mariadb/storage/innobase/trx/trx0i_s.c
2010-05-12 08:39:45 -07:00

1545 lines
40 KiB
C

/*****************************************************************************
Copyright (c) 2007, 2010, Innobase Oy. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*****************************************************************************/
/**************************************************//**
@file trx/trx0i_s.c
INFORMATION SCHEMA innodb_trx, innodb_locks and
innodb_lock_waits tables fetch code.
The code below fetches information needed to fill those
3 dynamic tables and uploads it into a "transactions
table cache" for later retrieval.
Created July 17, 2007 Vasil Dimov
*******************************************************/
/* Found during the build of 5.5.3 on Linux 2.4 and early 2.6 kernels:
The includes "univ.i" -> "my_global.h" cause a different path
to be taken further down with pthread functions and types,
so they must come first.
From the symptoms, this is related to bug#46587 in the MySQL bug DB.
*/
#include "univ.i"
#include <mysql/plugin.h>
#include "mysql_addons.h"
#include "buf0buf.h"
#include "dict0dict.h"
#include "ha0storage.h"
#include "ha_prototypes.h"
#include "hash0hash.h"
#include "lock0iter.h"
#include "lock0lock.h"
#include "mem0mem.h"
#include "page0page.h"
#include "rem0rec.h"
#include "row0row.h"
#include "srv0srv.h"
#include "sync0rw.h"
#include "sync0sync.h"
#include "sync0types.h"
#include "trx0i_s.h"
#include "trx0sys.h"
#include "trx0trx.h"
#include "ut0mem.h"
#include "ut0ut.h"
/** Initial number of rows in the table cache */
#define TABLE_CACHE_INITIAL_ROWSNUM 1024
/** @brief The maximum number of chunks to allocate for a table cache.
The rows of a table cache are stored in a set of chunks. When a new
row is added a new chunk is allocated if necessary. Assuming that the
first one is 1024 rows (TABLE_CACHE_INITIAL_ROWSNUM) and each
subsequent is N/2 where N is the number of rows we have allocated till
now, then 39th chunk would accommodate 1677416425 rows and all chunks
would accommodate 3354832851 rows. */
#define MEM_CHUNKS_IN_TABLE_CACHE 39
/** The following are some testing auxiliary macros. Do not enable them
in a production environment. */
/* @{ */
#if 0
/** If this is enabled then lock folds will always be different
resulting in equal rows being put in a different cells of the hash
table. Checking for duplicates will be flawed because different
fold will be calculated when a row is searched in the hash table. */
#define TEST_LOCK_FOLD_ALWAYS_DIFFERENT
#endif
#if 0
/** This effectively kills the search-for-duplicate-before-adding-a-row
function, but searching in the hash is still performed. It will always
be assumed that lock is not present and insertion will be performed in
the hash table. */
#define TEST_NO_LOCKS_ROW_IS_EVER_EQUAL_TO_LOCK_T
#endif
#if 0
/** This aggressively repeats adding each row many times. Depending on
the above settings this may be noop or may result in lots of rows being
added. */
#define TEST_ADD_EACH_LOCKS_ROW_MANY_TIMES
#endif
#if 0
/** Very similar to TEST_NO_LOCKS_ROW_IS_EVER_EQUAL_TO_LOCK_T but hash
table search is not performed at all. */
#define TEST_DO_NOT_CHECK_FOR_DUPLICATE_ROWS
#endif
#if 0
/** Do not insert each row into the hash table, duplicates may appear
if this is enabled, also if this is enabled searching into the hash is
noop because it will be empty. */
#define TEST_DO_NOT_INSERT_INTO_THE_HASH_TABLE
#endif
/* @} */
/** Memory limit passed to ha_storage_put_memlim().
@param cache hash storage
@return maximum allowed allocation size */
#define MAX_ALLOWED_FOR_STORAGE(cache) \
(TRX_I_S_MEM_LIMIT \
- (cache)->mem_allocd)
/** Memory limit in table_cache_create_empty_row().
