mariadb/sql/ha_ndbcluster.cc
Konstantin Osipov eff3780dd8 Initial import of WL#3726 "DDL locking for all metadata objects".
Backport of:
------------------------------------------------------------
revno: 2630.4.1
committer: Dmitry Lenev <dlenev@mysql.com>
branch nick: mysql-6.0-3726-w
timestamp: Fri 2008-05-23 17:54:03 +0400
message:
  WL#3726 "DDL locking for all metadata objects".

  After review fixes in progress.
------------------------------------------------------------

This is the first patch in series. It transforms the metadata 
locking subsystem to use a dedicated module (mdl.h,cc). No 
significant changes in the locking protocol. 
The import passes the test suite with the exception of 
deprecated/removed 6.0 features, and MERGE tables. The latter
are subject to a fix by WL#4144.
Unfortunately, the original changeset comments got lost in a merge,
thus this import has its own (largely insufficient) comments.

This patch fixes Bug#25144 "replication / binlog with view breaks".
Warning: this patch introduces an incompatible change:
Under LOCK TABLES, it's no longer possible to FLUSH a table that 
was not locked for WRITE.
Under LOCK TABLES, it's no longer possible to DROP a table or
VIEW that was not locked for WRITE.

******
Backport of:
------------------------------------------------------------
revno: 2630.4.2
committer: Dmitry Lenev <dlenev@mysql.com>
branch nick: mysql-6.0-3726-w
timestamp: Sat 2008-05-24 14:03:45 +0400
message:
  WL#3726 "DDL locking for all metadata objects".

  After review fixes in progress.

******
Backport of:
------------------------------------------------------------
revno: 2630.4.3
committer: Dmitry Lenev <dlenev@mysql.com>
branch nick: mysql-6.0-3726-w
timestamp: Sat 2008-05-24 14:08:51 +0400
message:
  WL#3726 "DDL locking for all metadata objects"

  Fixed failing Windows builds by adding mdl.cc to the lists
  of files needed to build server/libmysqld on Windows.

******
Backport of:
------------------------------------------------------------
revno: 2630.4.4
committer: Dmitry Lenev <dlenev@mysql.com>
branch nick: mysql-6.0-3726-w
timestamp: Sat 2008-05-24 21:57:58 +0400
message:
  WL#3726 "DDL locking for all metadata objects".

  Fix for assert failures in kill.test which occured when one
  tried to kill ALTER TABLE statement on merge table while it
  was waiting in wait_while_table_is_used() for other connections
  to close this table.

  These assert failures stemmed from the fact that cleanup code
  in this case assumed that temporary table representing new
  version of table was open with adding to THD::temporary_tables
  list while code which were opening this temporary table wasn't
  always fulfilling this.

  This patch changes code that opens new version of table to
  always do this linking in. It also streamlines cleanup process
  for cases when error occurs while we have new version of table
  open.

******
WL#3726 "DDL locking for all metadata objects"
Add libmysqld/mdl.cc to .bzrignore.
******
Backport of:
------------------------------------------------------------
revno: 2630.4.6
committer: Dmitry Lenev <dlenev@mysql.com>
branch nick: mysql-6.0-3726-w
timestamp: Sun 2008-05-25 00:33:22 +0400
message:
  WL#3726 "DDL locking for all metadata objects".

  Addition to the fix of assert failures in kill.test caused by
  changes for this worklog.


Make sure we close the new table only once.

.bzrignore:
  Add libmysqld/mdl.cc
libmysqld/CMakeLists.txt:
  Added mdl.cc to the list of files needed for building of libmysqld.
libmysqld/Makefile.am:
  Added files implementing new meta-data locking subsystem to the server.
mysql-test/include/handler.inc:
  Use separate connection for waiting while threads performing DDL
  operations conflicting with open HANDLER tables reach blocked
  state. This is required because now we check and close tables open
  by HANDLER statements in this connection conflicting with DDL in
  another each time open_tables() is called and thus select from I_S
  which is used for waiting will unblock DDL operations if issued
  from connection with open HANDLERs.
mysql-test/r/create.result:
  Adjusted test case after change in implementation of CREATE TABLE
  ... SELECT.  We no longer have special check in open_table() which
  catches the case when we select from the table created. Instead we
  rely on unique_table() call which happens after opening and
  locking all tables.
mysql-test/r/flush.result:
  FLUSH TABLES WITH READ LOCK can no longer happen under LOCK
  TABLES.  Updated test accordingly.
mysql-test/r/flush_table.result:
  Under LOCK TABLES we no longer allow to do FLUSH TABLES for tables
  locked for read. Updated test accordingly.
mysql-test/r/handler_innodb.result:
  Use separate connection for waiting while threads performing DDL
  operations conflicting with open HANDLER tables reach blocked
  state. This is required because now we check and close tables open
  by HANDLER statements in this connection conflicting with DDL in
  another each time open_tables() is called and thus select from I_S
  which is used for waiting will unblock DDL operations if issued
  from connection with open HANDLERs.
mysql-test/r/handler_myisam.result:
  Use separate connection for waiting while threads performing DDL
  operations conflicting with open HANDLER tables reach blocked
  state. This is required because now we check and close tables open
  by HANDLER statements in this connection conflicting with DDL in
  another each time open_tables() is called and thus select from I_S
  which is used for waiting will unblock DDL operations if issued
  from connection with open HANDLERs.
mysql-test/r/information_schema.result:
  Additional test for WL#3726 "DDL locking for all metadata
  objects".  Check that we use high-priority metadata lock requests
  when filling I_S tables.
  
  Rearrange tests to match 6.0 better (fewer merge conflicts).
mysql-test/r/kill.result:
  Added tests checking that DDL and DML statements waiting for
  metadata locks can be interrupted by KILL command.
mysql-test/r/lock.result:
  One no longer is allowed to do DROP VIEW under LOCK TABLES even if
  this view is locked by LOCK TABLES. The problem is that in such
  situation write locks on view are not mutually exclusive so
  upgrading metadata lock which is required for dropping of view
  will lead to deadlock.
mysql-test/r/partition_column_prune.result:
  Update results (same results in 6.0), WL#3726
mysql-test/r/partition_pruning.result:
  Update results (same results in 6.0), WL#3726
mysql-test/r/ps_ddl.result:
  We no longer invalidate prepared CREATE TABLE ... SELECT statement
  if target table changes. This is OK since it is not strictly
  necessary.
  
  
  The first change is wrong, is caused by FLUSH TABLE
  now flushing all unused tables. This is a regression that
  Dmitri fixed in 6.0 in a follow up patch.
mysql-test/r/sp.result:
  Under LOCK TABLES we no longer allow accessing views which were
  not explicitly locked. To access view we need to obtain metadata
  lock on it and doing this under LOCK TABLES may lead to deadlocks.
mysql-test/r/view.result:
  One no longer is allowed to do DROP VIEW under LOCK TABLES even if
  this view is locked by LOCK TABLES. The problem is that in such
  situation even "write locks" on view are not mutually exclusive so
  upgrading metadata lock which is required for dropping of view
  will lead to deadlock
mysql-test/r/view_grant.result:
  ALTER VIEW implementation was changed to open a view only after
  checking that user which does alter has appropriate privileges on
  it. This means that in case when user's privileges are
  insufficient for this we won't check that new view definer is the
  same as original one or user performing alter has SUPER privilege.
  Adjusted test case accordingly.
mysql-test/r/view_multi.result:
  Added test case for bug#25144 "replication / binlog with view
  breaks".
mysql-test/suite/rpl/t/disabled.def:
  Disable test for deprecated features (they don't work with new MDL).
mysql-test/t/create.test:
  Adjusted test case after change in implementation of CREATE TABLE
  ... SELECT.  We no longer have special check in open_table() which
  catches the case when we select from the table created. Instead we
  rely on unique_table() call which happens after opening and
  locking all tables.
mysql-test/t/disabled.def:
  Disable merge.test, subject of WL#4144
mysql-test/t/flush.test:
  
  FLUSH TABLES WITH READ LOCK can no longer happen under LOCK
  TABLES.  Updated test accordingly.
mysql-test/t/flush_table.test:
  Under LOCK TABLES we no longer allow to do FLUSH TABLES for tables
  locked for read. Updated test accordingly.
mysql-test/t/information_schema.test:
  Additional test for WL#3726 "DDL locking for all metadata
  objects".  Check that we use high-priority metadata lock requests
  when filling I_S tables.
  
  Rearrange the results for easier merges with 6.0.
mysql-test/t/kill.test:
  Added tests checking that DDL and DML statements waiting for
  metadata locks can be interrupted by KILL command.
mysql-test/t/lock.test:
  One no longer is allowed to do DROP VIEW under LOCK TABLES even if
  this view is locked by LOCK TABLES. The problem is that in such
  situation write locks on view are not mutually exclusive so
  upgrading metadata lock which is required for dropping of view
  will lead to deadlock.
mysql-test/t/lock_multi.test:
  Adjusted test case to the changes of status in various places
  caused by change in implementation FLUSH TABLES WITH READ LOCK,
  which is now takes global metadata lock before flushing tables and
  therefore waits on at these places.
mysql-test/t/ps_ddl.test:
  We no longer invalidate prepared CREATE TABLE ... SELECT statement
  if target table changes. This is OK since it is not strictly
  necessary.
  
  
  The first change is wrong, is caused by FLUSH TABLE
  now flushing all unused tables. This is a regression that
  Dmitri fixed in 6.0 in a follow up patch.
mysql-test/t/sp.test:
  Under LOCK TABLES we no longer allow accessing views which were
  not explicitly locked. To access view we need to obtain metadata
  lock on it and doing this under LOCK TABLES may lead to deadlocks.
mysql-test/t/trigger_notembedded.test:
  Adjusted test case to the changes of status in various places
  caused by change in implementation FLUSH TABLES WITH READ LOCK,
  which is now takes global metadata lock before flushing tables and
  therefore waits on at these places.
mysql-test/t/view.test:
  One no longer is allowed to do DROP VIEW under LOCK TABLES even if
  this view is locked by LOCK TABLES. The problem is that in such
  situation even "write locks" on view are not mutually exclusive so
  upgrading metadata lock which is required for dropping of view
  will lead to deadlock.
mysql-test/t/view_grant.test:
  ALTER VIEW implementation was changed to open a view only after
  checking that user which does alter has appropriate privileges on
  it. This means that in case when user's privileges are
  insufficient for this we won't check that new view definer is the
  same as original one or user performing alter has SUPER privilege.
  Adjusted test case accordingly.
mysql-test/t/view_multi.test:
  Added test case for bug#25144 "replication / binlog with view
  breaks".
sql/CMakeLists.txt:
  Added mdl.cc to the list of files needed for building of server.
sql/Makefile.am:
  Added files implementing new meta-data locking subsystem to the
  server.
sql/event_db_repository.cc:
  
  Allocate metadata lock requests objects (MDL_LOCK) on execution
  memory root in cases when TABLE_LIST objects is also allocated
  there or on stack.
sql/ha_ndbcluster.cc:
  Adjusted code to work nicely with new metadata locking subsystem.
  close_cached_tables() no longer has wait_for_placeholder argument.
  Instead of relying on this parameter and related behavior FLUSH
  TABLES WITH READ LOCK now takes global shared metadata lock.
sql/ha_ndbcluster_binlog.cc:
  Adjusted code to work with new metadata locking subsystem.
  close_cached_tables() no longer has wait_for_placeholder argument.
  Instead of relying on this parameter and related behavior FLUSH
  TABLES WITH READ LOCK now takes global shared metadata lock.
sql/handler.cc:
  update_frm_version():
    Directly update TABLE_SHARE::mysql_version member instead of
    going through all TABLE instances for this table (old code was a
    legacy from pre-table-definition-cache days).
sql/lock.cc:
  Use new metadata locking subsystem. Threw away most of functions
  related to name locking as now one is supposed to use metadata
  locking API instead.  In lock_global_read_lock() and
  unlock_global_read_lock() in order to avoid problems with global
  read lock sneaking in at the moment when we perform FLUSH TABLES
  or ALTER TABLE under LOCK TABLES and when tables being reopened
  are protected only by metadata locks we also have to take global
  shared meta data lock.
sql/log_event.cc:
  Adjusted code to work with new metadata locking subsystem.  For
  tables open by slave thread for applying RBR events allocate
  memory for lock request object in the same chunk of memory as
  TABLE_LIST objects for them. In order to ensure that we keep these
  objects around until tables are open always close tables before
  calling Relay_log_info::clear_tables_to_lock(). Use new auxiliary
  Relay_log_info::slave_close_thread_tables() method to enforce
  this.
sql/log_event_old.cc:
  Adjusted code to work with new metadata locking subsystem.  Since
  for tables open by slave thread for applying RBR events memory for
  lock request object is allocated in the same chunk of memory as
  TABLE_LIST objects for them we have to ensure that we keep these
  objects around until tables are open. To ensure this we always
  close tables before calling
  Relay_log_info::clear_tables_to_lock(). To enfore this we use
  new auxiliary Relay_log_info::slave_close_thread_tables()
  method.
sql/mdl.cc:
  Implemented new metadata locking subsystem and API described in
  WL3726 "DDL locking for all metadata objects".
sql/mdl.h:
  Implemented new metadata locking subsystem and API described in
  WL3726 "DDL locking for all metadata objects".
sql/mysql_priv.h:
  - close_thread_tables()/close_tables_for_reopen() now has one more
    argument which indicates that metadata locks should be released
    but not removed from the context in order to be used later in
    mdl_wait_for_locks() and tdc_wait_for_old_version().
  - close_cached_table() routine is no longer public.
  - Thread waiting in wait_while_table_is_used() can be now killed
    so this function returns boolean to make caller aware of such
    situation.
  - We no longer have  table cache as separate entity instead used
    and unused TABLE instances are linked to TABLE_SHARE objects in
    table definition cache.
  - Now third argument of open_table() is also used for requesting
    table repair or auto-discovery of table's new definition. So its
    type was changed from bool to enum.
  - Added tdc_open_view() function for opening view by getting its
    definition from disk (and table cache in future).
  - reopen_name_locked_table() no longer needs "link_in" argument as
    now we have exclusive metadata locks instead of dummy TABLE
    instances when this function is called.
  - find_locked_table() now takes head of list of TABLE instances
    instead of always scanning through THD::open_tables list. Also
    added find_write_locked_table() auxiliary.
  - reopen_tables(), close_cached_tables() no longer have
    mark_share_as_old and wait_for_placeholder arguments. Instead of
    relying on this parameters and related behavior FLUSH TABLES
    WITH READ LOCK now takes global shared metadata lock.
  - We no longer need drop_locked_tables() and
    abort_locked_tables().
  - mysql_ha_rm_tables() now always assume that LOCK_open is not
    acquired by caller.
  - Added notify_thread_having_shared_lock() callback invoked by
    metadata locking subsystem when acquiring an exclusive lock, for
    each thread that has a conflicting shared metadata lock.
  - Introduced expel_table_from_cache() as replacement for
    remove_table_from_cache() (the main difference is that this new
    function assumes that caller follows metadata locking protocol
    and never waits).
  - Threw away most of functions related to name locking. One should
    use new metadata locking subsystem and API instead.
sql/mysqld.cc:
  Got rid of call initializing/deinitializing table cache since now
  it is embedded into table definition cache. Added calls for
  initializing/ deinitializing metadata locking subsystem.
sql/rpl_rli.cc:
  Introduced auxiliary Relay_log_info::slave_close_thread_tables()
  method which is used for enforcing that we always close tables
  open for RBR before deallocating TABLE_LIST elements and MDL_LOCK
  objects for them.
sql/rpl_rli.h:
  Introduced auxiliary Relay_log_info::slave_close_thread_tables()
  method which is used for enforcing that we always close tables
  open for RBR before deallocating TABLE_LIST elements and MDL_LOCK
  objects for them.
sql/set_var.cc:
  close_cached_tables() no longer has wait_for_placeholder argument.
  Instead of relying on this parameter and related behavior FLUSH
  TABLES WITH READ LOCK now takes global shared metadata lock.
sql/sp_head.cc:
  For tables added to the statement's table list by prelocking
  algorithm we allocate these objects either on the same memory as
  corresponding table list elements or on THD::locked_tables_root
  (if we are building table list for LOCK TABLES).
sql/sql_acl.cc:
  Allocate metadata lock requests objects (MDL_LOCK) on execution
  memory root in cases when we use stack TABLE_LIST objects to open
  tables.  Got rid of redundant code by using unlock_locked_tables()
  function.
sql/sql_base.cc:
  Changed code to use new MDL subsystem. Got rid of separate table
  cache.  Now used and unused TABLE instances are linked to the
  TABLE_SHAREs in table definition cache.
  
  check_unused():
    Adjusted code to the fact that we no longer have separate table
    cache.  Removed dead code.
  table_def_free():
    Free TABLE instances referenced from TABLE_SHARE objects before
    destroying table definition cache.
  get_table_share():
    Added assert which ensures that noone will be able to access
    table (and its share) without acquiring some kind of metadata
    lock first.
  close_handle_and_leave_table_as_lock():
    Adjusted code to the fact that TABLE instances now are linked to
    list in TABLE_SHARE.
  list_open_tables():
    Changed this function to use table definition cache instead of
    table cache.
  free_cache_entry():
    Unlink freed TABLE elements from the list of all TABLE instances
    for the table in TABLE_SHARE.
  kill_delayed_thread_for_table():
    Added auxiliary for killing delayed insert threads for
    particular table.
  close_cached_tables():
    Got rid of wait_for_refresh argument as we now rely on global
    shared metadata lock to prevent FLUSH WITH READ LOCK sneaking in
    when we are reopening tables. Heavily reworked this function to
    use new MDL code and not to rely on separate table cache entity.
  close_open_tables():
    We no longer have separate table cache.
  close_thread_tables():
    Release metadata locks after closing all tables. Added skip_mdl
    argument which allows us not to remove metadata lock requests
    from the context in case when we are going to use this requests
    later in mdl_wait_for_locks() and tdc_wait_for_old_versions().
  close_thread_table()/close_table_for_reopen():
    Since we no longer have separate table cache and all TABLE
    instances are linked to TABLE_SHARE objects in table definition
    cache we have to link/unlink TABLE object to/from appropriate
    lists in the share.
  name_lock_locked_table():
   Moved redundant code to find_write_locked_table() function and
    adjusted code to the fact that wait_while_table_is_used() can
    now return with an error if our thread is killed.
  reopen_table_entry():
    We no longer need "link_in" argument as with MDL we no longer
    call this function with dummy TABLE object pre-allocated and
    added to the THD::open_tables. Also now we add newly-open TABLE
    instance to the list of share's used TABLE instances.
  table_cache_insert_placeholder():
    Got rid of name-locking legacy.
  lock_table_name_if_not_cached():
    Moved to sql_table.cc the only place where it is used. It was
    also reimplemented using new MDL API.
  open_table():
    - Reworked this function to use new MDL subsystem.
    - Changed code to deal with table definition cache directly
      instead of going through separate table cache.
    - Now third argument is also used for requesting table repair
      or auto-discovery of table's new definition. So its type was
      changed from bool to enum.
  find_locked_table()/find_write_locked_table():
    Accept head of list of TABLE objects as first argument and use
    this list instead of always searching in THD::open_tables list.
    Also added auxiliary for finding write-locked locked tables.
  reopen_table():
    Adjusted function to work with new MDL subsystem and to properly
    manuipulate with lists of used/unused TABLE instaces in
    TABLE_SHARE.
  reopen_tables():
    Removed mark_share_as_old parameter. Instead of relying on it
    and related behavior FLUSH TABLES WITH READ LOCK now takes
    global shared metadata lock. Changed code after removing
    separate table cache.
  drop_locked_tables()/abort_locked_tables():
    Got rid of functions which are no longer needed.
    unlock_locked_tables():
    Moved this function from sql_parse.cc and changed it to release
    memory which was used for allocating metadata lock requests for
    tables open and locked by LOCK TABLES.
  tdc_open_view():
    Intoduced function for opening a view by getting its definition
    from disk (and table cache in future).
  reopen_table_entry():
    Introduced function for opening table definitions while holding
    exclusive metatadata lock on it.
  open_unireg_entry():
   Got rid of this function. Most of its functionality is relocated
    to open_table() and open_table_fini() functions, and some of it
    to reopen_table_entry() and tdc_open_view(). Also code
    resposible for auto-repair and auto-discovery of tables was
    moved to separate function.
  open_table_entry_fini():
    Introduced function which contains common actions which finalize
    process of TABLE object creation.
  auto_repair_table():
    Moved code responsible for auto-repair of table being opened
    here.
  handle_failed_open_table_attempt()
    Moved code responsible for handling failing attempt to open
    table to one place (retry due to lock conflict/old version,
    auto-discovery and repair).
  open_tables():
    - Flush open HANDLER tables if they have old version of if there
      is conflicting metadata lock against them (before this moment
      we had this code in open_table()).
    - When we open view which should be processed via derived table
      on the second execution of prepared statement or stored
      routine we still should call open_table() for it in order to
      obtain metadata lock on it and prepare its security context.
    - In cases when we discover that some special handling of
      failure to open table is needed call
      handle_failed_open_table_attempt() which handles all such
      scenarios.
  open_ltable():
    Handling of various special scenarios of failure to open a table
    was moved to separate handle_failed_open_table_attempt()
    function.
  remove_db_from_cache():
    Removed this function as it is no longer used.
  notify_thread_having_shared_lock():
    Added callback which is invoked by MDL subsystem when acquiring
    an exclusive lock, for each thread that has a conflicting shared
    metadata lock.
  expel_table_from_cache():
    Introduced function for removing unused TABLE instances. Unlike
    remove_table_from_cache() it relies on caller following MDL
    protocol and having appropriate locks when calling it and thus
    does not do any waiting if table is still in use.
  tdc_wait_for_old_version():
    Added function which allows open_tables() to wait in cases when
    we discover that we should back-off due to presence of old
    version of table.
  abort_and_upgrade_lock():
    Use new MDL calls.
  mysql_wait_completed_table():
    Got rid of unused function.
  open_system_tables_for_read/for_update()/performance_schema_table():
    Allocate MDL_LOCK objects on execution memory root in cases when
    TABLE_LIST objects for corresponding tables is allocated on
    stack.
  close_performance_schema_table():
    Release metadata locks after closing tables.
  ******
  Use I_P_List for free/used tables list in the table share.
sql/sql_binlog.cc:
  Use Relay_log_info::slave_close_thread_tables() method to enforce
  that we always close tables open for RBR before deallocating
  TABLE_LIST elements and MDL_LOCK objects for them.
sql/sql_class.cc:
  Added meta-data locking contexts as part of Open_tables_state
  context.  Also introduced THD::locked_tables_root memory root
  which is to be used for allocating MDL_LOCK objects for tables in
  LOCK TABLES statement (end of lifetime for such objects is UNLOCK
  TABLES so we can't use statement or execution root for them).
sql/sql_class.h:
  Added meta-data locking contexts as part of Open_tables_state
  context.  Also introduced THD::locked_tables_root memory root
  which is to be used for allocating MDL_LOCK objects for tables in
  LOCK TABLES statement (end of lifetime for such objects is UNLOCK
  TABLES so we can't use statement or execution root for them).
  
  Note: handler_mdl_context and locked_tables_root and
  mdl_el_root will be removed by subsequent patches.
sql/sql_db.cc:
  mysql_rm_db() does not really need to call remove_db_from_cache()
  as it drops each table in the database using
  mysql_rm_table_part2(), which performs all necessary operations on
  table (definition) cache.
sql/sql_delete.cc:
  Use the new metadata locking API for TRUNCATE.
sql/sql_handler.cc:
  Changed HANDLER implementation to use new metadata locking
  subsystem.  Note that MDL_LOCK objects for HANDLER tables are
  allocated in the same chunk of heap memory as TABLE_LIST object
  for those tables.
sql/sql_insert.cc:
  mysql_insert():
    find_locked_table() now takes head of list of TABLE object as
    its argument instead of always scanning through THD::open_tables
    list.
  handle_delayed_insert():
    Allocate metadata lock request object for table open by delayed
    insert thread on execution memroot.  create_table_from_items():
    We no longer allocate dummy TABLE objects for tables being
    created if they don't exist. As consequence
    reopen_name_locked_table() no longer has link_in argument.
    open_table() now has one more argument which is not relevant for
    temporary tables.
sql/sql_parse.cc:
  - Moved unlock_locked_tables() routine to sql_base.cc and made
    available it in other files. Got rid of some redundant code by
    using this function.
  - Replaced boolean TABLE_LIST::create member with enum
    open_table_type member.
  - Use special memory root for allocating MDL_LOCK objects for
    tables open and locked by LOCK TABLES (these object should live
    till UNLOCK TABLES so we can't allocate them on statement nor
    execution memory root). Also properly set metadata lock
    upgradability attribure for those tables.
  - Under LOCK TABLES it is no longer allowed to flush tables which
    are not write-locked as this breaks metadata locking protocol
    and thus potentially might lead to deadlock.
  - Added auxiliary adjust_mdl_locks_upgradability() function.
sql/sql_partition.cc:
  Adjusted code to the fact that reopen_tables() no longer has
  "mark_share_as_old" argument. Got rid of comments which are no
  longer true.
sql/sql_plist.h:
  Added I_P_List template class for parametrized intrusive doubly
  linked lists and I_P_List_iterator for corresponding iterator.
  Unlike for I_List<> list elements of such list can participate in
  several lists. Unlike List<> such lists are doubly-linked and
  intrusive.
sql/sql_plugin.cc:
  Allocate metadata lock requests objects (MDL_LOCK) on execution
  memory root in cases when we use stack TABLE_LIST objects to open
  tables.
sql/sql_prepare.cc:
  Replaced boolean TABLE_LIST::create member with enum
  open_table_type member.  This allows easily handle situation in
  which instead of opening the table we want only to take exclusive
  metadata lock on it.
sql/sql_rename.cc:
  Use new metadata locking subsystem in implementation of RENAME
  TABLE.
sql/sql_servers.cc:
  Allocate metadata lock requests objects (MDL_LOCK) on execution
  memory root in cases when we use stack TABLE_LIST objects to open
  tables. Got rid of redundant code by using unlock_locked_tables()
  function.
sql/sql_show.cc:
  Acquire shared metadata lock when we are getting information for
  I_S table directly from TABLE_SHARE without doing full-blown table
  open.  We use high priority lock request in this situation in
  order to avoid deadlocks.
  Also allocate metadata lock requests objects (MDL_LOCK) on
  execution memory root in cases when TABLE_LIST objects are also
  allocated there
sql/sql_table.cc:
  mysql_rm_table():
    Removed comment which is no longer relevant.
  mysql_rm_table_part2():
    Now caller of mysql_ha_rm_tables() should not own LOCK_open.
    Adjusted code to use new metadata locking subsystem instead of
    name-locks.
  lock_table_name_if_not_cached():
    Moved this function from sql_base.cc to this file and
    reimplemented it using metadata locking API.
  mysql_create_table():
    Adjusted code to use new MDL API.
  wait_while_table_is_used():
    Changed function to use new MDL subsystem. Made thread waiting
    in it killable (this also led to introduction of return value so
    caller can distinguish successful executions from situations
    when waiting was aborted).
  close_cached_tables():
    Thread waiting in this function is killable now. As result it
    has return value for distinguishing between succes and failure.
    Got rid of redundant boradcast_refresh() call.
  prepare_for_repair():
    Use MDL subsystem instead of name-locks.
  mysql_admin_table():
    mysql_ha_rm_tables() now always assumes that caller doesn't own
    LOCK_open.
  mysql_repair_table():
    We should mark all elements of table list as requiring
    upgradable metadata locks.
  mysql_create_table_like():
    Use new MDL subsystem instead of name-locks.
  create_temporary_tables():
    We don't need to obtain metadata locks when creating temporary
    table.
  mysql_fast_or_online_alter_table():
    Thread waiting in wait_while_table_is_used() is now killable.
  mysql_alter_table():
    Adjusted code to work with new MDL subsystem and to the fact
    that threads waiting in what_while_table_is_used() and
    close_cached_table() are now killable.
sql/sql_test.cc:
  We no longer have separate table cache. TABLE instances are now
  associated with/linked to TABLE_SHARE objects in table definition
  cache.
sql/sql_trigger.cc:
  Adjusted code to work with new metadata locking subsystem.  Also
  reopen_tables() no longer has mark_share_as_old argument (Instead
  of relying on this parameter and related behavior FLUSH TABLES
  WITH READ LOCK now takes global shared metadata lock).
sql/sql_udf.cc:
  Allocate metadata lock requests objects (MDL_LOCK) on execution
  memory root in cases when we use stack TABLE_LIST objects to open
  tables.
sql/sql_update.cc:
  Adjusted code to work with new meta-data locking subsystem.
sql/sql_view.cc:
  Added proper meta-data locking to implementations of
  CREATE/ALTER/DROP VIEW statements. Now we obtain exclusive
  meta-data lock on a view before creating/ changing/dropping it.
  This ensures that all concurrent statements that use this view
  will finish before our statement will proceed and therefore we
  will get correct order of statements in the binary log.
  Also ensure that TABLE_LIST::mdl_upgradable attribute is properly
  propagated for underlying tables of view.
sql/table.cc:
  Added auxiliary alloc_mdl_locks() function for allocating metadata
  lock request objects for all elements of table list.
sql/table.h:
  TABLE_SHARE:
    Got rid of unused members. Introduced members for storing lists
    of used and unused TABLE objects for this share.
  TABLE:
    Added members for linking TABLE objects into per-share lists of
    used and unused TABLE instances. Added member for holding
    pointer to metadata lock for this table.
  TABLE_LIST:
    Replaced boolean TABLE_LIST::create member with enum
    open_table_type member.  This allows easily handle situation in
    which instead of opening the table we want only to take
    exclusive meta-data lock on it (we need this in order to handle
    ALTER VIEW and CREATE VIEW statements).
    Introduced new mdl_upgradable member for marking elements of
    table list for which we need to take upgradable shared metadata
    lock instead of plain shared metadata lock.  Added pointer for
    holding pointer to MDL_LOCK for the table.
  Added auxiliary alloc_mdl_locks() function for allocating metadata
  lock requests objects for all elements of table list.  Added
  auxiliary set_all_mdl_upgradable() function for marking all
  elements in table list as requiring upgradable metadata locks.
storage/myisammrg/ha_myisammrg.cc:
  Allocate MDL_LOCK objects for underlying tables of MERGE table.
  To be reworked once Ingo pushes his patch for WL4144.
2009-11-30 18:55:03 +03:00

