < table->n_def)
|| (is_virtual && nth_col < table->n_v_def));
for (ulint i = 0; i < nth_col; i++) {
size_t len = strlen(s);
ut_ad(len > 0);
s += len + 1;
}
/* This could fail if the data dictionaries are out of sync.
Proceed with the renaming anyway. */
ut_ad(!strcmp(from, s));
dict_mem_table_col_rename_low(table, static_cast<unsigned>(nth_col),
to, s, is_virtual);
}
/**********************************************************************//**
This function populates a dict_col_t memory structure with
supplied information. */
void
dict_mem_fill_column_struct(
/*========================*/
dict_col_t* column, /*!< out: column struct to be
filled */
ulint col_pos, /*!< in: column position */
ulint mtype, /*!< in: main data type */
ulint prtype, /*!< in: precise type */
ulint col_len) /*!< in: column length */
{
ulint mbminlen;
ulint mbmaxlen;
column->ind = (unsigned int) col_pos;
column->ord_part = 0;
column->max_prefix = 0;
column->mtype = (unsigned int) mtype;
column->prtype = (unsigned int) prtype;
column->len = (unsigned int) col_len;
dtype_get_mblen(mtype, prtype, &mbminlen, &mbmaxlen);
dict_col_set_mbminmaxlen(column, mbminlen, mbmaxlen);
}
/**********************************************************************//**
Creates an index memory object.
@return own: index object */
dict_index_t*
dict_mem_index_create(
/*==================*/
const char* table_name, /*!< in: table name */
const char* index_name, /*!< in: index name */
ulint space, /*!< in: space where the index tree is
placed, ignored if the index is of
the clustered type */
ulint type, /*!< in: DICT_UNIQUE,
DICT_CLUSTERED, ... ORed */
ulint n_fields) /*!< in: number of fields */
{
dict_index_t* index;
mem_heap_t* heap;
ut_ad(table_name && index_name);
heap = mem_heap_create(DICT_HEAP_SIZE);
index = static_cast<dict_index_t*>(
mem_heap_zalloc(heap, sizeof(*index)));
dict_mem_fill_index_struct(index, heap, table_name, index_name,
space, type, n_fields);
dict_index_zip_pad_mutex_create_lazy(index);
if (type & DICT_SPATIAL) {
mutex_create(LATCH_ID_RTR_SSN_MUTEX, &index->rtr_ssn.mutex);
index->rtr_track = static_cast<rtr_info_track_t*>(
mem_heap_alloc(
heap,
sizeof(*index->rtr_track)));
mutex_create(LATCH_ID_RTR_ACTIVE_MUTEX,
&index->rtr_track->rtr_active_mutex);
index->rtr_track->rtr_active = UT_NEW_NOKEY(rtr_info_active());
}
return(index);
}
/**********************************************************************//**
Creates and initializes a foreign constraint memory object.