@param cache hash storage
@return maximum allowed allocation size */
#define MAX_ALLOWED_FOR_ALLOC(cache) \
(TRX_I_S_MEM_LIMIT \
- (cache)->mem_allocd \
- ha_storage_get_size((cache)->storage))
/** Memory for each table in the intermediate buffer is allocated in
separate chunks. These chunks are considered to be concatenated to
represent one flat array of rows. */
typedef struct i_s_mem_chunk_struct {
ulint offset; /*!< offset, in number of rows */
ulint rows_allocd; /*!< the size of this chunk, in number
of rows */
void* base; /*!< start of the chunk */
} i_s_mem_chunk_t;
/** This represents one table's cache. */
typedef struct i_s_table_cache_struct {
ulint rows_used; /*!< number of used rows */
ulint rows_allocd; /*!< number of allocated rows */
ulint row_size; /*!< size of a single row */
i_s_mem_chunk_t chunks[MEM_CHUNKS_IN_TABLE_CACHE]; /*!< array of
memory chunks that stores the
rows */
} i_s_table_cache_t;
/** This structure describes the intermediate buffer */
struct trx_i_s_cache_struct {
rw_lock_t rw_lock; /*!< read-write lock protecting
the rest of this structure */
ullint last_read; /*!< last time the cache was read;
measured in microseconds since
epoch */
mutex_t last_read_mutex;/*!< mutex protecting the
last_read member - it is updated
inside a shared lock of the
rw_lock member */
i_s_table_cache_t innodb_trx; /*!< innodb_trx table */
i_s_table_cache_t innodb_locks; /*!< innodb_locks table */
i_s_table_cache_t innodb_lock_waits;/*!< innodb_lock_waits table */
/** the hash table size is LOCKS_HASH_CELLS_NUM * sizeof(void*) bytes */
#define LOCKS_HASH_CELLS_NUM 10000
hash_table_t* locks_hash; /*!< hash table used to eliminate
duplicate entries in the
innodb_locks table */
/** Initial size of the cache storage */
#define CACHE_STORAGE_INITIAL_SIZE 1024
/** Number of hash cells in the cache storage */
#define CACHE_STORAGE_HASH_CELLS 2048
ha_storage_t* storage; /*!< storage for external volatile
data that can possibly not be
available later, when we release
the kernel mutex */
ulint mem_allocd; /*!< the amount of memory
allocated with mem_alloc*() */
ibool is_truncated; /*!< this is TRUE if the memory
limit was hit and thus the data
in the cache is truncated */
};
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
static trx_i_s_cache_t trx_i_s_cache_static;
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
UNIV_INTERN trx_i_s_cache_t* trx_i_s_cache = &trx_i_s_cache_static;
/* Key to register the lock/mutex with performance schema */
#ifdef UNIV_PFS_RWLOCK
UNIV_INTERN mysql_pfs_key_t trx_i_s_cache_lock_key;
#endif /* UNIV_PFS_RWLOCK */
#ifdef UNIV_PFS_MUTEX
UNIV_INTERN mysql_pfs_key_t cache_last_read_mutex_key;
#endif /* UNIV_PFS_MUTEX */
/*******************************************************************//**
For a record lock that is in waiting state retrieves the only bit that
is set, for a table lock returns ULINT_UNDEFINED.