10678 lines
304 KiB
C++

/* Copyright (C) 2000-2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
@file
@brief
This file defines the NDB Cluster handler: the interface between
MySQL and NDB Cluster
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include "rpl_mi.h"
/*
There is an incompatibility between GNU ar and the Solaris linker
which makes the Solaris linker return an elf error when compiling
without NDB support (which makes libndb.a an empty library).
To avoid this we add a dummy declaration of a static variable
which makes us avoid this bug.
*/
int ha_ndb_dummy;
#include <my_dir.h>
#ifdef WITH_NDBCLUSTER_STORAGE_ENGINE
#include "ha_ndbcluster.h"
#include <ndbapi/NdbApi.hpp>
#include "ha_ndbcluster_cond.h"
#include <../util/Bitmask.hpp>
#include <ndbapi/NdbIndexStat.hpp>
#include "ha_ndbcluster_binlog.h"
#include "ha_ndbcluster_tables.h"
#include <mysql/plugin.h>
#include "probes_mysql.h"
#ifdef ndb_dynamite
#undef assert
#define assert(x) do { if(x) break; ::printf("%s %d: assert failed: %s\n", __FILE__, __LINE__, #x); ::fflush(stdout); ::signal(SIGABRT,SIG_DFL); ::abort(); ::kill(::getpid(),6); ::kill(::getpid(),9); } while (0)
#endif
// options from from mysqld.cc
extern my_bool opt_ndb_optimized_node_selection;
extern const char *opt_ndbcluster_connectstring;
extern ulong opt_ndb_cache_check_time;
// ndb interface initialization/cleanup
#ifdef __cplusplus
extern "C" {
#endif
extern void ndb_init_internal();
extern void ndb_end_internal();
#ifdef __cplusplus
}
#endif
const char *ndb_distribution_names[]= {"KEYHASH", "LINHASH", NullS};
TYPELIB ndb_distribution_typelib= { array_elements(ndb_distribution_names)-1,
"", ndb_distribution_names, NULL };
const char *opt_ndb_distribution= ndb_distribution_names[ND_KEYHASH];
enum ndb_distribution opt_ndb_distribution_id= ND_KEYHASH;
// Default value for parallelism
static const int parallelism= 0;
// Default value for max number of transactions
// createable against NDB from this handler
static const int max_transactions= 3; // should really be 2 but there is a transaction to much allocated when loch table is used
static uint ndbcluster_partition_flags();
static uint ndbcluster_alter_table_flags(uint flags);
static int ndbcluster_init(void *);
static int ndbcluster_end(handlerton *hton, ha_panic_function flag);
static bool ndbcluster_show_status(handlerton *hton, THD*,
stat_print_fn *,
enum ha_stat_type);
static int ndbcluster_alter_tablespace(handlerton *hton,
THD* thd,
st_alter_tablespace *info);
static int ndbcluster_fill_files_table(handlerton *hton,
THD *thd,
TABLE_LIST *tables,
COND *cond);
handlerton *ndbcluster_hton;
static handler *ndbcluster_create_handler(handlerton *hton,
TABLE_SHARE *table,
MEM_ROOT *mem_root)
{
return new (mem_root) ha_ndbcluster(hton, table);
}
static uint ndbcluster_partition_flags()
{
return (HA_CAN_PARTITION | HA_CAN_UPDATE_PARTITION_KEY |
HA_CAN_PARTITION_UNIQUE | HA_USE_AUTO_PARTITION);
}
static uint ndbcluster_alter_table_flags(uint flags)
{
if (flags & ALTER_DROP_PARTITION)
return 0;
else
return (HA_ONLINE_ADD_INDEX | HA_ONLINE_DROP_INDEX |
HA_ONLINE_ADD_UNIQUE_INDEX | HA_ONLINE_DROP_UNIQUE_INDEX |
HA_PARTITION_FUNCTION_SUPPORTED);
}
#define NDB_AUTO_INCREMENT_RETRIES 10
#define ERR_PRINT(err) \
DBUG_PRINT("error", ("%d message: %s", err.code, err.message))
#define ERR_RETURN(err) \
{ \
const NdbError& tmp= err; \
set_ndb_err(current_thd, tmp); \
DBUG_RETURN(ndb_to_mysql_error(&tmp)); \
}
#define ERR_RETURN_PREPARE(rc, err) \
{ \
const NdbError& tmp= err; \
set_ndb_err(current_thd, tmp); \
rc= ndb_to_mysql_error(&tmp); \
}
#define ERR_BREAK(err, code) \
{ \
const NdbError& tmp= err; \
set_ndb_err(current_thd, tmp); \
code= ndb_to_mysql_error(&tmp); \
break; \
}
static int ndbcluster_inited= 0;
int ndbcluster_terminating= 0;
static Ndb* g_ndb= NULL;
Ndb_cluster_connection* g_ndb_cluster_connection= NULL;
uchar g_node_id_map[max_ndb_nodes];
/// Handler synchronization
pthread_mutex_t ndbcluster_mutex;
/// Table lock handling
HASH ndbcluster_open_tables;
static uchar *ndbcluster_get_key(NDB_SHARE *share, size_t *length,
my_bool not_used __attribute__((unused)));
#ifdef HAVE_NDB_BINLOG
static int rename_share(NDB_SHARE *share, const char *new_key);
#endif
static int ndb_get_table_statistics(ha_ndbcluster*, bool, Ndb*, const NDBTAB *,
struct Ndb_statistics *);
// Util thread variables
pthread_t ndb_util_thread;
int ndb_util_thread_running= 0;
pthread_mutex_t LOCK_ndb_util_thread;
pthread_cond_t COND_ndb_util_thread;
pthread_cond_t COND_ndb_util_ready;
pthread_handler_t ndb_util_thread_func(void *arg);
ulong ndb_cache_check_time;
/**
Dummy buffer to read zero pack_length fields
which are mapped to 1 char.
*/
static uint32 dummy_buf;
/**
Stats that can be retrieved from ndb.
*/
struct Ndb_statistics {
Uint64 row_count;
Uint64 commit_count;
Uint64 row_size;
Uint64 fragment_memory;
};
/* Status variables shown with 'show status like 'Ndb%' */
static long ndb_cluster_node_id= 0;
static const char * ndb_connected_host= 0;
static long ndb_connected_port= 0;
static long ndb_number_of_replicas= 0;
long ndb_number_of_data_nodes= 0;
long ndb_number_of_ready_data_nodes= 0;
long ndb_connect_count= 0;
static int update_status_variables(Ndb_cluster_connection *c)
{
ndb_cluster_node_id= c->node_id();
ndb_connected_port= c->get_connected_port();
ndb_connected_host= c->get_connected_host();
ndb_number_of_replicas= 0;
ndb_number_of_ready_data_nodes= c->get_no_ready();
ndb_number_of_data_nodes= c->no_db_nodes();
ndb_connect_count= c->get_connect_count();
return 0;
}
SHOW_VAR ndb_status_variables[]= {
{"cluster_node_id", (char*) &ndb_cluster_node_id, SHOW_LONG},
{"config_from_host", (char*) &ndb_connected_host, SHOW_CHAR_PTR},
{"config_from_port", (char*) &ndb_connected_port, SHOW_LONG},
// {"number_of_replicas", (char*) &ndb_number_of_replicas, SHOW_LONG},
{"number_of_data_nodes",(char*) &ndb_number_of_data_nodes, SHOW_LONG},
{NullS, NullS, SHOW_LONG}
};
/*
Error handling functions
*/
/* Note for merge: old mapping table, moved to storage/ndb/ndberror.c */
static int ndb_to_mysql_error(const NdbError *ndberr)
{
/* read the mysql mapped error code */
int error= ndberr->mysql_code;
switch (error)
{
/* errors for which we do not add warnings, just return mapped error code
*/
case HA_ERR_NO_SUCH_TABLE:
case HA_ERR_KEY_NOT_FOUND:
return error;
/* Mapping missing, go with the ndb error code*/
case -1:
error= ndberr->code;
break;
/* Mapping exists, go with the mapped code */
default:
break;
}
/*
Push the NDB error message as warning
- Used to be able to use SHOW WARNINGS toget more info on what the error is
- Used by replication to see if the error was temporary
*/
if (ndberr->status == NdbError::TemporaryError)
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_GET_TEMPORARY_ERRMSG, ER(ER_GET_TEMPORARY_ERRMSG),
ndberr->code, ndberr->message, "NDB");
else
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_GET_ERRMSG, ER(ER_GET_ERRMSG),
ndberr->code, ndberr->message, "NDB");
return error;
}
int execute_no_commit_ignore_no_key(ha_ndbcluster *h, NdbTransaction *trans)
{
if (trans->execute(NdbTransaction::NoCommit,
NdbOperation::AO_IgnoreError,
h->m_force_send) == -1)
return -1;
const NdbError &err= trans->getNdbError();
if (err.classification != NdbError::NoError &&
err.classification != NdbError::ConstraintViolation &&
err.classification != NdbError::NoDataFound)
return -1;
return 0;
}
inline
int execute_no_commit(ha_ndbcluster *h, NdbTransaction *trans,
bool force_release)
{
h->release_completed_operations(trans, force_release);
return h->m_ignore_no_key ?
execute_no_commit_ignore_no_key(h,trans) :
trans->execute(NdbTransaction::NoCommit,
NdbOperation::AbortOnError,
h->m_force_send);
}
inline
int execute_commit(ha_ndbcluster *h, NdbTransaction *trans)
{
return trans->execute(NdbTransaction::Commit,
NdbOperation::AbortOnError,
h->m_force_send);
}
inline
int execute_commit(THD *thd, NdbTransaction *trans)
{
return trans->execute(NdbTransaction::Commit,
NdbOperation::AbortOnError,
thd->variables.ndb_force_send);
}
inline
int execute_no_commit_ie(ha_ndbcluster *h, NdbTransaction *trans,
bool force_release)
{
h->release_completed_operations(trans, force_release);
return trans->execute(NdbTransaction::NoCommit,
NdbOperation::AO_IgnoreError,
h->m_force_send);
}
/*
Place holder for ha_ndbcluster thread specific data
*/
typedef struct st_thd_ndb_share {
const void *key;
struct Ndb_local_table_statistics stat;
} THD_NDB_SHARE;
static
uchar *thd_ndb_share_get_key(THD_NDB_SHARE *thd_ndb_share, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= sizeof(thd_ndb_share->key);
return (uchar*) &thd_ndb_share->key;
}
Thd_ndb::Thd_ndb()
{
ndb= new Ndb(g_ndb_cluster_connection, "");
lock_count= 0;
start_stmt_count= 0;
count= 0;
trans= NULL;
m_error= FALSE;
m_error_code= 0;
query_state&= NDB_QUERY_NORMAL;
options= 0;
(void) my_hash_init(&open_tables, &my_charset_bin, 5, 0, 0,
(my_hash_get_key)thd_ndb_share_get_key, 0, 0);
}
Thd_ndb::~Thd_ndb()
{
if (ndb)
{
#ifndef DBUG_OFF
Ndb::Free_list_usage tmp;
tmp.m_name= 0;
while (ndb->get_free_list_usage(&tmp))
{
uint leaked= (uint) tmp.m_created - tmp.m_free;
if (leaked)
fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n",
leaked, tmp.m_name,
(leaked == 1)?"":"'s",
(leaked == 1)?"has":"have");
}
#endif
delete ndb;
ndb= NULL;
}
changed_tables.empty();
my_hash_free(&open_tables);
}
void
Thd_ndb::init_open_tables()
{
count= 0;
m_error= FALSE;
m_error_code= 0;
my_hash_reset(&open_tables);
}
inline
Ndb *ha_ndbcluster::get_ndb()
{
return get_thd_ndb(current_thd)->ndb;
}
/*
* manage uncommitted insert/deletes during transactio to get records correct
*/
void ha_ndbcluster::set_rec_per_key()
{
DBUG_ENTER("ha_ndbcluster::get_status_const");
for (uint i=0 ; i < table_share->keys ; i++)
{
table->key_info[i].rec_per_key[table->key_info[i].key_parts-1]= 1;
}
DBUG_VOID_RETURN;
}
ha_rows ha_ndbcluster::records()
{
ha_rows retval;
DBUG_ENTER("ha_ndbcluster::records");
struct Ndb_local_table_statistics *local_info= m_table_info;
DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d",
((const NDBTAB *)m_table)->getTableId(),
local_info->no_uncommitted_rows_count));
Ndb *ndb= get_ndb();
ndb->setDatabaseName(m_dbname);
struct Ndb_statistics stat;
if (ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat) == 0)
{
retval= stat.row_count;
}
else
{
DBUG_RETURN(HA_POS_ERROR);
}
THD *thd= current_thd;
if (get_thd_ndb(thd)->m_error)
local_info->no_uncommitted_rows_count= 0;
DBUG_RETURN(retval + local_info->no_uncommitted_rows_count);
}
int ha_ndbcluster::records_update()
{
if (m_ha_not_exact_count)
return 0;
DBUG_ENTER("ha_ndbcluster::records_update");
int result= 0;
struct Ndb_local_table_statistics *local_info= m_table_info;
DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d",
((const NDBTAB *)m_table)->getTableId(),
local_info->no_uncommitted_rows_count));
{
Ndb *ndb= get_ndb();
struct Ndb_statistics stat;
if (ndb->setDatabaseName(m_dbname))
{
return my_errno= HA_ERR_OUT_OF_MEM;
}
result= ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat);
if (result == 0)
{
stats.mean_rec_length= stat.row_size;
stats.data_file_length= stat.fragment_memory;
local_info->records= stat.row_count;
}
}
{
THD *thd= current_thd;
if (get_thd_ndb(thd)->m_error)
local_info->no_uncommitted_rows_count= 0;
}
if (result == 0)
stats.records= local_info->records+ local_info->no_uncommitted_rows_count;
DBUG_RETURN(result);
}
void ha_ndbcluster::no_uncommitted_rows_execute_failure()
{
if (m_ha_not_exact_count)
return;
DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_execute_failure");
get_thd_ndb(current_thd)->m_error= TRUE;
get_thd_ndb(current_thd)->m_error_code= 0;
DBUG_VOID_RETURN;
}
void ha_ndbcluster::no_uncommitted_rows_update(int c)
{
if (m_ha_not_exact_count)
return;
DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_update");
struct Ndb_local_table_statistics *local_info= m_table_info;
local_info->no_uncommitted_rows_count+= c;
DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d",
((const NDBTAB *)m_table)->getTableId(),
local_info->no_uncommitted_rows_count));
DBUG_VOID_RETURN;
}
void ha_ndbcluster::no_uncommitted_rows_reset(THD *thd)
{
if (m_ha_not_exact_count)
return;
DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_reset");
Thd_ndb *thd_ndb= get_thd_ndb(thd);
thd_ndb->count++;
thd_ndb->m_error= FALSE;
DBUG_VOID_RETURN;
}
/*
Sets the latest ndb error code on the thd_ndb object such that it
can be retrieved later to know which ndb error caused the handler
error.
*/
static void set_ndb_err(THD *thd, const NdbError &err)
{
DBUG_ENTER("set_ndb_err");
ERR_PRINT(err);
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (thd_ndb == NULL)
DBUG_VOID_RETURN;
#ifdef NOT_YET
/*
Check if error code is overwritten, in this case the original
failure cause will be lost. E.g. if 4350 error is given. So
push a warning so that it can be detected which is the root
error cause.
*/
if (thd_ndb->m_query_id == thd->query_id &&
thd_ndb->m_error_code != 0 &&
thd_ndb->m_error_code != err.code)
{
char buf[FN_REFLEN];
ndb_error_string(thd_ndb->m_error_code, buf, sizeof(buf));
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_GET_ERRMSG, ER(ER_GET_ERRMSG),
thd_ndb->m_error_code, buf, "NDB");
}
#endif
thd_ndb->m_query_id= thd->query_id;
thd_ndb->m_error_code= err.code;
DBUG_VOID_RETURN;
}
int ha_ndbcluster::ndb_err(NdbTransaction *trans)
{
THD *thd= current_thd;
int res;
NdbError err= trans->getNdbError();
DBUG_ENTER("ndb_err");
set_ndb_err(thd, err);
switch (err.classification) {
case NdbError::SchemaError:
{
// TODO perhaps we need to do more here, invalidate also in the cache
m_table->setStatusInvalid();
/* Close other open handlers not used by any thread */
TABLE_LIST table_list;
bzero((char*) &table_list,sizeof(table_list));
table_list.db= m_dbname;
table_list.alias= table_list.table_name= m_tabname;
close_cached_tables(thd, &table_list, FALSE, FALSE);
break;
}
default:
break;
}
res= ndb_to_mysql_error(&err);
DBUG_PRINT("info", ("transformed ndbcluster error %d to mysql error %d",
err.code, res));
if (res == HA_ERR_FOUND_DUPP_KEY)
{
char *error_data= err.details;
uint dupkey= MAX_KEY;
for (uint i= 0; i < MAX_KEY; i++)
{
if (m_index[i].type == UNIQUE_INDEX ||
m_index[i].type == UNIQUE_ORDERED_INDEX)
{
const NDBINDEX *unique_index=
(const NDBINDEX *) m_index[i].unique_index;
if (unique_index &&
(char *) unique_index->getObjectId() == error_data)
{
dupkey= i;
break;
}
}
}
if (m_rows_to_insert == 1)
{
/*
We can only distinguish between primary and non-primary
violations here, so we need to return MAX_KEY for non-primary
to signal that key is unknown
*/
m_dupkey= err.code == 630 ? table_share->primary_key : dupkey;
}
else
{
/* We are batching inserts, offending key is not available */
m_dupkey= (uint) -1;
}
}
DBUG_RETURN(res);
}
/**
Override the default get_error_message in order to add the
error message of NDB .
*/
bool ha_ndbcluster::get_error_message(int error,
String *buf)
{
DBUG_ENTER("ha_ndbcluster::get_error_message");
DBUG_PRINT("enter", ("error: %d", error));
Ndb *ndb= check_ndb_in_thd(current_thd);
if (!ndb)
DBUG_RETURN(FALSE);
const NdbError err= ndb->getNdbError(error);
bool temporary= err.status==NdbError::TemporaryError;
buf->set(err.message, strlen(err.message), &my_charset_bin);
DBUG_PRINT("exit", ("message: %s, temporary: %d", buf->ptr(), temporary));
DBUG_RETURN(temporary);
}
#ifndef DBUG_OFF
/**
Check if type is supported by NDB.
*/
static bool ndb_supported_type(enum_field_types type)
{
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
case MYSQL_TYPE_BIT:
case MYSQL_TYPE_GEOMETRY:
return TRUE;
case MYSQL_TYPE_NULL:
break;
}
return FALSE;
}
#endif /* !DBUG_OFF */
/**
Check if MySQL field type forces var part in ndb storage.
*/
static bool field_type_forces_var_part(enum_field_types type)
{
switch (type) {
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
return TRUE;
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_GEOMETRY:
return FALSE;
default:
return FALSE;
}
}
/**
Instruct NDB to set the value of the hidden primary key.
*/
bool ha_ndbcluster::set_hidden_key(NdbOperation *ndb_op,
uint fieldnr, const uchar *field_ptr)
{
DBUG_ENTER("set_hidden_key");
DBUG_RETURN(ndb_op->equal(fieldnr, (char*)field_ptr) != 0);
}
/**
Instruct NDB to set the value of one primary key attribute.
*/
int ha_ndbcluster::set_ndb_key(NdbOperation *ndb_op, Field *field,
uint fieldnr, const uchar *field_ptr)
{
uint32 pack_len= field->pack_length();
DBUG_ENTER("set_ndb_key");
DBUG_PRINT("enter", ("%d: %s, ndb_type: %u, len=%d",
fieldnr, field->field_name, field->type(),
pack_len));
DBUG_DUMP("key", field_ptr, pack_len);
DBUG_ASSERT(ndb_supported_type(field->type()));
DBUG_ASSERT(! (field->flags & BLOB_FLAG));
// Common implementation for most field types
DBUG_RETURN(ndb_op->equal(fieldnr, (char*) field_ptr, pack_len) != 0);
}
/**
Instruct NDB to set the value of one attribute.
*/
int ha_ndbcluster::set_ndb_value(NdbOperation *ndb_op, Field *field,
uint fieldnr, int row_offset,
bool *set_blob_value)
{
const uchar* field_ptr= field->ptr + row_offset;
uint32 pack_len= field->pack_length();
DBUG_ENTER("set_ndb_value");
DBUG_PRINT("enter", ("%d: %s type: %u len=%d is_null=%s",
fieldnr, field->field_name, field->type(),
pack_len, field->is_null(row_offset) ? "Y" : "N"));
DBUG_DUMP("value", field_ptr, pack_len);
DBUG_ASSERT(ndb_supported_type(field->type()));
{
// ndb currently does not support size 0
uint32 empty_field;
if (pack_len == 0)
{
pack_len= sizeof(empty_field);
field_ptr= (uchar *)&empty_field;
if (field->is_null(row_offset))
empty_field= 0;
else
empty_field= 1;
}
if (! (field->flags & BLOB_FLAG))
{
if (field->type() != MYSQL_TYPE_BIT)
{
if (field->is_null(row_offset))
{
DBUG_PRINT("info", ("field is NULL"));
// Set value to NULL
DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL) != 0));
}
// Common implementation for most field types
DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)field_ptr) != 0);
}
else // if (field->type() == MYSQL_TYPE_BIT)
{
longlong bits= field->val_int();
// Round up bit field length to nearest word boundry
pack_len= ((pack_len + 3) >> 2) << 2;
DBUG_ASSERT(pack_len <= 8);
if (field->is_null(row_offset))
// Set value to NULL
DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL) != 0));
DBUG_PRINT("info", ("bit field"));
DBUG_DUMP("value", (uchar*)&bits, pack_len);
#ifdef WORDS_BIGENDIAN
/* store lsw first */
bits = ((bits >> 32) & 0x00000000FFFFFFFFLL)
| ((bits << 32) & 0xFFFFFFFF00000000LL);
#endif
DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)&bits) != 0);
}
}
// Blob type
NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr);
if (ndb_blob != NULL)
{
if (field->is_null(row_offset))
DBUG_RETURN(ndb_blob->setNull() != 0);
Field_blob *field_blob= (Field_blob*)field;
// Get length and pointer to data
uint32 blob_len= field_blob->get_length(field_ptr);
uchar* blob_ptr= NULL;
field_blob->get_ptr(&blob_ptr);
// Looks like NULL ptr signals length 0 blob
if (blob_ptr == NULL) {
DBUG_ASSERT(blob_len == 0);
blob_ptr= (uchar*)"";
}
DBUG_PRINT("value", ("set blob ptr: 0x%lx len: %u",
(long) blob_ptr, blob_len));
DBUG_DUMP("value", blob_ptr, min(blob_len, 26));
if (set_blob_value)
*set_blob_value= TRUE;
// No callback needed to write value
DBUG_RETURN(ndb_blob->setValue(blob_ptr, blob_len) != 0);
}
DBUG_RETURN(1);
}
}
NdbBlob::ActiveHook g_get_ndb_blobs_value;
/**
Callback to read all blob values.
- not done in unpack_record because unpack_record is valid
after execute(Commit) but reading blobs is not
- may only generate read operations; they have to be executed
somewhere before the data is available
- due to single buffer for all blobs, we let the last blob
process all blobs (last so that all are active)
- null bit is still set in unpack_record.
@todo
allocate blob part aligned buffers
*/
int g_get_ndb_blobs_value(NdbBlob *ndb_blob, void *arg)
{
DBUG_ENTER("g_get_ndb_blobs_value");
if (ndb_blob->blobsNextBlob() != NULL)
DBUG_RETURN(0);
ha_ndbcluster *ha= (ha_ndbcluster *)arg;
int ret= get_ndb_blobs_value(ha->table, ha->m_value,
ha->m_blobs_buffer, ha->m_blobs_buffer_size,
ha->m_blobs_offset);
DBUG_RETURN(ret);
}
/*
This routine is shared by injector. There is no common blobs buffer
so the buffer and length are passed by reference. Injector also
passes a record pointer diff.
*/
int get_ndb_blobs_value(TABLE* table, NdbValue* value_array,
uchar*& buffer, uint& buffer_size,
my_ptrdiff_t ptrdiff)
{
DBUG_ENTER("get_ndb_blobs_value");
// Field has no field number so cannot use TABLE blob_field
// Loop twice, first only counting total buffer size
for (int loop= 0; loop <= 1; loop++)
{
uint32 offset= 0;
for (uint i= 0; i < table->s->fields; i++)
{
Field *field= table->field[i];
NdbValue value= value_array[i];
if (! (field->flags & BLOB_FLAG))
continue;
if (value.blob == NULL)
{
DBUG_PRINT("info",("[%u] skipped", i));
continue;
}
Field_blob *field_blob= (Field_blob *)field;
NdbBlob *ndb_blob= value.blob;
int isNull;
if (ndb_blob->getNull(isNull) != 0)
ERR_RETURN(ndb_blob->getNdbError());
if (isNull == 0) {
Uint64 len64= 0;
if (ndb_blob->getLength(len64) != 0)
ERR_RETURN(ndb_blob->getNdbError());
// Align to Uint64
uint32 size= len64;
if (size % 8 != 0)
size+= 8 - size % 8;
if (loop == 1)
{
uchar *buf= buffer + offset;
uint32 len= 0xffffffff; // Max uint32
if (ndb_blob->readData(buf, len) != 0)
ERR_RETURN(ndb_blob->getNdbError());
DBUG_PRINT("info", ("[%u] offset: %u buf: 0x%lx len=%u [ptrdiff=%d]",
i, offset, (long) buf, len, (int)ptrdiff));
DBUG_ASSERT(len == len64);
// Ugly hack assumes only ptr needs to be changed
field_blob->set_ptr_offset(ptrdiff, len, buf);
}
offset+= size;
}
else if (loop == 1) // undefined or null
{
// have to set length even in this case
uchar *buf= buffer + offset; // or maybe NULL
uint32 len= 0;
field_blob->set_ptr_offset(ptrdiff, len, buf);
DBUG_PRINT("info", ("[%u] isNull=%d", i, isNull));
}
}
if (loop == 0 && offset > buffer_size)
{
my_free(buffer, MYF(MY_ALLOW_ZERO_PTR));
buffer_size= 0;
DBUG_PRINT("info", ("allocate blobs buffer size %u", offset));
buffer= (uchar*) my_malloc(offset, MYF(MY_WME));
if (buffer == NULL)
{
sql_print_error("ha_ndbcluster::get_ndb_blobs_value: "
"my_malloc(%u) failed", offset);
DBUG_RETURN(-1);
}
buffer_size= offset;
}
}
DBUG_RETURN(0);
}
/**
Instruct NDB to fetch one field.
Data is read directly into buffer provided by field
if field is NULL, data is read into memory provided by NDBAPI.
*/
int ha_ndbcluster::get_ndb_value(NdbOperation *ndb_op, Field *field,
uint fieldnr, uchar* buf)
{
DBUG_ENTER("get_ndb_value");
DBUG_PRINT("enter", ("fieldnr: %d flags: %o", fieldnr,
(int)(field != NULL ? field->flags : 0)));
if (field != NULL)
{
DBUG_ASSERT(buf);
DBUG_ASSERT(ndb_supported_type(field->type()));
DBUG_ASSERT(field->ptr != NULL);
if (! (field->flags & BLOB_FLAG))
{
if (field->type() != MYSQL_TYPE_BIT)
{
uchar *field_buf;
if (field->pack_length() != 0)
field_buf= buf + (field->ptr - table->record[0]);
else
field_buf= (uchar *)&dummy_buf;
m_value[fieldnr].rec= ndb_op->getValue(fieldnr,
(char*) field_buf);
}
else // if (field->type() == MYSQL_TYPE_BIT)
{
m_value[fieldnr].rec= ndb_op->getValue(fieldnr);
}
DBUG_RETURN(m_value[fieldnr].rec == NULL);
}
// Blob type
NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr);
m_value[fieldnr].blob= ndb_blob;
if (ndb_blob != NULL)
{
// Set callback
m_blobs_offset= buf - (uchar*) table->record[0];
void *arg= (void *)this;
DBUG_RETURN(ndb_blob->setActiveHook(g_get_ndb_blobs_value, arg) != 0);
}
DBUG_RETURN(1);
}
// Used for hidden key only
m_value[fieldnr].rec= ndb_op->getValue(fieldnr, (char*) m_ref);
DBUG_RETURN(m_value[fieldnr].rec == NULL);
}
/*
Instruct NDB to fetch the partition id (fragment id)
*/
int ha_ndbcluster::get_ndb_partition_id(NdbOperation *ndb_op)
{
DBUG_ENTER("get_ndb_partition_id");
DBUG_RETURN(ndb_op->getValue(NdbDictionary::Column::FRAGMENT,
(char *)&m_part_id) == NULL);
}
/**
Check if any set or get of blob value in current query.
*/
bool ha_ndbcluster::uses_blob_value()
{
MY_BITMAP *bitmap;
uint *blob_index, *blob_index_end;
if (table_share->blob_fields == 0)
return FALSE;
bitmap= m_write_op ? table->write_set : table->read_set;
blob_index= table_share->blob_field;
blob_index_end= blob_index + table_share->blob_fields;
do
{
if (bitmap_is_set(bitmap, table->field[*blob_index]->field_index))
return TRUE;
} while (++blob_index != blob_index_end);
return FALSE;
}
/**
Get metadata for this table from NDB.
Check that frm-file on disk is equal to frm-file
of table accessed in NDB.
@retval
0 ok
@retval
-2 Meta data has changed; Re-read data and try again
*/
int cmp_frm(const NDBTAB *ndbtab, const void *pack_data,
uint pack_length)
{
DBUG_ENTER("cmp_frm");
/*
Compare FrmData in NDB with frm file from disk.
*/
if ((pack_length != ndbtab->getFrmLength()) ||
(memcmp(pack_data, ndbtab->getFrmData(), pack_length)))
DBUG_RETURN(1);
DBUG_RETURN(0);
}
int ha_ndbcluster::get_metadata(const char *path)
{
Ndb *ndb= get_ndb();
NDBDICT *dict= ndb->getDictionary();
const NDBTAB *tab;
int error;
DBUG_ENTER("get_metadata");
DBUG_PRINT("enter", ("m_tabname: %s, path: %s", m_tabname, path));
DBUG_ASSERT(m_table == NULL);
DBUG_ASSERT(m_table_info == NULL);
uchar *data= NULL, *pack_data= NULL;
size_t length, pack_length;
/*
Compare FrmData in NDB with frm file from disk.
*/
error= 0;
if (readfrm(path, &data, &length) ||
packfrm(data, length, &pack_data, &pack_length))
{
my_free(data, MYF(MY_ALLOW_ZERO_PTR));
my_free(pack_data, MYF(MY_ALLOW_ZERO_PTR));
DBUG_RETURN(1);
}
Ndb_table_guard ndbtab_g(dict, m_tabname);
if (!(tab= ndbtab_g.get_table()))
ERR_RETURN(dict->getNdbError());
if (get_ndb_share_state(m_share) != NSS_ALTERED
&& cmp_frm(tab, pack_data, pack_length))
{
DBUG_PRINT("error",
("metadata, pack_length: %lu getFrmLength: %d memcmp: %d",
(ulong) pack_length, tab->getFrmLength(),
memcmp(pack_data, tab->getFrmData(), pack_length)));
DBUG_DUMP("pack_data", (uchar*) pack_data, pack_length);
DBUG_DUMP("frm", (uchar*) tab->getFrmData(), tab->getFrmLength());
error= HA_ERR_TABLE_DEF_CHANGED;
}
my_free((char*)data, MYF(0));
my_free((char*)pack_data, MYF(0));
if (error)
goto err;
DBUG_PRINT("info", ("fetched table %s", tab->getName()));
m_table= tab;
if ((error= open_indexes(ndb, table, FALSE)) == 0)
{
ndbtab_g.release();
DBUG_RETURN(0);
}
err:
ndbtab_g.invalidate();
m_table= NULL;
DBUG_RETURN(error);
}
static int fix_unique_index_attr_order(NDB_INDEX_DATA &data,
const NDBINDEX *index,
KEY *key_info)
{
DBUG_ENTER("fix_unique_index_attr_order");
unsigned sz= index->getNoOfIndexColumns();
if (data.unique_index_attrid_map)
my_free((char*)data.unique_index_attrid_map, MYF(0));
data.unique_index_attrid_map= (uchar*)my_malloc(sz,MYF(MY_WME));
if (data.unique_index_attrid_map == 0)
{
sql_print_error("fix_unique_index_attr_order: my_malloc(%u) failure",
(unsigned int)sz);
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
}
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ASSERT(key_info->key_parts == sz);
for (unsigned i= 0; key_part != end; key_part++, i++)
{
const char *field_name= key_part->field->field_name;
#ifndef DBUG_OFF
data.unique_index_attrid_map[i]= 255;
#endif
for (unsigned j= 0; j < sz; j++)
{
const NDBCOL *c= index->getColumn(j);
if (strcmp(field_name, c->getName()) == 0)
{
data.unique_index_attrid_map[i]= j;
break;
}
}
DBUG_ASSERT(data.unique_index_attrid_map[i] != 255);
}
DBUG_RETURN(0);
}
/*
Create all the indexes for a table.
If any index should fail to be created,
the error is returned immediately
*/
int ha_ndbcluster::create_indexes(Ndb *ndb, TABLE *tab)
{
uint i;
int error= 0;
const char *index_name;
KEY* key_info= tab->key_info;
const char **key_name= tab->s->keynames.type_names;
DBUG_ENTER("ha_ndbcluster::create_indexes");
for (i= 0; i < tab->s->keys; i++, key_info++, key_name++)
{
index_name= *key_name;
NDB_INDEX_TYPE idx_type= get_index_type_from_table(i);
error= create_index(index_name, key_info, idx_type, i);
if (error)
{
DBUG_PRINT("error", ("Failed to create index %u", i));
break;
}
}
DBUG_RETURN(error);
}
static void ndb_init_index(NDB_INDEX_DATA &data)
{
data.type= UNDEFINED_INDEX;
data.status= UNDEFINED;
data.unique_index= NULL;
data.index= NULL;
data.unique_index_attrid_map= NULL;
data.index_stat=NULL;
data.index_stat_cache_entries=0;
data.index_stat_update_freq=0;
data.index_stat_query_count=0;
}
static void ndb_clear_index(NDB_INDEX_DATA &data)
{
if (data.unique_index_attrid_map)
{
my_free((char*)data.unique_index_attrid_map, MYF(0));
}
if (data.index_stat)
{
delete data.index_stat;
}
ndb_init_index(data);
}
/*
Associate a direct reference to an index handle
with an index (for faster access)
*/
int ha_ndbcluster::add_index_handle(THD *thd, NDBDICT *dict, KEY *key_info,
const char *index_name, uint index_no)
{
int error= 0;
NDB_INDEX_TYPE idx_type= get_index_type_from_table(index_no);
m_index[index_no].type= idx_type;
DBUG_ENTER("ha_ndbcluster::add_index_handle");
DBUG_PRINT("enter", ("table %s", m_tabname));
if (idx_type != PRIMARY_KEY_INDEX && idx_type != UNIQUE_INDEX)
{
DBUG_PRINT("info", ("Get handle to index %s", index_name));
const NDBINDEX *index;
do
{
index= dict->getIndexGlobal(index_name, *m_table);
if (!index)
ERR_RETURN(dict->getNdbError());
DBUG_PRINT("info", ("index: 0x%lx id: %d version: %d.%d status: %d",
(long) index,
index->getObjectId(),
index->getObjectVersion() & 0xFFFFFF,
index->getObjectVersion() >> 24,
index->getObjectStatus()));
DBUG_ASSERT(index->getObjectStatus() ==
NdbDictionary::Object::Retrieved);
break;
} while (1);
m_index[index_no].index= index;
// ordered index - add stats
NDB_INDEX_DATA& d=m_index[index_no];
delete d.index_stat;
d.index_stat=NULL;
if (thd->variables.ndb_index_stat_enable)
{
d.index_stat=new NdbIndexStat(index);
d.index_stat_cache_entries=thd->variables.ndb_index_stat_cache_entries;
d.index_stat_update_freq=thd->variables.ndb_index_stat_update_freq;
d.index_stat_query_count=0;
d.index_stat->alloc_cache(d.index_stat_cache_entries);
DBUG_PRINT("info", ("index %s stat=on cache_entries=%u update_freq=%u",
index->getName(),
d.index_stat_cache_entries,
d.index_stat_update_freq));
} else
{
DBUG_PRINT("info", ("index %s stat=off", index->getName()));
}
}
if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX)
{
char unique_index_name[FN_LEN + 1];
static const char* unique_suffix= "$unique";
m_has_unique_index= TRUE;
strxnmov(unique_index_name, FN_LEN, index_name, unique_suffix, NullS);
DBUG_PRINT("info", ("Get handle to unique_index %s", unique_index_name));
const NDBINDEX *index;
do
{
index= dict->getIndexGlobal(unique_index_name, *m_table);
if (!index)
ERR_RETURN(dict->getNdbError());
DBUG_PRINT("info", ("index: 0x%lx id: %d version: %d.%d status: %d",
(long) index,
index->getObjectId(),
index->getObjectVersion() & 0xFFFFFF,
index->getObjectVersion() >> 24,
index->getObjectStatus()));
DBUG_ASSERT(index->getObjectStatus() ==
NdbDictionary::Object::Retrieved);
break;
} while (1);
m_index[index_no].unique_index= index;
error= fix_unique_index_attr_order(m_index[index_no], index, key_info);
}
if (!error)
m_index[index_no].status= ACTIVE;
DBUG_RETURN(error);
}
/*
Associate index handles for each index of a table
*/
int ha_ndbcluster::open_indexes(Ndb *ndb, TABLE *tab, bool ignore_error)
{
uint i;
int error= 0;
THD *thd=current_thd;
NDBDICT *dict= ndb->getDictionary();
KEY* key_info= tab->key_info;
const char **key_name= tab->s->keynames.type_names;
DBUG_ENTER("ha_ndbcluster::open_indexes");
m_has_unique_index= FALSE;
for (i= 0; i < tab->s->keys; i++, key_info++, key_name++)
{
if ((error= add_index_handle(thd, dict, key_info, *key_name, i)))
if (ignore_error)
m_index[i].index= m_index[i].unique_index= NULL;
else
break;
m_index[i].null_in_unique_index= FALSE;
if (check_index_fields_not_null(key_info))
m_index[i].null_in_unique_index= TRUE;
}
if (error && !ignore_error)
{
while (i > 0)
{
i--;
if (m_index[i].index)
{
dict->removeIndexGlobal(*m_index[i].index, 1);
m_index[i].index= NULL;
}
if (m_index[i].unique_index)
{
dict->removeIndexGlobal(*m_index[i].unique_index, 1);
m_index[i].unique_index= NULL;
}
}
}
DBUG_ASSERT(error == 0 || error == 4243);
DBUG_RETURN(error);
}
/*
Renumber indexes in index list by shifting out
indexes that are to be dropped
*/
void ha_ndbcluster::renumber_indexes(Ndb *ndb, TABLE *tab)
{
uint i;
const char *index_name;
KEY* key_info= tab->key_info;
const char **key_name= tab->s->keynames.type_names;
DBUG_ENTER("ha_ndbcluster::renumber_indexes");
for (i= 0; i < tab->s->keys; i++, key_info++, key_name++)
{
index_name= *key_name;
NDB_INDEX_TYPE idx_type= get_index_type_from_table(i);
m_index[i].type= idx_type;
if (m_index[i].status == TO_BE_DROPPED)
{
DBUG_PRINT("info", ("Shifting index %s(%i) out of the list",
index_name, i));
NDB_INDEX_DATA tmp;
uint j= i + 1;
// Shift index out of list
while(j != MAX_KEY && m_index[j].status != UNDEFINED)
{
tmp= m_index[j - 1];
m_index[j - 1]= m_index[j];
m_index[j]= tmp;
j++;
}
}
}
DBUG_VOID_RETURN;
}
/*
Drop all indexes that are marked for deletion
*/
int ha_ndbcluster::drop_indexes(Ndb *ndb, TABLE *tab)
{
uint i;
int error= 0;
const char *index_name;
KEY* key_info= tab->key_info;
NDBDICT *dict= ndb->getDictionary();
DBUG_ENTER("ha_ndbcluster::drop_indexes");
for (i= 0; i < tab->s->keys; i++, key_info++)
{
NDB_INDEX_TYPE idx_type= get_index_type_from_table(i);
m_index[i].type= idx_type;
if (m_index[i].status == TO_BE_DROPPED)
{
const NdbDictionary::Index *index= m_index[i].index;
const NdbDictionary::Index *unique_index= m_index[i].unique_index;
if (index)
{
index_name= index->getName();
DBUG_PRINT("info", ("Dropping index %u: %s", i, index_name));
// Drop ordered index from ndb
error= dict->dropIndexGlobal(*index);
if (!error)
{
dict->removeIndexGlobal(*index, 1);
m_index[i].index= NULL;
}
}
if (!error && unique_index)
{
index_name= unique_index->getName();
DBUG_PRINT("info", ("Dropping unique index %u: %s", i, index_name));
// Drop unique index from ndb
error= dict->dropIndexGlobal(*unique_index);
if (!error)
{
dict->removeIndexGlobal(*unique_index, 1);
m_index[i].unique_index= NULL;
}
}
if (error)
DBUG_RETURN(error);
ndb_clear_index(m_index[i]);
continue;
}
}
DBUG_RETURN(error);
}
/**
Decode the type of an index from information
provided in table object.
*/
NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_table(uint inx) const
{
return get_index_type_from_key(inx, table_share->key_info,
inx == table_share->primary_key);
}
NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_key(uint inx,
KEY *key_info,
bool primary) const
{
bool is_hash_index= (key_info[inx].algorithm ==
HA_KEY_ALG_HASH);
if (primary)
return is_hash_index ? PRIMARY_KEY_INDEX : PRIMARY_KEY_ORDERED_INDEX;
return ((key_info[inx].flags & HA_NOSAME) ?
(is_hash_index ? UNIQUE_INDEX : UNIQUE_ORDERED_INDEX) :
ORDERED_INDEX);
}
bool ha_ndbcluster::check_index_fields_not_null(KEY* key_info)
{
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ENTER("ha_ndbcluster::check_index_fields_not_null");
for (; key_part != end; key_part++)
{
Field* field= key_part->field;
if (field->maybe_null())
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
void ha_ndbcluster::release_metadata(THD *thd, Ndb *ndb)
{
uint i;
DBUG_ENTER("release_metadata");
DBUG_PRINT("enter", ("m_tabname: %s", m_tabname));
NDBDICT *dict= ndb->getDictionary();
int invalidate_indexes= 0;
if (thd && thd->lex && thd->lex->sql_command == SQLCOM_FLUSH)
{
invalidate_indexes = 1;
}
if (m_table != NULL)
{
if (m_table->getObjectStatus() == NdbDictionary::Object::Invalid)
invalidate_indexes= 1;
dict->removeTableGlobal(*m_table, invalidate_indexes);
}
// TODO investigate
DBUG_ASSERT(m_table_info == NULL);
m_table_info= NULL;
// Release index list
for (i= 0; i < MAX_KEY; i++)
{
if (m_index[i].unique_index)
{
DBUG_ASSERT(m_table != NULL);
dict->removeIndexGlobal(*m_index[i].unique_index, invalidate_indexes);
}
if (m_index[i].index)
{
DBUG_ASSERT(m_table != NULL);
dict->removeIndexGlobal(*m_index[i].index, invalidate_indexes);
}
ndb_clear_index(m_index[i]);
}
m_table= NULL;
DBUG_VOID_RETURN;
}
int ha_ndbcluster::get_ndb_lock_type(enum thr_lock_type type)
{
if (type >= TL_WRITE_ALLOW_WRITE)
return NdbOperation::LM_Exclusive;
if (type == TL_READ_WITH_SHARED_LOCKS ||
uses_blob_value())
return NdbOperation::LM_Read;
return NdbOperation::LM_CommittedRead;
}
static const ulong index_type_flags[]=
{
/* UNDEFINED_INDEX */
0,
/* PRIMARY_KEY_INDEX */