@return own: foreign constraint struct */
dict_foreign_t*
dict_mem_foreign_create(void)
/*=========================*/
{
dict_foreign_t* foreign;
mem_heap_t* heap;
DBUG_ENTER("dict_mem_foreign_create");
heap = mem_heap_create(100);
foreign = static_cast<dict_foreign_t*>(
mem_heap_zalloc(heap, sizeof(dict_foreign_t)));
foreign->heap = heap;
foreign->v_cols = NULL;
DBUG_PRINT("dict_mem_foreign_create", ("heap: %p", heap));
DBUG_RETURN(foreign);
}
/**********************************************************************//**
Sets the foreign_table_name_lookup pointer based on the value of
lower_case_table_names. If that is 0 or 1, foreign_table_name_lookup
will point to foreign_table_name. If 2, then another string is
allocated from foreign->heap and set to lower case. */
void
dict_mem_foreign_table_name_lookup_set(
/*===================================*/
dict_foreign_t* foreign, /*!< in/out: foreign struct */
ibool do_alloc) /*!< in: is an alloc needed */
{
if (innobase_get_lower_case_table_names() == 2) {
if (do_alloc) {
ulint len;
len = strlen(foreign->foreign_table_name) + 1;
foreign->foreign_table_name_lookup =
static_cast<char*>(
mem_heap_alloc(foreign->heap, len));
}
strcpy(foreign->foreign_table_name_lookup,
foreign->foreign_table_name);
innobase_casedn_str(foreign->foreign_table_name_lookup);
} else {
foreign->foreign_table_name_lookup
= foreign->foreign_table_name;
}
}
/**********************************************************************//**
Sets the referenced_table_name_lookup pointer based on the value of
lower_case_table_names. If that is 0 or 1, referenced_table_name_lookup
will point to referenced_table_name. If 2, then another string is
allocated from foreign->heap and set to lower case. */
void
dict_mem_referenced_table_name_lookup_set(
/*======================================*/
dict_foreign_t* foreign, /*!< in/out: foreign struct */
ibool do_alloc) /*!< in: is an alloc needed */
{
if (innobase_get_lower_case_table_names() == 2) {
if (do_alloc) {
ulint len;
len = strlen(foreign->referenced_table_name) + 1;
foreign->referenced_table_name_lookup =
static_cast<char*>(
mem_heap_alloc(foreign->heap, len));
}
strcpy(foreign->referenced_table_name_lookup,
foreign->referenced_table_name);
innobase_casedn_str(foreign->referenced_table_name_lookup);
} else {
foreign->referenced_table_name_lookup
= foreign->referenced_table_name;
}
}
/** Fill the virtual column set with virtual column information
present in the given virtual index.
@param[in] index virtual index
@param[out] v_cols virtual column set. */
static
void
dict_mem_fill_vcol_has_index(
const dict_index_t* index,
dict_vcol_set** v_cols)
{
for (ulint i = 0; i < index->table->n_v_cols; i++) {
dict_v_col_t* v_col = dict_table_get_nth_v_col(
index->table, i);
if (!v_col->m_col.ord_part) {
continue;
}
dict_v_idx_list::iterator it;
for (it = v_col->v_indexes->begin();
it != v_col->v_indexes->end(); ++it) {
dict_v_idx_t v_idx = *it;
if (v_idx.index != index) {
continue;
}
if (*v_cols == NULL) {
*v_cols = UT_NEW_NOKEY(dict_vcol_set());
}
(*v_cols)->insert(v_col);
}
}
}
/** Fill the virtual column set with the virtual column of the index
if the index contains given column name.
@param[in] col_name column name
@param[in] table innodb table object
@param[out] v_cols set of virtual column information. */
static
void
dict_mem_fill_vcol_from_v_indexes(
const char* col_name,
const dict_table_t* table,
dict_vcol_set** v_cols)
{
/* virtual column can't be Primary Key, so start with
secondary index */
for (dict_index_t* index = dict_table_get_next_index(
dict_table_get_first_index(table));
index;
index = dict_table_get_next_index(index)) {
/* Skip if the index have newly added
virtual column because field name is NULL.
Later virtual column set will be
refreshed during loading of table. */
if (!dict_index_has_virtual(index)
|| index->has_new_v_col) {
continue;
}
for (ulint i = 0; i < index->n_fields; i++) {
dict_field_t* field =
dict_index_get_nth_field(index, i);
if (strcmp(field->name, col_name) == 0) {
dict_mem_fill_vcol_has_index(
index, v_cols);
}
}
}
}
/** Fill the virtual column set with virtual columns which have base columns
as the given col_name
@param[in] col_name column name
@param[in] table table object
@param[out] v_cols set of virtual columns. */
static
void
dict_mem_fill_vcol_set_for_base_col(
const char* col_name,
const dict_table_t* table,
dict_vcol_set** v_cols)
{
for (ulint i = 0; i < table->n_v_cols; i++) {
dict_v_col_t* v_col = dict_table_get_nth_v_col(table, i);
if (!v_col->m_col.ord_part) {
continue;
}
for (ulint j = 0; j < v_col->num_base; j++) {
if (strcmp(col_name, dict_table_get_col_name(
table,
v_col->base_col[j]->ind)) == 0) {
if (*v_cols == NULL) {
*v_cols = UT_NEW_NOKEY(dict_vcol_set());
}
(*v_cols)->insert(v_col);
}
}
}
}
/** Fills the dependent virtual columns in a set.