@return record number within the heap */
static
ulint
wait_lock_get_heap_no(
/*==================*/
const lock_t* lock) /*!< in: lock */
{
ulint ret;
switch (lock_get_type(lock)) {
case LOCK_REC:
ret = lock_rec_find_set_bit(lock);
ut_a(ret != ULINT_UNDEFINED);
break;
case LOCK_TABLE:
ret = ULINT_UNDEFINED;
break;
default:
ut_error;
}
return(ret);
}
/*******************************************************************//**
Initializes the members of a table cache. */
static
void
table_cache_init(
/*=============*/
i_s_table_cache_t* table_cache, /*!< out: table cache */
size_t row_size) /*!< in: the size of a
row */
{
ulint i;
table_cache->rows_used = 0;
table_cache->rows_allocd = 0;
table_cache->row_size = row_size;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
/* the memory is actually allocated in
table_cache_create_empty_row() */
table_cache->chunks[i].base = NULL;
}
}
/*******************************************************************//**
Frees a table cache. */
static
void
table_cache_free(
/*=============*/
i_s_table_cache_t* table_cache) /*!< in/out: table cache */
{
ulint i;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
/* the memory is actually allocated in
table_cache_create_empty_row() */
if (table_cache->chunks[i].base) {
mem_free(table_cache->chunks[i].base);
table_cache->chunks[i].base = NULL;
}
}
}
/*******************************************************************//**
Returns an empty row from a table cache. The row is allocated if no more
empty rows are available. The number of used rows is incremented.
If the memory limit is hit then NULL is returned and nothing is
allocated.
@return empty row, or NULL if out of memory */
static
void*
table_cache_create_empty_row(
/*=========================*/
i_s_table_cache_t* table_cache, /*!< in/out: table cache */
trx_i_s_cache_t* cache) /*!< in/out: cache to record
how many bytes are
allocated */
{
ulint i;
void* row;
ut_a(table_cache->rows_used <= table_cache->rows_allocd);
if (table_cache->rows_used == table_cache->rows_allocd) {
/* rows_used == rows_allocd means that new chunk needs
to be allocated: either no more empty rows in the
last allocated chunk or nothing has been allocated yet
(rows_num == rows_allocd == 0); */
i_s_mem_chunk_t* chunk;
ulint req_bytes;
ulint got_bytes;
ulint req_rows;
ulint got_rows;
/* find the first not allocated chunk */
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].base == NULL) {
break;
}
}
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
have been allocated :-X */
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
/* allocate the chunk we just found */
if (i == 0) {
/* first chunk, nothing is allocated yet */
req_rows = TABLE_CACHE_INITIAL_ROWSNUM;
} else {
/* Memory is increased by the formula
new = old + old / 2; We are trying not to be
aggressive here (= using the common new = old * 2)
because the allocated memory will not be freed
until InnoDB exit (it is reused). So it is better
to once allocate the memory in more steps, but
have less unused/wasted memory than to use less
steps in allocation (which is done once in a
lifetime) but end up with lots of unused/wasted
memory. */
req_rows = table_cache->rows_allocd / 2;
}
req_bytes = req_rows * table_cache->row_size;
if (req_bytes > MAX_ALLOWED_FOR_ALLOC(cache)) {
return(NULL);
}
chunk = &table_cache->chunks[i];
chunk->base = mem_alloc2(req_bytes, &got_bytes);
got_rows = got_bytes / table_cache->row_size;
cache->mem_allocd += got_bytes;
#if 0
printf("allocating chunk %d req bytes=%lu, got bytes=%lu, "
"row size=%lu, "
"req rows=%lu, got rows=%lu\n",
i, req_bytes, got_bytes,
table_cache->row_size,
req_rows, got_rows);
#endif
chunk->rows_allocd = got_rows;
table_cache->rows_allocd += got_rows;
/* adjust the offset of the next chunk */