HA_ONLY_WHOLE_INDEX,
/* PRIMARY_KEY_ORDERED_INDEX */
/*
Enable HA_KEYREAD_ONLY when "sorted" indexes are supported,
thus ORDERD BY clauses can be optimized by reading directly
through the index.
*/
// HA_KEYREAD_ONLY |
HA_READ_NEXT |
HA_READ_PREV |
HA_READ_RANGE |
HA_READ_ORDER,
/* UNIQUE_INDEX */
HA_ONLY_WHOLE_INDEX,
/* UNIQUE_ORDERED_INDEX */
HA_READ_NEXT |
HA_READ_PREV |
HA_READ_RANGE |
HA_READ_ORDER,
/* ORDERED_INDEX */
HA_READ_NEXT |
HA_READ_PREV |
HA_READ_RANGE |
HA_READ_ORDER
};
static const int index_flags_size= sizeof(index_type_flags)/sizeof(ulong);
inline NDB_INDEX_TYPE ha_ndbcluster::get_index_type(uint idx_no) const
{
DBUG_ASSERT(idx_no < MAX_KEY);
return m_index[idx_no].type;
}
inline bool ha_ndbcluster::has_null_in_unique_index(uint idx_no) const
{
DBUG_ASSERT(idx_no < MAX_KEY);
return m_index[idx_no].null_in_unique_index;
}
/**
Get the flags for an index.
@return
flags depending on the type of the index.
*/
inline ulong ha_ndbcluster::index_flags(uint idx_no, uint part,
bool all_parts) const
{
DBUG_ENTER("ha_ndbcluster::index_flags");
DBUG_PRINT("enter", ("idx_no: %u", idx_no));
DBUG_ASSERT(get_index_type_from_table(idx_no) < index_flags_size);
DBUG_RETURN(index_type_flags[get_index_type_from_table(idx_no)] |
HA_KEY_SCAN_NOT_ROR);
}
static void shrink_varchar(Field* field, const uchar* & ptr, uchar* buf)
{
if (field->type() == MYSQL_TYPE_VARCHAR && ptr != NULL) {
Field_varstring* f= (Field_varstring*)field;
if (f->length_bytes == 1) {
uint pack_len= field->pack_length();
DBUG_ASSERT(1 <= pack_len && pack_len <= 256);
if (ptr[1] == 0) {
buf[0]= ptr[0];
} else {
DBUG_ASSERT(FALSE);
buf[0]= 255;
}
memmove(buf + 1, ptr + 2, pack_len - 1);
ptr= buf;
}
}
}
int ha_ndbcluster::set_primary_key(NdbOperation *op, const uchar *key)
{
KEY* key_info= table->key_info + table_share->primary_key;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ENTER("set_primary_key");
for (; key_part != end; key_part++)
{
Field* field= key_part->field;
const uchar* ptr= key;
uchar buf[256];
shrink_varchar(field, ptr, buf);
if (set_ndb_key(op, field,
key_part->fieldnr-1, ptr))
ERR_RETURN(op->getNdbError());
key += key_part->store_length;
}
DBUG_RETURN(0);
}
int ha_ndbcluster::set_primary_key_from_record(NdbOperation *op, const uchar *record)
{
KEY* key_info= table->key_info + table_share->primary_key;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ENTER("set_primary_key_from_record");
for (; key_part != end; key_part++)
{
Field* field= key_part->field;
if (set_ndb_key(op, field,
key_part->fieldnr-1, record+key_part->offset))
ERR_RETURN(op->getNdbError());
}
DBUG_RETURN(0);
}
bool ha_ndbcluster::check_index_fields_in_write_set(uint keyno)
{
KEY* key_info= table->key_info + keyno;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
uint i;
DBUG_ENTER("check_index_fields_in_write_set");
for (i= 0; key_part != end; key_part++, i++)
{
Field* field= key_part->field;
if (!bitmap_is_set(table->write_set, field->field_index))
{
DBUG_RETURN(false);
}
}
DBUG_RETURN(true);
}
int ha_ndbcluster::set_index_key_from_record(NdbOperation *op,
const uchar *record, uint keyno)
{
KEY* key_info= table->key_info + keyno;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
uint i;
DBUG_ENTER("set_index_key_from_record");
for (i= 0; key_part != end; key_part++, i++)
{
Field* field= key_part->field;
if (set_ndb_key(op, field, m_index[keyno].unique_index_attrid_map[i],
record+key_part->offset))
ERR_RETURN(m_active_trans->getNdbError());
}
DBUG_RETURN(0);
}
int
ha_ndbcluster::set_index_key(NdbOperation *op,
const KEY *key_info,
const uchar * key_ptr)
{
DBUG_ENTER("ha_ndbcluster::set_index_key");
uint i;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
for (i= 0; key_part != end; key_part++, i++)
{
Field* field= key_part->field;
const uchar* ptr= key_part->null_bit ? key_ptr + 1 : key_ptr;
uchar buf[256];
shrink_varchar(field, ptr, buf);
if (set_ndb_key(op, field, m_index[active_index].unique_index_attrid_map[i], ptr))
ERR_RETURN(m_active_trans->getNdbError());
key_ptr+= key_part->store_length;
}
DBUG_RETURN(0);
}
inline
int ha_ndbcluster::define_read_attrs(uchar* buf, NdbOperation* op)
{
uint i;
DBUG_ENTER("define_read_attrs");
// Define attributes to read
for (i= 0; i < table_share->fields; i++)
{
Field *field= table->field[i];
if (bitmap_is_set(table->read_set, i) ||
((field->flags & PRI_KEY_FLAG)))
{
if (get_ndb_value(op, field, i, buf))
ERR_RETURN(op->getNdbError());
}
else
{
m_value[i].ptr= NULL;
}
}
if (table_share->primary_key == MAX_KEY)
{
DBUG_PRINT("info", ("Getting hidden key"));
// Scanning table with no primary key
int hidden_no= table_share->fields;
#ifndef DBUG_OFF
const NDBTAB *tab= (const NDBTAB *) m_table;
if (!tab->getColumn(hidden_no))
DBUG_RETURN(1);
#endif
if (get_ndb_value(op, NULL, hidden_no, NULL))
ERR_RETURN(op->getNdbError());
}
DBUG_RETURN(0);
}
/**
Read one record from NDB using primary key.
*/
int ha_ndbcluster::pk_read(const uchar *key, uint key_len, uchar *buf,
uint32 part_id)
{
uint no_fields= table_share->fields;
NdbConnection *trans= m_active_trans;
NdbOperation *op;
int res;
DBUG_ENTER("pk_read");
DBUG_PRINT("enter", ("key_len: %u", key_len));
DBUG_DUMP("key", key, key_len);
m_write_op= FALSE;
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
if (table_share->primary_key == MAX_KEY)
{
// This table has no primary key, use "hidden" primary key
DBUG_PRINT("info", ("Using hidden key"));
DBUG_DUMP("key", key, 8);
if (set_hidden_key(op, no_fields, key))
ERR_RETURN(trans->getNdbError());
// Read key at the same time, for future reference
if (get_ndb_value(op, NULL, no_fields, NULL))
ERR_RETURN(trans->getNdbError());
}
else
{
if ((res= set_primary_key(op, key)))
return res;
}
if ((res= define_read_attrs(buf, op)))
DBUG_RETURN(res);
if (m_use_partition_function)
{
op->setPartitionId(part_id);
// If table has user defined partitioning
// and no indexes, we need to read the partition id
// to support ORDER BY queries
if (table_share->primary_key == MAX_KEY &&
get_ndb_partition_id(op))
ERR_RETURN(trans->getNdbError());
}
if ((res = execute_no_commit_ie(this,trans,FALSE)) != 0 ||
op->getNdbError().code)
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
// The value have now been fetched from NDB
unpack_record(buf);
table->status= 0;
DBUG_RETURN(0);
}
/**
Read one complementing record from NDB using primary key from old_data
or hidden key.
*/
int ha_ndbcluster::complemented_read(const uchar *old_data, uchar *new_data,
uint32 old_part_id)
{
uint no_fields= table_share->fields, i;
NdbTransaction *trans= m_active_trans;
NdbOperation *op;
DBUG_ENTER("complemented_read");
m_write_op= FALSE;
if (bitmap_is_set_all(table->read_set))
{
// We have allready retrieved all fields, nothing to complement
DBUG_RETURN(0);
}
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
if (table_share->primary_key != MAX_KEY)
{
if (set_primary_key_from_record(op, old_data))
ERR_RETURN(trans->getNdbError());
}
else
{
// This table has no primary key, use "hidden" primary key
if (set_hidden_key(op, table->s->fields, m_ref))
ERR_RETURN(op->getNdbError());
}
if (m_use_partition_function)
op->setPartitionId(old_part_id);
// Read all unreferenced non-key field(s)
for (i= 0; i < no_fields; i++)
{
Field *field= table->field[i];
if (!((field->flags & PRI_KEY_FLAG) ||
bitmap_is_set(table->read_set, i)) &&
!bitmap_is_set(table->write_set, i))
{
if (get_ndb_value(op, field, i, new_data))
ERR_RETURN(trans->getNdbError());
}
}
if (execute_no_commit(this,trans,FALSE) != 0)
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
// The value have now been fetched from NDB
unpack_record(new_data);
table->status= 0;
/*
* restore m_value
*/
for (i= 0; i < no_fields; i++)
{
Field *field= table->field[i];
if (!((field->flags & PRI_KEY_FLAG) ||
bitmap_is_set(table->read_set, i)))
{
m_value[i].ptr= NULL;
}
}
DBUG_RETURN(0);
}
/**
Check that all operations between first and last all
have gotten the errcode
If checking for HA_ERR_KEY_NOT_FOUND then update m_dupkey
for all succeeding operations
*/
bool ha_ndbcluster::check_all_operations_for_error(NdbTransaction *trans,
const NdbOperation *first,
const NdbOperation *last,
uint errcode)
{
const NdbOperation *op= first;
DBUG_ENTER("ha_ndbcluster::check_all_operations_for_error");
while(op)
{
NdbError err= op->getNdbError();
if (err.status != NdbError::Success)
{
if (ndb_to_mysql_error(&err) != (int) errcode)
DBUG_RETURN(FALSE);
if (op == last) break;
op= trans->getNextCompletedOperation(op);
}
else
{
// We found a duplicate
if (op->getType() == NdbOperation::UniqueIndexAccess)
{
if (errcode == HA_ERR_KEY_NOT_FOUND)
{
NdbIndexOperation *iop= (NdbIndexOperation *) op;
const NDBINDEX *index= iop->getIndex();
// Find the key_no of the index
for(uint i= 0; i<table->s->keys; i++)
{
if (m_index[i].unique_index == index)
{
m_dupkey= i;
break;
}
}
}
}
else
{
// Must have been primary key access
DBUG_ASSERT(op->getType() == NdbOperation::PrimaryKeyAccess);
if (errcode == HA_ERR_KEY_NOT_FOUND)
m_dupkey= table->s->primary_key;
}
DBUG_RETURN(FALSE);
}
}
DBUG_RETURN(TRUE);
}
/**
* Check if record contains any null valued columns that are part of a key
*/
static
int
check_null_in_record(const KEY* key_info, const uchar *record)
{
KEY_PART_INFO *curr_part, *end_part;
curr_part= key_info->key_part;
end_part= curr_part + key_info->key_parts;
while (curr_part != end_part)
{
if (curr_part->null_bit &&
(record[curr_part->null_offset] & curr_part->null_bit))
return 1;
curr_part++;
}
return 0;
/*
We could instead pre-compute a bitmask in table_share with one bit for
every null-bit in the key, and so check this just by OR'ing the bitmask
with the null bitmap in the record.
But not sure it's worth it.
*/
}
/**
Peek to check if any rows already exist with conflicting
primary key or unique index values
*/
int ha_ndbcluster::peek_indexed_rows(const uchar *record,
NDB_WRITE_OP write_op)
{
NdbTransaction *trans= m_active_trans;
NdbOperation *op;
const NdbOperation *first, *last;
uint i;
int res;
DBUG_ENTER("peek_indexed_rows");
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
first= NULL;
if (write_op != NDB_UPDATE && table->s->primary_key != MAX_KEY)
{
/*
* Fetch any row with colliding primary key
*/
if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
first= op;
if ((res= set_primary_key_from_record(op, record)))
ERR_RETURN(trans->getNdbError());
if (m_use_partition_function)
{
uint32 part_id;
int error;
longlong func_value;
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value);
dbug_tmp_restore_column_map(table->read_set, old_map);
if (error)
{
m_part_info->err_value= func_value;
DBUG_RETURN(error);
}
op->setPartitionId(part_id);
}
}
/*
* Fetch any rows with colliding unique indexes
*/
KEY* key_info;
KEY_PART_INFO *key_part, *end;
for (i= 0, key_info= table->key_info; i < table->s->keys; i++, key_info++)
{
if (i != table->s->primary_key &&
key_info->flags & HA_NOSAME)
{
/*
A unique index is defined on table.
We cannot look up a NULL field value in a unique index. But since
keys with NULLs are not indexed, such rows cannot conflict anyway, so
we just skip the index in this case.
*/
if (check_null_in_record(key_info, record))
{
DBUG_PRINT("info", ("skipping check for key with NULL"));
continue;
}
if (write_op != NDB_INSERT && !check_index_fields_in_write_set(i))
{
DBUG_PRINT("info", ("skipping check for key %u not in write_set", i));
continue;
}
NdbIndexOperation *iop;
const NDBINDEX *unique_index = m_index[i].unique_index;
key_part= key_info->key_part;
end= key_part + key_info->key_parts;
if (!(iop= trans->getNdbIndexOperation(unique_index, m_table)) ||
iop->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
if (!first)
first= iop;
if ((res= set_index_key_from_record(iop, record, i)))
ERR_RETURN(trans->getNdbError());
}
}
last= trans->getLastDefinedOperation();
if (first)
res= execute_no_commit_ie(this,trans,FALSE);
else
{
// Table has no keys
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(HA_ERR_KEY_NOT_FOUND);
}
if (check_all_operations_for_error(trans, first, last,
HA_ERR_KEY_NOT_FOUND))
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
else
{
DBUG_PRINT("info", ("m_dupkey %d", m_dupkey));
}
DBUG_RETURN(0);
}
/**
Read one record from NDB using unique secondary index.
*/
int ha_ndbcluster::unique_index_read(const uchar *key,
uint key_len, uchar *buf)
{
int res;
NdbTransaction *trans= m_active_trans;
NdbIndexOperation *op;
DBUG_ENTER("ha_ndbcluster::unique_index_read");
DBUG_PRINT("enter", ("key_len: %u, index: %u", key_len, active_index));
DBUG_DUMP("key", key, key_len);
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
if (!(op= trans->getNdbIndexOperation(m_index[active_index].unique_index,
m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
// Set secondary index key(s)
if ((res= set_index_key(op, table->key_info + active_index, key)))
DBUG_RETURN(res);
if ((res= define_read_attrs(buf, op)))
DBUG_RETURN(res);
if (execute_no_commit_ie(this,trans,FALSE) != 0 ||
op->getNdbError().code)
{
int err= ndb_err(trans);
if(err==HA_ERR_KEY_NOT_FOUND)
table->status= STATUS_NOT_FOUND;
else
table->status= STATUS_GARBAGE;
DBUG_RETURN(err);
}
// The value have now been fetched from NDB
unpack_record(buf);
table->status= 0;
DBUG_RETURN(0);
}
inline int ha_ndbcluster::fetch_next(NdbScanOperation* cursor)
{
DBUG_ENTER("fetch_next");
int local_check;
NdbTransaction *trans= m_active_trans;
if (m_lock_tuple)
{
/*
Lock level m_lock.type either TL_WRITE_ALLOW_WRITE
(SELECT FOR UPDATE) or TL_READ_WITH_SHARED_LOCKS (SELECT
LOCK WITH SHARE MODE) and row was not explictly unlocked
with unlock_row() call
*/
NdbConnection *con_trans= m_active_trans;
NdbOperation *op;
// Lock row
DBUG_PRINT("info", ("Keeping lock on scanned row"));
if (!(op= m_active_cursor->lockCurrentTuple()))
{
/* purecov: begin inspected */
m_lock_tuple= FALSE;
ERR_RETURN(con_trans->getNdbError());
/* purecov: end */
}
m_ops_pending++;
}
m_lock_tuple= FALSE;
bool contact_ndb= m_lock.type < TL_WRITE_ALLOW_WRITE &&
m_lock.type != TL_READ_WITH_SHARED_LOCKS;;
do {
DBUG_PRINT("info", ("Call nextResult, contact_ndb: %d", contact_ndb));
/*
We can only handle one tuple with blobs at a time.
*/
if (m_ops_pending && m_blobs_pending)
{
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(ndb_err(trans));
m_ops_pending= 0;
m_blobs_pending= FALSE;
}
if ((local_check= cursor->nextResult(contact_ndb, m_force_send)) == 0)
{
/*
Explicitly lock tuple if "select for update" or
"select lock in share mode"
*/
m_lock_tuple= (m_lock.type == TL_WRITE_ALLOW_WRITE
||
m_lock.type == TL_READ_WITH_SHARED_LOCKS);
DBUG_RETURN(0);
}
else if (local_check == 1 || local_check == 2)
{
// 1: No more records
// 2: No more cached records
/*
Before fetching more rows and releasing lock(s),
all pending update or delete operations should
be sent to NDB
*/
DBUG_PRINT("info", ("ops_pending: %ld", (long) m_ops_pending));
if (m_ops_pending)
{
if (m_transaction_on)
{
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(-1);
}
else
{
if (execute_commit(this,trans) != 0)
DBUG_RETURN(-1);
if (trans->restart() != 0)
{
DBUG_ASSERT(0);
DBUG_RETURN(-1);
}
}
m_ops_pending= 0;
}
contact_ndb= (local_check == 2);
}
else
{
DBUG_RETURN(-1);
}
} while (local_check == 2);
DBUG_RETURN(1);
}
/**
Get the next record of a started scan. Try to fetch
it locally from NdbApi cached records if possible,
otherwise ask NDB for more.
@note
If this is a update/delete make sure to not contact
NDB before any pending ops have been sent to NDB.
*/
inline int ha_ndbcluster::next_result(uchar *buf)
{
int res;
DBUG_ENTER("next_result");
if (!m_active_cursor)
DBUG_RETURN(HA_ERR_END_OF_FILE);
if ((res= fetch_next(m_active_cursor)) == 0)
{
DBUG_PRINT("info", ("One more record found"));
unpack_record(buf);
table->status= 0;
DBUG_RETURN(0);
}
else if (res == 1)
{
// No more records
table->status= STATUS_NOT_FOUND;
DBUG_PRINT("info", ("No more records"));
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else
{
DBUG_RETURN(ndb_err(m_active_trans));
}
}
/**
Set bounds for ordered index scan.
*/
int ha_ndbcluster::set_bounds(NdbIndexScanOperation *op,
uint inx,
bool rir,
const key_range *keys[2],
uint range_no)
{
const KEY *const key_info= table->key_info + inx;
const uint key_parts= key_info->key_parts;
uint key_tot_len[2];
uint tot_len;
uint i, j;
DBUG_ENTER("set_bounds");
DBUG_PRINT("info", ("key_parts=%d", key_parts));
for (j= 0; j <= 1; j++)
{
const key_range *key= keys[j];
if (key != NULL)
{
// for key->flag see ha_rkey_function
DBUG_PRINT("info", ("key %d length=%d flag=%d",
j, key->length, key->flag));
key_tot_len[j]= key->length;
}
else
{
DBUG_PRINT("info", ("key %d not present", j));
key_tot_len[j]= 0;
}
}
tot_len= 0;
for (i= 0; i < key_parts; i++)
{
KEY_PART_INFO *key_part= &key_info->key_part[i];
Field *field= key_part->field;
#ifndef DBUG_OFF
uint part_len= key_part->length;
#endif
uint part_store_len= key_part->store_length;
// Info about each key part
struct part_st {
bool part_last;
const key_range *key;
const uchar *part_ptr;
bool part_null;
int bound_type;
const uchar* bound_ptr;
};
struct part_st part[2];
for (j= 0; j <= 1; j++)
{
struct part_st &p= part[j];
p.key= NULL;
p.bound_type= -1;
if (tot_len < key_tot_len[j])
{
p.part_last= (tot_len + part_store_len >= key_tot_len[j]);
p.key= keys[j];
p.part_ptr= &p.key->key[tot_len];
p.part_null= key_part->null_bit && *p.part_ptr;
p.bound_ptr= (const char *)
p.part_null ? 0 : key_part->null_bit ? p.part_ptr + 1 : p.part_ptr;
if (j == 0)
{
switch (p.key->flag)
{
case HA_READ_KEY_EXACT:
if (! rir)
p.bound_type= NdbIndexScanOperation::BoundEQ;
else // differs for records_in_range
p.bound_type= NdbIndexScanOperation::BoundLE;
break;
// ascending
case HA_READ_KEY_OR_NEXT:
p.bound_type= NdbIndexScanOperation::BoundLE;
break;
case HA_READ_AFTER_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundLE;
else
p.bound_type= NdbIndexScanOperation::BoundLT;
break;
// descending
case HA_READ_PREFIX_LAST: // weird
p.bound_type= NdbIndexScanOperation::BoundEQ;
break;
case HA_READ_PREFIX_LAST_OR_PREV: // weird
p.bound_type= NdbIndexScanOperation::BoundGE;
break;
case HA_READ_BEFORE_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundGE;
else
p.bound_type= NdbIndexScanOperation::BoundGT;
break;
default:
break;
}
}
if (j == 1) {
switch (p.key->flag)
{
// ascending
case HA_READ_BEFORE_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundGE;
else
p.bound_type= NdbIndexScanOperation::BoundGT;
break;
case HA_READ_AFTER_KEY: // weird
p.bound_type= NdbIndexScanOperation::BoundGE;
break;
default:
break;
// descending strangely sets no end key
}
}
if (p.bound_type == -1)
{
DBUG_PRINT("error", ("key %d unknown flag %d", j, p.key->flag));
DBUG_ASSERT(FALSE);
// Stop setting bounds but continue with what we have
DBUG_RETURN(op->end_of_bound(range_no));
}
}
}
// Seen with e.g. b = 1 and c > 1
if (part[0].bound_type == NdbIndexScanOperation::BoundLE &&
part[1].bound_type == NdbIndexScanOperation::BoundGE &&
memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0)
{
DBUG_PRINT("info", ("replace LE/GE pair by EQ"));
part[0].bound_type= NdbIndexScanOperation::BoundEQ;
part[1].bound_type= -1;
}
// Not seen but was in previous version
if (part[0].bound_type == NdbIndexScanOperation::BoundEQ &&
part[1].bound_type == NdbIndexScanOperation::BoundGE &&
memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0)
{
DBUG_PRINT("info", ("remove GE from EQ/GE pair"));
part[1].bound_type= -1;
}
for (j= 0; j <= 1; j++)
{
struct part_st &p= part[j];
// Set bound if not done with this key
if (p.key != NULL)
{
DBUG_PRINT("info", ("key %d:%d offset: %d length: %d last: %d bound: %d",
j, i, tot_len, part_len, p.part_last, p.bound_type));
DBUG_DUMP("info", p.part_ptr, part_store_len);
// Set bound if not cancelled via type -1
if (p.bound_type != -1)
{
const uchar* ptr= p.bound_ptr;
uchar buf[256];
shrink_varchar(field, ptr, buf);
if (op->setBound(i, p.bound_type, ptr))
ERR_RETURN(op->getNdbError());
}
}
}
tot_len+= part_store_len;
}
DBUG_RETURN(op->end_of_bound(range_no));
}
/**
Start ordered index scan in NDB.
*/
int ha_ndbcluster::ordered_index_scan(const key_range *start_key,
const key_range *end_key,
bool sorted, bool descending,
uchar* buf, part_id_range *part_spec)
{
int res;
bool restart;
NdbTransaction *trans= m_active_trans;
NdbIndexScanOperation *op;
DBUG_ENTER("ha_ndbcluster::ordered_index_scan");
DBUG_PRINT("enter", ("index: %u, sorted: %d, descending: %d",
active_index, sorted, descending));
DBUG_PRINT("enter", ("Starting new ordered scan on %s", m_tabname));
m_write_op= FALSE;
// Check that sorted seems to be initialised
DBUG_ASSERT(sorted == 0 || sorted == 1);
if (m_active_cursor == 0)
{
restart= FALSE;
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
bool need_pk = (lm == NdbOperation::LM_Read);
if (!(op= trans->getNdbIndexScanOperation(m_index[active_index].index,
m_table)) ||
op->readTuples(lm, 0, parallelism, sorted, descending, FALSE, need_pk))
ERR_RETURN(trans->getNdbError());
if (m_use_partition_function && part_spec != NULL &&
part_spec->start_part == part_spec->end_part)
op->setPartitionId(part_spec->start_part);
m_active_cursor= op;
} else {
restart= TRUE;
op= (NdbIndexScanOperation*)m_active_cursor;
if (m_use_partition_function && part_spec != NULL &&
part_spec->start_part == part_spec->end_part)
op->setPartitionId(part_spec->start_part);
DBUG_ASSERT(op->getSorted() == sorted);
DBUG_ASSERT(op->getLockMode() ==
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type));
if (op->reset_bounds(m_force_send))
DBUG_RETURN(ndb_err(m_active_trans));
}
{
const key_range *keys[2]= { start_key, end_key };
res= set_bounds(op, active_index, FALSE, keys);
if (res)
DBUG_RETURN(res);
}
if (!restart)
{
if (m_cond && m_cond->generate_scan_filter(op))
DBUG_RETURN(ndb_err(trans));
if ((res= define_read_attrs(buf, op)))
{
DBUG_RETURN(res);
}
// If table has user defined partitioning
// and no primary key, we need to read the partition id
// to support ORDER BY queries
if (m_use_partition_function &&
(table_share->primary_key == MAX_KEY) &&
(get_ndb_partition_id(op)))
ERR_RETURN(trans->getNdbError());
}
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(ndb_err(trans));
DBUG_RETURN(next_result(buf));
}
static
int
guess_scan_flags(NdbOperation::LockMode lm,
const NDBTAB* tab, const MY_BITMAP* readset)
{
int flags= 0;
flags|= (lm == NdbOperation::LM_Read) ? NdbScanOperation::SF_KeyInfo : 0;
if (tab->checkColumns(0, 0) & 2)
{
int ret = tab->checkColumns(readset->bitmap, no_bytes_in_map(readset));
if (ret & 2)
{ // If disk columns...use disk scan
flags |= NdbScanOperation::SF_DiskScan;
}
else if ((ret & 4) == 0 && (lm == NdbOperation::LM_Exclusive))
{
// If no mem column is set and exclusive...guess disk scan
flags |= NdbScanOperation::SF_DiskScan;
}
}
return flags;
}
/*
Unique index scan in NDB (full table scan with scan filter)
*/
int ha_ndbcluster::unique_index_scan(const KEY* key_info,
const uchar *key,
uint key_len,
uchar *buf)
{
int res;
NdbScanOperation *op;
NdbTransaction *trans= m_active_trans;
part_id_range part_spec;
DBUG_ENTER("unique_index_scan");
DBUG_PRINT("enter", ("Starting new scan on %s", m_tabname));
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
int flags= guess_scan_flags(lm, m_table, table->read_set);
if (!(op=trans->getNdbScanOperation((const NDBTAB *) m_table)) ||
op->readTuples(lm, flags, parallelism))
ERR_RETURN(trans->getNdbError());
m_active_cursor= op;
if (m_use_partition_function)
{
part_spec.start_part= 0;
part_spec.end_part= m_part_info->get_tot_partitions() - 1;
prune_partition_set(table, &part_spec);
DBUG_PRINT("info", ("part_spec.start_part = %u, part_spec.end_part = %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can return HA_ERR_END_OF_FILE
If partition pruning has found exactly one partition in set
we can optimize scan to run towards that partition only.
*/
if (part_spec.start_part > part_spec.end_part)
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else if (part_spec.start_part == part_spec.end_part)
{
/*
Only one partition is required to scan, if sorted is required we
don't need it any more since output from one ordered partitioned
index is always sorted.
*/
m_active_cursor->setPartitionId(part_spec.start_part);
}
// If table has user defined partitioning
// and no primary key, we need to read the partition id
// to support ORDER BY queries
if ((table_share->primary_key == MAX_KEY) &&
(get_ndb_partition_id(op)))
ERR_RETURN(trans->getNdbError());
}
if (!m_cond)
m_cond= new ha_ndbcluster_cond;
if (!m_cond)
{
my_errno= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(my_errno);
}
if (m_cond->generate_scan_filter_from_key(op, key_info, key, key_len, buf))
DBUG_RETURN(ndb_err(trans));
if ((res= define_read_attrs(buf, op)))
DBUG_RETURN(res);
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(ndb_err(trans));
DBUG_PRINT("exit", ("Scan started successfully"));
DBUG_RETURN(next_result(buf));
}
/**
Start full table scan in NDB.
*/
int ha_ndbcluster::full_table_scan(uchar *buf)
{
int res;
NdbScanOperation *op;
NdbTransaction *trans= m_active_trans;
part_id_range part_spec;
DBUG_ENTER("full_table_scan");
DBUG_PRINT("enter", ("Starting new scan on %s", m_tabname));
m_write_op= FALSE;
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
int flags= guess_scan_flags(lm, m_table, table->read_set);
if (!(op=trans->getNdbScanOperation(m_table)) ||
op->readTuples(lm, flags, parallelism))
ERR_RETURN(trans->getNdbError());
m_active_cursor= op;
if (m_use_partition_function)
{
part_spec.start_part= 0;
part_spec.end_part= m_part_info->get_tot_partitions() - 1;
prune_partition_set(table, &part_spec);
DBUG_PRINT("info", ("part_spec.start_part: %u part_spec.end_part: %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can return HA_ERR_END_OF_FILE
If partition pruning has found exactly one partition in set
we can optimize scan to run towards that partition only.
*/
if (part_spec.start_part > part_spec.end_part)
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else if (part_spec.start_part == part_spec.end_part)
{
/*
Only one partition is required to scan, if sorted is required we
don't need it any more since output from one ordered partitioned
index is always sorted.
*/
m_active_cursor->setPartitionId(part_spec.start_part);
}
// If table has user defined partitioning
// and no primary key, we need to read the partition id
// to support ORDER BY queries
if ((table_share->primary_key == MAX_KEY) &&
(get_ndb_partition_id(op)))
ERR_RETURN(trans->getNdbError());
}
if (m_cond && m_cond->generate_scan_filter(op))
DBUG_RETURN(ndb_err(trans));
if ((res= define_read_attrs(buf, op)))
DBUG_RETURN(res);
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(ndb_err(trans));
DBUG_PRINT("exit", ("Scan started successfully"));
DBUG_RETURN(next_result(buf));
}
int
ha_ndbcluster::set_auto_inc(Field *field)
{
DBUG_ENTER("ha_ndbcluster::set_auto_inc");
Ndb *ndb= get_ndb();
bool read_bit= bitmap_is_set(table->read_set, field->field_index);
bitmap_set_bit(table->read_set, field->field_index);
Uint64 next_val= (Uint64) field->val_int() + 1;
if (!read_bit)
bitmap_clear_bit(table->read_set, field->field_index);
#ifndef DBUG_OFF
char buff[22];
DBUG_PRINT("info",
("Trying to set next auto increment value to %s",
llstr(next_val, buff)));
#endif
if (ndb->checkUpdateAutoIncrementValue(m_share->tuple_id_range, next_val))
{
Ndb_tuple_id_range_guard g(m_share);
if (ndb->setAutoIncrementValue(m_table, g.range, next_val, TRUE)
== -1)
ERR_RETURN(ndb->getNdbError());
}
DBUG_RETURN(0);
}
/**
Insert one record into NDB.
*/
int ha_ndbcluster::write_row(uchar *record)
{
bool has_auto_increment;
uint i;
NdbTransaction *trans= m_active_trans;
NdbOperation *op;
int res;
THD *thd= table->in_use;
longlong func_value= 0;
DBUG_ENTER("ha_ndbcluster::write_row");
m_write_op= TRUE;
has_auto_increment= (table->next_number_field && record == table->record[0]);
if (table_share->primary_key != MAX_KEY)
{
/*
* Increase any auto_incremented primary key
*/
if (has_auto_increment)
{
int error;
m_skip_auto_increment= FALSE;
if ((error= update_auto_increment()))
DBUG_RETURN(error);
m_skip_auto_increment= (insert_id_for_cur_row == 0);
}
}
/*
* If IGNORE the ignore constraint violations on primary and unique keys
*/
if (!m_use_write && m_ignore_dup_key)
{
/*
compare if expression with that in start_bulk_insert()
start_bulk_insert will set parameters to ensure that each
write_row is committed individually
*/
int peek_res= peek_indexed_rows(record, NDB_INSERT);
if (!peek_res)
{
DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY);
}
if (peek_res != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(peek_res);
}
ha_statistic_increment(&SSV::ha_write_count);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
if (!(op= trans->getNdbOperation(m_table)))
ERR_RETURN(trans->getNdbError());
res= (m_use_write) ? op->writeTuple() :op->insertTuple();
if (res != 0)
ERR_RETURN(trans->getNdbError());
if (m_use_partition_function)
{
uint32 part_id;
int error;
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value);
dbug_tmp_restore_column_map(table->read_set, old_map);
if (error)
{
m_part_info->err_value= func_value;
DBUG_RETURN(error);
}
op->setPartitionId(part_id);
}
if (table_share->primary_key == MAX_KEY)
{
// Table has hidden primary key
Ndb *ndb= get_ndb();
Uint64 auto_value;
uint retries= NDB_AUTO_INCREMENT_RETRIES;
int retry_sleep= 30; /* 30 milliseconds, transaction */
for (;;)
{
Ndb_tuple_id_range_guard g(m_share);
if (ndb->getAutoIncrementValue(m_table, g.range, auto_value, 1) == -1)
{
if (--retries &&
ndb->getNdbError().status == NdbError::TemporaryError)
{
my_sleep(retry_sleep);
continue;
}
ERR_RETURN(ndb->getNdbError());
}
break;
}
if (set_hidden_key(op, table_share->fields, (const uchar*)&auto_value))
ERR_RETURN(op->getNdbError());
}
else
{
int error;
if ((error= set_primary_key_from_record(op, record)))
DBUG_RETURN(error);
}
// Set non-key attribute(s)
bool set_blob_value= FALSE;
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
for (i= 0; i < table_share->fields; i++)
{
Field *field= table->field[i];
if (!(field->flags & PRI_KEY_FLAG) &&
(bitmap_is_set(table->write_set, i) || !m_use_write) &&
set_ndb_value(op, field, i, record-table->record[0], &set_blob_value))
{
m_skip_auto_increment= TRUE;
dbug_tmp_restore_column_map(table->read_set, old_map);
ERR_RETURN(op->getNdbError());
}
}
dbug_tmp_restore_column_map(table->read_set, old_map);
if (m_use_partition_function)
{
/*
We need to set the value of the partition function value in
NDB since the NDB kernel doesn't have easy access to the function
to calculate the value.
*/
if (func_value >= INT_MAX32)
func_value= INT_MAX32;
uint32 part_func_value= (uint32)func_value;
uint no_fields= table_share->fields;
if (table_share->primary_key == MAX_KEY)
no_fields++;
op->setValue(no_fields, part_func_value);
}
if (unlikely(m_slow_path))
{
/*
ignore TNTO_NO_LOGGING for slave thd. It is used to indicate
log-slave-updates option. This is instead handled in the
injector thread, by looking explicitly at the
opt_log_slave_updates flag.
*/
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (thd->slave_thread)
op->setAnyValue(thd->server_id);
else if (thd_ndb->trans_options & TNTO_NO_LOGGING)
op->setAnyValue(NDB_ANYVALUE_FOR_NOLOGGING);
}
m_rows_changed++;
/*
Execute write operation
NOTE When doing inserts with many values in
each INSERT statement it should not be necessary
to NoCommit the transaction between each row.
Find out how this is detected!
*/
m_rows_inserted++;
no_uncommitted_rows_update(1);
m_bulk_insert_not_flushed= TRUE;
if ((m_rows_to_insert == (ha_rows) 1) ||
((m_rows_inserted % m_bulk_insert_rows) == 0) ||
m_primary_key_update ||
set_blob_value)
{
// Send rows to NDB
DBUG_PRINT("info", ("Sending inserts to NDB, "\
"rows_inserted: %d bulk_insert_rows: %d",
(int)m_rows_inserted, (int)m_bulk_insert_rows));
m_bulk_insert_not_flushed= FALSE;
if (m_transaction_on)
{
if (execute_no_commit(this,trans,FALSE) != 0)
{
m_skip_auto_increment= TRUE;
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
}
else
{
if (execute_commit(this,trans) != 0)
{
m_skip_auto_increment= TRUE;
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
if (trans->restart() != 0)
{
DBUG_ASSERT(0);
DBUG_RETURN(-1);
}
}
}
if ((has_auto_increment) && (m_skip_auto_increment))
{
int ret_val;
if ((ret_val= set_auto_inc(table->next_number_field)))
{
DBUG_RETURN(ret_val);
}
}
m_skip_auto_increment= TRUE;
DBUG_PRINT("exit",("ok"));
DBUG_RETURN(0);
}
/**
Compare if a key in a row has changed.
*/
int ha_ndbcluster::key_cmp(uint keynr, const uchar * old_row,
const uchar * new_row)
{
KEY_PART_INFO *key_part=table->key_info[keynr].key_part;
KEY_PART_INFO *end=key_part+table->key_info[keynr].key_parts;
for (; key_part != end ; key_part++)
{
if (key_part->null_bit)
{
if ((old_row[key_part->null_offset] & key_part->null_bit) !=
(new_row[key_part->null_offset] & key_part->null_bit))
return 1;
}
if (key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART))
{
if (key_part->field->cmp_binary((old_row + key_part->offset),
(new_row + key_part->offset),
(ulong) key_part->length))
return 1;
}
else
{
if (memcmp(old_row+key_part->offset, new_row+key_part->offset,
key_part->length))
return 1;
}
}
return 0;
}
/**
Update one record in NDB using primary key.
*/
int ha_ndbcluster::update_row(const uchar *old_data, uchar *new_data)
{
THD *thd= table->in_use;
NdbTransaction *trans= m_active_trans;
NdbScanOperation* cursor= m_active_cursor;
NdbOperation *op;
uint i;
uint32 old_part_id= 0, new_part_id= 0;
int error;
longlong func_value;
bool pk_update= (table_share->primary_key != MAX_KEY &&
key_cmp(table_share->primary_key, old_data, new_data));
DBUG_ENTER("update_row");
m_write_op= TRUE;
/*
* If IGNORE the ignore constraint violations on primary and unique keys,
* but check that it is not part of INSERT ... ON DUPLICATE KEY UPDATE
*/
if (m_ignore_dup_key && (thd->lex->sql_command == SQLCOM_UPDATE ||
thd->lex->sql_command == SQLCOM_UPDATE_MULTI))
{
NDB_WRITE_OP write_op= (pk_update) ? NDB_PK_UPDATE : NDB_UPDATE;
int peek_res= peek_indexed_rows(new_data, write_op);
if (!peek_res)
{
DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY);
}
if (peek_res != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(peek_res);
}
ha_statistic_increment(&SSV::ha_update_count);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
{
table->timestamp_field->set_time();
bitmap_set_bit(table->write_set, table->timestamp_field->field_index);
}
if (m_use_partition_function &&
(error= get_parts_for_update(old_data, new_data, table->record[0],
m_part_info, &old_part_id, &new_part_id,
&func_value)))
{
m_part_info->err_value= func_value;
DBUG_RETURN(error);
}
/*
* Check for update of primary key or partition change
* for special handling
*/
if (pk_update || old_part_id != new_part_id)
{
int read_res, insert_res, delete_res, undo_res;
DBUG_PRINT("info", ("primary key update or partition change, "
"doing read+delete+insert"));
// Get all old fields, since we optimize away fields not in query
read_res= complemented_read(old_data, new_data, old_part_id);
if (read_res)
{
DBUG_PRINT("info", ("read failed"));
DBUG_RETURN(read_res);
}
// Delete old row
m_primary_key_update= TRUE;
delete_res= delete_row(old_data);
m_primary_key_update= FALSE;
if (delete_res)
{
DBUG_PRINT("info", ("delete failed"));
DBUG_RETURN(delete_res);
}
// Insert new row
DBUG_PRINT("info", ("delete succeded"));
m_primary_key_update= TRUE;
/*
If we are updating a primary key with auto_increment
then we need to update the auto_increment counter
*/
if (table->found_next_number_field &&
bitmap_is_set(table->write_set,
table->found_next_number_field->field_index) &&
(error= set_auto_inc(table->found_next_number_field)))
{
DBUG_RETURN(error);
}
insert_res= write_row(new_data);
m_primary_key_update= FALSE;
if (insert_res)
{
DBUG_PRINT("info", ("insert failed"));
if (trans->commitStatus() == NdbConnection::Started)
{
// Undo delete_row(old_data)
m_primary_key_update= TRUE;
undo_res= write_row((uchar *)old_data);
if (undo_res)
push_warning(current_thd,
MYSQL_ERROR::WARN_LEVEL_WARN,
undo_res,
"NDB failed undoing delete at primary key update");
m_primary_key_update= FALSE;
}
DBUG_RETURN(insert_res);
}
DBUG_PRINT("info", ("delete+insert succeeded"));
DBUG_RETURN(0);
}
/*
If we are updating a unique key with auto_increment
then we need to update the auto_increment counter
*/