Reason for being dependent are
1) FK can be present on base column of virtual columns
2) FK can be present on column which is a part of virtual index
@param[in,out] foreign foreign key information. */
void
dict_mem_foreign_fill_vcol_set(
dict_foreign_t* foreign)
{
ulint type = foreign->type;
if (type == 0) {
return;
}
for (ulint i = 0; i < foreign->n_fields; i++) {
/** FK can be present on base columns
of virtual columns. */
dict_mem_fill_vcol_set_for_base_col(
foreign->foreign_col_names[i],
foreign->foreign_table,
&foreign->v_cols);
/** FK can be present on the columns
which can be a part of virtual index. */
dict_mem_fill_vcol_from_v_indexes(
foreign->foreign_col_names[i],
foreign->foreign_table,
&foreign->v_cols);
}
}
/** Fill virtual columns set in each fk constraint present in the table.
@param[in,out] table innodb table object. */
void
dict_mem_table_fill_foreign_vcol_set(
dict_table_t* table)
{
dict_foreign_set fk_set = table->foreign_set;
dict_foreign_t* foreign;
dict_foreign_set::iterator it;
for (it = fk_set.begin(); it != fk_set.end(); ++it) {
foreign = *it;
dict_mem_foreign_fill_vcol_set(foreign);
}
}
/** Free the vcol_set from all foreign key constraint on the table.
@param[in,out] table innodb table object. */
void
dict_mem_table_free_foreign_vcol_set(
dict_table_t* table)
{
dict_foreign_set fk_set = table->foreign_set;
dict_foreign_t* foreign;
dict_foreign_set::iterator it;
for (it = fk_set.begin(); it != fk_set.end(); ++it) {
foreign = *it;
if (foreign->v_cols != NULL) {
UT_DELETE(foreign->v_cols);
foreign->v_cols = NULL;
}
}
}
/**********************************************************************//**
Adds a field definition to an index. NOTE: does not take a copy
of the column name if the field is a column. The memory occupied
by the column name may be released only after publishing the index. */
void
dict_mem_index_add_field(
/*=====================*/
dict_index_t* index, /*!< in: index */
const char* name, /*!< in: column name */
ulint prefix_len) /*!< in: 0 or the column prefix length
in a MySQL index like
INDEX (textcol(25)) */
{
dict_field_t* field;
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
index->n_def++;
field = dict_index_get_nth_field(index, index->n_def - 1);
field->name = name;
field->prefix_len = (unsigned int) prefix_len;
}
/**********************************************************************//**
Frees an index memory object. */
void
dict_mem_index_free(
/*================*/
dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
dict_index_zip_pad_mutex_destroy(index);
if (dict_index_is_spatial(index)) {
rtr_info_active::iterator it;
rtr_info_t* rtr_info;
for (it = index->rtr_track->rtr_active->begin();
it != index->rtr_track->rtr_active->end(); ++it) {
rtr_info = *it;
rtr_info->index = NULL;
}
mutex_destroy(&index->rtr_ssn.mutex);
mutex_destroy(&index->rtr_track->rtr_active_mutex);
UT_DELETE(index->rtr_track->rtr_active);
}
mem_heap_free(index->heap);
}
/** Create a temporary tablename like "#sql-ibtid-inc where
tid = the Table ID
inc = a randomly initialized number that is incremented for each file
The table ID is a 64 bit integer, can use up to 20 digits, and is
initialized at bootstrap. The second number is 32 bits, can use up to 10
digits, and is initialized at startup to a randomly distributed number.