if (table->found_next_number_field &&
bitmap_is_set(table->write_set,
table->found_next_number_field->field_index) &&
(error= set_auto_inc(table->found_next_number_field)))
{
DBUG_RETURN(error);
}
if (cursor)
{
/*
We are scanning records and want to update the record
that was just found, call updateTuple on the cursor
to take over the lock to a new update operation
And thus setting the primary key of the record from
the active record in cursor
*/
DBUG_PRINT("info", ("Calling updateTuple on cursor"));
if (!(op= cursor->updateCurrentTuple()))
ERR_RETURN(trans->getNdbError());
m_lock_tuple= FALSE;
m_ops_pending++;
if (uses_blob_value())
m_blobs_pending= TRUE;
if (m_use_partition_function)
cursor->setPartitionId(new_part_id);
}
else
{
if (!(op= trans->getNdbOperation(m_table)) ||
op->updateTuple() != 0)
ERR_RETURN(trans->getNdbError());
if (m_use_partition_function)
op->setPartitionId(new_part_id);
if (table_share->primary_key == MAX_KEY)
{
// This table has no primary key, use "hidden" primary key
DBUG_PRINT("info", ("Using hidden key"));
// Require that the PK for this record has previously been
// read into m_ref
DBUG_DUMP("key", m_ref, NDB_HIDDEN_PRIMARY_KEY_LENGTH);
if (set_hidden_key(op, table->s->fields, m_ref))
ERR_RETURN(op->getNdbError());
}
else
{
int res;
if ((res= set_primary_key_from_record(op, old_data)))
DBUG_RETURN(res);
}
}
m_rows_changed++;
// Set non-key attribute(s)
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
for (i= 0; i < table_share->fields; i++)
{
Field *field= table->field[i];
if (bitmap_is_set(table->write_set, i) &&
(!(field->flags & PRI_KEY_FLAG)) &&
set_ndb_value(op, field, i, new_data - table->record[0]))
{
dbug_tmp_restore_column_map(table->read_set, old_map);
ERR_RETURN(op->getNdbError());
}
}
dbug_tmp_restore_column_map(table->read_set, old_map);
if (m_use_partition_function)
{
if (func_value >= INT_MAX32)
func_value= INT_MAX32;
uint32 part_func_value= (uint32)func_value;
uint no_fields= table_share->fields;
if (table_share->primary_key == MAX_KEY)
no_fields++;
op->setValue(no_fields, part_func_value);
}
if (unlikely(m_slow_path))
{
/*
ignore TNTO_NO_LOGGING for slave thd. It is used to indicate
log-slave-updates option. This is instead handled in the
injector thread, by looking explicitly at the
opt_log_slave_updates flag.
*/
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (thd->slave_thread)
op->setAnyValue(thd->server_id);
else if (thd_ndb->trans_options & TNTO_NO_LOGGING)
op->setAnyValue(NDB_ANYVALUE_FOR_NOLOGGING);
}
/*
Execute update operation if we are not doing a scan for update
and there exist UPDATE AFTER triggers
*/
if ((!cursor || m_update_cannot_batch) &&
execute_no_commit(this,trans,false) != 0) {
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
DBUG_RETURN(0);
}
/**
Delete one record from NDB, using primary key .
*/
int ha_ndbcluster::delete_row(const uchar *record)
{
THD *thd= table->in_use;
NdbTransaction *trans= m_active_trans;
NdbScanOperation* cursor= m_active_cursor;
NdbOperation *op;
uint32 part_id;
int error;
DBUG_ENTER("delete_row");
m_write_op= TRUE;
ha_statistic_increment(&SSV::ha_delete_count);
m_rows_changed++;
if (m_use_partition_function &&
(error= get_part_for_delete(record, table->record[0], m_part_info,
&part_id)))
{
DBUG_RETURN(error);
}
if (cursor)
{
/*
We are scanning records and want to delete the record
that was just found, call deleteTuple on the cursor
to take over the lock to a new delete operation
And thus setting the primary key of the record from
the active record in cursor
*/
DBUG_PRINT("info", ("Calling deleteTuple on cursor"));
if (cursor->deleteCurrentTuple() != 0)
ERR_RETURN(trans->getNdbError());
m_lock_tuple= FALSE;
m_ops_pending++;
if (m_use_partition_function)
cursor->setPartitionId(part_id);
no_uncommitted_rows_update(-1);
if (unlikely(m_slow_path))
{
/*
ignore TNTO_NO_LOGGING for slave thd. It is used to indicate
log-slave-updates option. This is instead handled in the
injector thread, by looking explicitly at the
opt_log_slave_updates flag.
*/
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (thd->slave_thread)
((NdbOperation *)trans->getLastDefinedOperation())->
setAnyValue(thd->server_id);
else if (thd_ndb->trans_options & TNTO_NO_LOGGING)
((NdbOperation *)trans->getLastDefinedOperation())->
setAnyValue(NDB_ANYVALUE_FOR_NOLOGGING);
}
if (!(m_primary_key_update || m_delete_cannot_batch))
// If deleting from cursor, NoCommit will be handled in next_result
DBUG_RETURN(0);
}
else
{
if (!(op=trans->getNdbOperation(m_table)) ||
op->deleteTuple() != 0)
ERR_RETURN(trans->getNdbError());
if (m_use_partition_function)
op->setPartitionId(part_id);
no_uncommitted_rows_update(-1);
if (table_share->primary_key == MAX_KEY)
{
// This table has no primary key, use "hidden" primary key
DBUG_PRINT("info", ("Using hidden key"));
if (set_hidden_key(op, table->s->fields, m_ref))
ERR_RETURN(op->getNdbError());
}
else
{
if ((error= set_primary_key_from_record(op, record)))
DBUG_RETURN(error);
}
if (unlikely(m_slow_path))
{
/*
ignore TNTO_NO_LOGGING for slave thd. It is used to indicate
log-slave-updates option. This is instead handled in the
injector thread, by looking explicitly at the
opt_log_slave_updates flag.
*/
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (thd->slave_thread)
op->setAnyValue(thd->server_id);
else if (thd_ndb->trans_options & TNTO_NO_LOGGING)
op->setAnyValue(NDB_ANYVALUE_FOR_NOLOGGING);
}
}
// Execute delete operation
if (execute_no_commit(this,trans,FALSE) != 0) {
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
DBUG_RETURN(0);
}
/**
Unpack a record read from NDB.
@param buf Buffer to store read row
@note
The data for each row is read directly into the
destination buffer. This function is primarily
called in order to check if any fields should be
set to null.
*/
void ndb_unpack_record(TABLE *table, NdbValue *value,
MY_BITMAP *defined, uchar *buf)
{
Field **p_field= table->field, *field= *p_field;
my_ptrdiff_t row_offset= (my_ptrdiff_t) (buf - table->record[0]);
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
DBUG_ENTER("ndb_unpack_record");
/*
Set the filler bits of the null byte, since they are
not touched in the code below.
The filler bits are the MSBs in the last null byte
*/
if (table->s->null_bytes > 0)
buf[table->s->null_bytes - 1]|= 256U - (1U <<
table->s->last_null_bit_pos);
/*
Set null flag(s)
*/
for ( ; field;
p_field++, value++, field= *p_field)
{
field->set_notnull(row_offset);
if ((*value).ptr)
{
if (!(field->flags & BLOB_FLAG))
{
int is_null= (*value).rec->isNULL();
if (is_null)
{
if (is_null > 0)
{
DBUG_PRINT("info",("[%u] NULL",
(*value).rec->getColumn()->getColumnNo()));
field->set_null(row_offset);
}
else
{
DBUG_PRINT("info",("[%u] UNDEFINED",
(*value).rec->getColumn()->getColumnNo()));
bitmap_clear_bit(defined,
(*value).rec->getColumn()->getColumnNo());
}
}
else if (field->type() == MYSQL_TYPE_BIT)
{
Field_bit *field_bit= static_cast<Field_bit*>(field);
/*
Move internal field pointer to point to 'buf'. Calling
the correct member function directly since we know the
type of the object.
*/
field_bit->Field_bit::move_field_offset(row_offset);
if (field->pack_length() < 5)
{
DBUG_PRINT("info", ("bit field H'%.8X",
(*value).rec->u_32_value()));
field_bit->Field_bit::store((longlong) (*value).rec->u_32_value(),
FALSE);
}
else
{
DBUG_PRINT("info", ("bit field H'%.8X%.8X",
*(Uint32 *)(*value).rec->aRef(),
*((Uint32 *)(*value).rec->aRef()+1)));
#ifdef WORDS_BIGENDIAN
/* lsw is stored first */
Uint32 *buf= (Uint32 *)(*value).rec->aRef();
field_bit->Field_bit::store((((longlong)*buf)
& 0x000000000FFFFFFFFLL)
|
((((longlong)*(buf+1)) << 32)
& 0xFFFFFFFF00000000LL),
TRUE);
#else
field_bit->Field_bit::store((longlong)
(*value).rec->u_64_value(), TRUE);
#endif
}
/*
Move back internal field pointer to point to original
value (usually record[0]).
*/
field_bit->Field_bit::move_field_offset(-row_offset);
DBUG_PRINT("info",("[%u] SET",
(*value).rec->getColumn()->getColumnNo()));
DBUG_DUMP("info", field->ptr, field->pack_length());
}
else
{
DBUG_PRINT("info",("[%u] SET",
(*value).rec->getColumn()->getColumnNo()));
DBUG_DUMP("info", field->ptr, field->pack_length());
}
}
else
{
NdbBlob *ndb_blob= (*value).blob;
uint col_no = ndb_blob->getColumn()->getColumnNo();
int isNull;
ndb_blob->getDefined(isNull);
if (isNull == 1)
{
DBUG_PRINT("info",("[%u] NULL", col_no));
field->set_null(row_offset);
}
else if (isNull == -1)
{
DBUG_PRINT("info",("[%u] UNDEFINED", col_no));
bitmap_clear_bit(defined, col_no);
}
else
{
#ifndef DBUG_OFF
// pointer vas set in get_ndb_blobs_value
Field_blob *field_blob= (Field_blob*)field;
uchar *ptr;
field_blob->get_ptr(&ptr, row_offset);
uint32 len= field_blob->get_length(row_offset);
DBUG_PRINT("info",("[%u] SET ptr: 0x%lx len: %u",
col_no, (long) ptr, len));
#endif
}
}
}
}
dbug_tmp_restore_column_map(table->write_set, old_map);
DBUG_VOID_RETURN;
}
void ha_ndbcluster::unpack_record(uchar *buf)
{
ndb_unpack_record(table, m_value, 0, buf);
#ifndef DBUG_OFF
// Read and print all values that was fetched
if (table_share->primary_key == MAX_KEY)
{
// Table with hidden primary key
int hidden_no= table_share->fields;
const NDBTAB *tab= m_table;
char buff[22];
const NDBCOL *hidden_col= tab->getColumn(hidden_no);
const NdbRecAttr* rec= m_value[hidden_no].rec;
DBUG_ASSERT(rec);
DBUG_PRINT("hidden", ("%d: %s \"%s\"", hidden_no,
hidden_col->getName(),
llstr(rec->u_64_value(), buff)));
}
//DBUG_EXECUTE("value", print_results(););
#endif
}
/**
Utility function to print/dump the fetched field.
To avoid unnecessary work, wrap in DBUG_EXECUTE as in:
DBUG_EXECUTE("value", print_results(););
*/
void ha_ndbcluster::print_results()
{
DBUG_ENTER("print_results");
#ifndef DBUG_OFF
char buf_type[MAX_FIELD_WIDTH], buf_val[MAX_FIELD_WIDTH];
String type(buf_type, sizeof(buf_type), &my_charset_bin);
String val(buf_val, sizeof(buf_val), &my_charset_bin);
for (uint f= 0; f < table_share->fields; f++)
{
/* Use DBUG_PRINT since DBUG_FILE cannot be filtered out */
char buf[2000];
Field *field;
void* ptr;
NdbValue value;
buf[0]= 0;
field= table->field[f];
if (!(value= m_value[f]).ptr)
{
strmov(buf, "not read");
goto print_value;
}
ptr= field->ptr;
if (! (field->flags & BLOB_FLAG))
{
if (value.rec->isNULL())
{
strmov(buf, "NULL");
goto print_value;
}
type.length(0);
val.length(0);
field->sql_type(type);
field->val_str(&val);
my_snprintf(buf, sizeof(buf), "%s %s", type.c_ptr(), val.c_ptr());
}
else
{
NdbBlob *ndb_blob= value.blob;
bool isNull= TRUE;
ndb_blob->getNull(isNull);
if (isNull)
strmov(buf, "NULL");
}
print_value:
DBUG_PRINT("value", ("%u,%s: %s", f, field->field_name, buf));
}
#endif
DBUG_VOID_RETURN;
}
int ha_ndbcluster::index_init(uint index, bool sorted)
{
DBUG_ENTER("ha_ndbcluster::index_init");
DBUG_PRINT("enter", ("index: %u sorted: %d", index, sorted));
active_index= index;
m_sorted= sorted;
/*
Locks are are explicitly released in scan
unless m_lock.type == TL_READ_HIGH_PRIORITY
and no sub-sequent call to unlock_row()
*/
m_lock_tuple= FALSE;
DBUG_RETURN(0);
}
int ha_ndbcluster::index_end()
{
DBUG_ENTER("ha_ndbcluster::index_end");
DBUG_RETURN(close_scan());
}
/**
Check if key contains null.
*/
static
int
check_null_in_key(const KEY* key_info, const uchar *key, uint key_len)
{
KEY_PART_INFO *curr_part, *end_part;
const uchar* end_ptr= key + key_len;
curr_part= key_info->key_part;
end_part= curr_part + key_info->key_parts;
for (; curr_part != end_part && key < end_ptr; curr_part++)
{
if (curr_part->null_bit && *key)
return 1;
key += curr_part->store_length;
}
return 0;
}
int ha_ndbcluster::index_read(uchar *buf,
const uchar *key, uint key_len,
enum ha_rkey_function find_flag)
{
key_range start_key;
bool descending= FALSE;
int rc;
DBUG_ENTER("ha_ndbcluster::index_read");
DBUG_PRINT("enter", ("active_index: %u, key_len: %u, find_flag: %d",
active_index, key_len, find_flag));
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
start_key.key= key;
start_key.length= key_len;
start_key.flag= find_flag;
descending= FALSE;
switch (find_flag) {
case HA_READ_KEY_OR_PREV:
case HA_READ_BEFORE_KEY:
case HA_READ_PREFIX_LAST:
case HA_READ_PREFIX_LAST_OR_PREV:
descending= TRUE;
break;
default:
break;
}
rc= read_range_first_to_buf(&start_key, 0, descending,
m_sorted, buf);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::index_next(uchar *buf)
{
int rc;
DBUG_ENTER("ha_ndbcluster::index_next");
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
ha_statistic_increment(&SSV::ha_read_next_count);
rc= next_result(buf);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::index_prev(uchar *buf)
{
int rc;
DBUG_ENTER("ha_ndbcluster::index_prev");
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
ha_statistic_increment(&SSV::ha_read_prev_count);
rc= next_result(buf);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::index_first(uchar *buf)
{
int rc;
DBUG_ENTER("ha_ndbcluster::index_first");
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
ha_statistic_increment(&SSV::ha_read_first_count);
// Start the ordered index scan and fetch the first row
// Only HA_READ_ORDER indexes get called by index_first
rc= ordered_index_scan(0, 0, TRUE, FALSE, buf, NULL);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::index_last(uchar *buf)
{
int rc;
DBUG_ENTER("ha_ndbcluster::index_last");
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
ha_statistic_increment(&SSV::ha_read_last_count);
rc= ordered_index_scan(0, 0, TRUE, TRUE, buf, NULL);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::index_read_last(uchar * buf, const uchar * key, uint key_len)
{
DBUG_ENTER("ha_ndbcluster::index_read_last");
DBUG_RETURN(index_read(buf, key, key_len, HA_READ_PREFIX_LAST));
}
int ha_ndbcluster::read_range_first_to_buf(const key_range *start_key,
const key_range *end_key,
bool desc, bool sorted,
uchar* buf)
{
part_id_range part_spec;
ndb_index_type type= get_index_type(active_index);
const KEY* key_info= table->key_info+active_index;
int error;
DBUG_ENTER("ha_ndbcluster::read_range_first_to_buf");
DBUG_PRINT("info", ("desc: %d, sorted: %d", desc, sorted));
if (m_use_partition_function)
{
get_partition_set(table, buf, active_index, start_key, &part_spec);
DBUG_PRINT("info", ("part_spec.start_part: %u part_spec.end_part: %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can return HA_ERR_END_OF_FILE
If partition pruning has found exactly one partition in set
we can optimize scan to run towards that partition only.
*/
if (part_spec.start_part > part_spec.end_part)
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else if (part_spec.start_part == part_spec.end_part)
{
/*
Only one partition is required to scan, if sorted is required we
don't need it any more since output from one ordered partitioned
index is always sorted.
*/
sorted= FALSE;
}
}
m_write_op= FALSE;
switch (type){
case PRIMARY_KEY_ORDERED_INDEX:
case PRIMARY_KEY_INDEX:
if (start_key &&
start_key->length == key_info->key_length &&
start_key->flag == HA_READ_KEY_EXACT)
{
if (m_active_cursor && (error= close_scan()))
DBUG_RETURN(error);
error= pk_read(start_key->key, start_key->length, buf,
part_spec.start_part);
DBUG_RETURN(error == HA_ERR_KEY_NOT_FOUND ? HA_ERR_END_OF_FILE : error);
}
break;
case UNIQUE_ORDERED_INDEX:
case UNIQUE_INDEX:
if (start_key && start_key->length == key_info->key_length &&
start_key->flag == HA_READ_KEY_EXACT &&
!check_null_in_key(key_info, start_key->key, start_key->length))
{
if (m_active_cursor && (error= close_scan()))
DBUG_RETURN(error);
error= unique_index_read(start_key->key, start_key->length, buf);
DBUG_RETURN(error == HA_ERR_KEY_NOT_FOUND ? HA_ERR_END_OF_FILE : error);
}
else if (type == UNIQUE_INDEX)
DBUG_RETURN(unique_index_scan(key_info,
start_key->key,
start_key->length,
buf));
break;
default:
break;
}
// Start the ordered index scan and fetch the first row
DBUG_RETURN(ordered_index_scan(start_key, end_key, sorted, desc, buf,
&part_spec));
}
int ha_ndbcluster::read_range_first(const key_range *start_key,
const key_range *end_key,
bool eq_r, bool sorted)
{
int rc;
uchar* buf= table->record[0];
DBUG_ENTER("ha_ndbcluster::read_range_first");
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
rc= read_range_first_to_buf(start_key, end_key, FALSE,
sorted, buf);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::read_range_next()
{
int rc;
DBUG_ENTER("ha_ndbcluster::read_range_next");
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
rc= next_result(table->record[0]);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::rnd_init(bool scan)
{
NdbScanOperation *cursor= m_active_cursor;
DBUG_ENTER("rnd_init");
DBUG_PRINT("enter", ("scan: %d", scan));
// Check if scan is to be restarted
if (cursor)
{
if (!scan)
DBUG_RETURN(1);
if (cursor->restart(m_force_send) != 0)
{
DBUG_ASSERT(0);
DBUG_RETURN(-1);
}
}
index_init(table_share->primary_key, 0);
DBUG_RETURN(0);
}
int ha_ndbcluster::close_scan()
{
NdbTransaction *trans= m_active_trans;
DBUG_ENTER("close_scan");
m_multi_cursor= 0;
if (!m_active_cursor && !m_multi_cursor)
DBUG_RETURN(0);
NdbScanOperation *cursor= m_active_cursor ? m_active_cursor : m_multi_cursor;
if (m_lock_tuple)
{
/*
Lock level m_lock.type either TL_WRITE_ALLOW_WRITE
(SELECT FOR UPDATE) or TL_READ_WITH_SHARED_LOCKS (SELECT
LOCK WITH SHARE MODE) and row was not explictly unlocked
with unlock_row() call
*/
NdbOperation *op;
// Lock row
DBUG_PRINT("info", ("Keeping lock on scanned row"));
if (!(op= cursor->lockCurrentTuple()))
{
m_lock_tuple= FALSE;
ERR_RETURN(trans->getNdbError());
}
m_ops_pending++;
}
m_lock_tuple= FALSE;
if (m_ops_pending)
{
/*
Take over any pending transactions to the
deleteing/updating transaction before closing the scan
*/
DBUG_PRINT("info", ("ops_pending: %ld", (long) m_ops_pending));
if (execute_no_commit(this,trans,FALSE) != 0) {
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
m_ops_pending= 0;
}
cursor->close(m_force_send, TRUE);
m_active_cursor= m_multi_cursor= NULL;
DBUG_RETURN(0);
}
int ha_ndbcluster::rnd_end()
{
DBUG_ENTER("rnd_end");
DBUG_RETURN(close_scan());
}
int ha_ndbcluster::rnd_next(uchar *buf)
{
int rc;
DBUG_ENTER("rnd_next");
MYSQL_READ_ROW_START(table_share->db.str, table_share->table_name.str,
TRUE);
ha_statistic_increment(&SSV::ha_read_rnd_next_count);
if (!m_active_cursor)
rc= full_table_scan(buf);
else
rc= next_result(buf);
MYSQL_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
/**
An "interesting" record has been found and it's pk
retrieved by calling position. Now it's time to read
the record from db once again.
*/
int ha_ndbcluster::rnd_pos(uchar *buf, uchar *pos)
{
int rc;
DBUG_ENTER("rnd_pos");
MYSQL_READ_ROW_START(table_share->db.str, table_share->table_name.str,
FALSE);
ha_statistic_increment(&SSV::ha_read_rnd_count);
// The primary key for the record is stored in pos
// Perform a pk_read using primary key "index"
{
part_id_range part_spec;
uint key_length= ref_length;
if (m_use_partition_function)
{
if (table_share->primary_key == MAX_KEY)
{
/*
The partition id has been fetched from ndb
and has been stored directly after the hidden key
*/
DBUG_DUMP("key+part", pos, key_length);
key_length= ref_length - sizeof(m_part_id);
part_spec.start_part= part_spec.end_part= *(uint32 *)(pos + key_length);
}
else
{
key_range key_spec;
KEY *key_info= table->key_info + table_share->primary_key;
key_spec.key= pos;
key_spec.length= key_length;
key_spec.flag= HA_READ_KEY_EXACT;
get_full_part_id_from_key(table, buf, key_info,
&key_spec, &part_spec);
DBUG_ASSERT(part_spec.start_part == part_spec.end_part);
}
DBUG_PRINT("info", ("partition id %u", part_spec.start_part));
}
DBUG_DUMP("key", pos, key_length);
rc= pk_read(pos, key_length, buf, part_spec.start_part);
MYSQL_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
}
/**
Store the primary key of this record in ref
variable, so that the row can be retrieved again later
using "reference" in rnd_pos.
*/
void ha_ndbcluster::position(const uchar *record)
{
KEY *key_info;
KEY_PART_INFO *key_part;
KEY_PART_INFO *end;
uchar *buff;
uint key_length;
DBUG_ENTER("position");
if (table_share->primary_key != MAX_KEY)
{
key_length= ref_length;
key_info= table->key_info + table_share->primary_key;
key_part= key_info->key_part;
end= key_part + key_info->key_parts;
buff= ref;
for (; key_part != end; key_part++)
{
if (key_part->null_bit) {
/* Store 0 if the key part is a NULL part */
if (record[key_part->null_offset]
& key_part->null_bit) {
*buff++= 1;
continue;
}
*buff++= 0;
}
size_t len = key_part->length;
const uchar * ptr = record + key_part->offset;
Field *field = key_part->field;
if (field->type() == MYSQL_TYPE_VARCHAR)
{
if (((Field_varstring*)field)->length_bytes == 1)
{
/**
* Keys always use 2 bytes length
*/
buff[0] = ptr[0];
buff[1] = 0;
memcpy(buff+2, ptr + 1, len);
}
else
{
memcpy(buff, ptr, len + 2);
}
len += 2;
}
else
{
memcpy(buff, ptr, len);
}
buff += len;
}
}
else
{
// No primary key, get hidden key
DBUG_PRINT("info", ("Getting hidden key"));
// If table has user defined partition save the partition id as well
if(m_use_partition_function)
{
DBUG_PRINT("info", ("Saving partition id %u", m_part_id));
key_length= ref_length - sizeof(m_part_id);
memcpy(ref+key_length, (void *)&m_part_id, sizeof(m_part_id));
}
else
key_length= ref_length;
#ifndef DBUG_OFF
int hidden_no= table->s->fields;
const NDBTAB *tab= m_table;
const NDBCOL *hidden_col= tab->getColumn(hidden_no);
DBUG_ASSERT(hidden_col->getPrimaryKey() &&
hidden_col->getAutoIncrement() &&
key_length == NDB_HIDDEN_PRIMARY_KEY_LENGTH);
#endif
memcpy(ref, m_ref, key_length);
}
#ifndef DBUG_OFF
if (table_share->primary_key == MAX_KEY && m_use_partition_function)
DBUG_DUMP("key+part", ref, key_length+sizeof(m_part_id));
#endif
DBUG_DUMP("ref", ref, key_length);
DBUG_VOID_RETURN;
}
int ha_ndbcluster::info(uint flag)
{
int result= 0;
DBUG_ENTER("info");
DBUG_PRINT("enter", ("flag: %d", flag));
if (flag & HA_STATUS_POS)
DBUG_PRINT("info", ("HA_STATUS_POS"));
if (flag & HA_STATUS_NO_LOCK)
DBUG_PRINT("info", ("HA_STATUS_NO_LOCK"));
if (flag & HA_STATUS_TIME)
DBUG_PRINT("info", ("HA_STATUS_TIME"));
if (flag & HA_STATUS_VARIABLE)
{
DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
if (m_table_info)
{
if (m_ha_not_exact_count)
stats.records= 100;
else
result= records_update();
}
else
{
if ((my_errno= check_ndb_connection()))
DBUG_RETURN(my_errno);
Ndb *ndb= get_ndb();
ndb->setDatabaseName(m_dbname);
struct Ndb_statistics stat;
if (ndb->setDatabaseName(m_dbname))
{
DBUG_RETURN(my_errno= HA_ERR_OUT_OF_MEM);
}
if (current_thd->variables.ndb_use_exact_count &&
(result= ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat))
== 0)
{
stats.mean_rec_length= stat.row_size;
stats.data_file_length= stat.fragment_memory;
stats.records= stat.row_count;
}
else
{
stats.mean_rec_length= 0;
stats.records= 100;
}
}
}
if (flag & HA_STATUS_CONST)
{
DBUG_PRINT("info", ("HA_STATUS_CONST"));
set_rec_per_key();
}
if (flag & HA_STATUS_ERRKEY)
{
DBUG_PRINT("info", ("HA_STATUS_ERRKEY"));
errkey= m_dupkey;
}
if (flag & HA_STATUS_AUTO)
{
DBUG_PRINT("info", ("HA_STATUS_AUTO"));
if (m_table && table->found_next_number_field)
{
if ((my_errno= check_ndb_connection()))
DBUG_RETURN(my_errno);
Ndb *ndb= get_ndb();
Ndb_tuple_id_range_guard g(m_share);
Uint64 auto_increment_value64;
if (ndb->readAutoIncrementValue(m_table, g.range,
auto_increment_value64) == -1)
{
const NdbError err= ndb->getNdbError();
sql_print_error("Error %lu in readAutoIncrementValue(): %s",
(ulong) err.code, err.message);
stats.auto_increment_value= ~(ulonglong)0;
}
else
stats.auto_increment_value= (ulonglong)auto_increment_value64;
}
}
if(result == -1)
result= HA_ERR_NO_CONNECTION;
DBUG_RETURN(result);
}
void ha_ndbcluster::get_dynamic_partition_info(PARTITION_INFO *stat_info,
uint part_id)
{
/*
This functions should be fixed. Suggested fix: to
implement ndb function which retrives the statistics
about ndb partitions.
*/
bzero((char*) stat_info, sizeof(PARTITION_INFO));
return;
}
int ha_ndbcluster::extra(enum ha_extra_function operation)
{
DBUG_ENTER("extra");
switch (operation) {
case HA_EXTRA_IGNORE_DUP_KEY: /* Dup keys don't rollback everything*/
DBUG_PRINT("info", ("HA_EXTRA_IGNORE_DUP_KEY"));
DBUG_PRINT("info", ("Ignoring duplicate key"));
m_ignore_dup_key= TRUE;
break;
case HA_EXTRA_NO_IGNORE_DUP_KEY:
DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_DUP_KEY"));
m_ignore_dup_key= FALSE;
break;
case HA_EXTRA_IGNORE_NO_KEY:
DBUG_PRINT("info", ("HA_EXTRA_IGNORE_NO_KEY"));
DBUG_PRINT("info", ("Turning on AO_IgnoreError at Commit/NoCommit"));
m_ignore_no_key= TRUE;
break;
case HA_EXTRA_NO_IGNORE_NO_KEY:
DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_NO_KEY"));
DBUG_PRINT("info", ("Turning on AO_IgnoreError at Commit/NoCommit"));
m_ignore_no_key= FALSE;
break;
case HA_EXTRA_WRITE_CAN_REPLACE:
DBUG_PRINT("info", ("HA_EXTRA_WRITE_CAN_REPLACE"));
if (!m_has_unique_index ||
current_thd->slave_thread) /* always set if slave, quick fix for bug 27378 */
{
DBUG_PRINT("info", ("Turning ON use of write instead of insert"));
m_use_write= TRUE;
}
break;
case HA_EXTRA_WRITE_CANNOT_REPLACE:
DBUG_PRINT("info", ("HA_EXTRA_WRITE_CANNOT_REPLACE"));
DBUG_PRINT("info", ("Turning OFF use of write instead of insert"));
m_use_write= FALSE;
break;
case HA_EXTRA_DELETE_CANNOT_BATCH:
DBUG_PRINT("info", ("HA_EXTRA_DELETE_CANNOT_BATCH"));
m_delete_cannot_batch= TRUE;
break;
case HA_EXTRA_UPDATE_CANNOT_BATCH:
DBUG_PRINT("info", ("HA_EXTRA_UPDATE_CANNOT_BATCH"));
m_update_cannot_batch= TRUE;
break;
default:
break;
}
DBUG_RETURN(0);
}
int ha_ndbcluster::reset()
{
DBUG_ENTER("ha_ndbcluster::reset");
if (m_cond)
{
m_cond->cond_clear();
}
/*
Regular partition pruning will set the bitmap appropriately.
Some queries like ALTER TABLE doesn't use partition pruning and
thus the 'used_partitions' bitmap needs to be initialized
*/
if (m_part_info)
bitmap_set_all(&m_part_info->used_partitions);
/* reset flags set by extra calls */
m_ignore_dup_key= FALSE;
m_use_write= FALSE;
m_ignore_no_key= FALSE;
m_delete_cannot_batch= FALSE;
m_update_cannot_batch= FALSE;
DBUG_RETURN(0);
}
/**
Start of an insert, remember number of rows to be inserted, it will
be used in write_row and get_autoincrement to send an optimal number
of rows in each roundtrip to the server.
@param
rows number of rows to insert, 0 if unknown
*/
void ha_ndbcluster::start_bulk_insert(ha_rows rows)
{
int bytes, batch;
const NDBTAB *tab= m_table;
DBUG_ENTER("start_bulk_insert");
DBUG_PRINT("enter", ("rows: %d", (int)rows));
m_rows_inserted= (ha_rows) 0;
if (!m_use_write && m_ignore_dup_key)
{
/*
compare if expression with that in write_row
we have a situation where peek_indexed_rows() will be called
so we cannot batch
*/
DBUG_PRINT("info", ("Batching turned off as duplicate key is "
"ignored by using peek_row"));
m_rows_to_insert= 1;
m_bulk_insert_rows= 1;
DBUG_VOID_RETURN;
}
if (rows == (ha_rows) 0)
{
/* We don't know how many will be inserted, guess */
m_rows_to_insert= m_autoincrement_prefetch;
}
else
m_rows_to_insert= rows;
/*
Calculate how many rows that should be inserted
per roundtrip to NDB. This is done in order to minimize the
number of roundtrips as much as possible. However performance will
degrade if too many bytes are inserted, thus it's limited by this
calculation.
*/
const int bytesperbatch= 8192;
bytes= 12 + tab->getRowSizeInBytes() + 4 * tab->getNoOfColumns();
batch= bytesperbatch/bytes;
batch= batch == 0 ? 1 : batch;
DBUG_PRINT("info", ("batch: %d, bytes: %d", batch, bytes));
m_bulk_insert_rows= batch;
DBUG_VOID_RETURN;
}
/**
End of an insert.
*/
int ha_ndbcluster::end_bulk_insert()
{
int error= 0;
DBUG_ENTER("end_bulk_insert");
// Check if last inserts need to be flushed
if (m_bulk_insert_not_flushed)
{
NdbTransaction *trans= m_active_trans;
// Send rows to NDB
DBUG_PRINT("info", ("Sending inserts to NDB, "\
"rows_inserted: %d bulk_insert_rows: %d",
(int) m_rows_inserted, (int) m_bulk_insert_rows));
m_bulk_insert_not_flushed= FALSE;
if (m_transaction_on)
{
if (execute_no_commit(this, trans,FALSE) != 0)
{
no_uncommitted_rows_execute_failure();
my_errno= error= ndb_err(trans);
}
}
else
{
if (execute_commit(this, trans) != 0)
{
no_uncommitted_rows_execute_failure();
my_errno= error= ndb_err(trans);
}
else
{
int res __attribute__((unused))= trans->restart();
DBUG_ASSERT(res == 0);
}
}
}
m_rows_inserted= (ha_rows) 0;
m_rows_to_insert= (ha_rows) 1;
DBUG_RETURN(error);
}
int ha_ndbcluster::extra_opt(enum ha_extra_function operation, ulong cache_size)
{
DBUG_ENTER("extra_opt");
DBUG_PRINT("enter", ("cache_size: %lu", cache_size));
DBUG_RETURN(extra(operation));
}
static const char *ha_ndbcluster_exts[] = {
ha_ndb_ext,
NullS
};
const char** ha_ndbcluster::bas_ext() const
{
return ha_ndbcluster_exts;
}
/**
How many seeks it will take to read through the table.
This is to be comparable to the number returned by records_in_range so
that we can decide if we should scan the table or use keys.
*/
double ha_ndbcluster::scan_time()
{
DBUG_ENTER("ha_ndbcluster::scan_time()");
double res= rows2double(stats.records*1000);
DBUG_PRINT("exit", ("table: %s value: %f",
m_tabname, res));
DBUG_RETURN(res);
}
/*
Convert MySQL table locks into locks supported by Ndb Cluster.
Note that MySQL Cluster does currently not support distributed
table locks, so to be safe one should set cluster in Single
User Mode, before relying on table locks when updating tables
from several MySQL servers
*/
THR_LOCK_DATA **ha_ndbcluster::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
DBUG_ENTER("store_lock");
if (lock_type != TL_IGNORE && m_lock.type == TL_UNLOCK)
{
/* If we are not doing a LOCK TABLE, then allow multiple
writers */
/* Since NDB does not currently have table locks
this is treated as a ordinary lock */
if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
lock_type <= TL_WRITE) && !thd->in_lock_tables)
lock_type= TL_WRITE_ALLOW_WRITE;
/* In queries of type INSERT INTO t1 SELECT ... FROM t2 ...
MySQL would use the lock TL_READ_NO_INSERT on t2, and that
would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts
to t2. Convert the lock to a normal read lock to allow
concurrent inserts to t2. */
if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables)
lock_type= TL_READ;
m_lock.type=lock_type;
}
*to++= &m_lock;
DBUG_PRINT("exit", ("lock_type: %d", lock_type));
DBUG_RETURN(to);
}
#ifndef DBUG_OFF
#define PRINT_OPTION_FLAGS(t) { \
if (t->options & OPTION_NOT_AUTOCOMMIT) \
DBUG_PRINT("thd->options", ("OPTION_NOT_AUTOCOMMIT")); \
if (t->options & OPTION_BEGIN) \
DBUG_PRINT("thd->options", ("OPTION_BEGIN")); \
if (t->options & OPTION_TABLE_LOCK) \
DBUG_PRINT("thd->options", ("OPTION_TABLE_LOCK")); \
}
#else
#define PRINT_OPTION_FLAGS(t)
#endif
/*
As MySQL will execute an external lock for every new table it uses
we can use this to start the transactions.
If we are in auto_commit mode we just need to start a transaction
for the statement, this will be stored in thd_ndb.stmt.
If not, we have to start a master transaction if there doesn't exist
one from before, this will be stored in thd_ndb.all
When a table lock is held one transaction will be started which holds
the table lock and for each statement a hupp transaction will be started
If we are locking the table then:
- save the NdbDictionary::Table for easy access
- save reference to table statistics
- refresh list of the indexes for the table if needed (if altered)
*/
#ifdef HAVE_NDB_BINLOG
extern Master_info *active_mi;
static int ndbcluster_update_apply_status(THD *thd, int do_update)
{
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
NDBDICT *dict= ndb->getDictionary();
const NDBTAB *ndbtab;
NdbTransaction *trans= thd_ndb->trans;
ndb->setDatabaseName(NDB_REP_DB);
Ndb_table_guard ndbtab_g(dict, NDB_APPLY_TABLE);
if (!(ndbtab= ndbtab_g.get_table()))
{
return -1;
}
NdbOperation *op= 0;
int r= 0;
r|= (op= trans->getNdbOperation(ndbtab)) == 0;
DBUG_ASSERT(r == 0);
if (do_update)
r|= op->updateTuple();
else
r|= op->writeTuple();
DBUG_ASSERT(r == 0);
// server_id
r|= op->equal(0u, (Uint32)thd->server_id);
DBUG_ASSERT(r == 0);
if (!do_update)
{
// epoch
r|= op->setValue(1u, (Uint64)0);
DBUG_ASSERT(r == 0);
}
// log_name
char tmp_buf[FN_REFLEN];
ndb_pack_varchar(ndbtab->getColumn(2u), tmp_buf,
active_mi->rli.group_master_log_name,
strlen(active_mi->rli.group_master_log_name));
r|= op->setValue(2u, tmp_buf);
DBUG_ASSERT(r == 0);
// start_pos
r|= op->setValue(3u, (Uint64)active_mi->rli.group_master_log_pos);
DBUG_ASSERT(r == 0);
// end_pos
r|= op->setValue(4u, (Uint64)active_mi->rli.group_master_log_pos +
((Uint64)active_mi->rli.future_event_relay_log_pos -
(Uint64)active_mi->rli.group_relay_log_pos));
DBUG_ASSERT(r == 0);
return 0;
}
#endif /* HAVE_NDB_BINLOG */
void ha_ndbcluster::transaction_checks(THD *thd)
{
if (thd->lex->sql_command == SQLCOM_LOAD)
{
m_transaction_on= FALSE;
/* Would be simpler if has_transactions() didn't always say "yes" */
thd->transaction.all.modified_non_trans_table=
thd->transaction.stmt.modified_non_trans_table= TRUE;
}
else if (!thd->transaction.on)
m_transaction_on= FALSE;
else
m_transaction_on= thd->variables.ndb_use_transactions;
}
int ha_ndbcluster::start_statement(THD *thd,
Thd_ndb *thd_ndb,
Ndb *ndb)
{
DBUG_ENTER("ha_ndbcluster::start_statement");
PRINT_OPTION_FLAGS(thd);
trans_register_ha(thd, FALSE, ndbcluster_hton);
if (!thd_ndb->trans)
{
if (thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
trans_register_ha(thd, TRUE, ndbcluster_hton);
DBUG_PRINT("trans",("Starting transaction"));
thd_ndb->trans= ndb->startTransaction();
if (thd_ndb->trans == NULL)
ERR_RETURN(ndb->getNdbError());
thd_ndb->init_open_tables();
thd_ndb->query_state&= NDB_QUERY_NORMAL;
thd_ndb->trans_options= 0;
thd_ndb->m_slow_path= FALSE;
if (!(thd->options & OPTION_BIN_LOG) ||
thd->variables.binlog_format == BINLOG_FORMAT_STMT)
{
thd_ndb->trans_options|= TNTO_NO_LOGGING;
thd_ndb->m_slow_path= TRUE;
}
else if (thd->slave_thread)
thd_ndb->m_slow_path= TRUE;
}
/*
If this is the start of a LOCK TABLE, a table look
should be taken on the table in NDB
Check if it should be read or write lock
*/
if (thd->options & (OPTION_TABLE_LOCK))
{
//lockThisTable();
DBUG_PRINT("info", ("Locking the table..." ));
}
DBUG_RETURN(0);
}
int ha_ndbcluster::init_handler_for_statement(THD *thd, Thd_ndb *thd_ndb)
{
/*
This is the place to make sure this handler instance
has a started transaction.
The transaction is started by the first handler on which
MySQL Server calls external lock
Other handlers in the same stmt or transaction should use
the same NDB transaction. This is done by setting up the m_active_trans
pointer to point to the NDB transaction.
*/
DBUG_ENTER("ha_ndbcluster::init_handler_for_statement");
// store thread specific data first to set the right context
m_force_send= thd->variables.ndb_force_send;
m_ha_not_exact_count= !thd->variables.ndb_use_exact_count;
m_autoincrement_prefetch=
(thd->variables.ndb_autoincrement_prefetch_sz >
NDB_DEFAULT_AUTO_PREFETCH) ?
(ha_rows) thd->variables.ndb_autoincrement_prefetch_sz
: (ha_rows) NDB_DEFAULT_AUTO_PREFETCH;
m_active_trans= thd_ndb->trans;
DBUG_ASSERT(m_active_trans);
// Start of transaction
m_rows_changed= 0;
m_ops_pending= 0;
m_slow_path= thd_ndb->m_slow_path;
#ifdef HAVE_NDB_BINLOG
if (unlikely(m_slow_path))
{
if (m_share == ndb_apply_status_share && thd->slave_thread)
thd_ndb->trans_options|= TNTO_INJECTED_APPLY_STATUS;
}
#endif
if (thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
{
const void *key= m_table;
HASH_SEARCH_STATE state;
THD_NDB_SHARE *thd_ndb_share=
(THD_NDB_SHARE*)my_hash_first(&thd_ndb->open_tables, (uchar *)&key, sizeof(key), &state);
while (thd_ndb_share && thd_ndb_share->key != key)
thd_ndb_share= (THD_NDB_SHARE*)my_hash_next(&thd_ndb->open_tables, (uchar *)&key, sizeof(key), &state);
if (thd_ndb_share == 0)
{
thd_ndb_share= (THD_NDB_SHARE *) alloc_root(&thd->transaction.mem_root,
sizeof(THD_NDB_SHARE));
if (!thd_ndb_share)
{
mem_alloc_error(sizeof(THD_NDB_SHARE));
DBUG_RETURN(1);
}
thd_ndb_share->key= key;
thd_ndb_share->stat.last_count= thd_ndb->count;
thd_ndb_share->stat.no_uncommitted_rows_count= 0;
thd_ndb_share->stat.records= ~(ha_rows)0;
my_hash_insert(&thd_ndb->open_tables, (uchar *)thd_ndb_share);
}
else if (thd_ndb_share->stat.last_count != thd_ndb->count)
{
thd_ndb_share->stat.last_count= thd_ndb->count;
thd_ndb_share->stat.no_uncommitted_rows_count= 0;
thd_ndb_share->stat.records= ~(ha_rows)0;
}
DBUG_PRINT("exit", ("thd_ndb_share: 0x%lx key: 0x%lx",
(long) thd_ndb_share, (long) key));
m_table_info= &thd_ndb_share->stat;
}
else
{
struct Ndb_local_table_statistics &stat= m_table_info_instance;
stat.last_count= thd_ndb->count;
stat.no_uncommitted_rows_count= 0;
stat.records= ~(ha_rows)0;
m_table_info= &stat;
}
DBUG_RETURN(0);
}
int ha_ndbcluster::external_lock(THD *thd, int lock_type)
{
int error=0;
DBUG_ENTER("external_lock");
/*
Check that this handler instance has a connection
set up to the Ndb object of thd
*/
if (check_ndb_connection(thd))
DBUG_RETURN(1);
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
DBUG_PRINT("enter", ("this: 0x%lx thd: 0x%lx thd_ndb: %lx "
"thd_ndb->lock_count: %d",
(long) this, (long) thd, (long) thd_ndb,
thd_ndb->lock_count));
if (lock_type != F_UNLCK)
{
DBUG_PRINT("info", ("lock_type != F_UNLCK"));
transaction_checks(thd);
if (!thd_ndb->lock_count++)
{
if ((error= start_statement(thd, thd_ndb, ndb)))
goto error;
}
if ((error= init_handler_for_statement(thd, thd_ndb)))
goto error;
DBUG_RETURN(0);
}
else
{
DBUG_PRINT("info", ("lock_type == F_UNLCK"));
if (ndb_cache_check_time && m_rows_changed)
{
DBUG_PRINT("info", ("Rows has changed and util thread is running"));
if (thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
{
DBUG_PRINT("info", ("Add share to list of tables to be invalidated"));
/* NOTE push_back allocates memory using transactions mem_root! */
thd_ndb->changed_tables.push_back(m_share, &thd->transaction.mem_root);
}
pthread_mutex_lock(&m_share->mutex);
DBUG_PRINT("info", ("Invalidating commit_count"));
m_share->commit_count= 0;
m_share->commit_count_lock++;
pthread_mutex_unlock(&m_share->mutex);
}
if (!--thd_ndb->lock_count)
{
DBUG_PRINT("trans", ("Last external_lock"));
PRINT_OPTION_FLAGS(thd);
if (!(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)))
{
if (thd_ndb->trans)
{
/*
Unlock is done without a transaction commit / rollback.
This happens if the thread didn't update any rows
We must in this case close the transaction to release resources
*/
DBUG_PRINT("trans",("ending non-updating transaction"));
ndb->closeTransaction(thd_ndb->trans);
thd_ndb->trans= NULL;
}
}
}
m_table_info= NULL;
/*
This is the place to make sure this handler instance
no longer are connected to the active transaction.
And since the handler is no longer part of the transaction
it can't have open cursors, ops or blobs pending.
*/
m_active_trans= NULL;
if (m_active_cursor)
DBUG_PRINT("warning", ("m_active_cursor != NULL"));
m_active_cursor= NULL;
if (m_multi_cursor)
DBUG_PRINT("warning", ("m_multi_cursor != NULL"));
m_multi_cursor= NULL;
if (m_blobs_pending)
DBUG_PRINT("warning", ("blobs_pending != 0"));
m_blobs_pending= 0;
if (m_ops_pending)
DBUG_PRINT("warning", ("ops_pending != 0L"));
m_ops_pending= 0;
DBUG_RETURN(0);
}
error:
thd_ndb->lock_count--;
DBUG_RETURN(error);
}
/**
Unlock the last row read in an open scan.
Rows are unlocked by default in ndb, but
for SELECT FOR UPDATE and SELECT LOCK WIT SHARE MODE
locks are kept if unlock_row() is not called.
*/
void ha_ndbcluster::unlock_row()
{
DBUG_ENTER("unlock_row");
DBUG_PRINT("info", ("Unlocking row"));
m_lock_tuple= FALSE;
DBUG_VOID_RETURN;
}
/**
Start a transaction for running a statement if one is not
already running in a transaction. This will be the case in
a BEGIN; COMMIT; block
When using LOCK TABLE's external_lock will start a transaction
since ndb does not currently does not support table locking.
*/
int ha_ndbcluster::start_stmt(THD *thd, thr_lock_type lock_type)
{
int error=0;
DBUG_ENTER("start_stmt");
Thd_ndb *thd_ndb= get_thd_ndb(thd);
transaction_checks(thd);
if (!thd_ndb->start_stmt_count++)
{
Ndb *ndb= thd_ndb->ndb;
if ((error= start_statement(thd, thd_ndb, ndb)))
goto error;
}
if ((error= init_handler_for_statement(thd, thd_ndb)))
goto error;
DBUG_RETURN(0);
error:
thd_ndb->start_stmt_count--;
DBUG_RETURN(error);
}
/**
Commit a transaction started in NDB.
*/
static int ndbcluster_commit(handlerton *hton, THD *thd, bool all)
{
int res= 0;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
NdbTransaction *trans= thd_ndb->trans;
DBUG_ENTER("ndbcluster_commit");
DBUG_ASSERT(ndb);
PRINT_OPTION_FLAGS(thd);
DBUG_PRINT("enter", ("Commit %s", (all ? "all" : "stmt")));
thd_ndb->start_stmt_count= 0;
if (trans == NULL || (!all &&
thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)))
{
/*
An odditity in the handler interface is that commit on handlerton
is called to indicate end of statement only in cases where
autocommit isn't used and the all flag isn't set.
We also leave quickly when a transaction haven't even been started,
in this case we are safe that no clean up is needed. In this case
the MySQL Server could handle the query without contacting the
NDB kernel.
*/
DBUG_PRINT("info", ("Commit before start or end-of-statement only"));
DBUG_RETURN(0);
}
#ifdef HAVE_NDB_BINLOG
if (unlikely(thd_ndb->m_slow_path))
{
if (thd->slave_thread)
ndbcluster_update_apply_status
(thd, thd_ndb->trans_options & TNTO_INJECTED_APPLY_STATUS);
}
#endif /* HAVE_NDB_BINLOG */
if (execute_commit(thd,trans) != 0)
{
const NdbError err= trans->getNdbError();
const NdbOperation *error_op= trans->getNdbErrorOperation();
set_ndb_err(thd, err);
res= ndb_to_mysql_error(&err);
if (res != -1)
ndbcluster_print_error(res, error_op);
}
ndb->closeTransaction(trans);
thd_ndb->trans= NULL;
/* Clear commit_count for tables changed by transaction */
NDB_SHARE* share;
List_iterator_fast<NDB_SHARE> it(thd_ndb->changed_tables);
while ((share= it++))
{
pthread_mutex_lock(&share->mutex);
DBUG_PRINT("info", ("Invalidate commit_count for %s, share->commit_count: %lu",
share->table_name, (ulong) share->commit_count));
share->commit_count= 0;
share->commit_count_lock++;
pthread_mutex_unlock(&share->mutex);
}
thd_ndb->changed_tables.empty();
DBUG_RETURN(res);
}
/**
Rollback a transaction started in NDB.
*/
static int ndbcluster_rollback(handlerton *hton, THD *thd, bool all)
{
int res= 0;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
NdbTransaction *trans= thd_ndb->trans;
DBUG_ENTER("ndbcluster_rollback");
DBUG_ASSERT(ndb);
thd_ndb->start_stmt_count= 0;
if (trans == NULL || (!all &&
thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)))
{
/* Ignore end-of-statement until real rollback or commit is called */
DBUG_PRINT("info", ("Rollback before start or end-of-statement only"));
DBUG_RETURN(0);
}
if (trans->execute(NdbTransaction::Rollback) != 0)
{
const NdbError err= trans->getNdbError();
const NdbOperation *error_op= trans->getNdbErrorOperation();
set_ndb_err(thd, err);
res= ndb_to_mysql_error(&err);
if (res != -1)
ndbcluster_print_error(res, error_op);
}
ndb->closeTransaction(trans);
thd_ndb->trans= NULL;
/* Clear list of tables changed by transaction */
thd_ndb->changed_tables.empty();
DBUG_RETURN(res);
}
/**
Define NDB column based on Field.
Not member of ha_ndbcluster because NDBCOL cannot be declared.
MySQL text types with character set "binary" are mapped to true
NDB binary types without a character set. This may change.
@return
Returns 0 or mysql error code.
*/
static int create_ndb_column(NDBCOL &col,
Field *field,
HA_CREATE_INFO *info)
{
// Set name
if (col.setName(field->field_name))
{
return (my_errno= errno);
}
// Get char set
CHARSET_INFO *cs= field->charset();
// Set type and sizes
const enum enum_field_types mysql_type= field->real_type();
switch (mysql_type) {
// Numeric types
case MYSQL_TYPE_TINY:
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Tinyunsigned);
else
col.setType(NDBCOL::Tinyint);
col.setLength(1);
break;
case MYSQL_TYPE_SHORT:
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Smallunsigned);
else
col.setType(NDBCOL::Smallint);
col.setLength(1);
break;
case MYSQL_TYPE_LONG:
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Unsigned);
else
col.setType(NDBCOL::Int);
col.setLength(1);
break;
case MYSQL_TYPE_INT24:
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Mediumunsigned);
else
col.setType(NDBCOL::Mediumint);
col.setLength(1);
break;
case MYSQL_TYPE_LONGLONG:
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Bigunsigned);
else
col.setType(NDBCOL::Bigint);
col.setLength(1);
break;
case MYSQL_TYPE_FLOAT:
col.setType(NDBCOL::Float);
col.setLength(1);
break;
case MYSQL_TYPE_DOUBLE:
col.setType(NDBCOL::Double);
col.setLength(1);
break;
case MYSQL_TYPE_DECIMAL:
{
Field_decimal *f= (Field_decimal*)field;
uint precision= f->pack_length();
uint scale= f->decimals();
if (field->flags & UNSIGNED_FLAG)
{
col.setType(NDBCOL::Olddecimalunsigned);
precision-= (scale > 0);
}
else
{
col.setType(NDBCOL::Olddecimal);
precision-= 1 + (scale > 0);
}
col.setPrecision(precision);
col.setScale(scale);
col.setLength(1);
}
break;
case MYSQL_TYPE_NEWDECIMAL:
{
Field_new_decimal *f= (Field_new_decimal*)field;
uint precision= f->precision;
uint scale= f->decimals();
if (field->flags & UNSIGNED_FLAG)
{
col.setType(NDBCOL::Decimalunsigned);
}
else
{
col.setType(NDBCOL::Decimal);
}
col.setPrecision(precision);
col.setScale(scale);
col.setLength(1);
}
break;
// Date types
case MYSQL_TYPE_DATETIME:
col.setType(NDBCOL::Datetime);
col.setLength(1);
break;
case MYSQL_TYPE_DATE: // ?
col.setType(NDBCOL::Char);
col.setLength(field->pack_length());
break;
case MYSQL_TYPE_NEWDATE:
col.setType(NDBCOL::Date);
col.setLength(1);
break;
case MYSQL_TYPE_TIME:
col.setType(NDBCOL::Time);
col.setLength(1);
break;
case MYSQL_TYPE_YEAR:
col.setType(NDBCOL::Year);
col.setLength(1);
break;
case MYSQL_TYPE_TIMESTAMP:
col.setType(NDBCOL::Timestamp);
col.setLength(1);
break;
// Char types
case MYSQL_TYPE_STRING:
if (field->pack_length() == 0)
{
col.setType(NDBCOL::Bit);
col.setLength(1);
}
else if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
{
col.setType(NDBCOL::Binary);
col.setLength(field->pack_length());
}
else
{
col.setType(NDBCOL::Char);
col.setCharset(cs);
col.setLength(field->pack_length());
}
break;
case MYSQL_TYPE_VAR_STRING: // ?
case MYSQL_TYPE_VARCHAR:
{
Field_varstring* f= (Field_varstring*)field;
if (f->length_bytes == 1)
{
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
col.setType(NDBCOL::Varbinary);
else {
col.setType(NDBCOL::Varchar);
col.setCharset(cs);
}
}
else if (f->length_bytes == 2)
{
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
col.setType(NDBCOL::Longvarbinary);
else {
col.setType(NDBCOL::Longvarchar);
col.setCharset(cs);
}
}
else
{
return HA_ERR_UNSUPPORTED;
}
col.setLength(field->field_length);
}
break;
// Blob types (all come in as MYSQL_TYPE_BLOB)
mysql_type_tiny_blob:
case MYSQL_TYPE_TINY_BLOB:
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
col.setType(NDBCOL::Blob);
else {
col.setType(NDBCOL::Text);
col.setCharset(cs);
}
col.setInlineSize(256);
// No parts
col.setPartSize(0);
col.setStripeSize(0);
break;
//mysql_type_blob:
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_BLOB:
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
col.setType(NDBCOL::Blob);
else {
col.setType(NDBCOL::Text);
col.setCharset(cs);
}
{
Field_blob *field_blob= (Field_blob *)field;
/*
* max_data_length is 2^8-1, 2^16-1, 2^24-1 for tiny, blob, medium.
* Tinyblob gets no blob parts. The other cases are just a crude
* way to control part size and striping.
*
* In mysql blob(256) is promoted to blob(65535) so it does not
* in fact fit "inline" in NDB.
*/
if (field_blob->max_data_length() < (1 << 8))
goto mysql_type_tiny_blob;
else if (field_blob->max_data_length() < (1 << 16))
{
col.setInlineSize(256);
col.setPartSize(2000);
col.setStripeSize(16);
}
else if (field_blob->max_data_length() < (1 << 24))
goto mysql_type_medium_blob;
else
goto mysql_type_long_blob;
}
break;
mysql_type_medium_blob:
case MYSQL_TYPE_MEDIUM_BLOB:
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
col.setType(NDBCOL::Blob);
else {
col.setType(NDBCOL::Text);
col.setCharset(cs);
}
col.setInlineSize(256);
col.setPartSize(4000);
col.setStripeSize(8);
break;
mysql_type_long_blob:
case MYSQL_TYPE_LONG_BLOB:
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
col.setType(NDBCOL::Blob);
else {
col.setType(NDBCOL::Text);
col.setCharset(cs);
}
col.setInlineSize(256);
col.setPartSize(8000);
col.setStripeSize(4);
break;
// Other types
case MYSQL_TYPE_ENUM:
col.setType(NDBCOL::Char);
col.setLength(field->pack_length());
break;
case MYSQL_TYPE_SET:
col.setType(NDBCOL::Char);
col.setLength(field->pack_length());
break;
case MYSQL_TYPE_BIT:
{
int no_of_bits= field->field_length;
col.setType(NDBCOL::Bit);
if (!no_of_bits)
col.setLength(1);
else
col.setLength(no_of_bits);
break;
}
case MYSQL_TYPE_NULL:
goto mysql_type_unsupported;
mysql_type_unsupported:
default:
return HA_ERR_UNSUPPORTED;
}
// Set nullable and pk
col.setNullable(field->maybe_null());
col.setPrimaryKey(field->flags & PRI_KEY_FLAG);
// Set autoincrement
if (field->flags & AUTO_INCREMENT_FLAG)
{
#ifndef DBUG_OFF
char buff[22];
#endif
col.setAutoIncrement(TRUE);
ulonglong value= info->auto_increment_value ?
info->auto_increment_value : (ulonglong) 1;
DBUG_PRINT("info", ("Autoincrement key, initial: %s", llstr(value, buff)));
col.setAutoIncrementInitialValue(value);
}
else
col.setAutoIncrement(FALSE);
return 0;
}
/**
Create a table in NDB Cluster
*/
int ha_ndbcluster::create(const char *name,
TABLE *form,
HA_CREATE_INFO *create_info)
{
THD *thd= current_thd;
NDBTAB tab;
NDBCOL col;
size_t pack_length, length;
uint i, pk_length= 0;
uchar *data= NULL, *pack_data= NULL;
bool create_from_engine= (create_info->table_options & HA_OPTION_CREATE_FROM_ENGINE);
bool is_truncate= (thd->lex->sql_command == SQLCOM_TRUNCATE);
char tablespace[FN_LEN + 1];
NdbDictionary::Table::SingleUserMode single_user_mode= NdbDictionary::Table::SingleUserModeLocked;
DBUG_ENTER("ha_ndbcluster::create");
DBUG_PRINT("enter", ("name: %s", name));
DBUG_ASSERT(*fn_rext((char*)name) == 0);
set_dbname(name);
set_tabname(name);
if ((my_errno= check_ndb_connection()))
DBUG_RETURN(my_errno);
Ndb *ndb= get_ndb();
NDBDICT *dict= ndb->getDictionary();
if (is_truncate)
{
{
Ndb_table_guard ndbtab_g(dict, m_tabname);
if (!(m_table= ndbtab_g.get_table()))
ERR_RETURN(dict->getNdbError());
if ((get_tablespace_name(thd, tablespace, FN_LEN)))
create_info->tablespace= tablespace;
m_table= NULL;
}
DBUG_PRINT("info", ("Dropping and re-creating table for TRUNCATE"));
if ((my_errno= delete_table(name)))
DBUG_RETURN(my_errno);
}
table= form;
if (create_from_engine)
{
/*
Table already exists in NDB and frm file has been created by
caller.
Do Ndb specific stuff, such as create a .ndb file
*/
if ((my_errno= write_ndb_file(name)))
DBUG_RETURN(my_errno);
#ifdef HAVE_NDB_BINLOG
ndbcluster_create_binlog_setup(get_ndb(), name, strlen(name),
m_dbname, m_tabname, FALSE);
#endif /* HAVE_NDB_BINLOG */
DBUG_RETURN(my_errno);
}
#ifdef HAVE_NDB_BINLOG
/*
Don't allow table creation unless
schema distribution table is setup
( unless it is a creation of the schema dist table itself )
*/
if (!ndb_schema_share)
{
if (!(strcmp(m_dbname, NDB_REP_DB) == 0 &&
strcmp(m_tabname, NDB_SCHEMA_TABLE) == 0))
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_ASSERT(ndb_schema_share);
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
single_user_mode = NdbDictionary::Table::SingleUserModeReadWrite;
}
#endif /* HAVE_NDB_BINLOG */
DBUG_PRINT("table", ("name: %s", m_tabname));
if (tab.setName(m_tabname))
{
DBUG_RETURN(my_errno= errno);
}
tab.setLogging(!(create_info->options & HA_LEX_CREATE_TMP_TABLE));
tab.setSingleUserMode(single_user_mode);
// Save frm data for this table
if (readfrm(name, &data, &length))
DBUG_RETURN(1);
if (packfrm(data, length, &pack_data, &pack_length))
{
my_free((char*)data, MYF(0));
DBUG_RETURN(2);
}
DBUG_PRINT("info",
("setFrm data: 0x%lx len: %lu", (long) pack_data,
(ulong) pack_length));
tab.setFrm(pack_data, pack_length);
my_free((char*)data, MYF(0));
my_free((char*)pack_data, MYF(0));
/*
Check for disk options
*/
if (create_info->storage_media == HA_SM_DISK)
{
if (create_info->tablespace)
tab.setTablespaceName(create_info->tablespace);
else
tab.setTablespaceName("DEFAULT-TS");
}
else if (create_info->tablespace)
{
if (create_info->storage_media == HA_SM_MEMORY)
{
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"TABLESPACE currently only supported for "
"STORAGE DISK");
DBUG_RETURN(HA_ERR_UNSUPPORTED);
}
tab.setTablespaceName(create_info->tablespace);
create_info->storage_media = HA_SM_DISK; //if use tablespace, that also means store on disk
}
/*
Handle table row type
Default is to let table rows have var part reference so that online
add column can be performed in the future. Explicitly setting row
type to fixed will omit var part reference, which will save data
memory in ndb, but at the cost of not being able to online add
column to this table
*/
switch (create_info->row_type) {
case ROW_TYPE_FIXED:
tab.setForceVarPart(FALSE);
break;
case ROW_TYPE_DYNAMIC:
/* fall through, treat as default */
default:
/* fall through, treat as default */
case ROW_TYPE_DEFAULT:
tab.setForceVarPart(TRUE);
break;
}
/*
Setup columns
*/
for (i= 0; i < form->s->fields; i++)
{
Field *field= form->field[i];
DBUG_PRINT("info", ("name: %s type: %u pack_length: %d",
field->field_name, field->real_type(),
field->pack_length()));
if ((my_errno= create_ndb_column(col, field, create_info)))
DBUG_RETURN(my_errno);
if (create_info->storage_media == HA_SM_DISK)
col.setStorageType(NdbDictionary::Column::StorageTypeDisk);
else
col.setStorageType(NdbDictionary::Column::StorageTypeMemory);
switch (create_info->row_type) {
case ROW_TYPE_FIXED:
if (field_type_forces_var_part(field->type()))
{
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"Row format FIXED incompatible with "
"variable sized attribute");
DBUG_RETURN(HA_ERR_UNSUPPORTED);
}
break;
case ROW_TYPE_DYNAMIC:
/*
Future: make columns dynamic in this case
*/
break;
default:
break;
}
if (tab.addColumn(col))
{
DBUG_RETURN(my_errno= errno);
}
if (col.getPrimaryKey())
pk_length += (field->pack_length() + 3) / 4;
}
KEY* key_info;
for (i= 0, key_info= form->key_info; i < form->s->keys; i++, key_info++)
{
KEY_PART_INFO *key_part= key_info->key_part;
KEY_PART_INFO *end= key_part + key_info->key_parts;
for (; key_part != end; key_part++)
tab.getColumn(key_part->fieldnr-1)->setStorageType(
NdbDictionary::Column::StorageTypeMemory);
}
// No primary key, create shadow key as 64 bit, auto increment
if (form->s->primary_key == MAX_KEY)
{
DBUG_PRINT("info", ("Generating shadow key"));
if (col.setName("$PK"))
{
DBUG_RETURN(my_errno= errno);
}
col.setType(NdbDictionary::Column::Bigunsigned);
col.setLength(1);
col.setNullable(FALSE);
col.setPrimaryKey(TRUE);
col.setAutoIncrement(TRUE);
if (tab.addColumn(col))
{
DBUG_RETURN(my_errno= errno);
}
pk_length += 2;
}
// Make sure that blob tables don't have to big part size
for (i= 0; i < form->s->fields; i++)
{
/**
* The extra +7 concists
* 2 - words from pk in blob table
* 5 - from extra words added by tup/dict??
*/
switch (form->field[i]->real_type()) {
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
{
NdbDictionary::Column * column= tab.getColumn(i);
int size= pk_length + (column->getPartSize()+3)/4 + 7;
if (size > NDB_MAX_TUPLE_SIZE_IN_WORDS &&
(pk_length+7) < NDB_MAX_TUPLE_SIZE_IN_WORDS)
{
size= NDB_MAX_TUPLE_SIZE_IN_WORDS - pk_length - 7;
column->setPartSize(4*size);
}
/**
* If size > NDB_MAX and pk_length+7 >= NDB_MAX
* then the table can't be created anyway, so skip
* changing part size, and have error later
*/
}
default:
break;
}
}
// Check partition info
partition_info *part_info= form->part_info;
if ((my_errno= set_up_partition_info(part_info, form, (void*)&tab)))
{
DBUG_RETURN(my_errno);
}
// Create the table in NDB
if (dict->createTable(tab) != 0)
{
const NdbError err= dict->getNdbError();
set_ndb_err(thd, err);
my_errno= ndb_to_mysql_error(&err);
DBUG_RETURN(my_errno);
}
Ndb_table_guard ndbtab_g(dict, m_tabname);
// temporary set m_table during create
// reset at return
m_table= ndbtab_g.get_table();
// TODO check also that we have the same frm...
if (!m_table)
{
/* purecov: begin deadcode */
const NdbError err= dict->getNdbError();
set_ndb_err(thd, err);
my_errno= ndb_to_mysql_error(&err);
DBUG_RETURN(my_errno);
/* purecov: end */
}
DBUG_PRINT("info", ("Table %s/%s created successfully",
m_dbname, m_tabname));
// Create secondary indexes
my_errno= create_indexes(ndb, form);
if (!my_errno)
my_errno= write_ndb_file(name);
else
{
/*
Failed to create an index,
drop the table (and all it's indexes)
*/
while (dict->dropTableGlobal(*m_table))
{
switch (dict->getNdbError().status)
{
case NdbError::TemporaryError:
if (!thd->killed)
continue; // retry indefinitly
break;
default:
break;
}
break;
}
m_table = 0;
DBUG_RETURN(my_errno);
}
#ifdef HAVE_NDB_BINLOG
if (!my_errno)
{
NDB_SHARE *share= 0;
pthread_mutex_lock(&ndbcluster_mutex);
/*
First make sure we get a "fresh" share here, not an old trailing one...
*/
{
uint length= (uint) strlen(name);
if ((share= (NDB_SHARE*) my_hash_search(&ndbcluster_open_tables,
(uchar*) name, length)))
handle_trailing_share(share);
}
/*
get a new share
*/
/* ndb_share reference create */
if (!(share= get_share(name, form, TRUE, TRUE)))
{
sql_print_error("NDB: allocating table share for %s failed", name);
/* my_errno is set */
}
else
{
DBUG_PRINT("NDB_SHARE", ("%s binlog create use_count: %u",
share->key, share->use_count));
}
pthread_mutex_unlock(&ndbcluster_mutex);
while (!IS_TMP_PREFIX(m_tabname))
{
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name,m_dbname,m_tabname);
int do_event_op= ndb_binlog_running;
if (!ndb_schema_share &&
strcmp(share->db, NDB_REP_DB) == 0 &&
strcmp(share->table_name, NDB_SCHEMA_TABLE) == 0)
do_event_op= 1;
/*
Always create an event for the table, as other mysql servers
expect it to be there.
*/
if (!ndbcluster_create_event(ndb, m_table, event_name.c_ptr(), share,
share && do_event_op ? 2 : 1/* push warning */))
{
if (ndb_extra_logging)
sql_print_information("NDB Binlog: CREATE TABLE Event: %s",
event_name.c_ptr());
if (share &&
ndbcluster_create_event_ops(share, m_table, event_name.c_ptr()))
{
sql_print_error("NDB Binlog: FAILED CREATE TABLE event operations."
" Event: %s", name);
/* a warning has been issued to the client */
}
}
/*
warning has been issued if ndbcluster_create_event failed
and (share && do_event_op)
*/
if (share && !do_event_op)
share->flags|= NSF_NO_BINLOG;
ndbcluster_log_schema_op(thd, share,
thd->query(), thd->query_length(),
share->db, share->table_name,
m_table->getObjectId(),
m_table->getObjectVersion(),
(is_truncate) ?
SOT_TRUNCATE_TABLE : SOT_CREATE_TABLE,
0, 0, 1);
break;
}
}
#endif /* HAVE_NDB_BINLOG */
m_table= 0;
DBUG_RETURN(my_errno);
}
int ha_ndbcluster::create_handler_files(const char *file,
const char *old_name,
int action_flag,
HA_CREATE_INFO *create_info)
{
Ndb* ndb;
const NDBTAB *tab;
uchar *data= NULL, *pack_data= NULL;
size_t length, pack_length;
int error= 0;
DBUG_ENTER("create_handler_files");
if (action_flag != CHF_INDEX_FLAG)
{
DBUG_RETURN(FALSE);
}
DBUG_PRINT("enter", ("file: %s", file));
if (!(ndb= get_ndb()))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
NDBDICT *dict= ndb->getDictionary();
if (!create_info->frm_only)
DBUG_RETURN(0); // Must be a create, ignore since frm is saved in create
// TODO handle this
DBUG_ASSERT(m_table != 0);
set_dbname(file);
set_tabname(file);
Ndb_table_guard ndbtab_g(dict, m_tabname);
DBUG_PRINT("info", ("m_dbname: %s, m_tabname: %s", m_dbname, m_tabname));
if (!(tab= ndbtab_g.get_table()))
DBUG_RETURN(0); // Unkown table, must be temporary table
DBUG_ASSERT(get_ndb_share_state(m_share) == NSS_ALTERED);
if (readfrm(file, &data, &length) ||
packfrm(data, length, &pack_data, &pack_length))
{
DBUG_PRINT("info", ("Missing frm for %s", m_tabname));
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR));
error= 1;
}
else
{
DBUG_PRINT("info", ("Table %s has changed, altering frm in ndb",
m_tabname));
NdbDictionary::Table new_tab= *tab;
new_tab.setFrm(pack_data, pack_length);
if (dict->alterTableGlobal(*tab, new_tab))
{
set_ndb_err(current_thd, dict->getNdbError());
error= ndb_to_mysql_error(&dict->getNdbError());
}
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR));
}
set_ndb_share_state(m_share, NSS_INITIAL);
/* ndb_share reference schema(?) free */
DBUG_PRINT("NDB_SHARE", ("%s binlog schema(?) free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share); // Decrease ref_count
DBUG_RETURN(error);
}
int ha_ndbcluster::create_index(const char *name, KEY *key_info,
NDB_INDEX_TYPE idx_type, uint idx_no)
{
int error= 0;
char unique_name[FN_LEN + 1];
static const char* unique_suffix= "$unique";
DBUG_ENTER("ha_ndbcluster::create_ordered_index");
DBUG_PRINT("info", ("Creating index %u: %s", idx_no, name));
if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX)
{
strxnmov(unique_name, FN_LEN, name, unique_suffix, NullS);
DBUG_PRINT("info", ("Created unique index name \'%s\' for index %d",
unique_name, idx_no));
}
switch (idx_type){
case PRIMARY_KEY_INDEX:
// Do nothing, already created
break;
case PRIMARY_KEY_ORDERED_INDEX:
error= create_ordered_index(name, key_info);
break;
case UNIQUE_ORDERED_INDEX:
if (!(error= create_ordered_index(name, key_info)))
error= create_unique_index(unique_name, key_info);
break;
case UNIQUE_INDEX:
if (check_index_fields_not_null(key_info))
{
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_NULL_COLUMN_IN_INDEX,
"Ndb does not support unique index on NULL valued attributes, index access with NULL value will become full table scan");
}
error= create_unique_index(unique_name, key_info);
break;
case ORDERED_INDEX:
if (key_info->algorithm == HA_KEY_ALG_HASH)
{
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"Ndb does not support non-unique "
"hash based indexes");
error= HA_ERR_UNSUPPORTED;
break;
}
error= create_ordered_index(name, key_info);
break;
default:
DBUG_ASSERT(FALSE);
break;
}
DBUG_RETURN(error);
}
int ha_ndbcluster::create_ordered_index(const char *name,
KEY *key_info)
{
DBUG_ENTER("ha_ndbcluster::create_ordered_index");
DBUG_RETURN(create_ndb_index(name, key_info, FALSE));
}
int ha_ndbcluster::create_unique_index(const char *name,
KEY *key_info)
{
DBUG_ENTER("ha_ndbcluster::create_unique_index");
DBUG_RETURN(create_ndb_index(name, key_info, TRUE));
}
/**
Create an index in NDB Cluster.
@todo
Only temporary ordered indexes supported
*/
int ha_ndbcluster::create_ndb_index(const char *name,
KEY *key_info,
bool unique)
{
Ndb *ndb= get_ndb();
NdbDictionary::Dictionary *dict= ndb->getDictionary();
KEY_PART_INFO *key_part= key_info->key_part;
KEY_PART_INFO *end= key_part + key_info->key_parts;
DBUG_ENTER("ha_ndbcluster::create_index");
DBUG_PRINT("enter", ("name: %s ", name));
NdbDictionary::Index ndb_index(name);
if (unique)
ndb_index.setType(NdbDictionary::Index::UniqueHashIndex);
else
{
ndb_index.setType(NdbDictionary::Index::OrderedIndex);
// TODO Only temporary ordered indexes supported
ndb_index.setLogging(FALSE);
}
if (ndb_index.setTable(m_tabname))
{
DBUG_RETURN(my_errno= errno);
}
for (; key_part != end; key_part++)
{
Field *field= key_part->field;
DBUG_PRINT("info", ("attr: %s", field->field_name));
if (ndb_index.addColumnName(field->field_name))
{
DBUG_RETURN(my_errno= errno);
}
}
if (dict->createIndex(ndb_index, *m_table))
ERR_RETURN(dict->getNdbError());
// Success
DBUG_PRINT("info", ("Created index %s", name));
DBUG_RETURN(0);
}
/*
Prepare for an on-line alter table
*/
void ha_ndbcluster::prepare_for_alter()
{
/* ndb_share reference schema */
ndbcluster_get_share(m_share); // Increase ref_count
DBUG_PRINT("NDB_SHARE", ("%s binlog schema use_count: %u",
m_share->key, m_share->use_count));
set_ndb_share_state(m_share, NSS_ALTERED);
}
/*
Add an index on-line to a table
*/
int ha_ndbcluster::add_index(TABLE *table_arg,
KEY *key_info, uint num_of_keys)
{
int error= 0;
uint idx;
DBUG_ENTER("ha_ndbcluster::add_index");
DBUG_PRINT("enter", ("table %s", table_arg->s->table_name.str));
DBUG_ASSERT(m_share->state == NSS_ALTERED);
for (idx= 0; idx < num_of_keys; idx++)
{
KEY *key= key_info + idx;
KEY_PART_INFO *key_part= key->key_part;
KEY_PART_INFO *end= key_part + key->key_parts;
NDB_INDEX_TYPE idx_type= get_index_type_from_key(idx, key_info, false);
DBUG_PRINT("info", ("Adding index: '%s'", key_info[idx].name));
// Add fields to key_part struct
for (; key_part != end; key_part++)
key_part->field= table->field[key_part->fieldnr];
// Check index type
// Create index in ndb
if((error= create_index(key_info[idx].name, key, idx_type, idx)))
break;
}
if (error)
{
set_ndb_share_state(m_share, NSS_INITIAL);
/* ndb_share reference schema free */
DBUG_PRINT("NDB_SHARE", ("%s binlog schema free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share); // Decrease ref_count
}
DBUG_RETURN(error);
}
/*
Mark one or several indexes for deletion. and
renumber the remaining indexes
*/
int ha_ndbcluster::prepare_drop_index(TABLE *table_arg,
uint *key_num, uint num_of_keys)
{
DBUG_ENTER("ha_ndbcluster::prepare_drop_index");
DBUG_ASSERT(m_share->state == NSS_ALTERED);
// Mark indexes for deletion
uint idx;
for (idx= 0; idx < num_of_keys; idx++)
{
DBUG_PRINT("info", ("ha_ndbcluster::prepare_drop_index %u", *key_num));
m_index[*key_num++].status= TO_BE_DROPPED;
}
// Renumber indexes
THD *thd= current_thd;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
renumber_indexes(ndb, table_arg);
DBUG_RETURN(0);
}
/*
Really drop all indexes marked for deletion
*/
int ha_ndbcluster::final_drop_index(TABLE *table_arg)
{
int error;
DBUG_ENTER("ha_ndbcluster::final_drop_index");
DBUG_PRINT("info", ("ha_ndbcluster::final_drop_index"));
// Really drop indexes
THD *thd= current_thd;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
if((error= drop_indexes(ndb, table_arg)))
{
m_share->state= NSS_INITIAL;
/* ndb_share reference schema free */
DBUG_PRINT("NDB_SHARE", ("%s binlog schema free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share); // Decrease ref_count
}
DBUG_RETURN(error);
}
/**
Rename a table in NDB Cluster.
*/
int ha_ndbcluster::rename_table(const char *from, const char *to)
{
NDBDICT *dict;
char old_dbname[FN_HEADLEN];
char new_dbname[FN_HEADLEN];
char new_tabname[FN_HEADLEN];
const NDBTAB *orig_tab;
int result;
bool recreate_indexes= FALSE;
NDBDICT::List index_list;
DBUG_ENTER("ha_ndbcluster::rename_table");
DBUG_PRINT("info", ("Renaming %s to %s", from, to));
set_dbname(from, old_dbname);
set_dbname(to, new_dbname);
set_tabname(from);
set_tabname(to, new_tabname);
if (check_ndb_connection())
DBUG_RETURN(my_errno= HA_ERR_NO_CONNECTION);
Ndb *ndb= get_ndb();
ndb->setDatabaseName(old_dbname);
dict= ndb->getDictionary();
Ndb_table_guard ndbtab_g(dict, m_tabname);
if (!(orig_tab= ndbtab_g.get_table()))
ERR_RETURN(dict->getNdbError());
#ifdef HAVE_NDB_BINLOG
int ndb_table_id= orig_tab->getObjectId();
int ndb_table_version= orig_tab->getObjectVersion();
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(from, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
int r __attribute__((unused))= rename_share(share, to);
DBUG_ASSERT(r == 0);
}
#endif
if (my_strcasecmp(system_charset_info, new_dbname, old_dbname))
{
dict->listIndexes(index_list, *orig_tab);
recreate_indexes= TRUE;
}
// Change current database to that of target table
set_dbname(to);
if (ndb->setDatabaseName(m_dbname))
{
ERR_RETURN(ndb->getNdbError());
}
NdbDictionary::Table new_tab= *orig_tab;
new_tab.setName(new_tabname);
if (dict->alterTableGlobal(*orig_tab, new_tab) != 0)
{
NdbError ndb_error= dict->getNdbError();
#ifdef HAVE_NDB_BINLOG
if (share)
{
int ret __attribute__((unused))= rename_share(share, from);
DBUG_ASSERT(ret == 0);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
#endif
ERR_RETURN(ndb_error);
}
// Rename .ndb file
if ((result= handler::rename_table(from, to)))
{
// ToDo in 4.1 should rollback alter table...
#ifdef HAVE_NDB_BINLOG
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
free_share(&share);
}
#endif
DBUG_RETURN(result);
}
#ifdef HAVE_NDB_BINLOG
int is_old_table_tmpfile= 1;
if (share && share->op)
dict->forceGCPWait();
/* handle old table */
if (!IS_TMP_PREFIX(m_tabname))
{
is_old_table_tmpfile= 0;
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name, from + sizeof(share_prefix) - 1, 0);
ndbcluster_handle_drop_table(ndb, event_name.c_ptr(), share,
"rename table");
}
if (!result && !IS_TMP_PREFIX(new_tabname))
{
/* always create an event for the table */
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name, to + sizeof(share_prefix) - 1, 0);
Ndb_table_guard ndbtab_g2(dict, new_tabname);
const NDBTAB *ndbtab= ndbtab_g2.get_table();
if (!ndbcluster_create_event(ndb, ndbtab, event_name.c_ptr(), share,
share && ndb_binlog_running ? 2 : 1/* push warning */))
{
if (ndb_extra_logging)
sql_print_information("NDB Binlog: RENAME Event: %s",
event_name.c_ptr());
if (share &&
ndbcluster_create_event_ops(share, ndbtab, event_name.c_ptr()))
{
sql_print_error("NDB Binlog: FAILED create event operations "
"during RENAME. Event %s", event_name.c_ptr());
/* a warning has been issued to the client */
}
}
/*
warning has been issued if ndbcluster_create_event failed
and (share && ndb_binlog_running)
*/
if (!is_old_table_tmpfile)
ndbcluster_log_schema_op(current_thd, share,
current_thd->query(),
current_thd->query_length(),
old_dbname, m_tabname,
ndb_table_id, ndb_table_version,
SOT_RENAME_TABLE,
m_dbname, new_tabname, 1);
}
// If we are moving tables between databases, we need to recreate
// indexes
if (recreate_indexes)
{
for (unsigned i = 0; i < index_list.count; i++)
{
NDBDICT::List::Element& index_el = index_list.elements[i];
// Recreate any indexes not stored in the system database
if (my_strcasecmp(system_charset_info,
index_el.database, NDB_SYSTEM_DATABASE))
{
set_dbname(from);
ndb->setDatabaseName(m_dbname);
const NDBINDEX * index= dict->getIndexGlobal(index_el.name, new_tab);
DBUG_PRINT("info", ("Creating index %s/%s",
index_el.database, index->getName()));
dict->createIndex(*index, new_tab);
DBUG_PRINT("info", ("Dropping index %s/%s",
index_el.database, index->getName()));
set_dbname(from);
ndb->setDatabaseName(m_dbname);
dict->dropIndexGlobal(*index);
}
}
}
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
#endif
DBUG_RETURN(result);
}
/**
Delete table from NDB Cluster.
*/
/* static version which does not need a handler */
int
ha_ndbcluster::delete_table(ha_ndbcluster *h, Ndb *ndb,
const char *path,
const char *db,
const char *table_name)
{
THD *thd= current_thd;
DBUG_ENTER("ha_ndbcluster::ndbcluster_delete_table");
NDBDICT *dict= ndb->getDictionary();
int ndb_table_id= 0;
int ndb_table_version= 0;
#ifdef HAVE_NDB_BINLOG
/*
Don't allow drop table unless
schema distribution table is setup
*/
if (!ndb_schema_share)
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_ASSERT(ndb_schema_share);
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(path, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
}
#endif
/* Drop the table from NDB */
int res= 0;
if (h && h->m_table)
{
retry_temporary_error1:
if (dict->dropTableGlobal(*h->m_table) == 0)
{
ndb_table_id= h->m_table->getObjectId();
ndb_table_version= h->m_table->getObjectVersion();
DBUG_PRINT("info", ("success 1"));
}
else
{
switch (dict->getNdbError().status)
{
case NdbError::TemporaryError:
if (!thd->killed)
goto retry_temporary_error1; // retry indefinitly
break;
default:
break;
}
set_ndb_err(thd, dict->getNdbError());
res= ndb_to_mysql_error(&dict->getNdbError());
DBUG_PRINT("info", ("error(1) %u", res));
}
h->release_metadata(thd, ndb);
}
else
{
ndb->setDatabaseName(db);
while (1)
{
Ndb_table_guard ndbtab_g(dict, table_name);
if (ndbtab_g.get_table())
{
retry_temporary_error2:
if (dict->dropTableGlobal(*ndbtab_g.get_table()) == 0)
{
ndb_table_id= ndbtab_g.get_table()->getObjectId();
ndb_table_version= ndbtab_g.get_table()->getObjectVersion();
DBUG_PRINT("info", ("success 2"));
break;
}
else
{
switch (dict->getNdbError().status)
{
case NdbError::TemporaryError:
if (!thd->killed)
goto retry_temporary_error2; // retry indefinitly
break;
default:
if (dict->getNdbError().code == NDB_INVALID_SCHEMA_OBJECT)
{
ndbtab_g.invalidate();
continue;
}
break;
}
}
}
set_ndb_err(thd, dict->getNdbError());
res= ndb_to_mysql_error(&dict->getNdbError());
DBUG_PRINT("info", ("error(2) %u", res));
break;
}
}
if (res)
{
#ifdef HAVE_NDB_BINLOG
/* the drop table failed for some reason, drop the share anyways */
if (share)
{
pthread_mutex_lock(&ndbcluster_mutex);
if (share->state != NSS_DROPPED)
{
/*
The share kept by the server has not been freed, free it
*/
share->state= NSS_DROPPED;