It is hoped that the combination of these two numbers will provide a
reasonably unique temporary file name.
@param[in] heap A memory heap
@param[in] dbtab Table name in the form database/table name
@param[in] id Table id
@return A unique temporary tablename suitable for InnoDB use */
char*
dict_mem_create_temporary_tablename(
mem_heap_t* heap,
const char* dbtab,
table_id_t id)
{
size_t size;
char* name;
const char* dbend = strchr(dbtab, '/');
ut_ad(dbend);
size_t dblen = dbend - dbtab + 1;
/* Increment a randomly initialized number for each temp file. */
my_atomic_add32((int32*) &dict_temp_file_num, 1);
size = dblen + (sizeof(TEMP_FILE_PREFIX) + 3 + 20 + 1 + 10);
name = static_cast<char*>(mem_heap_alloc(heap, size));
memcpy(name, dbtab, dblen);
ut_snprintf(name + dblen, size - dblen,
TEMP_FILE_PREFIX_INNODB UINT64PF "-" UINT32PF,
id, dict_temp_file_num);
return(name);
}
/** Initialize dict memory variables */
void
dict_mem_init(void)
{
/* Initialize a randomly distributed temporary file number */
ib_uint32_t now = static_cast<ib_uint32_t>(ut_time());
const byte* buf = reinterpret_cast<const byte*>(&now);
dict_temp_file_num = ut_crc32(buf, sizeof(now));
DBUG_PRINT("dict_mem_init",
("Starting Temporary file number is " UINT32PF,
dict_temp_file_num));
}
/** Validate the search order in the foreign key set.
@param[in] fk_set the foreign key set to be validated
@return true if search order is fine in the set, false otherwise. */
bool
dict_foreign_set_validate(
const dict_foreign_set& fk_set)
{
dict_foreign_not_exists not_exists(fk_set);
dict_foreign_set::const_iterator it = std::find_if(
fk_set.begin(), fk_set.end(), not_exists);
if (it == fk_set.end()) {
return(true);
}
dict_foreign_t* foreign = *it;
std::cerr << "Foreign key lookup failed: " << *foreign;
std::cerr << fk_set;
ut_ad(0);
return(false);
}
/** Validate the search order in the foreign key sets of the table
(foreign_set and referenced_set).
@param[in] table table whose foreign key sets are to be validated
@return true if foreign key sets are fine, false otherwise. */
bool
dict_foreign_set_validate(
const dict_table_t& table)
{
return(dict_foreign_set_validate(table.foreign_set)
&& dict_foreign_set_validate(table.referenced_set));
}
std::ostream&
operator<< (std::ostream& out, const dict_foreign_t& foreign)
{
out << "[dict_foreign_t: id='" << foreign.id << "'";
if (foreign.foreign_table_name != NULL) {
out << ",for: '" << foreign.foreign_table_name << "'";
}
out << "]";
return(out);
}
std::ostream&
operator<< (std::ostream& out, const dict_foreign_set& fk_set)
{
out << "[dict_foreign_set:";
std::for_each(fk_set.begin(), fk_set.end(), dict_foreign_print(out));
out << "]" << std::endl;
return(out);
}
/****************************************************************//**
Determines if a table belongs to a system database
@return */
bool
dict_mem_table_is_system(
/*================*/
char *name) /*!< in: table name */
{
ut_ad(name);
/* table has the following format: database/table
and some system table are of the form SYS_* */
if (strchr(name, '/')) {
size_t table_len = strlen(name);
const char *system_db;
int i = 0;
while ((system_db = innobase_system_databases[i++])
&& (system_db != NullS)) {
size_t len = strlen(system_db);
if (table_len > len && !strncmp(name, system_db, len)) {
return true;
}
}
return false;
} else {
return true;
}
}