/* ndb_share reference create free */
DBUG_PRINT("NDB_SHARE", ("%s create free use_count: %u",
share->key, share->use_count));
free_share(&share, TRUE);
}
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share, TRUE);
pthread_mutex_unlock(&ndbcluster_mutex);
}
#endif
DBUG_RETURN(res);
}
#ifdef HAVE_NDB_BINLOG
/* stop the logging of the dropped table, and cleanup */
/*
drop table is successful even if table does not exist in ndb
and in case table was actually not dropped, there is no need
to force a gcp, and setting the event_name to null will indicate
that there is no event to be dropped
*/
int table_dropped= dict->getNdbError().code != 709;
if (!IS_TMP_PREFIX(table_name) && share &&
current_thd->lex->sql_command != SQLCOM_TRUNCATE)
{
ndbcluster_log_schema_op(thd, share,
thd->query(), thd->query_length(),
share->db, share->table_name,
ndb_table_id, ndb_table_version,
SOT_DROP_TABLE, 0, 0, 1);
}
else if (table_dropped && share && share->op) /* ndbcluster_log_schema_op
will do a force GCP */
dict->forceGCPWait();
if (!IS_TMP_PREFIX(table_name))
{
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name, path + sizeof(share_prefix) - 1, 0);
ndbcluster_handle_drop_table(ndb,
table_dropped ? event_name.c_ptr() : 0,
share, "delete table");
}
if (share)
{
pthread_mutex_lock(&ndbcluster_mutex);
if (share->state != NSS_DROPPED)
{
/*
The share kept by the server has not been freed, free it
*/
share->state= NSS_DROPPED;
/* ndb_share reference create free */
DBUG_PRINT("NDB_SHARE", ("%s create free use_count: %u",
share->key, share->use_count));
free_share(&share, TRUE);
}
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share, TRUE);
pthread_mutex_unlock(&ndbcluster_mutex);
}
#endif
DBUG_RETURN(0);
}
int ha_ndbcluster::delete_table(const char *name)
{
DBUG_ENTER("ha_ndbcluster::delete_table");
DBUG_PRINT("enter", ("name: %s", name));
set_dbname(name);
set_tabname(name);
#ifdef HAVE_NDB_BINLOG
/*
Don't allow drop table unless
schema distribution table is setup
*/
if (!ndb_schema_share)
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_ASSERT(ndb_schema_share);
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
#endif
if (check_ndb_connection())
DBUG_RETURN(HA_ERR_NO_CONNECTION);
/* Call ancestor function to delete .ndb file */
handler::delete_table(name);
DBUG_RETURN(delete_table(this, get_ndb(),name, m_dbname, m_tabname));
}
void ha_ndbcluster::get_auto_increment(ulonglong offset, ulonglong increment,
ulonglong nb_desired_values,
ulonglong *first_value,
ulonglong *nb_reserved_values)
{
uint cache_size;
Uint64 auto_value;
THD *thd= current_thd;
DBUG_ENTER("get_auto_increment");
DBUG_PRINT("enter", ("m_tabname: %s", m_tabname));
Ndb *ndb= get_ndb();
if (m_rows_inserted > m_rows_to_insert)
{
/* We guessed too low */
m_rows_to_insert+= m_autoincrement_prefetch;
}
uint remaining= m_rows_to_insert - m_rows_inserted;
uint min_prefetch=
(remaining < thd->variables.ndb_autoincrement_prefetch_sz) ?
thd->variables.ndb_autoincrement_prefetch_sz
: remaining;
cache_size= ((remaining < m_autoincrement_prefetch) ?
min_prefetch
: remaining);
uint retries= NDB_AUTO_INCREMENT_RETRIES;
int retry_sleep= 30; /* 30 milliseconds, transaction */
for (;;)
{
Ndb_tuple_id_range_guard g(m_share);
if (m_skip_auto_increment &&
ndb->readAutoIncrementValue(m_table, g.range, auto_value) ||
ndb->getAutoIncrementValue(m_table, g.range, auto_value, cache_size, increment, offset))
{
if (--retries &&
ndb->getNdbError().status == NdbError::TemporaryError)
{
my_sleep(retry_sleep);
continue;
}
const NdbError err= ndb->getNdbError();
sql_print_error("Error %lu in ::get_auto_increment(): %s",
(ulong) err.code, err.message);
*first_value= ~(ulonglong) 0;
DBUG_VOID_RETURN;
}
break;
}
*first_value= (longlong)auto_value;
/* From the point of view of MySQL, NDB reserves one row at a time */
*nb_reserved_values= 1;
DBUG_VOID_RETURN;
}
/**
Constructor for the NDB Cluster table handler .
*/
/*
Normal flags for binlogging is that ndb has HA_HAS_OWN_BINLOGGING
and preferes HA_BINLOG_ROW_CAPABLE
Other flags are set under certain circumstaces in table_flags()
*/
#define HA_NDBCLUSTER_TABLE_FLAGS \
HA_REC_NOT_IN_SEQ | \
HA_NULL_IN_KEY | \
HA_AUTO_PART_KEY | \
HA_NO_PREFIX_CHAR_KEYS | \
HA_NEED_READ_RANGE_BUFFER | \
HA_CAN_GEOMETRY | \
HA_CAN_BIT_FIELD | \
HA_PRIMARY_KEY_REQUIRED_FOR_POSITION | \
HA_PRIMARY_KEY_REQUIRED_FOR_DELETE | \
HA_PARTIAL_COLUMN_READ | \
HA_HAS_OWN_BINLOGGING | \
HA_BINLOG_ROW_CAPABLE | \
HA_HAS_RECORDS
ha_ndbcluster::ha_ndbcluster(handlerton *hton, TABLE_SHARE *table_arg):
handler(hton, table_arg),
m_active_trans(NULL),
m_active_cursor(NULL),
m_table(NULL),
m_table_info(NULL),
m_table_flags(HA_NDBCLUSTER_TABLE_FLAGS),
m_share(0),
m_part_info(NULL),
m_use_partition_function(FALSE),
m_sorted(FALSE),
m_use_write(FALSE),
m_ignore_dup_key(FALSE),
m_has_unique_index(FALSE),
m_primary_key_update(FALSE),
m_ignore_no_key(FALSE),
m_rows_to_insert((ha_rows) 1),
m_rows_inserted((ha_rows) 0),
m_bulk_insert_rows((ha_rows) 1024),
m_rows_changed((ha_rows) 0),
m_bulk_insert_not_flushed(FALSE),
m_delete_cannot_batch(FALSE),
m_update_cannot_batch(FALSE),
m_ops_pending(0),
m_skip_auto_increment(TRUE),
m_blobs_pending(0),
m_blobs_offset(0),
m_blobs_buffer(0),
m_blobs_buffer_size(0),
m_dupkey((uint) -1),
m_ha_not_exact_count(FALSE),
m_force_send(TRUE),
m_autoincrement_prefetch((ha_rows) NDB_DEFAULT_AUTO_PREFETCH),
m_transaction_on(TRUE),
m_cond(NULL),
m_multi_cursor(NULL)
{
int i;
DBUG_ENTER("ha_ndbcluster");
m_tabname[0]= '\0';
m_dbname[0]= '\0';
stats.records= ~(ha_rows)0; // uninitialized
stats.block_size= 1024;
for (i= 0; i < MAX_KEY; i++)
ndb_init_index(m_index[i]);
DBUG_VOID_RETURN;
}
int ha_ndbcluster::ha_initialise()
{
DBUG_ENTER("ha_ndbcluster::ha_initialise");
if (check_ndb_in_thd(current_thd))
{
DBUG_RETURN(FALSE);
}
DBUG_RETURN(TRUE);
}
/**
Destructor for NDB Cluster table handler.
*/
ha_ndbcluster::~ha_ndbcluster()
{
THD *thd= current_thd;
Ndb *ndb= thd ? check_ndb_in_thd(thd) : g_ndb;
DBUG_ENTER("~ha_ndbcluster");
if (m_share)
{
/* ndb_share reference handler free */
DBUG_PRINT("NDB_SHARE", ("%s handler free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share);
}
release_metadata(thd, ndb);
my_free(m_blobs_buffer, MYF(MY_ALLOW_ZERO_PTR));
m_blobs_buffer= 0;
// Check for open cursor/transaction
if (m_active_cursor) {
}
DBUG_ASSERT(m_active_cursor == NULL);
if (m_active_trans) {
}
DBUG_ASSERT(m_active_trans == NULL);
// Discard any generated condition
DBUG_PRINT("info", ("Deleting generated condition"));
if (m_cond)
{
delete m_cond;
m_cond= NULL;
}
DBUG_VOID_RETURN;
}
/**
Open a table for further use.
- fetch metadata for this table from NDB
- check that table exists
@retval
0 ok
@retval
< 0 Table has changed
*/
int ha_ndbcluster::open(const char *name, int mode, uint test_if_locked)
{
int res;
KEY *key;
DBUG_ENTER("ha_ndbcluster::open");
DBUG_PRINT("enter", ("name: %s mode: %d test_if_locked: %d",
name, mode, test_if_locked));
/*
Setup ref_length to make room for the whole
primary key to be written in the ref variable
*/
if (table_share->primary_key != MAX_KEY)
{
key= table->key_info+table_share->primary_key;
ref_length= key->key_length;
}
else // (table_share->primary_key == MAX_KEY)
{
if (m_use_partition_function)
{
ref_length+= sizeof(m_part_id);
}
}
DBUG_PRINT("info", ("ref_length: %d", ref_length));
// Init table lock structure
/* ndb_share reference handler */
if (!(m_share=get_share(name, table)))
DBUG_RETURN(1);
DBUG_PRINT("NDB_SHARE", ("%s handler use_count: %u",
m_share->key, m_share->use_count));
thr_lock_data_init(&m_share->lock,&m_lock,(void*) 0);
set_dbname(name);
set_tabname(name);
if ((res= check_ndb_connection()) ||
(res= get_metadata(name)))
{
/* ndb_share reference handler free */
DBUG_PRINT("NDB_SHARE", ("%s handler free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share);
m_share= 0;
DBUG_RETURN(res);
}
while (1)
{
Ndb *ndb= get_ndb();
if (ndb->setDatabaseName(m_dbname))
{
set_ndb_err(current_thd, ndb->getNdbError());
res= ndb_to_mysql_error(&ndb->getNdbError());
break;
}
struct Ndb_statistics stat;
res= ndb_get_table_statistics(NULL, FALSE, ndb, m_table, &stat);
stats.mean_rec_length= stat.row_size;
stats.data_file_length= stat.fragment_memory;
stats.records= stat.row_count;
if(!res)
res= info(HA_STATUS_CONST);
break;
}
if (res)
{
free_share(&m_share);
m_share= 0;
release_metadata(current_thd, get_ndb());
DBUG_RETURN(res);
}
#ifdef HAVE_NDB_BINLOG
if (!ndb_binlog_tables_inited)
{
table->db_stat|= HA_READ_ONLY;
sql_print_information("table '%s' opened read only", name);
}
#endif
DBUG_RETURN(0);
}
/*
Set partition info
SYNOPSIS
set_part_info()
part_info
RETURN VALUE
NONE
DESCRIPTION
Set up partition info when handler object created
*/
void ha_ndbcluster::set_part_info(partition_info *part_info)
{
m_part_info= part_info;
if (!(m_part_info->part_type == HASH_PARTITION &&
m_part_info->list_of_part_fields &&
!m_part_info->is_sub_partitioned()))
m_use_partition_function= TRUE;
}
/**
Close the table; release resources setup by open().
*/
int ha_ndbcluster::close(void)
{
DBUG_ENTER("close");
THD *thd= table->in_use;
Ndb *ndb= thd ? check_ndb_in_thd(thd) : g_ndb;
/* ndb_share reference handler free */
DBUG_PRINT("NDB_SHARE", ("%s handler free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share);
m_share= 0;
release_metadata(thd, ndb);
DBUG_RETURN(0);
}
/**
@todo
- Alt.1 If init fails because to many allocated Ndb
wait on condition for a Ndb object to be released.
- Alt.2 Seize/release from pool, wait until next release
*/
Thd_ndb* ha_ndbcluster::seize_thd_ndb()
{
Thd_ndb *thd_ndb;
DBUG_ENTER("seize_thd_ndb");
thd_ndb= new Thd_ndb();
if (thd_ndb == NULL)
{
my_errno= HA_ERR_OUT_OF_MEM;
return NULL;
}
if (thd_ndb->ndb->init(max_transactions) != 0)
{
ERR_PRINT(thd_ndb->ndb->getNdbError());
/*
TODO
Alt.1 If init fails because to many allocated Ndb
wait on condition for a Ndb object to be released.
Alt.2 Seize/release from pool, wait until next release
*/
delete thd_ndb;
thd_ndb= NULL;
}
DBUG_RETURN(thd_ndb);
}
void ha_ndbcluster::release_thd_ndb(Thd_ndb* thd_ndb)
{
DBUG_ENTER("release_thd_ndb");
delete thd_ndb;
DBUG_VOID_RETURN;
}
/**
If this thread already has a Thd_ndb object allocated
in current THD, reuse it. Otherwise
seize a Thd_ndb object, assign it to current THD and use it.
*/
Ndb* check_ndb_in_thd(THD* thd)
{
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (!thd_ndb)
{
if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb()))
return NULL;
set_thd_ndb(thd, thd_ndb);
}
return thd_ndb->ndb;
}
int ha_ndbcluster::check_ndb_connection(THD* thd)
{
Ndb *ndb;
DBUG_ENTER("check_ndb_connection");
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
if (ndb->setDatabaseName(m_dbname))
{
ERR_RETURN(ndb->getNdbError());
}
DBUG_RETURN(0);
}
static int ndbcluster_close_connection(handlerton *hton, THD *thd)
{
Thd_ndb *thd_ndb= get_thd_ndb(thd);
DBUG_ENTER("ndbcluster_close_connection");
if (thd_ndb)
{
ha_ndbcluster::release_thd_ndb(thd_ndb);
set_thd_ndb(thd, NULL); // not strictly required but does not hurt either
}
DBUG_RETURN(0);
}
/**
Try to discover one table from NDB.
*/
int ndbcluster_discover(handlerton *hton, THD* thd, const char *db,
const char *name,
uchar **frmblob,
size_t *frmlen)
{
int error= 0;
NdbError ndb_error;
size_t len;
uchar* data= NULL;
Ndb* ndb;
char key[FN_REFLEN + 1];
DBUG_ENTER("ndbcluster_discover");
DBUG_PRINT("enter", ("db: %s, name: %s", db, name));
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
if (ndb->setDatabaseName(db))
{
ERR_RETURN(ndb->getNdbError());
}
NDBDICT* dict= ndb->getDictionary();
build_table_filename(key, sizeof(key) - 1, db, name, "", 0);
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(key, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
}
if (share && get_ndb_share_state(share) == NSS_ALTERED)
{
// Frm has been altered on disk, but not yet written to ndb
if (readfrm(key, &data, &len))
{
DBUG_PRINT("error", ("Could not read frm"));
error= 1;
goto err;
}
}
else
{
Ndb_table_guard ndbtab_g(dict, name);
const NDBTAB *tab= ndbtab_g.get_table();
if (!tab)
{
const NdbError err= dict->getNdbError();
if (err.code == 709 || err.code == 723)
{
error= -1;
DBUG_PRINT("info", ("ndb_error.code: %u", ndb_error.code));
}
else
{
error= -1;
ndb_error= err;
DBUG_PRINT("info", ("ndb_error.code: %u", ndb_error.code));
}
goto err;
}
DBUG_PRINT("info", ("Found table %s", tab->getName()));
len= tab->getFrmLength();
if (len == 0 || tab->getFrmData() == NULL)
{
DBUG_PRINT("error", ("No frm data found."));
error= 1;
goto err;
}
if (unpackfrm(&data, &len, (uchar*) tab->getFrmData()))
{
DBUG_PRINT("error", ("Could not unpack table"));
error= 1;
goto err;
}
}
*frmlen= len;
*frmblob= data;
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
DBUG_RETURN(0);
err:
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
if (ndb_error.code)
{
ERR_RETURN(ndb_error);
}
DBUG_RETURN(error);
}
/**
Check if a table exists in NDB.
*/
int ndbcluster_table_exists_in_engine(handlerton *hton, THD* thd,
const char *db,
const char *name)
{
Ndb* ndb;
DBUG_ENTER("ndbcluster_table_exists_in_engine");
DBUG_PRINT("enter", ("db: %s name: %s", db, name));
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
NDBDICT* dict= ndb->getDictionary();
NdbDictionary::Dictionary::List list;
if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0)
ERR_RETURN(dict->getNdbError());
for (uint i= 0 ; i < list.count ; i++)
{
NdbDictionary::Dictionary::List::Element& elmt= list.elements[i];
if (my_strcasecmp(system_charset_info, elmt.database, db))
continue;
if (my_strcasecmp(system_charset_info, elmt.name, name))
continue;
DBUG_PRINT("info", ("Found table"));
DBUG_RETURN(HA_ERR_TABLE_EXIST);
}
DBUG_RETURN(HA_ERR_NO_SUCH_TABLE);
}
extern "C" uchar* tables_get_key(const char *entry, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= strlen(entry);
return (uchar*) entry;
}
/**
Drop a database in NDB Cluster
@note
add a dummy void function, since stupid handlerton is returning void instead of int...
*/
int ndbcluster_drop_database_impl(const char *path)
{
DBUG_ENTER("ndbcluster_drop_database");
THD *thd= current_thd;
char dbname[FN_HEADLEN];
Ndb* ndb;
NdbDictionary::Dictionary::List list;
uint i;
char *tabname;
List<char> drop_list;
int ret= 0;
ha_ndbcluster::set_dbname(path, (char *)&dbname);
DBUG_PRINT("enter", ("db: %s", dbname));
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(-1);
// List tables in NDB
NDBDICT *dict= ndb->getDictionary();
if (dict->listObjects(list,
NdbDictionary::Object::UserTable) != 0)
DBUG_RETURN(-1);
for (i= 0 ; i < list.count ; i++)
{
NdbDictionary::Dictionary::List::Element& elmt= list.elements[i];
DBUG_PRINT("info", ("Found %s/%s in NDB", elmt.database, elmt.name));
// Add only tables that belongs to db
if (my_strcasecmp(system_charset_info, elmt.database, dbname))
continue;
DBUG_PRINT("info", ("%s must be dropped", elmt.name));
drop_list.push_back(thd->strdup(elmt.name));
}
// Drop any tables belonging to database
char full_path[FN_REFLEN + 1];
char *tmp= full_path +
build_table_filename(full_path, sizeof(full_path) - 1, dbname, "", "", 0);
if (ndb->setDatabaseName(dbname))
{
ERR_RETURN(ndb->getNdbError());
}
List_iterator_fast<char> it(drop_list);
while ((tabname=it++))
{
tablename_to_filename(tabname, tmp, FN_REFLEN - (tmp - full_path)-1);
pthread_mutex_lock(&LOCK_open);
if (ha_ndbcluster::delete_table(0, ndb, full_path, dbname, tabname))
{
const NdbError err= dict->getNdbError();
if (err.code != 709 && err.code != 723)
{
set_ndb_err(thd, err);
ret= ndb_to_mysql_error(&err);
}
}
pthread_mutex_unlock(&LOCK_open);
}
DBUG_RETURN(ret);
}
static void ndbcluster_drop_database(handlerton *hton, char *path)
{
DBUG_ENTER("ndbcluster_drop_database");
#ifdef HAVE_NDB_BINLOG
/*
Don't allow drop database unless
schema distribution table is setup
*/
if (!ndb_schema_share)
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_ASSERT(ndb_schema_share);
DBUG_VOID_RETURN;
}
#endif
ndbcluster_drop_database_impl(path);
#ifdef HAVE_NDB_BINLOG
char db[FN_REFLEN];
THD *thd= current_thd;
ha_ndbcluster::set_dbname(path, db);
ndbcluster_log_schema_op(thd, 0,
thd->query(), thd->query_length(),
db, "", 0, 0, SOT_DROP_DB, 0, 0, 0);
#endif
DBUG_VOID_RETURN;
}
int ndb_create_table_from_engine(THD *thd, const char *db,
const char *table_name)
{
LEX *old_lex= thd->lex, newlex;
thd->lex= &newlex;
newlex.current_select= NULL;
lex_start(thd);
int res= ha_create_table_from_engine(thd, db, table_name);
thd->lex= old_lex;
return res;
}
/*
find all tables in ndb and discover those needed
*/
int ndbcluster_find_all_files(THD *thd)
{
Ndb* ndb;
char key[FN_REFLEN + 1];
NDBDICT *dict;
int unhandled, retries= 5, skipped;
DBUG_ENTER("ndbcluster_find_all_files");
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
dict= ndb->getDictionary();
LINT_INIT(unhandled);
LINT_INIT(skipped);
do
{
NdbDictionary::Dictionary::List list;
if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0)
ERR_RETURN(dict->getNdbError());
unhandled= 0;
skipped= 0;
retries--;
for (uint i= 0 ; i < list.count ; i++)
{
NDBDICT::List::Element& elmt= list.elements[i];
if (IS_TMP_PREFIX(elmt.name) || IS_NDB_BLOB_PREFIX(elmt.name))
{
DBUG_PRINT("info", ("Skipping %s.%s in NDB", elmt.database, elmt.name));
continue;
}
DBUG_PRINT("info", ("Found %s.%s in NDB", elmt.database, elmt.name));
if (elmt.state != NDBOBJ::StateOnline &&
elmt.state != NDBOBJ::StateBackup &&
elmt.state != NDBOBJ::StateBuilding)
{
sql_print_information("NDB: skipping setup table %s.%s, in state %d",
elmt.database, elmt.name, elmt.state);
skipped++;
continue;
}
ndb->setDatabaseName(elmt.database);
Ndb_table_guard ndbtab_g(dict, elmt.name);
const NDBTAB *ndbtab= ndbtab_g.get_table();
if (!ndbtab)
{
if (retries == 0)
sql_print_error("NDB: failed to setup table %s.%s, error: %d, %s",
elmt.database, elmt.name,
dict->getNdbError().code,
dict->getNdbError().message);
unhandled++;
continue;
}
if (ndbtab->getFrmLength() == 0)
continue;
/* check if database exists */
char *end= key +
build_table_filename(key, sizeof(key) - 1, elmt.database, "", "", 0);
if (my_access(key, F_OK))
{
/* no such database defined, skip table */
continue;
}
/* finalize construction of path */
end+= tablename_to_filename(elmt.name, end,
sizeof(key)-(end-key));
uchar *data= 0, *pack_data= 0;
size_t length, pack_length;
int discover= 0;
if (readfrm(key, &data, &length) ||
packfrm(data, length, &pack_data, &pack_length))
{
discover= 1;
sql_print_information("NDB: missing frm for %s.%s, discovering...",
elmt.database, elmt.name);
}
else if (cmp_frm(ndbtab, pack_data, pack_length))
{
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(key, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
}
if (!share || get_ndb_share_state(share) != NSS_ALTERED)
{
discover= 1;
sql_print_information("NDB: mismatch in frm for %s.%s, discovering...",
elmt.database, elmt.name);
}
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
}
my_free((char*) data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) pack_data, MYF(MY_ALLOW_ZERO_PTR));
pthread_mutex_lock(&LOCK_open);
if (discover)
{
/* ToDo 4.1 database needs to be created if missing */
if (ndb_create_table_from_engine(thd, elmt.database, elmt.name))
{
/* ToDo 4.1 handle error */
}
}
#ifdef HAVE_NDB_BINLOG
else
{
/* set up replication for this table */
ndbcluster_create_binlog_setup(ndb, key, end-key,
elmt.database, elmt.name,
TRUE);
}
#endif
pthread_mutex_unlock(&LOCK_open);
}
}
while (unhandled && retries);
DBUG_RETURN(-(skipped + unhandled));
}
int ndbcluster_find_files(handlerton *hton, THD *thd,
const char *db,
const char *path,
const char *wild, bool dir, List<LEX_STRING> *files)
{
DBUG_ENTER("ndbcluster_find_files");
DBUG_PRINT("enter", ("db: %s", db));
{ // extra bracket to avoid gcc 2.95.3 warning
uint i;
Ndb* ndb;
char name[FN_REFLEN + 1];
HASH ndb_tables, ok_tables;
NDBDICT::List list;
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
if (dir)
DBUG_RETURN(0); // Discover of databases not yet supported
// List tables in NDB
NDBDICT *dict= ndb->getDictionary();
if (dict->listObjects(list,
NdbDictionary::Object::UserTable) != 0)
ERR_RETURN(dict->getNdbError());
if (my_hash_init(&ndb_tables, system_charset_info,list.count,0,0,
(my_hash_get_key)tables_get_key,0,0))
{
DBUG_PRINT("error", ("Failed to init HASH ndb_tables"));
DBUG_RETURN(-1);
}
if (my_hash_init(&ok_tables, system_charset_info,32,0,0,
(my_hash_get_key)tables_get_key,0,0))
{
DBUG_PRINT("error", ("Failed to init HASH ok_tables"));
my_hash_free(&ndb_tables);
DBUG_RETURN(-1);
}
for (i= 0 ; i < list.count ; i++)
{
NDBDICT::List::Element& elmt= list.elements[i];
if (IS_TMP_PREFIX(elmt.name) || IS_NDB_BLOB_PREFIX(elmt.name))
{
DBUG_PRINT("info", ("Skipping %s.%s in NDB", elmt.database, elmt.name));
continue;
}
DBUG_PRINT("info", ("Found %s/%s in NDB", elmt.database, elmt.name));
// Add only tables that belongs to db
if (my_strcasecmp(system_charset_info, elmt.database, db))
continue;
// Apply wildcard to list of tables in NDB
if (wild)
{
if (lower_case_table_names)
{
if (wild_case_compare(files_charset_info, elmt.name, wild))
continue;
}
else if (wild_compare(elmt.name,wild,0))
continue;
}
DBUG_PRINT("info", ("Inserting %s into ndb_tables hash", elmt.name));
my_hash_insert(&ndb_tables, (uchar*)thd->strdup(elmt.name));
}
LEX_STRING *file_name;
List_iterator<LEX_STRING> it(*files);
List<char> delete_list;
char *file_name_str;
while ((file_name=it++))
{
bool file_on_disk= FALSE;
DBUG_PRINT("info", ("%s", file_name->str));
if (my_hash_search(&ndb_tables, (uchar*) file_name->str,
file_name->length))
{
build_table_filename(name, sizeof(name) - 1, db,
file_name->str, reg_ext, 0);
if (my_access(name, F_OK))
{
pthread_mutex_lock(&LOCK_open);
DBUG_PRINT("info", ("Table %s listed and need discovery",
file_name->str));
if (ndb_create_table_from_engine(thd, db, file_name->str))
{
pthread_mutex_unlock(&LOCK_open);
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_TABLE_EXISTS_ERROR,
"Discover of table %s.%s failed",
db, file_name->str);
continue;
}
pthread_mutex_unlock(&LOCK_open);
}
DBUG_PRINT("info", ("%s existed in NDB _and_ on disk ", file_name->str));
file_on_disk= TRUE;
}
// Check for .ndb file with this name
build_table_filename(name, sizeof(name) - 1, db,
file_name->str, ha_ndb_ext, 0);
DBUG_PRINT("info", ("Check access for %s", name));
if (my_access(name, F_OK))
{
DBUG_PRINT("info", ("%s did not exist on disk", name));
// .ndb file did not exist on disk, another table type
if (file_on_disk)
{
// Ignore this ndb table
uchar *record= my_hash_search(&ndb_tables, (uchar*) file_name->str,
file_name->length);
DBUG_ASSERT(record);
my_hash_delete(&ndb_tables, record);
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_TABLE_EXISTS_ERROR,
"Local table %s.%s shadows ndb table",
db, file_name->str);
}
continue;
}
if (file_on_disk)
{
// File existed in NDB and as frm file, put in ok_tables list
my_hash_insert(&ok_tables, (uchar*) file_name->str);
continue;
}
DBUG_PRINT("info", ("%s existed on disk", name));
// The .ndb file exists on disk, but it's not in list of tables in ndb
// Verify that handler agrees table is gone.
if (ndbcluster_table_exists_in_engine(hton, thd, db, file_name->str) ==
HA_ERR_NO_SUCH_TABLE)
{
DBUG_PRINT("info", ("NDB says %s does not exists", file_name->str));
it.remove();
// Put in list of tables to remove from disk
delete_list.push_back(thd->strdup(file_name->str));
}
}
#ifdef HAVE_NDB_BINLOG
/* setup logging to binlog for all discovered tables */
{
char *end, *end1= name +
build_table_filename(name, sizeof(name) - 1, db, "", "", 0);
for (i= 0; i < ok_tables.records; i++)
{
file_name_str= (char*)my_hash_element(&ok_tables, i);
end= end1 +
tablename_to_filename(file_name_str, end1, sizeof(name) - (end1 - name));
pthread_mutex_lock(&LOCK_open);
ndbcluster_create_binlog_setup(ndb, name, end-name,
db, file_name_str, TRUE);
pthread_mutex_unlock(&LOCK_open);
}
}
#endif
// Check for new files to discover
DBUG_PRINT("info", ("Checking for new files to discover"));
List<char> create_list;
for (i= 0 ; i < ndb_tables.records ; i++)
{
file_name_str= (char*) my_hash_element(&ndb_tables, i);
if (!my_hash_search(&ok_tables, (uchar*) file_name_str,
strlen(file_name_str)))
{
build_table_filename(name, sizeof(name) - 1,
db, file_name_str, reg_ext, 0);
if (my_access(name, F_OK))
{
DBUG_PRINT("info", ("%s must be discovered", file_name_str));
// File is in list of ndb tables and not in ok_tables
// This table need to be created
create_list.push_back(thd->strdup(file_name_str));
}
}
}
/*
ndbcluster_find_files() may be called from I_S code and ndbcluster_binlog
thread in situations when some tables are already open. This means that
code below will try to obtain exclusive metadata lock on some table
while holding shared meta-data lock on other tables. This might lead to
a deadlock, and therefore is disallowed by assertions of the metadata
locking subsystem. In order to temporarily make the code work, we must
reset and backup the open tables state, thus hide the existing locks
from MDL asserts. But in the essence this is violation of metadata
locking protocol which has to be closed ASAP.
*/
Open_tables_state open_tables_state_backup;
thd->reset_n_backup_open_tables_state(&open_tables_state_backup);
if (!global_read_lock)
{
// Delete old files
List_iterator_fast<char> it3(delete_list);
while ((file_name_str= it3++))
{
DBUG_PRINT("info", ("Remove table %s/%s", db, file_name_str));
// Delete the table and all related files
TABLE_LIST table_list;
bzero((char*) &table_list,sizeof(table_list));
table_list.db= (char*) db;
table_list.alias= table_list.table_name= (char*)file_name_str;
(void)mysql_rm_table_part2(thd, &table_list,
FALSE, /* if_exists */
FALSE, /* drop_temporary */
FALSE, /* drop_view */
TRUE /* dont_log_query*/);
/* Clear error message that is returned when table is deleted */
thd->clear_error();
}
}
thd->restore_backup_open_tables_state(&open_tables_state_backup);
/* Lock mutex before creating .FRM files. */
pthread_mutex_lock(&LOCK_open);
/* Create new files. */
List_iterator_fast<char> it2(create_list);
while ((file_name_str=it2++))
{
DBUG_PRINT("info", ("Table %s need discovery", file_name_str));
if (ndb_create_table_from_engine(thd, db, file_name_str) == 0)
{
LEX_STRING *tmp_file_name= 0;
tmp_file_name= thd->make_lex_string(tmp_file_name, file_name_str,
strlen(file_name_str), TRUE);
files->push_back(tmp_file_name);
}
}
pthread_mutex_unlock(&LOCK_open);
my_hash_free(&ok_tables);
my_hash_free(&ndb_tables);
// Delete schema file from files
if (!strcmp(db, NDB_REP_DB))
{
uint count = 0;
while (count++ < files->elements)
{
file_name = (LEX_STRING *)files->pop();
if (!strcmp(file_name->str, NDB_SCHEMA_TABLE))
{
DBUG_PRINT("info", ("skip %s.%s table, it should be hidden to user",
NDB_REP_DB, NDB_SCHEMA_TABLE));
continue;
}
files->push_back(file_name);
}
}
} // extra bracket to avoid gcc 2.95.3 warning
DBUG_RETURN(0);
}
/*
Initialise all gloal variables before creating
a NDB Cluster table handler
*/
/* Call back after cluster connect */
static int connect_callback()
{
pthread_mutex_lock(&LOCK_ndb_util_thread);
update_status_variables(g_ndb_cluster_connection);
uint node_id, i= 0;
Ndb_cluster_connection_node_iter node_iter;
memset((void *)g_node_id_map, 0xFFFF, sizeof(g_node_id_map));
while ((node_id= g_ndb_cluster_connection->get_next_node(node_iter)))
g_node_id_map[node_id]= i++;
pthread_cond_signal(&COND_ndb_util_thread);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
return 0;
}
extern int ndb_dictionary_is_mysqld;
extern pthread_mutex_t LOCK_plugin;
static int ndbcluster_init(void *p)
{
int res;
DBUG_ENTER("ndbcluster_init");
if (ndbcluster_inited)
DBUG_RETURN(FALSE);
/*
Below we create new THD's. They'll need LOCK_plugin, but it's taken now by
plugin initialization code. Release it to avoid deadlocks. It's safe, as
there're no threads that may concurrently access plugin control structures.
*/
pthread_mutex_unlock(&LOCK_plugin);
pthread_mutex_init(&ndbcluster_mutex,MY_MUTEX_INIT_FAST);
pthread_mutex_init(&LOCK_ndb_util_thread, MY_MUTEX_INIT_FAST);
pthread_cond_init(&COND_ndb_util_thread, NULL);
pthread_cond_init(&COND_ndb_util_ready, NULL);
ndb_util_thread_running= -1;
ndbcluster_terminating= 0;
ndb_dictionary_is_mysqld= 1;
ndbcluster_hton= (handlerton *)p;
{
handlerton *h= ndbcluster_hton;
h->state= SHOW_OPTION_YES;
h->db_type= DB_TYPE_NDBCLUSTER;
h->close_connection= ndbcluster_close_connection;
h->commit= ndbcluster_commit;
h->rollback= ndbcluster_rollback;
h->create= ndbcluster_create_handler; /* Create a new handler */
h->drop_database= ndbcluster_drop_database; /* Drop a database */
h->panic= ndbcluster_end; /* Panic call */
h->show_status= ndbcluster_show_status; /* Show status */
h->alter_tablespace= ndbcluster_alter_tablespace; /* Show status */
h->partition_flags= ndbcluster_partition_flags; /* Partition flags */
h->alter_table_flags=ndbcluster_alter_table_flags; /* Alter table flags */
h->fill_files_table= ndbcluster_fill_files_table;
#ifdef HAVE_NDB_BINLOG
ndbcluster_binlog_init_handlerton();
#endif
h->flags= HTON_CAN_RECREATE | HTON_TEMPORARY_NOT_SUPPORTED;
h->discover= ndbcluster_discover;
h->find_files= ndbcluster_find_files;
h->table_exists_in_engine= ndbcluster_table_exists_in_engine;
}
// Initialize ndb interface
ndb_init_internal();
// Set connectstring if specified
if (opt_ndbcluster_connectstring != 0)
DBUG_PRINT("connectstring", ("%s", opt_ndbcluster_connectstring));
if ((g_ndb_cluster_connection=
new Ndb_cluster_connection(opt_ndbcluster_connectstring)) == 0)
{
DBUG_PRINT("error",("Ndb_cluster_connection(%s)",
opt_ndbcluster_connectstring));
my_errno= HA_ERR_OUT_OF_MEM;
goto ndbcluster_init_error;
}
{
char buf[128];
my_snprintf(buf, sizeof(buf), "mysqld --server-id=%lu", server_id);
g_ndb_cluster_connection->set_name(buf);
}
g_ndb_cluster_connection->set_optimized_node_selection
(opt_ndb_optimized_node_selection);
// Create a Ndb object to open the connection to NDB
if ( (g_ndb= new Ndb(g_ndb_cluster_connection, "sys")) == 0 )
{
DBUG_PRINT("error", ("failed to create global ndb object"));
my_errno= HA_ERR_OUT_OF_MEM;
goto ndbcluster_init_error;
}
if (g_ndb->init() != 0)
{
ERR_PRINT (g_ndb->getNdbError());
goto ndbcluster_init_error;
}
if ((res= g_ndb_cluster_connection->connect(0,0,0)) == 0)
{
connect_callback();
DBUG_PRINT("info",("NDBCLUSTER storage engine at %s on port %d",
g_ndb_cluster_connection->get_connected_host(),
g_ndb_cluster_connection->get_connected_port()));
g_ndb_cluster_connection->wait_until_ready(10,3);
}
else if (res == 1)
{
if (g_ndb_cluster_connection->start_connect_thread(connect_callback))
{
DBUG_PRINT("error", ("g_ndb_cluster_connection->start_connect_thread()"));
goto ndbcluster_init_error;
}
#ifndef DBUG_OFF
{
char buf[1024];
DBUG_PRINT("info",
("NDBCLUSTER storage engine not started, "
"will connect using %s",
g_ndb_cluster_connection->
get_connectstring(buf,sizeof(buf))));
}
#endif
}
else
{
DBUG_ASSERT(res == -1);
DBUG_PRINT("error", ("permanent error"));
goto ndbcluster_init_error;
}
(void) my_hash_init(&ndbcluster_open_tables,system_charset_info,32,0,0,
(my_hash_get_key) ndbcluster_get_key,0,0);
#ifdef HAVE_NDB_BINLOG
/* start the ndb injector thread */
if (ndbcluster_binlog_start())
goto ndbcluster_init_error;
#endif /* HAVE_NDB_BINLOG */
ndb_cache_check_time = opt_ndb_cache_check_time;
// Create utility thread
pthread_t tmp;
if (pthread_create(&tmp, &connection_attrib, ndb_util_thread_func, 0))
{
DBUG_PRINT("error", ("Could not create ndb utility thread"));
my_hash_free(&ndbcluster_open_tables);
pthread_mutex_destroy(&ndbcluster_mutex);
pthread_mutex_destroy(&LOCK_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_ready);
goto ndbcluster_init_error;
}
/* Wait for the util thread to start */
pthread_mutex_lock(&LOCK_ndb_util_thread);
while (ndb_util_thread_running < 0)
pthread_cond_wait(&COND_ndb_util_ready, &LOCK_ndb_util_thread);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
if (!ndb_util_thread_running)
{
DBUG_PRINT("error", ("ndb utility thread exited prematurely"));
my_hash_free(&ndbcluster_open_tables);
pthread_mutex_destroy(&ndbcluster_mutex);
pthread_mutex_destroy(&LOCK_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_ready);
goto ndbcluster_init_error;
}
pthread_mutex_lock(&LOCK_plugin);
ndbcluster_inited= 1;
DBUG_RETURN(FALSE);
ndbcluster_init_error:
if (g_ndb)
delete g_ndb;
g_ndb= NULL;
if (g_ndb_cluster_connection)
delete g_ndb_cluster_connection;
g_ndb_cluster_connection= NULL;
ndbcluster_hton->state= SHOW_OPTION_DISABLED; // If we couldn't use handler
pthread_mutex_lock(&LOCK_plugin);
DBUG_RETURN(TRUE);
}
static int ndbcluster_end(handlerton *hton, ha_panic_function type)
{
DBUG_ENTER("ndbcluster_end");
if (!ndbcluster_inited)
DBUG_RETURN(0);
ndbcluster_inited= 0;
/* wait for util thread to finish */
sql_print_information("Stopping Cluster Utility thread");
pthread_mutex_lock(&LOCK_ndb_util_thread);
ndbcluster_terminating= 1;
pthread_cond_signal(&COND_ndb_util_thread);
while (ndb_util_thread_running > 0)
pthread_cond_wait(&COND_ndb_util_ready, &LOCK_ndb_util_thread);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
#ifdef HAVE_NDB_BINLOG
{
pthread_mutex_lock(&ndbcluster_mutex);
while (ndbcluster_open_tables.records)
{
NDB_SHARE *share=
(NDB_SHARE*) my_hash_element(&ndbcluster_open_tables, 0);
#ifndef DBUG_OFF
fprintf(stderr, "NDB: table share %s with use_count %d not freed\n",
share->key, share->use_count);
#endif
ndbcluster_real_free_share(&share);
}
pthread_mutex_unlock(&ndbcluster_mutex);
}
#endif
my_hash_free(&ndbcluster_open_tables);
if (g_ndb)
{
#ifndef DBUG_OFF
Ndb::Free_list_usage tmp;
tmp.m_name= 0;
while (g_ndb->get_free_list_usage(&tmp))
{
uint leaked= (uint) tmp.m_created - tmp.m_free;
if (leaked)
fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n",
leaked, tmp.m_name,
(leaked == 1)?"":"'s",
(leaked == 1)?"has":"have");
}
#endif
delete g_ndb;
g_ndb= NULL;
}
delete g_ndb_cluster_connection;
g_ndb_cluster_connection= NULL;
// cleanup ndb interface
ndb_end_internal();
pthread_mutex_destroy(&ndbcluster_mutex);
pthread_mutex_destroy(&LOCK_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_ready);
DBUG_RETURN(0);
}
void ha_ndbcluster::print_error(int error, myf errflag)
{
DBUG_ENTER("ha_ndbcluster::print_error");
DBUG_PRINT("enter", ("error: %d", error));
if (error == HA_ERR_NO_PARTITION_FOUND)
m_part_info->print_no_partition_found(table);
else
handler::print_error(error, errflag);
DBUG_VOID_RETURN;
}
/**
Static error print function called from static handler method
ndbcluster_commit and ndbcluster_rollback.
*/
void ndbcluster_print_error(int error, const NdbOperation *error_op)
{
DBUG_ENTER("ndbcluster_print_error");
TABLE_SHARE share;
const char *tab_name= (error_op) ? error_op->getTableName() : "";
share.db.str= (char*) "";
share.db.length= 0;
share.table_name.str= (char *) tab_name;
share.table_name.length= strlen(tab_name);
ha_ndbcluster error_handler(ndbcluster_hton, &share);
error_handler.print_error(error, MYF(0));
DBUG_VOID_RETURN;
}
/**
Set a given location from full pathname to database name.
*/
void ha_ndbcluster::set_dbname(const char *path_name, char *dbname)
{
char *end, *ptr, *tmp_name;
char tmp_buff[FN_REFLEN + 1];
tmp_name= tmp_buff;
/* Scan name from the end */
ptr= strend(path_name)-1;
while (ptr >= path_name && *ptr != '\\' && *ptr != '/') {
ptr--;
}
ptr--;
end= ptr;
while (ptr >= path_name && *ptr != '\\' && *ptr != '/') {
ptr--;
}
uint name_len= end - ptr;
memcpy(tmp_name, ptr + 1, name_len);
tmp_name[name_len]= '\0';
#ifdef __WIN__
/* Put to lower case */
ptr= tmp_name;
while (*ptr != '\0') {
*ptr= tolower(*ptr);
ptr++;
}
#endif
filename_to_tablename(tmp_name, dbname, sizeof(tmp_buff) - 1);
}
/**
Set m_dbname from full pathname to table file.
*/
void ha_ndbcluster::set_dbname(const char *path_name)
{
set_dbname(path_name, m_dbname);
}
/**
Set a given location from full pathname to table file.
*/
void
ha_ndbcluster::set_tabname(const char *path_name, char * tabname)
{
char *end, *ptr, *tmp_name;
char tmp_buff[FN_REFLEN + 1];
tmp_name= tmp_buff;
/* Scan name from the end */
end= strend(path_name)-1;
ptr= end;
while (ptr >= path_name && *ptr != '\\' && *ptr != '/') {
ptr--;
}
uint name_len= end - ptr;
memcpy(tmp_name, ptr + 1, end - ptr);
tmp_name[name_len]= '\0';
#ifdef __WIN__
/* Put to lower case */
ptr= tmp_name;
while (*ptr != '\0') {
*ptr= tolower(*ptr);
ptr++;
}
#endif
filename_to_tablename(tmp_name, tabname, sizeof(tmp_buff) - 1);
}
/**
Set m_tabname from full pathname to table file.
*/
void ha_ndbcluster::set_tabname(const char *path_name)
{
set_tabname(path_name, m_tabname);
}
ha_rows
ha_ndbcluster::records_in_range(uint inx, key_range *min_key,
key_range *max_key)
{
KEY *key_info= table->key_info + inx;
uint key_length= key_info->key_length;
NDB_INDEX_TYPE idx_type= get_index_type(inx);
DBUG_ENTER("records_in_range");
// Prevent partial read of hash indexes by returning HA_POS_ERROR
if ((idx_type == UNIQUE_INDEX || idx_type == PRIMARY_KEY_INDEX) &&
((min_key && min_key->length < key_length) ||
(max_key && max_key->length < key_length)))
DBUG_RETURN(HA_POS_ERROR);
// Read from hash index with full key
// This is a "const" table which returns only one record!
if ((idx_type != ORDERED_INDEX) &&
((min_key && min_key->length == key_length) ||
(max_key && max_key->length == key_length)))
DBUG_RETURN(1);
if ((idx_type == PRIMARY_KEY_ORDERED_INDEX ||
idx_type == UNIQUE_ORDERED_INDEX ||
idx_type == ORDERED_INDEX) &&
m_index[inx].index_stat != NULL)
{
NDB_INDEX_DATA& d=m_index[inx];
const NDBINDEX* index= d.index;
Ndb* ndb=get_ndb();
NdbTransaction* trans=NULL;
NdbIndexScanOperation* op=NULL;
int res=0;
Uint64 rows;
do
{
// We must provide approx table rows
Uint64 table_rows=0;
Ndb_local_table_statistics *ndb_info= m_table_info;
if (ndb_info->records != ~(ha_rows)0 && ndb_info->records != 0)
{
table_rows = ndb_info->records;
DBUG_PRINT("info", ("use info->records: %lu", (ulong) table_rows));
}
else
{
Ndb_statistics stat;
if ((res=ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat)))
break;
table_rows=stat.row_count;
DBUG_PRINT("info", ("use db row_count: %lu", (ulong) table_rows));
if (table_rows == 0) {
// Problem if autocommit=0
#ifdef ndb_get_table_statistics_uses_active_trans
rows=0;
break;
#endif
}
}
// Define scan op for the range
if ((trans=m_active_trans) == NULL ||
trans->commitStatus() != NdbTransaction::Started)
{
DBUG_PRINT("info", ("no active trans"));
if (! (trans=ndb->startTransaction()))
ERR_BREAK(ndb->getNdbError(), res);
}
if (! (op=trans->getNdbIndexScanOperation(index, (NDBTAB*)m_table)))
ERR_BREAK(trans->getNdbError(), res);
if ((op->readTuples(NdbOperation::LM_CommittedRead)) == -1)
ERR_BREAK(op->getNdbError(), res);
const key_range *keys[2]={ min_key, max_key };
if ((res=set_bounds(op, inx, TRUE, keys)) != 0)
break;
// Decide if db should be contacted
int flags=0;
if (d.index_stat_query_count < d.index_stat_cache_entries ||
(d.index_stat_update_freq != 0 &&
d.index_stat_query_count % d.index_stat_update_freq == 0))
{
DBUG_PRINT("info", ("force stat from db"));
flags|=NdbIndexStat::RR_UseDb;
}
if (d.index_stat->records_in_range(index, op, table_rows, &rows, flags) == -1)
ERR_BREAK(d.index_stat->getNdbError(), res);
d.index_stat_query_count++;
} while (0);
if (trans != m_active_trans && rows == 0)
rows = 1;
if (trans != m_active_trans && trans != NULL)
ndb->closeTransaction(trans);
if (res != 0)
DBUG_RETURN(HA_POS_ERROR);
DBUG_RETURN(rows);
}
DBUG_RETURN(10); /* Good guess when you don't know anything */
}
ulonglong ha_ndbcluster::table_flags(void) const
{
THD *thd= current_thd;
ulonglong f= m_table_flags;
if (m_ha_not_exact_count)
f= f & ~HA_STATS_RECORDS_IS_EXACT;
/*
To allow for logging of ndb tables during stmt based logging;
flag cabablity, but also turn off flag for OWN_BINLOGGING
*/
if (thd->variables.binlog_format == BINLOG_FORMAT_STMT)
f= (f | HA_BINLOG_STMT_CAPABLE) & ~HA_HAS_OWN_BINLOGGING;
return f;
}
const char * ha_ndbcluster::table_type() const
{
return("NDBCLUSTER");
}
uint ha_ndbcluster::max_supported_record_length() const
{
return NDB_MAX_TUPLE_SIZE;
}
uint ha_ndbcluster::max_supported_keys() const
{
return MAX_KEY;
}
uint ha_ndbcluster::max_supported_key_parts() const
{
return NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY;
}
uint ha_ndbcluster::max_supported_key_length() const
{
return NDB_MAX_KEY_SIZE;
}
uint ha_ndbcluster::max_supported_key_part_length() const
{
return NDB_MAX_KEY_SIZE;
}
bool ha_ndbcluster::low_byte_first() const
{
#ifdef WORDS_BIGENDIAN
return FALSE;
#else
return TRUE;
#endif
}
const char* ha_ndbcluster::index_type(uint key_number)
{
switch (get_index_type(key_number)) {
case ORDERED_INDEX:
case UNIQUE_ORDERED_INDEX:
case PRIMARY_KEY_ORDERED_INDEX:
return "BTREE";
case UNIQUE_INDEX:
case PRIMARY_KEY_INDEX:
default:
return "HASH";
}
}
uint8 ha_ndbcluster::table_cache_type()
{
DBUG_ENTER("ha_ndbcluster::table_cache_type=HA_CACHE_TBL_ASKTRANSACT");
DBUG_RETURN(HA_CACHE_TBL_ASKTRANSACT);
}
uint ndb_get_commitcount(THD *thd, char *dbname, char *tabname,
Uint64 *commit_count)
{
char name[FN_REFLEN + 1];
NDB_SHARE *share;
DBUG_ENTER("ndb_get_commitcount");
build_table_filename(name, sizeof(name) - 1,
dbname, tabname, "", 0);
DBUG_PRINT("enter", ("name: %s", name));
pthread_mutex_lock(&ndbcluster_mutex);
if (!(share=(NDB_SHARE*) my_hash_search(&ndbcluster_open_tables,
(uchar*) name,
strlen(name))))
{
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_PRINT("info", ("Table %s not found in ndbcluster_open_tables", name));
DBUG_RETURN(1);
}
/* ndb_share reference temporary, free below */
share->use_count++;
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
pthread_mutex_unlock(&ndbcluster_mutex);
pthread_mutex_lock(&share->mutex);
if (ndb_cache_check_time > 0)
{
if (share->commit_count != 0)
{
*commit_count= share->commit_count;
#ifndef DBUG_OFF
char buff[22];
#endif
DBUG_PRINT("info", ("Getting commit_count: %s from share",
llstr(share->commit_count, buff)));
pthread_mutex_unlock(&share->mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
DBUG_RETURN(0);
}
}
DBUG_PRINT("info", ("Get commit_count from NDB"));
Ndb *ndb;
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(1);
if (ndb->setDatabaseName(dbname))
{
ERR_RETURN(ndb->getNdbError());
}
uint lock= share->commit_count_lock;
pthread_mutex_unlock(&share->mutex);
struct Ndb_statistics stat;
{
Ndb_table_guard ndbtab_g(ndb->getDictionary(), tabname);
if (ndbtab_g.get_table() == 0
|| ndb_get_table_statistics(NULL, FALSE, ndb, ndbtab_g.get_table(), &stat))
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
DBUG_RETURN(1);
}
}
pthread_mutex_lock(&share->mutex);
if (share->commit_count_lock == lock)
{
#ifndef DBUG_OFF
char buff[22];
#endif
DBUG_PRINT("info", ("Setting commit_count to %s",
llstr(stat.commit_count, buff)));
share->commit_count= stat.commit_count;
*commit_count= stat.commit_count;
}
else
{
DBUG_PRINT("info", ("Discarding commit_count, comit_count_lock changed"));
*commit_count= 0;
}
pthread_mutex_unlock(&share->mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
DBUG_RETURN(0);
}
/**
Check if a cached query can be used.
This is done by comparing the supplied engine_data to commit_count of
the table.
The commit_count is either retrieved from the share for the table, where
it has been cached by the util thread. If the util thread is not started,
NDB has to be contacetd to retrieve the commit_count, this will introduce
a small delay while waiting for NDB to answer.
@param thd thread handle
@param full_name concatenation of database name,
the null character '\\0', and the table name
@param full_name_len length of the full name,
i.e. len(dbname) + len(tablename) + 1
@param engine_data parameter retrieved when query was first inserted into
the cache. If the value of engine_data is changed,
all queries for this table should be invalidated.
@retval
TRUE Yes, use the query from cache
@retval
FALSE No, don't use the cached query, and if engine_data
has changed, all queries for this table should be invalidated
*/
static my_bool
ndbcluster_cache_retrieval_allowed(THD *thd,
char *full_name, uint full_name_len,
ulonglong *engine_data)
{
Uint64 commit_count;
bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN));
char *dbname= full_name;
char *tabname= dbname+strlen(dbname)+1;
#ifndef DBUG_OFF
char buff[22], buff2[22];
#endif
DBUG_ENTER("ndbcluster_cache_retrieval_allowed");
DBUG_PRINT("enter", ("dbname: %s, tabname: %s, is_autocommit: %d",
dbname, tabname, is_autocommit));
if (!is_autocommit)
{
DBUG_PRINT("exit", ("No, don't use cache in transaction"));
DBUG_RETURN(FALSE);
}
if (ndb_get_commitcount(thd, dbname, tabname, &commit_count))
{
*engine_data= 0; /* invalidate */
DBUG_PRINT("exit", ("No, could not retrieve commit_count"));
DBUG_RETURN(FALSE);
}
DBUG_PRINT("info", ("*engine_data: %s, commit_count: %s",
llstr(*engine_data, buff), llstr(commit_count, buff2)));
if (commit_count == 0)
{
*engine_data= 0; /* invalidate */
DBUG_PRINT("exit", ("No, local commit has been performed"));
DBUG_RETURN(FALSE);
}
else if (*engine_data != commit_count)
{
*engine_data= commit_count; /* invalidate */
DBUG_PRINT("exit", ("No, commit_count has changed"));
DBUG_RETURN(FALSE);
}
DBUG_PRINT("exit", ("OK to use cache, engine_data: %s",
llstr(*engine_data, buff)));
DBUG_RETURN(TRUE);
}
/**
Register a table for use in the query cache.
Fetch the commit_count for the table and return it in engine_data,
this will later be used to check if the table has changed, before
the cached query is reused.
@param thd thread handle
@param full_name concatenation of database name,
the null character '\\0', and the table name
@param full_name_len length of the full name,
i.e. len(dbname) + len(tablename) + 1
@param engine_callback function to be called before using cache on
this table
@param[out] engine_data commit_count for this table
@retval
TRUE Yes, it's ok to cahce this query
@retval
FALSE No, don't cach the query
*/
my_bool
ha_ndbcluster::register_query_cache_table(THD *thd,
char *full_name, uint full_name_len,
qc_engine_callback *engine_callback,
ulonglong *engine_data)
{
Uint64 commit_count;
#ifndef DBUG_OFF
char buff[22];
#endif
bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN));
DBUG_ENTER("ha_ndbcluster::register_query_cache_table");
DBUG_PRINT("enter",("dbname: %s, tabname: %s, is_autocommit: %d",
m_dbname, m_tabname, is_autocommit));
if (!is_autocommit)
{
DBUG_PRINT("exit", ("Can't register table during transaction"));
DBUG_RETURN(FALSE);
}
if (ndb_get_commitcount(thd, m_dbname, m_tabname, &commit_count))
{
*engine_data= 0;
DBUG_PRINT("exit", ("Error, could not get commitcount"));
DBUG_RETURN(FALSE);
}
*engine_data= commit_count;
*engine_callback= ndbcluster_cache_retrieval_allowed;
DBUG_PRINT("exit", ("commit_count: %s", llstr(commit_count, buff)));
DBUG_RETURN(commit_count > 0);
}
/**
Handling the shared NDB_SHARE structure that is needed to
provide table locking.
It's also used for sharing data with other NDB handlers
in the same MySQL Server. There is currently not much
data we want to or can share.
*/
static uchar *ndbcluster_get_key(NDB_SHARE *share, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= share->key_length;
return (uchar*) share->key;
}
#ifndef DBUG_OFF
static void print_share(const char* where, NDB_SHARE* share)
{
fprintf(DBUG_FILE,
"%s %s.%s: use_count: %u, commit_count: %lu\n",
where, share->db, share->table_name, share->use_count,
(ulong) share->commit_count);
fprintf(DBUG_FILE,
" - key: %s, key_length: %d\n",
share->key, share->key_length);
#ifdef HAVE_NDB_BINLOG
if (share->table)
fprintf(DBUG_FILE,
" - share->table: %p %s.%s\n",
share->table, share->table->s->db.str,
share->table->s->table_name.str);
#endif
}
static void print_ndbcluster_open_tables()
{
DBUG_LOCK_FILE;
fprintf(DBUG_FILE, ">ndbcluster_open_tables\n");
for (uint i= 0; i < ndbcluster_open_tables.records; i++)
print_share("",
(NDB_SHARE*)my_hash_element(&ndbcluster_open_tables, i));
fprintf(DBUG_FILE, "<ndbcluster_open_tables\n");
DBUG_UNLOCK_FILE;
}
#endif
#define dbug_print_open_tables() \
DBUG_EXECUTE("info", \
print_ndbcluster_open_tables(););
#define dbug_print_share(t, s) \
DBUG_LOCK_FILE; \
DBUG_EXECUTE("info", \
print_share((t), (s));); \
DBUG_UNLOCK_FILE;
#ifdef HAVE_NDB_BINLOG
/*
For some reason a share is still around, try to salvage the situation
by closing all cached tables. If the share still exists, there is an
error somewhere but only report this to the error log. Keep this
"trailing share" but rename it since there are still references to it
to avoid segmentation faults. There is a risk that the memory for
this trailing share leaks.
Must be called with previous pthread_mutex_lock(&ndbcluster_mutex)
*/
int handle_trailing_share(NDB_SHARE *share)
{
THD *thd= current_thd;
static ulong trailing_share_id= 0;
DBUG_ENTER("handle_trailing_share");
/* ndb_share reference temporary, free below */
++share->use_count;
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
pthread_mutex_unlock(&ndbcluster_mutex);
TABLE_LIST table_list;
bzero((char*) &table_list,sizeof(table_list));
table_list.db= share->db;
table_list.alias= table_list.table_name= share->table_name;
safe_mutex_assert_owner(&LOCK_open);
close_cached_tables(thd, &table_list, TRUE, FALSE);
pthread_mutex_lock(&ndbcluster_mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
if (!--share->use_count)
{
if (ndb_extra_logging)
sql_print_information("NDB_SHARE: trailing share "
"%s(connect_count: %u) "
"released by close_cached_tables at "
"connect_count: %u",
share->key,
share->connect_count,
g_ndb_cluster_connection->get_connect_count());
ndbcluster_real_free_share(&share);
DBUG_RETURN(0);
}
/*
share still exists, if share has not been dropped by server
release that share
*/
if (share->state != NSS_DROPPED)
{
share->state= NSS_DROPPED;
/* ndb_share reference create free */
DBUG_PRINT("NDB_SHARE", ("%s create free use_count: %u",
share->key, share->use_count));
--share->use_count;
if (share->use_count == 0)
{
if (ndb_extra_logging)
sql_print_information("NDB_SHARE: trailing share "
"%s(connect_count: %u) "
"released after NSS_DROPPED check "
"at connect_count: %u",
share->key,
share->connect_count,
g_ndb_cluster_connection->get_connect_count());
ndbcluster_real_free_share(&share);
DBUG_RETURN(0);
}
}
sql_print_warning("NDB_SHARE: %s already exists use_count=%d."
" Moving away for safety, but possible memleak.",
share->key, share->use_count);
dbug_print_open_tables();
/*
Ndb share has not been released as it should
*/
#ifdef NOT_YET
DBUG_ASSERT(FALSE);
#endif
/*
This is probably an error. We can however save the situation
at the cost of a possible mem leak, by "renaming" the share
- First remove from hash
*/
my_hash_delete(&ndbcluster_open_tables, (uchar*) share);
/*
now give it a new name, just a running number
if space is not enough allocate some more
*/
{
const uint min_key_length= 10;
if (share->key_length < min_key_length)
{
share->key= (char*) alloc_root(&share->mem_root, min_key_length + 1);
share->key_length= min_key_length;
}
share->key_length=
my_snprintf(share->key, min_key_length + 1, "#leak%lu",
trailing_share_id++);
}
/* Keep it for possible the future trailing free */
my_hash_insert(&ndbcluster_open_tables, (uchar*) share);
DBUG_RETURN(0);
}
/*
Rename share is used during rename table.
*/
static int rename_share(NDB_SHARE *share, const char *new_key)
{
NDB_SHARE *tmp;
pthread_mutex_lock(&ndbcluster_mutex);
uint new_length= (uint) strlen(new_key);
DBUG_PRINT("rename_share", ("old_key: %s old__length: %d",
share->key, share->key_length));
if ((tmp= (NDB_SHARE*) my_hash_search(&ndbcluster_open_tables,
(uchar*) new_key, new_length)))
handle_trailing_share(tmp);
/* remove the share from hash */
my_hash_delete(&ndbcluster_open_tables, (uchar*) share);
dbug_print_open_tables();
/* save old stuff if insert should fail */
uint old_length= share->key_length;
char *old_key= share->key;
/*
now allocate and set the new key, db etc
enough space for key, db, and table_name
*/
share->key= (char*) alloc_root(&share->mem_root, 2 * (new_length + 1));
strmov(share->key, new_key);
share->key_length= new_length;
if (my_hash_insert(&ndbcluster_open_tables, (uchar*) share))
{
// ToDo free the allocated stuff above?
DBUG_PRINT("error", ("rename_share: my_hash_insert %s failed",
share->key));
share->key= old_key;
share->key_length= old_length;
if (my_hash_insert(&ndbcluster_open_tables, (uchar*) share))
{
sql_print_error("rename_share: failed to recover %s", share->key);
DBUG_PRINT("error", ("rename_share: my_hash_insert %s failed",
share->key));
}
dbug_print_open_tables();
pthread_mutex_unlock(&ndbcluster_mutex);
return -1;
}
dbug_print_open_tables();
share->db= share->key + new_length + 1;
ha_ndbcluster::set_dbname(new_key, share->db);
share->table_name= share->db + strlen(share->db) + 1;
ha_ndbcluster::set_tabname(new_key, share->table_name);
dbug_print_share("rename_share:", share);
if (share->table)
{
if (share->op == 0)
{
share->table->s->db.str= share->db;
share->table->s->db.length= strlen(share->db);
share->table->s->table_name.str= share->table_name;
share->table->s->table_name.length= strlen(share->table_name);
}
}
/* else rename will be handled when the ALTER event comes */
share->old_names= old_key;
// ToDo free old_names after ALTER EVENT
pthread_mutex_unlock(&ndbcluster_mutex);
return 0;
}
#endif
/*
Increase refcount on existing share.
Always returns share and cannot fail.
*/
NDB_SHARE *ndbcluster_get_share(NDB_SHARE *share)
{
pthread_mutex_lock(&ndbcluster_mutex);
share->use_count++;
dbug_print_open_tables();
dbug_print_share("ndbcluster_get_share:", share);
pthread_mutex_unlock(&ndbcluster_mutex);
return share;
}
/*
Get a share object for key
Returns share for key, and increases the refcount on the share.
create_if_not_exists == TRUE:
creates share if it does not alreade exist
returns 0 only due to out of memory, and then sets my_error
create_if_not_exists == FALSE:
returns 0 if share does not exist
have_lock == TRUE, pthread_mutex_lock(&ndbcluster_mutex) already taken
*/
NDB_SHARE *ndbcluster_get_share(const char *key, TABLE *table,
bool create_if_not_exists,
bool have_lock)
{
NDB_SHARE *share;
uint length= (uint) strlen(key);
DBUG_ENTER("ndbcluster_get_share");
DBUG_PRINT("enter", ("key: '%s'", key));
if (!have_lock)
pthread_mutex_lock(&ndbcluster_mutex);
if (!(share= (NDB_SHARE*) my_hash_search(&ndbcluster_open_tables,
(uchar*) key,
length)))
{
if (!create_if_not_exists)
{
DBUG_PRINT("error", ("get_share: %s does not exist", key));
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(0);
}
if ((share= (NDB_SHARE*) my_malloc(sizeof(*share),
MYF(MY_WME | MY_ZEROFILL))))
{
MEM_ROOT **root_ptr=
my_pthread_getspecific_ptr(MEM_ROOT**, THR_MALLOC);
MEM_ROOT *old_root= *root_ptr;
init_sql_alloc(&share->mem_root, 1024, 0);
*root_ptr= &share->mem_root; // remember to reset before return
share->state= NSS_INITIAL;
/* enough space for key, db, and table_name */
share->key= (char*) alloc_root(*root_ptr, 2 * (length + 1));
share->key_length= length;
strmov(share->key, key);
if (my_hash_insert(&ndbcluster_open_tables, (uchar*) share))
{
free_root(&share->mem_root, MYF(0));
my_free((uchar*) share, 0);
*root_ptr= old_root;
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(0);
}
thr_lock_init(&share->lock);
pthread_mutex_init(&share->mutex, MY_MUTEX_INIT_FAST);
share->commit_count= 0;
share->commit_count_lock= 0;
share->db= share->key + length + 1;
ha_ndbcluster::set_dbname(key, share->db);
share->table_name= share->db + strlen(share->db) + 1;
ha_ndbcluster::set_tabname(key, share->table_name);
#ifdef HAVE_NDB_BINLOG
if (ndbcluster_binlog_init_share(share, table))
{
DBUG_PRINT("error", ("get_share: %s could not init share", key));
ndbcluster_real_free_share(&share);
*root_ptr= old_root;
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(0);
}
#endif
*root_ptr= old_root;
}
else
{
DBUG_PRINT("error", ("get_share: failed to alloc share"));
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(*share));
DBUG_RETURN(0);
}
}
share->use_count++;
dbug_print_open_tables();
dbug_print_share("ndbcluster_get_share:", share);
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(share);
}
void ndbcluster_real_free_share(NDB_SHARE **share)
{
DBUG_ENTER("ndbcluster_real_free_share");
dbug_print_share("ndbcluster_real_free_share:", *share);
my_hash_delete(&ndbcluster_open_tables, (uchar*) *share);
thr_lock_delete(&(*share)->lock);
pthread_mutex_destroy(&(*share)->mutex);
#ifdef HAVE_NDB_BINLOG
if ((*share)->table)
{
// (*share)->table->mem_root is freed by closefrm
closefrm((*share)->table, 0);
// (*share)->table_share->mem_root is freed by free_table_share
free_table_share((*share)->table_share);
#ifndef DBUG_OFF
bzero((uchar*)(*share)->table_share, sizeof(*(*share)->table_share));
bzero((uchar*)(*share)->table, sizeof(*(*share)->table));
(*share)->table_share= 0;
(*share)->table= 0;
#endif
}
#endif
free_root(&(*share)->mem_root, MYF(0));
my_free((uchar*) *share, MYF(0));
*share= 0;
dbug_print_open_tables();
DBUG_VOID_RETURN;
}
void ndbcluster_free_share(NDB_SHARE **share, bool have_lock)
{
if (!have_lock)
pthread_mutex_lock(&ndbcluster_mutex);
if ((*share)->util_lock == current_thd)
(*share)->util_lock= 0;
if (!--(*share)->use_count)
{
ndbcluster_real_free_share(share);
}
else
{
dbug_print_open_tables();
dbug_print_share("ndbcluster_free_share:", *share);
}
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
}
static
int
ndb_get_table_statistics(ha_ndbcluster* file, bool report_error, Ndb* ndb, const NDBTAB *ndbtab,
struct Ndb_statistics * ndbstat)
{
NdbTransaction* pTrans;
NdbError error;
int retries= 10;
int reterr= 0;
int retry_sleep= 30; /* 30 milliseconds, transaction */
#ifndef DBUG_OFF
char buff[22], buff2[22], buff3[22], buff4[22];
#endif
DBUG_ENTER("ndb_get_table_statistics");
DBUG_PRINT("enter", ("table: %s", ndbtab->getName()));
DBUG_ASSERT(ndbtab != 0);
do
{
Uint64 rows, commits, fixed_mem, var_mem;
Uint32 size;
Uint32 count= 0;
Uint64 sum_rows= 0;
Uint64 sum_commits= 0;
Uint64 sum_row_size= 0;
Uint64 sum_mem= 0;
NdbScanOperation*pOp;
int check;
if ((pTrans= ndb->startTransaction()) == NULL)
{
error= ndb->getNdbError();
goto retry;
}
if ((pOp= pTrans->getNdbScanOperation(ndbtab)) == NULL)
{
error= pTrans->getNdbError();
goto retry;
}
if (pOp->readTuples(NdbOperation::LM_CommittedRead))
{
error= pOp->getNdbError();
goto retry;
}
if (pOp->interpret_exit_last_row() == -1)
{
error= pOp->getNdbError();
goto retry;
}
pOp->getValue(NdbDictionary::Column::ROW_COUNT, (char*)&rows);
pOp->getValue(NdbDictionary::Column::COMMIT_COUNT, (char*)&commits);
pOp->getValue(NdbDictionary::Column::ROW_SIZE, (char*)&size);
pOp->getValue(NdbDictionary::Column::FRAGMENT_FIXED_MEMORY,
(char*)&fixed_mem);
pOp->getValue(NdbDictionary::Column::FRAGMENT_VARSIZED_MEMORY,
(char*)&var_mem);
if (pTrans->execute(NdbTransaction::NoCommit,
NdbOperation::AbortOnError,
TRUE) == -1)
{
error= pTrans->getNdbError();
goto retry;
}
while ((check= pOp->nextResult(TRUE, TRUE)) == 0)
{
sum_rows+= rows;
sum_commits+= commits;
if (sum_row_size < size)
sum_row_size= size;
sum_mem+= fixed_mem + var_mem;
count++;
}
if (check == -1)
{
error= pOp->getNdbError();
goto retry;
}
pOp->close(TRUE);
ndb->closeTransaction(pTrans);
ndbstat->row_count= sum_rows;
ndbstat->commit_count= sum_commits;
ndbstat->row_size= sum_row_size;
ndbstat->fragment_memory= sum_mem;
DBUG_PRINT("exit", ("records: %s commits: %s "
"row_size: %s mem: %s count: %u",
llstr(sum_rows, buff),
llstr(sum_commits, buff2),
llstr(sum_row_size, buff3),
llstr(sum_mem, buff4),
count));
DBUG_RETURN(0);
retry:
if(report_error)
{
if (file && pTrans)
{
reterr= file->ndb_err(pTrans);
}
else
{
const NdbError& tmp= error;
ERR_PRINT(tmp);
reterr= ndb_to_mysql_error(&tmp);
}
}
else
reterr= error.code;
if (pTrans)
{
ndb->closeTransaction(pTrans);
pTrans= NULL;
}
if (error.status == NdbError::TemporaryError && retries--)
{
my_sleep(retry_sleep);
continue;
}
set_ndb_err(current_thd, error);
break;
} while(1);
DBUG_PRINT("exit", ("failed, reterr: %u, NdbError %u(%s)", reterr,
error.code, error.message));
DBUG_RETURN(reterr);
}
/**
Create a .ndb file to serve as a placeholder indicating
that the table with this name is a ndb table.
*/
int ha_ndbcluster::write_ndb_file(const char *name)
{
File file;
bool error=1;
char path[FN_REFLEN];
DBUG_ENTER("write_ndb_file");
DBUG_PRINT("enter", ("name: %s", name));
(void)strxnmov(path, FN_REFLEN-1,
mysql_data_home,"/",name,ha_ndb_ext,NullS);
if ((file=my_create(path, CREATE_MODE,O_RDWR | O_TRUNC,MYF(MY_WME))) >= 0)
{
// It's an empty file
error=0;
my_close(file,MYF(0));
}
DBUG_RETURN(error);
}
void
ha_ndbcluster::release_completed_operations(NdbTransaction *trans,
bool force_release)
{
if (trans->hasBlobOperation())
{
/* We are reading/writing BLOB fields,
releasing operation records is unsafe
*/
return;
}
if (!force_release)
{
if (get_thd_ndb(current_thd)->query_state & NDB_QUERY_MULTI_READ_RANGE)
{
/* We are batching reads and have not consumed all fetched
rows yet, releasing operation records is unsafe
*/
return;
}
}
trans->releaseCompletedOperations();
}
bool
ha_ndbcluster::null_value_index_search(KEY_MULTI_RANGE *ranges,
KEY_MULTI_RANGE *end_range,
HANDLER_BUFFER *buffer)
{
DBUG_ENTER("null_value_index_search");
KEY* key_info= table->key_info + active_index;
KEY_MULTI_RANGE *range= ranges;
ulong reclength= table->s->reclength;
uchar *curr= (uchar*)buffer->buffer;
uchar *end_of_buffer= (uchar*)buffer->buffer_end;
for (; range<end_range && curr+reclength <= end_of_buffer;
range++)
{
const uchar *key= range->start_key.key;
uint key_len= range->start_key.length;
if (check_null_in_key(key_info, key, key_len))
DBUG_RETURN(TRUE);
curr += reclength;
}
DBUG_RETURN(FALSE);
}
int
ha_ndbcluster::read_multi_range_first(KEY_MULTI_RANGE **found_range_p,
KEY_MULTI_RANGE *ranges,
uint range_count,
bool sorted,
HANDLER_BUFFER *buffer)
{
m_write_op= FALSE;
int res;
KEY* key_info= table->key_info + active_index;
NDB_INDEX_TYPE cur_index_type= get_index_type(active_index);
ulong reclength= table_share->reclength;
NdbOperation* op;
Thd_ndb *thd_ndb= get_thd_ndb(current_thd);
DBUG_ENTER("ha_ndbcluster::read_multi_range_first");
/**
* blobs and unique hash index with NULL can't be batched currently
*/
if (uses_blob_value() ||
(cur_index_type == UNIQUE_INDEX &&
has_null_in_unique_index(active_index) &&
null_value_index_search(ranges, ranges+range_count, buffer))
|| m_delete_cannot_batch || m_update_cannot_batch)
{
m_disable_multi_read= TRUE;
DBUG_RETURN(handler::read_multi_range_first(found_range_p,
ranges,
range_count,
sorted,
buffer));
}
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
thd_ndb->query_state|= NDB_QUERY_MULTI_READ_RANGE;
m_disable_multi_read= FALSE;
/*
* Copy arguments into member variables
*/
m_multi_ranges= ranges;
multi_range_curr= ranges;
multi_range_end= ranges+range_count;
multi_range_sorted= sorted;
multi_range_buffer= buffer;
/*
* read multi range will read ranges as follows (if not ordered)
*
* input read order
* ====== ==========
* pk-op 1 pk-op 1
* pk-op 2 pk-op 2
* range 3 range (3,5) NOTE result rows will be intermixed
* pk-op 4 pk-op 4
* range 5
* pk-op 6 pk-ok 6
*/
/*
* Variables for loop
*/
uchar *curr= (uchar*)buffer->buffer;
uchar *end_of_buffer= (uchar*)buffer->buffer_end;
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
bool need_pk = (lm == NdbOperation::LM_Read);
const NDBTAB *tab= m_table;
const NDBINDEX *unique_idx= m_index[active_index].unique_index;
const NDBINDEX *idx= m_index[active_index].index;
const NdbOperation* lastOp= m_active_trans->getLastDefinedOperation();
NdbIndexScanOperation* scanOp= 0;
for (; multi_range_curr<multi_range_end && curr+reclength <= end_of_buffer;
multi_range_curr++)
{
part_id_range part_spec;
if (m_use_partition_function)
{
get_partition_set(table, curr, active_index,
&multi_range_curr->start_key,
&part_spec);
DBUG_PRINT("info", ("part_spec.start_part: %u part_spec.end_part: %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can skip this scan
*/
if (part_spec.start_part > part_spec.end_part)
{
/*
We can skip this partition since the key won't fit into any
partition
*/
curr += reclength;
multi_range_curr->range_flag |= SKIP_RANGE;
continue;
}
}
switch (cur_index_type) {
case PRIMARY_KEY_ORDERED_INDEX:
if (!(multi_range_curr->start_key.length == key_info->key_length &&
multi_range_curr->start_key.flag == HA_READ_KEY_EXACT))
goto range;
// else fall through
case PRIMARY_KEY_INDEX:
{
multi_range_curr->range_flag |= UNIQUE_RANGE;
if ((op= m_active_trans->getNdbOperation(tab)) &&
!op->readTuple(lm) &&
!set_primary_key(op, multi_range_curr->start_key.key) &&
!define_read_attrs(curr, op) &&
(!m_use_partition_function ||
(op->setPartitionId(part_spec.start_part), TRUE)))
curr += reclength;
else
{
ERR_RETURN_PREPARE(res,
op ? op->getNdbError() :
m_active_trans->getNdbError())
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
break;
}
break;
case UNIQUE_ORDERED_INDEX:
if (!(multi_range_curr->start_key.length == key_info->key_length &&
multi_range_curr->start_key.flag == HA_READ_KEY_EXACT &&
!check_null_in_key(key_info, multi_range_curr->start_key.key,
multi_range_curr->start_key.length)))
goto range;
// else fall through
case UNIQUE_INDEX:
{
multi_range_curr->range_flag |= UNIQUE_RANGE;
if ((op= m_active_trans->getNdbIndexOperation(unique_idx, tab)) &&
!op->readTuple(lm) &&
!set_index_key(op, key_info, multi_range_curr->start_key.key) &&
!define_read_attrs(curr, op))
curr += reclength;
else
{
ERR_RETURN_PREPARE(res,
op ? op->getNdbError() :
m_active_trans->getNdbError());
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
break;
}
case ORDERED_INDEX: {
range:
multi_range_curr->range_flag &= ~(uint)UNIQUE_RANGE;
if (scanOp == 0)
{
if (m_multi_cursor)
{
scanOp= m_multi_cursor;
DBUG_ASSERT(scanOp->getSorted() == sorted);
DBUG_ASSERT(scanOp->getLockMode() ==
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type));
if (scanOp->reset_bounds(m_force_send))
{
res= ndb_err(m_active_trans);
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
end_of_buffer -= reclength;
}
else if ((scanOp= m_active_trans->getNdbIndexScanOperation(idx, tab))
&&!scanOp->readTuples(lm, 0, parallelism, sorted,
FALSE, TRUE, need_pk, TRUE)
&&!(m_cond && m_cond->generate_scan_filter(scanOp))
&&!define_read_attrs(end_of_buffer-reclength, scanOp))
{
m_multi_cursor= scanOp;
m_multi_range_cursor_result_ptr= end_of_buffer-reclength;
}
else
{
ERR_RETURN_PREPARE(res,
scanOp ? scanOp->getNdbError() :
m_active_trans->getNdbError());
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
}
const key_range *keys[2]= { &multi_range_curr->start_key,
&multi_range_curr->end_key };
if ((res= set_bounds(scanOp, active_index, FALSE, keys,
multi_range_curr-ranges)))
{
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
break;
}
case UNDEFINED_INDEX:
DBUG_ASSERT(FALSE);
MYSQL_INDEX_READ_ROW_DONE(1);
DBUG_RETURN(1);
break;
}
}
if (multi_range_curr != multi_range_end)
{
/*
* Mark that we're using entire buffer (even if might not) as
* we haven't read all ranges for some reason
* This as we don't want mysqld to reuse the buffer when we read
* the remaining ranges
*/
buffer->end_of_used_area= (uchar*)buffer->buffer_end;
}
else
{
buffer->end_of_used_area= curr;
}
/*
* Set first operation in multi range
*/
m_current_multi_operation=
lastOp ? lastOp->next() : m_active_trans->getFirstDefinedOperation();
if (!(res= execute_no_commit_ie(this, m_active_trans,true)))
{
m_multi_range_defined= multi_range_curr;
multi_range_curr= ranges;
m_multi_range_result_ptr= (uchar*)buffer->buffer;
res= loc_read_multi_range_next(found_range_p);
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
ERR_RETURN_PREPARE(res, m_active_trans->getNdbError());
MYSQL_INDEX_READ_ROW_DONE(res);
DBUG_RETURN(res);
}
#if 0
#define DBUG_MULTI_RANGE(x) DBUG_PRINT("info", ("read_multi_range_next: case %d\n", x));
#else
#define DBUG_MULTI_RANGE(x)
#endif
int
ha_ndbcluster::read_multi_range_next(KEY_MULTI_RANGE ** multi_range_found_p)
{
int rc;
DBUG_ENTER("ha_ndbcluster::read_multi_range_next");
if (m_disable_multi_read)
{
DBUG_MULTI_RANGE(11);
DBUG_RETURN(handler::read_multi_range_next(multi_range_found_p));
}
MYSQL_INDEX_READ_ROW_START(table_share->db.str, table_share->table_name.str);
rc= loc_read_multi_range_next(multi_range_found_p);
MYSQL_INDEX_READ_ROW_DONE(rc);
DBUG_RETURN(rc);
}
int ha_ndbcluster::loc_read_multi_range_next(
KEY_MULTI_RANGE **multi_range_found_p)
{
int res;
int range_no;
ulong reclength= table_share->reclength;
const NdbOperation* op= m_current_multi_operation;
DBUG_ENTER("ha_ndbcluster::loc_read_multi_range_next");
for (;multi_range_curr < m_multi_range_defined; multi_range_curr++)
{
DBUG_MULTI_RANGE(12);
if (multi_range_curr->range_flag & SKIP_RANGE)
continue;
if (multi_range_curr->range_flag & UNIQUE_RANGE)
{
if (op->getNdbError().code == 0)
{
DBUG_MULTI_RANGE(13);
goto found_next;
}
op= m_active_trans->getNextCompletedOperation(op);
m_multi_range_result_ptr += reclength;
continue;
}
else if (m_multi_cursor && !multi_range_sorted)
{
DBUG_MULTI_RANGE(1);
if ((res= fetch_next(m_multi_cursor)) == 0)
{
DBUG_MULTI_RANGE(2);
range_no= m_multi_cursor->get_range_no();
goto found;
}
else
{
DBUG_MULTI_RANGE(14);
goto close_scan;
}
}
else if (m_multi_cursor && multi_range_sorted)
{
if (m_active_cursor && (res= fetch_next(m_multi_cursor)))
{
DBUG_MULTI_RANGE(3);
goto close_scan;
}
range_no= m_multi_cursor->get_range_no();
uint current_range_no= multi_range_curr - m_multi_ranges;
if ((uint) range_no == current_range_no)
{
DBUG_MULTI_RANGE(4);
// return current row
goto found;
}
else if (range_no > (int)current_range_no)
{
DBUG_MULTI_RANGE(5);
// wait with current row
m_active_cursor= 0;
continue;
}
else
{
DBUG_MULTI_RANGE(6);
// First fetch from cursor
DBUG_ASSERT(range_no == -1);
if ((res= m_multi_cursor->nextResult(TRUE)))
{
DBUG_MULTI_RANGE(15);
goto close_scan;
}
multi_range_curr--; // Will be increased in for-loop
continue;
}
}
else /* m_multi_cursor == 0 */
{
DBUG_MULTI_RANGE(7);
/*
* Corresponds to range 5 in example in read_multi_range_first
*/
(void)1;
continue;
}
DBUG_ASSERT(FALSE); // Should only get here via goto's
close_scan:
if (res == 1)
{
m_multi_cursor->close(FALSE, TRUE);
m_active_cursor= m_multi_cursor= 0;
DBUG_MULTI_RANGE(8);
continue;
}
else
{
DBUG_MULTI_RANGE(9);
DBUG_RETURN(ndb_err(m_active_trans));
}
}
if (multi_range_curr == multi_range_end)
{
DBUG_MULTI_RANGE(16);
Thd_ndb *thd_ndb= get_thd_ndb(current_thd);
thd_ndb->query_state&= NDB_QUERY_NORMAL;
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
/*
* Read remaining ranges
*/
MYSQL_INDEX_READ_ROW_DONE(1);
DBUG_RETURN(read_multi_range_first(multi_range_found_p,
multi_range_curr,
multi_range_end - multi_range_curr,
multi_range_sorted,
multi_range_buffer));
found:
/*
* Found a record belonging to a scan
*/
m_active_cursor= m_multi_cursor;
* multi_range_found_p= m_multi_ranges + range_no;
memcpy(table->record[0], m_multi_range_cursor_result_ptr, reclength);
setup_recattr(m_active_cursor->getFirstRecAttr());
unpack_record(table->record[0]);
table->status= 0;
DBUG_RETURN(0);
found_next:
/*
* Found a record belonging to a pk/index op,
* copy result and move to next to prepare for next call
*/
* multi_range_found_p= multi_range_curr;
memcpy(table->record[0], m_multi_range_result_ptr, reclength);
setup_recattr(op->getFirstRecAttr());
unpack_record(table->record[0]);
table->status= 0;
multi_range_curr++;
m_current_multi_operation= m_active_trans->getNextCompletedOperation(op);
m_multi_range_result_ptr += reclength;
DBUG_RETURN(0);
}
int
ha_ndbcluster::setup_recattr(const NdbRecAttr* curr)
{
DBUG_ENTER("setup_recattr");
Field **field, **end;
NdbValue *value= m_value;
end= table->field + table_share->fields;
for (field= table->field; field < end; field++, value++)
{
if ((* value).ptr)
{
DBUG_ASSERT(curr != 0);
NdbValue* val= m_value + curr->getColumn()->getColumnNo();
DBUG_ASSERT(val->ptr);
val->rec= curr;
curr= curr->next();
}
}
DBUG_RETURN(0);
}
/**
@param[in] comment table comment defined by user
@return
table comment + additional
*/
char*
ha_ndbcluster::update_table_comment(
/* out: table comment + additional */
const char* comment)/* in: table comment defined by user */
{
uint length= strlen(comment);
if (length > 64000 - 3)
{
return((char*)comment); /* string too long */
}
Ndb* ndb;
if (!(ndb= get_ndb()))
{
return((char*)comment);
}
if (ndb->setDatabaseName(m_dbname))
{
return((char*)comment);
}
const NDBTAB* tab= m_table;
DBUG_ASSERT(tab != NULL);
char *str;
const char *fmt="%s%snumber_of_replicas: %d";
const unsigned fmt_len_plus_extra= length + strlen(fmt);
if ((str= (char*) my_malloc(fmt_len_plus_extra, MYF(0))) == NULL)
{
sql_print_error("ha_ndbcluster::update_table_comment: "
"my_malloc(%u) failed", (unsigned int)fmt_len_plus_extra);
return (char*)comment;
}
my_snprintf(str,fmt_len_plus_extra,fmt,comment,
length > 0 ? " ":"",
tab->getReplicaCount());
return str;
}
/**
Utility thread main loop.
*/
pthread_handler_t ndb_util_thread_func(void *arg __attribute__((unused)))
{
THD *thd; /* needs to be first for thread_stack */
struct timespec abstime;
Thd_ndb *thd_ndb;
uint share_list_size= 0;
NDB_SHARE **share_list= NULL;
my_thread_init();
DBUG_ENTER("ndb_util_thread");
DBUG_PRINT("enter", ("ndb_cache_check_time: %lu", ndb_cache_check_time));
pthread_mutex_lock(&LOCK_ndb_util_thread);
thd= new THD; /* note that contructor of THD uses DBUG_ */
if (thd == NULL)
{
my_errno= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(NULL);
}
THD_CHECK_SENTRY(thd);
pthread_detach_this_thread();
ndb_util_thread= pthread_self();
thd->thread_stack= (char*)&thd; /* remember where our stack is */
if (thd->store_globals())
goto ndb_util_thread_fail;
lex_start(thd);
thd->init_for_queries();
thd->version=refresh_version;
thd->main_security_ctx.host_or_ip= "";
thd->client_capabilities = 0;
my_net_init(&thd->net, 0);
thd->main_security_ctx.master_access= ~0;
thd->main_security_ctx.priv_user = 0;
CHARSET_INFO *charset_connection;
charset_connection= get_charset_by_csname("utf8",
MY_CS_PRIMARY, MYF(MY_WME));
thd->variables.character_set_client= charset_connection;
thd->variables.character_set_results= charset_connection;
thd->variables.collation_connection= charset_connection;
thd->update_charset();
/* Signal successful initialization */
ndb_util_thread_running= 1;
pthread_cond_signal(&COND_ndb_util_ready);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
/*
wait for mysql server to start
*/
pthread_mutex_lock(&LOCK_server_started);
while (!mysqld_server_started)
{
set_timespec(abstime, 1);
pthread_cond_timedwait(&COND_server_started, &LOCK_server_started,
&abstime);
if (ndbcluster_terminating)
{
pthread_mutex_unlock(&LOCK_server_started);
pthread_mutex_lock(&LOCK_ndb_util_thread);
goto ndb_util_thread_end;
}
}
pthread_mutex_unlock(&LOCK_server_started);
/*
Wait for cluster to start
*/
pthread_mutex_lock(&LOCK_ndb_util_thread);
while (!ndb_cluster_node_id && (ndbcluster_hton->slot != ~(uint)0))
{
/* ndb not connected yet */
pthread_cond_wait(&COND_ndb_util_thread, &LOCK_ndb_util_thread);
if (ndbcluster_terminating)
goto ndb_util_thread_end;
}
pthread_mutex_unlock(&LOCK_ndb_util_thread);
/* Get thd_ndb for this thread */
if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb()))
{
sql_print_error("Could not allocate Thd_ndb object");
pthread_mutex_lock(&LOCK_ndb_util_thread);
goto ndb_util_thread_end;
}
set_thd_ndb(thd, thd_ndb);
thd_ndb->options|= TNO_NO_LOG_SCHEMA_OP;
#ifdef HAVE_NDB_BINLOG
if (ndb_extra_logging && ndb_binlog_running)
sql_print_information("NDB Binlog: Ndb tables initially read only.");
/* create tables needed by the replication */
ndbcluster_setup_binlog_table_shares(thd);
#else
/*
Get all table definitions from the storage node
*/
ndbcluster_find_all_files(thd);
#endif
set_timespec(abstime, 0);
for (;;)
{
pthread_mutex_lock(&LOCK_ndb_util_thread);
if (!ndbcluster_terminating)
pthread_cond_timedwait(&COND_ndb_util_thread,
&LOCK_ndb_util_thread,
&abstime);
if (ndbcluster_terminating) /* Shutting down server */
goto ndb_util_thread_end;
pthread_mutex_unlock(&LOCK_ndb_util_thread);
#ifdef NDB_EXTRA_DEBUG_UTIL_THREAD
DBUG_PRINT("ndb_util_thread", ("Started, ndb_cache_check_time: %lu",
ndb_cache_check_time));
#endif
#ifdef HAVE_NDB_BINLOG
/*
Check that the ndb_apply_status_share and ndb_schema_share
have been created.
If not try to create it
*/
if (!ndb_binlog_tables_inited)
ndbcluster_setup_binlog_table_shares(thd);
#endif
if (ndb_cache_check_time == 0)
{
/* Wake up in 1 second to check if value has changed */
set_timespec(abstime, 1);
continue;
}
/* Lock mutex and fill list with pointers to all open tables */
NDB_SHARE *share;
pthread_mutex_lock(&ndbcluster_mutex);
uint i, open_count, record_count= ndbcluster_open_tables.records;
if (share_list_size < record_count)
{
NDB_SHARE ** new_share_list= new NDB_SHARE * [record_count];
if (!new_share_list)
{
sql_print_warning("ndb util thread: malloc failure, "
"query cache not maintained properly");
pthread_mutex_unlock(&ndbcluster_mutex);
goto next; // At least do not crash
}
delete [] share_list;
share_list_size= record_count;
share_list= new_share_list;
}
for (i= 0, open_count= 0; i < record_count; i++)
{
share= (NDB_SHARE *)my_hash_element(&ndbcluster_open_tables, i);
#ifdef HAVE_NDB_BINLOG
if ((share->use_count - (int) (share->op != 0) - (int) (share->op != 0))
<= 0)
continue; // injector thread is the only user, skip statistics
share->util_lock= current_thd; // Mark that util thread has lock
#endif /* HAVE_NDB_BINLOG */
/* ndb_share reference temporary, free below */
share->use_count++; /* Make sure the table can't be closed */
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
DBUG_PRINT("ndb_util_thread",
("Found open table[%d]: %s, use_count: %d",
i, share->table_name, share->use_count));
/* Store pointer to table */
share_list[open_count++]= share;
}
pthread_mutex_unlock(&ndbcluster_mutex);
/* Iterate through the open files list */
for (i= 0; i < open_count; i++)
{
share= share_list[i];
#ifdef HAVE_NDB_BINLOG
if ((share->use_count - (int) (share->op != 0) - (int) (share->op != 0))
<= 1)
{
/*
Util thread and injector thread is the only user, skip statistics
*/
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
continue;
}
#endif /* HAVE_NDB_BINLOG */
DBUG_PRINT("ndb_util_thread",
("Fetching commit count for: %s", share->key));
struct Ndb_statistics stat;
uint lock;
pthread_mutex_lock(&share->mutex);
lock= share->commit_count_lock;
pthread_mutex_unlock(&share->mutex);
{
/* Contact NDB to get commit count for table */
Ndb* ndb= thd_ndb->ndb;
if (ndb->setDatabaseName(share->db))
{
goto loop_next;
}
Ndb_table_guard ndbtab_g(ndb->getDictionary(), share->table_name);
if (ndbtab_g.get_table() &&
ndb_get_table_statistics(NULL, FALSE, ndb,
ndbtab_g.get_table(), &stat) == 0)
{
#ifndef DBUG_OFF
char buff[22], buff2[22];
#endif
DBUG_PRINT("info",
("Table: %s commit_count: %s rows: %s",
share->key,
llstr(stat.commit_count, buff),
llstr(stat.row_count, buff2)));
}
else
{
DBUG_PRINT("ndb_util_thread",
("Error: Could not get commit count for table %s",
share->key));
stat.commit_count= 0;
}
}
loop_next:
pthread_mutex_lock(&share->mutex);
if (share->commit_count_lock == lock)
share->commit_count= stat.commit_count;
pthread_mutex_unlock(&share->mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
next:
/* Calculate new time to wake up */
int secs= 0;
int msecs= ndb_cache_check_time;
struct timeval tick_time;
gettimeofday(&tick_time, 0);
abstime.tv_sec= tick_time.tv_sec;
abstime.tv_nsec= tick_time.tv_usec * 1000;
if (msecs >= 1000){
secs= msecs / 1000;
msecs= msecs % 1000;
}
abstime.tv_sec+= secs;
abstime.tv_nsec+= msecs * 1000000;
if (abstime.tv_nsec >= 1000000000) {
abstime.tv_sec+= 1;
abstime.tv_nsec-= 1000000000;
}
}
pthread_mutex_lock(&LOCK_ndb_util_thread);
ndb_util_thread_end:
net_end(&thd->net);
ndb_util_thread_fail:
if (share_list)
delete [] share_list;
thd->cleanup();
delete thd;
/* signal termination */
ndb_util_thread_running= 0;
pthread_cond_signal(&COND_ndb_util_ready);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
DBUG_PRINT("exit", ("ndb_util_thread"));
DBUG_LEAVE; // Must match DBUG_ENTER()
my_thread_end();
pthread_exit(0);
return NULL; // Avoid compiler warnings
}
/*
Condition pushdown
*/
/**
Push a condition to ndbcluster storage engine for evaluation
during table and index scans. The conditions will be stored on a stack
for possibly storing several conditions. The stack can be popped
by calling cond_pop, handler::extra(HA_EXTRA_RESET) (handler::reset())
will clear the stack.
The current implementation supports arbitrary AND/OR nested conditions
with comparisons between columns and constants (including constant
expressions and function calls) and the following comparison operators:
=, !=, >, >=, <, <=, "is null", and "is not null".
@retval
NULL The condition was supported and will be evaluated for each
row found during the scan
@retval
cond The condition was not supported and all rows will be returned from
the scan for evaluation (and thus not saved on stack)
*/
const
COND*
ha_ndbcluster::cond_push(const COND *cond)
{
DBUG_ENTER("cond_push");
if (!m_cond)
m_cond= new ha_ndbcluster_cond;
if (!m_cond)
{
my_errno= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(NULL);
}
DBUG_EXECUTE("where",print_where((COND *)cond, m_tabname, QT_ORDINARY););
DBUG_RETURN(m_cond->cond_push(cond, table, (NDBTAB *)m_table));
}
/**
Pop the top condition from the condition stack of the handler instance.
*/
void
ha_ndbcluster::cond_pop()
{
if (m_cond)
m_cond->cond_pop();
}
/*
get table space info for SHOW CREATE TABLE
*/
char* ha_ndbcluster::get_tablespace_name(THD *thd, char* name, uint name_len)
{
Ndb *ndb= check_ndb_in_thd(thd);
NDBDICT *ndbdict= ndb->getDictionary();
NdbError ndberr;
Uint32 id;
ndb->setDatabaseName(m_dbname);
const NDBTAB *ndbtab= m_table;
DBUG_ASSERT(ndbtab != NULL);
if (!ndbtab->getTablespace(&id))
{
return 0;
}
{
NdbDictionary::Tablespace ts= ndbdict->getTablespace(id);
ndberr= ndbdict->getNdbError();
if(ndberr.classification != NdbError::NoError)
goto err;
DBUG_PRINT("info", ("Found tablespace '%s'", ts.getName()));
if (name)
{
strxnmov(name, name_len, ts.getName(), NullS);
return name;
}
else
return (my_strdup(ts.getName(), MYF(0)));
}
err:
if (ndberr.status == NdbError::TemporaryError)
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_GET_TEMPORARY_ERRMSG, ER(ER_GET_TEMPORARY_ERRMSG),
ndberr.code, ndberr.message, "NDB");
else
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_GET_ERRMSG, ER(ER_GET_ERRMSG),
ndberr.code, ndberr.message, "NDB");
return 0;
}
/*
Implements the SHOW NDB STATUS command.
*/
bool
ndbcluster_show_status(handlerton *hton, THD* thd, stat_print_fn *stat_print,
enum ha_stat_type stat_type)
{
char buf[IO_SIZE];
uint buflen;
DBUG_ENTER("ndbcluster_show_status");
if (stat_type != HA_ENGINE_STATUS)
{
DBUG_RETURN(FALSE);
}
update_status_variables(g_ndb_cluster_connection);
buflen=
my_snprintf(buf, sizeof(buf),
"cluster_node_id=%ld, "
"connected_host=%s, "
"connected_port=%ld, "
"number_of_data_nodes=%ld, "
"number_of_ready_data_nodes=%ld, "
"connect_count=%ld",
ndb_cluster_node_id,
ndb_connected_host,
ndb_connected_port,
ndb_number_of_data_nodes,
ndb_number_of_ready_data_nodes,
ndb_connect_count);
if (stat_print(thd, ndbcluster_hton_name, ndbcluster_hton_name_length,
STRING_WITH_LEN("connection"), buf, buflen))
DBUG_RETURN(TRUE);
if (get_thd_ndb(thd) && get_thd_ndb(thd)->ndb)
{
Ndb* ndb= (get_thd_ndb(thd))->ndb;
Ndb::Free_list_usage tmp;
tmp.m_name= 0;
while (ndb->get_free_list_usage(&tmp))
{
buflen=
my_snprintf(buf, sizeof(buf),
"created=%u, free=%u, sizeof=%u",
tmp.m_created, tmp.m_free, tmp.m_sizeof);
if (stat_print(thd, ndbcluster_hton_name, ndbcluster_hton_name_length,
tmp.m_name, strlen(tmp.m_name), buf, buflen))
DBUG_RETURN(TRUE);
}
}
#ifdef HAVE_NDB_BINLOG
ndbcluster_show_status_binlog(thd, stat_print, stat_type);
#endif
DBUG_RETURN(FALSE);
}
/*
Create a table in NDB Cluster
*/
static uint get_no_fragments(ulonglong max_rows)
{
#if MYSQL_VERSION_ID >= 50000
uint acc_row_size= 25 + /*safety margin*/ 2;
#else
uint acc_row_size= pk_length*4;
/* add acc overhead */
if (pk_length <= 8) /* main page will set the limit */
acc_row_size+= 25 + /*safety margin*/ 2;
else /* overflow page will set the limit */
acc_row_size+= 4 + /*safety margin*/ 4;
#endif
ulonglong acc_fragment_size= 512*1024*1024;
#if MYSQL_VERSION_ID >= 50100
return (max_rows*acc_row_size)/acc_fragment_size+1;
#else
return ((max_rows*acc_row_size)/acc_fragment_size+1
+1/*correct rounding*/)/2;
#endif
}
/*
Routine to adjust default number of partitions to always be a multiple
of number of nodes and never more than 4 times the number of nodes.
*/
static bool adjusted_frag_count(uint no_fragments, uint no_nodes,
uint &reported_frags)
{
uint i= 0;
reported_frags= no_nodes;
while (reported_frags < no_fragments && ++i < 4 &&
(reported_frags + no_nodes) < MAX_PARTITIONS)
reported_frags+= no_nodes;
return (reported_frags < no_fragments);
}
int ha_ndbcluster::get_default_no_partitions(HA_CREATE_INFO *create_info)
{
ha_rows max_rows, min_rows;
if (create_info)
{
max_rows= create_info->max_rows;
min_rows= create_info->min_rows;
}
else
{
max_rows= table_share->max_rows;
min_rows= table_share->min_rows;
}
uint reported_frags;
uint no_fragments=
get_no_fragments(max_rows >= min_rows ? max_rows : min_rows);
uint no_nodes= g_ndb_cluster_connection->no_db_nodes();
if (adjusted_frag_count(no_fragments, no_nodes, reported_frags))
{
push_warning(current_thd,
MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR,
"Ndb might have problems storing the max amount of rows specified");
}
return (int)reported_frags;
}
/*
Set-up auto-partitioning for NDB Cluster
SYNOPSIS
set_auto_partitions()
part_info Partition info struct to set-up
RETURN VALUE
NONE
DESCRIPTION
Set-up auto partitioning scheme for tables that didn't define any
partitioning. We'll use PARTITION BY KEY() in this case which
translates into partition by primary key if a primary key exists
and partition by hidden key otherwise.
*/
void ha_ndbcluster::set_auto_partitions(partition_info *part_info)
{
DBUG_ENTER("ha_ndbcluster::set_auto_partitions");
part_info->list_of_part_fields= TRUE;
part_info->part_type= HASH_PARTITION;
switch (opt_ndb_distribution_id)
{
case ND_KEYHASH:
part_info->linear_hash_ind= FALSE;
break;
case ND_LINHASH:
part_info->linear_hash_ind= TRUE;
break;
}
DBUG_VOID_RETURN;
}
int ha_ndbcluster::set_range_data(void *tab_ref, partition_info *part_info)
{
NDBTAB *tab= (NDBTAB*)tab_ref;
int32 *range_data= (int32*)my_malloc(part_info->num_parts*sizeof(int32),
MYF(0));
uint i;
int error= 0;
bool unsigned_flag= part_info->part_expr->unsigned_flag;
DBUG_ENTER("set_range_data");
if (!range_data)
{
mem_alloc_error(part_info->num_parts*sizeof(int32));
DBUG_RETURN(1);
}
for (i= 0; i < part_info->num_parts; i++)
{
longlong range_val= part_info->range_int_array[i];
if (unsigned_flag)
range_val-= 0x8000000000000000ULL;
if (range_val < INT_MIN32 || range_val >= INT_MAX32)
{
if ((i != part_info->num_parts - 1) ||
(range_val != LONGLONG_MAX))
{
my_error(ER_LIMITED_PART_RANGE, MYF(0), "NDB");
error= 1;
goto error;
}
range_val= INT_MAX32;
}
range_data[i]= (int32)range_val;
}
tab->setRangeListData(range_data, sizeof(int32)*part_info->num_parts);
error:
my_free((char*)range_data, MYF(0));
DBUG_RETURN(error);
}
int ha_ndbcluster::set_list_data(void *tab_ref, partition_info *part_info)
{
NDBTAB *tab= (NDBTAB*)tab_ref;
int32 *list_data= (int32*)my_malloc(part_info->num_list_values * 2
* sizeof(int32), MYF(0));
uint32 *part_id, i;
int error= 0;
bool unsigned_flag= part_info->part_expr->unsigned_flag;
DBUG_ENTER("set_list_data");
if (!list_data)
{
mem_alloc_error(part_info->num_list_values*2*sizeof(int32));
DBUG_RETURN(1);
}
for (i= 0; i < part_info->num_list_values; i++)
{
LIST_PART_ENTRY *list_entry= &part_info->list_array[i];
longlong list_val= list_entry->list_value;
if (unsigned_flag)
list_val-= 0x8000000000000000ULL;
if (list_val < INT_MIN32 || list_val > INT_MAX32)
{
my_error(ER_LIMITED_PART_RANGE, MYF(0), "NDB");
error= 1;
goto error;
}
list_data[2*i]= (int32)list_val;
part_id= (uint32*)&list_data[2*i+1];
*part_id= list_entry->partition_id;
}
tab->setRangeListData(list_data, 2*sizeof(int32)*part_info->num_list_values);
error:
my_free((char*)list_data, MYF(0));
DBUG_RETURN(error);
}
/*
User defined partitioning set-up. We need to check how many fragments the
user wants defined and which node groups to put those into. Later we also
want to attach those partitions to a tablespace.
All the functionality of the partition function, partition limits and so
forth are entirely handled by the MySQL Server. There is one exception to
this rule for PARTITION BY KEY where NDB handles the hash function and
this type can thus be handled transparently also by NDB API program.
For RANGE, HASH and LIST and subpartitioning the NDB API programs must
implement the function to map to a partition.
*/
uint ha_ndbcluster::set_up_partition_info(partition_info *part_info,
TABLE *table,
void *tab_par)
{
uint16 frag_data[MAX_PARTITIONS];
char *ts_names[MAX_PARTITIONS];
ulong fd_index= 0, i, j;
NDBTAB *tab= (NDBTAB*)tab_par;
NDBTAB::FragmentType ftype= NDBTAB::UserDefined;
partition_element *part_elem;
bool first= TRUE;
uint tot_ts_name_len;
List_iterator<partition_element> part_it(part_info->partitions);
int error;
DBUG_ENTER("ha_ndbcluster::set_up_partition_info");
if (part_info->part_type == HASH_PARTITION &&
part_info->list_of_part_fields == TRUE)
{
Field **fields= part_info->part_field_array;
if (part_info->linear_hash_ind)
ftype= NDBTAB::DistrKeyLin;
else
ftype= NDBTAB::DistrKeyHash;
for (i= 0; i < part_info->part_field_list.elements; i++)
{
NDBCOL *col= tab->getColumn(fields[i]->field_index);
DBUG_PRINT("info",("setting dist key on %s", col->getName()));
col->setPartitionKey(TRUE);
}
}
else
{
if (!current_thd->variables.new_mode)
{
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"LIST, RANGE and HASH partition disabled by default,"
" use --new option to enable");
DBUG_RETURN(HA_ERR_UNSUPPORTED);
}
/*
Create a shadow field for those tables that have user defined
partitioning. This field stores the value of the partition
function such that NDB can handle reorganisations of the data
even when the MySQL Server isn't available to assist with
calculation of the partition function value.
*/
NDBCOL col;
DBUG_PRINT("info", ("Generating partition func value field"));
col.setName("$PART_FUNC_VALUE");
col.setType(NdbDictionary::Column::Int);
col.setLength(1);
col.setNullable(FALSE);
col.setPrimaryKey(FALSE);
col.setAutoIncrement(FALSE);
tab->addColumn(col);
if (part_info->part_type == RANGE_PARTITION)
{
if ((error= set_range_data((void*)tab, part_info)))
{
DBUG_RETURN(error);
}
}
else if (part_info->part_type == LIST_PARTITION)
{
if ((error= set_list_data((void*)tab, part_info)))
{
DBUG_RETURN(error);
}
}
}
tab->setFragmentType(ftype);
i= 0;
tot_ts_name_len= 0;
do
{
uint ng;
part_elem= part_it++;
if (!part_info->is_sub_partitioned())
{
ng= part_elem->nodegroup_id;
if (first && ng == UNDEF_NODEGROUP)
ng= 0;
ts_names[fd_index]= part_elem->tablespace_name;
frag_data[fd_index++]= ng;
}
else
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
j= 0;
do
{
part_elem= sub_it++;
ng= part_elem->nodegroup_id;
if (first && ng == UNDEF_NODEGROUP)
ng= 0;
ts_names[fd_index]= part_elem->tablespace_name;
frag_data[fd_index++]= ng;
} while (++j < part_info->num_subparts);
}
first= FALSE;
} while (++i < part_info->num_parts);
tab->setDefaultNoPartitionsFlag(part_info->use_default_num_partitions);
tab->setLinearFlag(part_info->linear_hash_ind);
{
ha_rows max_rows= table_share->max_rows;
ha_rows min_rows= table_share->min_rows;
if (max_rows < min_rows)
max_rows= min_rows;
if (max_rows != (ha_rows)0) /* default setting, don't set fragmentation */
{
tab->setMaxRows(max_rows);
tab->setMinRows(min_rows);
}
}
tab->setTablespaceNames(ts_names, fd_index*sizeof(char*));
tab->setFragmentCount(fd_index);
tab->setFragmentData(&frag_data, fd_index*2);
DBUG_RETURN(0);
}
bool ha_ndbcluster::check_if_incompatible_data(HA_CREATE_INFO *create_info,
uint table_changes)
{
DBUG_ENTER("ha_ndbcluster::check_if_incompatible_data");
uint i;
const NDBTAB *tab= (const NDBTAB *) m_table;
if (current_thd->variables.ndb_use_copying_alter_table)
{
DBUG_PRINT("info", ("On-line alter table disabled"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
int pk= 0;
int ai= 0;
if (create_info->tablespace)
create_info->storage_media = HA_SM_DISK;
else
create_info->storage_media = HA_SM_MEMORY;
for (i= 0; i < table->s->fields; i++)
{
Field *field= table->field[i];
const NDBCOL *col= tab->getColumn(i);
if (col->getStorageType() == NDB_STORAGETYPE_MEMORY && create_info->storage_media != HA_SM_MEMORY ||
col->getStorageType() == NDB_STORAGETYPE_DISK && create_info->storage_media != HA_SM_DISK)
{
DBUG_PRINT("info", ("Column storage media is changed"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
if (field->flags & FIELD_IS_RENAMED)
{
DBUG_PRINT("info", ("Field has been renamed, copy table"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
if ((field->flags & FIELD_IN_ADD_INDEX) &&
col->getStorageType() == NdbDictionary::Column::StorageTypeDisk)
{
DBUG_PRINT("info", ("add/drop index not supported for disk stored column"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
if (field->flags & PRI_KEY_FLAG)
pk=1;
if (field->flags & FIELD_IN_ADD_INDEX)
ai=1;
}
char tablespace_name[FN_LEN + 1];
if (get_tablespace_name(current_thd, tablespace_name, FN_LEN))
{
if (create_info->tablespace)
{
if (strcmp(create_info->tablespace, tablespace_name))
{
DBUG_PRINT("info", ("storage media is changed, old tablespace=%s, new tablespace=%s",
tablespace_name, create_info->tablespace));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
}
else
{
DBUG_PRINT("info", ("storage media is changed, old is DISK and tablespace=%s, new is MEM",
tablespace_name));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
}
else
{
if (create_info->storage_media != HA_SM_MEMORY)
{
DBUG_PRINT("info", ("storage media is changed, old is MEM, new is DISK and tablespace=%s",
create_info->tablespace));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
}
if (table_changes != IS_EQUAL_YES)
DBUG_RETURN(COMPATIBLE_DATA_NO);
/* Check that auto_increment value was not changed */
if ((create_info->used_fields & HA_CREATE_USED_AUTO) &&
create_info->auto_increment_value != 0)
{
DBUG_PRINT("info", ("auto_increment value changed"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
/* Check that row format didn't change */
if ((create_info->used_fields & HA_CREATE_USED_AUTO) &&
get_row_type() != create_info->row_type)
{
DBUG_PRINT("info", ("row format changed"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
DBUG_PRINT("info", ("new table seems compatible"));
DBUG_RETURN(COMPATIBLE_DATA_YES);
}
bool set_up_tablespace(st_alter_tablespace *alter_info,
NdbDictionary::Tablespace *ndb_ts)
{
ndb_ts->setName(alter_info->tablespace_name);
ndb_ts->setExtentSize(alter_info->extent_size);
ndb_ts->setDefaultLogfileGroup(alter_info->logfile_group_name);
return FALSE;
}
bool set_up_datafile(st_alter_tablespace *alter_info,
NdbDictionary::Datafile *ndb_df)
{
if (alter_info->max_size > 0)
{
my_error(ER_TABLESPACE_AUTO_EXTEND_ERROR, MYF(0));
return TRUE;
}
ndb_df->setPath(alter_info->data_file_name);
ndb_df->setSize(alter_info->initial_size);
ndb_df->setTablespace(alter_info->tablespace_name);
return FALSE;
}
bool set_up_logfile_group(st_alter_tablespace *alter_info,
NdbDictionary::LogfileGroup *ndb_lg)
{
ndb_lg->setName(alter_info->logfile_group_name);
ndb_lg->setUndoBufferSize(alter_info->undo_buffer_size);
return FALSE;
}
bool set_up_undofile(st_alter_tablespace *alter_info,
NdbDictionary::Undofile *ndb_uf)
{
ndb_uf->setPath(alter_info->undo_file_name);
ndb_uf->setSize(alter_info->initial_size);
ndb_uf->setLogfileGroup(alter_info->logfile_group_name);
return FALSE;
}
int ndbcluster_alter_tablespace(handlerton *hton,
THD* thd, st_alter_tablespace *alter_info)
{
int is_tablespace= 0;
NdbError err;
NDBDICT *dict;
int error;
const char *errmsg;
Ndb *ndb;
DBUG_ENTER("ha_ndbcluster::alter_tablespace");
LINT_INIT(errmsg);
ndb= check_ndb_in_thd(thd);
if (ndb == NULL)
{
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
dict= ndb->getDictionary();
switch (alter_info->ts_cmd_type){
case (CREATE_TABLESPACE):
{
error= ER_CREATE_FILEGROUP_FAILED;
NdbDictionary::Tablespace ndb_ts;
NdbDictionary::Datafile ndb_df;
NdbDictionary::ObjectId objid;
if (set_up_tablespace(alter_info, &ndb_ts))
{
DBUG_RETURN(1);
}
if (set_up_datafile(alter_info, &ndb_df))
{
DBUG_RETURN(1);
}
errmsg= "TABLESPACE";
if (dict->createTablespace(ndb_ts, &objid))
{
DBUG_PRINT("error", ("createTablespace returned %d", error));
goto ndberror;
}
DBUG_PRINT("alter_info", ("Successfully created Tablespace"));
errmsg= "DATAFILE";
if (dict->createDatafile(ndb_df))
{
err= dict->getNdbError();
NdbDictionary::Tablespace tmp= dict->getTablespace(ndb_ts.getName());
if (dict->getNdbError().code == 0 &&
tmp.getObjectId() == objid.getObjectId() &&
tmp.getObjectVersion() == objid.getObjectVersion())
{
dict->dropTablespace(tmp);
}
DBUG_PRINT("error", ("createDatafile returned %d", error));
goto ndberror2;
}
is_tablespace= 1;
break;
}
case (ALTER_TABLESPACE):
{
error= ER_ALTER_FILEGROUP_FAILED;
if (alter_info->ts_alter_tablespace_type == ALTER_TABLESPACE_ADD_FILE)
{
NdbDictionary::Datafile ndb_df;
if (set_up_datafile(alter_info, &ndb_df))
{
DBUG_RETURN(1);
}
errmsg= " CREATE DATAFILE";
if (dict->createDatafile(ndb_df))
{
goto ndberror;
}
}
else if(alter_info->ts_alter_tablespace_type == ALTER_TABLESPACE_DROP_FILE)
{
NdbDictionary::Tablespace ts= dict->getTablespace(alter_info->tablespace_name);
NdbDictionary::Datafile df= dict->getDatafile(0, alter_info->data_file_name);
NdbDictionary::ObjectId objid;
df.getTablespaceId(&objid);
if (ts.getObjectId() == objid.getObjectId() &&
strcmp(df.getPath(), alter_info->data_file_name) == 0)
{
errmsg= " DROP DATAFILE";
if (dict->dropDatafile(df))
{
goto ndberror;
}
}
else
{
DBUG_PRINT("error", ("No such datafile"));
my_error(ER_ALTER_FILEGROUP_FAILED, MYF(0), " NO SUCH FILE");
DBUG_RETURN(1);
}
}
else
{
DBUG_PRINT("error", ("Unsupported alter tablespace: %d",
alter_info->ts_alter_tablespace_type));
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
is_tablespace= 1;
break;
}
case (CREATE_LOGFILE_GROUP):
{
error= ER_CREATE_FILEGROUP_FAILED;
NdbDictionary::LogfileGroup ndb_lg;
NdbDictionary::Undofile ndb_uf;
NdbDictionary::ObjectId objid;
if (alter_info->undo_file_name == NULL)
{
/*
REDO files in LOGFILE GROUP not supported yet
*/
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
if (set_up_logfile_group(alter_info, &ndb_lg))
{
DBUG_RETURN(1);
}
errmsg= "LOGFILE GROUP";
if (dict->createLogfileGroup(ndb_lg, &objid))
{
goto ndberror;
}
DBUG_PRINT("alter_info", ("Successfully created Logfile Group"));
if (set_up_undofile(alter_info, &ndb_uf))
{
DBUG_RETURN(1);
}
errmsg= "UNDOFILE";
if (dict->createUndofile(ndb_uf))
{
err= dict->getNdbError();
NdbDictionary::LogfileGroup tmp= dict->getLogfileGroup(ndb_lg.getName());
if (dict->getNdbError().code == 0 &&
tmp.getObjectId() == objid.getObjectId() &&
tmp.getObjectVersion() == objid.getObjectVersion())
{
dict->dropLogfileGroup(tmp);
}
goto ndberror2;
}
break;
}
case (ALTER_LOGFILE_GROUP):
{
error= ER_ALTER_FILEGROUP_FAILED;
if (alter_info->undo_file_name == NULL)
{
/*
REDO files in LOGFILE GROUP not supported yet
*/
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
NdbDictionary::Undofile ndb_uf;
if (set_up_undofile(alter_info, &ndb_uf))
{
DBUG_RETURN(1);
}
errmsg= "CREATE UNDOFILE";
if (dict->createUndofile(ndb_uf))
{
goto ndberror;
}
break;
}
case (DROP_TABLESPACE):
{
error= ER_DROP_FILEGROUP_FAILED;
errmsg= "TABLESPACE";
if (dict->dropTablespace(dict->getTablespace(alter_info->tablespace_name)))
{
goto ndberror;
}
is_tablespace= 1;
break;
}
case (DROP_LOGFILE_GROUP):
{
error= ER_DROP_FILEGROUP_FAILED;
errmsg= "LOGFILE GROUP";
if (dict->dropLogfileGroup(dict->getLogfileGroup(alter_info->logfile_group_name)))
{
goto ndberror;
}
break;
}
case (CHANGE_FILE_TABLESPACE):
{
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
case (ALTER_ACCESS_MODE_TABLESPACE):
{
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
default:
{
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
}
#ifdef HAVE_NDB_BINLOG
if (is_tablespace)
ndbcluster_log_schema_op(thd, 0,
thd->query(), thd->query_length(),
"", alter_info->tablespace_name,
0, 0,
SOT_TABLESPACE, 0, 0, 0);
else
ndbcluster_log_schema_op(thd, 0,
thd->query(), thd->query_length(),
"", alter_info->logfile_group_name,
0, 0,
SOT_LOGFILE_GROUP, 0, 0, 0);
#endif
DBUG_RETURN(FALSE);
ndberror:
err= dict->getNdbError();
ndberror2:
set_ndb_err(thd, err);
ndb_to_mysql_error(&err);
my_error(error, MYF(0), errmsg);
DBUG_RETURN(1);
}
bool ha_ndbcluster::get_no_parts(const char *name, uint *num_parts)
{
Ndb *ndb;
NDBDICT *dict;
int err;
DBUG_ENTER("ha_ndbcluster::get_no_parts");
LINT_INIT(err);
set_dbname(name);
set_tabname(name);
for (;;)
{
if (check_ndb_connection())
{
err= HA_ERR_NO_CONNECTION;
break;
}
ndb= get_ndb();
ndb->setDatabaseName(m_dbname);
Ndb_table_guard ndbtab_g(dict= ndb->getDictionary(), m_tabname);
if (!ndbtab_g.get_table())
ERR_BREAK(dict->getNdbError(), err);
*num_parts= ndbtab_g.get_table()->getFragmentCount();
DBUG_RETURN(FALSE);
}
print_error(err, MYF(0));
DBUG_RETURN(TRUE);
}
static int ndbcluster_fill_files_table(handlerton *hton,
THD *thd,
TABLE_LIST *tables,
COND *cond)
{
TABLE* table= tables->table;
Ndb *ndb= check_ndb_in_thd(thd);
NdbDictionary::Dictionary* dict= ndb->getDictionary();
NdbDictionary::Dictionary::List dflist;
NdbError ndberr;
uint i;
DBUG_ENTER("ndbcluster_fill_files_table");
dict->listObjects(dflist, NdbDictionary::Object::Datafile);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
ERR_RETURN(ndberr);
for (i= 0; i < dflist.count; i++)
{
NdbDictionary::Dictionary::List::Element& elt = dflist.elements[i];
Ndb_cluster_connection_node_iter iter;
uint id;
g_ndb_cluster_connection->init_get_next_node(iter);
while ((id= g_ndb_cluster_connection->get_next_node(iter)))
{
init_fill_schema_files_row(table);
NdbDictionary::Datafile df= dict->getDatafile(id, elt.name);
ndberr= dict->getNdbError();
if(ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
if (ndberr.classification == NdbError::UnknownResultError)
continue;
ERR_RETURN(ndberr);
}
NdbDictionary::Tablespace ts= dict->getTablespace(df.getTablespace());
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
table->field[IS_FILES_TABLE_CATALOG]->store(STRING_WITH_LEN("def"),
system_charset_info);
table->field[IS_FILES_FILE_NAME]->set_notnull();
table->field[IS_FILES_FILE_NAME]->store(elt.name, strlen(elt.name),
system_charset_info);
table->field[IS_FILES_FILE_TYPE]->set_notnull();
table->field[IS_FILES_FILE_TYPE]->store("DATAFILE",8,
system_charset_info);
table->field[IS_FILES_TABLESPACE_NAME]->set_notnull();
table->field[IS_FILES_TABLESPACE_NAME]->store(df.getTablespace(),
strlen(df.getTablespace()),
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NAME]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NAME]->
store(ts.getDefaultLogfileGroup(),
strlen(ts.getDefaultLogfileGroup()),
system_charset_info);
table->field[IS_FILES_ENGINE]->set_notnull();
table->field[IS_FILES_ENGINE]->store(ndbcluster_hton_name,
ndbcluster_hton_name_length,
system_charset_info);
table->field[IS_FILES_FREE_EXTENTS]->set_notnull();
table->field[IS_FILES_FREE_EXTENTS]->store(df.getFree()
/ ts.getExtentSize());
table->field[IS_FILES_TOTAL_EXTENTS]->set_notnull();
table->field[IS_FILES_TOTAL_EXTENTS]->store(df.getSize()
/ ts.getExtentSize());
table->field[IS_FILES_EXTENT_SIZE]->set_notnull();
table->field[IS_FILES_EXTENT_SIZE]->store(ts.getExtentSize());
table->field[IS_FILES_INITIAL_SIZE]->set_notnull();
table->field[IS_FILES_INITIAL_SIZE]->store(df.getSize());
table->field[IS_FILES_MAXIMUM_SIZE]->set_notnull();
table->field[IS_FILES_MAXIMUM_SIZE]->store(df.getSize());
table->field[IS_FILES_VERSION]->set_notnull();
table->field[IS_FILES_VERSION]->store(df.getObjectVersion());
table->field[IS_FILES_ROW_FORMAT]->set_notnull();
table->field[IS_FILES_ROW_FORMAT]->store("FIXED", 5, system_charset_info);
char extra[30];
int len= my_snprintf(extra, sizeof(extra), "CLUSTER_NODE=%u", id);
table->field[IS_FILES_EXTRA]->set_notnull();
table->field[IS_FILES_EXTRA]->store(extra, len, system_charset_info);
schema_table_store_record(thd, table);
}
}
NdbDictionary::Dictionary::List uflist;
dict->listObjects(uflist, NdbDictionary::Object::Undofile);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
ERR_RETURN(ndberr);
for (i= 0; i < uflist.count; i++)
{
NdbDictionary::Dictionary::List::Element& elt= uflist.elements[i];
Ndb_cluster_connection_node_iter iter;
unsigned id;
g_ndb_cluster_connection->init_get_next_node(iter);
while ((id= g_ndb_cluster_connection->get_next_node(iter)))
{
NdbDictionary::Undofile uf= dict->getUndofile(id, elt.name);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
if (ndberr.classification == NdbError::UnknownResultError)
continue;
ERR_RETURN(ndberr);
}
NdbDictionary::LogfileGroup lfg=
dict->getLogfileGroup(uf.getLogfileGroup());
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
init_fill_schema_files_row(table);
table->field[IS_FILES_FILE_NAME]->set_notnull();
table->field[IS_FILES_FILE_NAME]->store(elt.name, strlen(elt.name),
system_charset_info);
table->field[IS_FILES_FILE_TYPE]->set_notnull();
table->field[IS_FILES_FILE_TYPE]->store("UNDO LOG", 8,
system_charset_info);
NdbDictionary::ObjectId objid;
uf.getLogfileGroupId(&objid);
table->field[IS_FILES_LOGFILE_GROUP_NAME]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NAME]->store(uf.getLogfileGroup(),
strlen(uf.getLogfileGroup()),
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->store(objid.getObjectId());
table->field[IS_FILES_ENGINE]->set_notnull();
table->field[IS_FILES_ENGINE]->store(ndbcluster_hton_name,
ndbcluster_hton_name_length,
system_charset_info);
table->field[IS_FILES_TOTAL_EXTENTS]->set_notnull();
table->field[IS_FILES_TOTAL_EXTENTS]->store(uf.getSize()/4);
table->field[IS_FILES_EXTENT_SIZE]->set_notnull();
table->field[IS_FILES_EXTENT_SIZE]->store(4);
table->field[IS_FILES_INITIAL_SIZE]->set_notnull();
table->field[IS_FILES_INITIAL_SIZE]->store(uf.getSize());
table->field[IS_FILES_MAXIMUM_SIZE]->set_notnull();
table->field[IS_FILES_MAXIMUM_SIZE]->store(uf.getSize());
table->field[IS_FILES_VERSION]->set_notnull();
table->field[IS_FILES_VERSION]->store(uf.getObjectVersion());
char extra[100];
int len= my_snprintf(extra,sizeof(extra),"CLUSTER_NODE=%u;UNDO_BUFFER_SIZE=%lu",
id, (ulong) lfg.getUndoBufferSize());
table->field[IS_FILES_EXTRA]->set_notnull();
table->field[IS_FILES_EXTRA]->store(extra, len, system_charset_info);
schema_table_store_record(thd, table);
}
}
// now for LFGs
NdbDictionary::Dictionary::List lfglist;
dict->listObjects(lfglist, NdbDictionary::Object::LogfileGroup);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
ERR_RETURN(ndberr);
for (i= 0; i < lfglist.count; i++)
{
NdbDictionary::Dictionary::List::Element& elt= lfglist.elements[i];
NdbDictionary::LogfileGroup lfg= dict->getLogfileGroup(elt.name);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
init_fill_schema_files_row(table);
table->field[IS_FILES_FILE_TYPE]->set_notnull();
table->field[IS_FILES_FILE_TYPE]->store("UNDO LOG", 8,
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NAME]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NAME]->store(elt.name,
strlen(elt.name),
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->store(lfg.getObjectId());
table->field[IS_FILES_ENGINE]->set_notnull();
table->field[IS_FILES_ENGINE]->store(ndbcluster_hton_name,
ndbcluster_hton_name_length,
system_charset_info);
table->field[IS_FILES_FREE_EXTENTS]->set_notnull();
table->field[IS_FILES_FREE_EXTENTS]->store(lfg.getUndoFreeWords());
table->field[IS_FILES_EXTENT_SIZE]->set_notnull();
table->field[IS_FILES_EXTENT_SIZE]->store(4);
table->field[IS_FILES_VERSION]->set_notnull();
table->field[IS_FILES_VERSION]->store(lfg.getObjectVersion());
char extra[100];
int len= my_snprintf(extra,sizeof(extra),
"UNDO_BUFFER_SIZE=%lu",
(ulong) lfg.getUndoBufferSize());
table->field[IS_FILES_EXTRA]->set_notnull();
table->field[IS_FILES_EXTRA]->store(extra, len, system_charset_info);
schema_table_store_record(thd, table);
}
DBUG_RETURN(0);
}
SHOW_VAR ndb_status_variables_export[]= {
{"Ndb", (char*) &ndb_status_variables, SHOW_ARRAY},
{NullS, NullS, SHOW_LONG}
};
struct st_mysql_storage_engine ndbcluster_storage_engine=
{ MYSQL_HANDLERTON_INTERFACE_VERSION };
mysql_declare_plugin(ndbcluster)
{
MYSQL_STORAGE_ENGINE_PLUGIN,
&ndbcluster_storage_engine,
ndbcluster_hton_name,
"MySQL AB",
"Clustered, fault-tolerant tables",
PLUGIN_LICENSE_GPL,
ndbcluster_init, /* Plugin Init */
NULL, /* Plugin Deinit */
0x0100 /* 1.0 */,
ndb_status_variables_export,/* status variables */
NULL, /* system variables */
NULL /* config options */
}
mysql_declare_plugin_end;
#endif