if (i < MEM_CHUNKS_IN_TABLE_CACHE - 1) {
table_cache->chunks[i + 1].offset
= chunk->offset + chunk->rows_allocd;
}
/* return the first empty row in the newly allocated
chunk */
row = chunk->base;
} else {
char* chunk_start;
ulint offset;
/* there is an empty row, no need to allocate new
chunks */
/* find the first chunk that contains allocated but
empty/unused rows */
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].offset
+ table_cache->chunks[i].rows_allocd
> table_cache->rows_used) {
break;
}
}
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
are full, but
table_cache->rows_used != table_cache->rows_allocd means
exactly the opposite - there are allocated but
empty/unused rows :-X */
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
chunk_start = (char*) table_cache->chunks[i].base;
offset = table_cache->rows_used
- table_cache->chunks[i].offset;
row = chunk_start + offset * table_cache->row_size;
}
table_cache->rows_used++;
return(row);
}
/*******************************************************************//**
Fills i_s_trx_row_t object.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
fill_trx_row(
/*=========*/
i_s_trx_row_t* row, /*!< out: result object
that's filled */
const trx_t* trx, /*!< in: transaction to
get data from */
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
corresponding row in
innodb_locks if trx is
waiting or NULL if trx
is not waiting */
trx_i_s_cache_t* cache) /*!< in/out: cache into
which to copy volatile
strings */
{
row->trx_id = trx_get_id(trx);
row->trx_started = (ib_time_t) trx->start_time;
row->trx_state = trx_get_que_state_str(trx);
if (trx->wait_lock != NULL) {
ut_a(requested_lock_row != NULL);
row->requested_lock_row = requested_lock_row;
row->trx_wait_started = (ib_time_t) trx->wait_started;
} else {
ut_a(requested_lock_row == NULL);
row->requested_lock_row = NULL;
row->trx_wait_started = 0;
}
row->trx_weight = (ullint) ut_conv_dulint_to_longlong(TRX_WEIGHT(trx));
if (trx->mysql_thd != NULL) {
row->trx_mysql_thread_id
= thd_get_thread_id(trx->mysql_thd);
} else {
/* For internal transactions e.g., purge and transactions
being recovered at startup there is no associated MySQL
thread data structure. */
row->trx_mysql_thread_id = 0;
}
if (trx->mysql_query_str != NULL && *trx->mysql_query_str != NULL) {
TRX_I_S_STRING_COPY(*trx->mysql_query_str, row->trx_query,
TRX_I_S_TRX_QUERY_MAX_LEN, cache);
if (row->trx_query == NULL) {
return(FALSE);
}
} else {
row->trx_query = NULL;
}
if (trx->op_info != NULL && trx->op_info[0] != '\0') {
TRX_I_S_STRING_COPY(trx->op_info, row->trx_operation_state,
TRX_I_S_TRX_OP_STATE_MAX_LEN, cache);
if (row->trx_operation_state == NULL) {
return(FALSE);
}
} else {
row->trx_operation_state = NULL;
}
row->trx_tables_in_use = trx->n_mysql_tables_in_use;
row->trx_tables_locked = trx->mysql_n_tables_locked;
row->trx_lock_structs = UT_LIST_GET_LEN(trx->trx_locks);
row->trx_lock_memory_bytes = mem_heap_get_size(trx->lock_heap);
row->trx_rows_locked = lock_number_of_rows_locked(trx);
row->trx_rows_modified = ut_conv_dulint_to_longlong(trx->undo_no);
row->trx_concurrency_tickets = trx->n_tickets_to_enter_innodb;
switch (trx->isolation_level) {
case TRX_ISO_READ_UNCOMMITTED:
row->trx_isolation_level = "READ UNCOMMITTED";
break;
case TRX_ISO_READ_COMMITTED:
row->trx_isolation_level = "READ COMMITTED";
break;
case TRX_ISO_REPEATABLE_READ:
row->trx_isolation_level = "REPEATABLE READ";
break;
case TRX_ISO_SERIALIZABLE:
row->trx_isolation_level = "SERIALIZABLE";
break;
/* Should not happen as TRX_ISO_READ_COMMITTED is default */
default:
row->trx_isolation_level = "UNKNOWN";
}
row->trx_unique_checks = (ibool) trx->check_unique_secondary;
row->trx_foreign_key_checks = (ibool) trx->check_foreigns;
if (trx->detailed_error != NULL && trx->detailed_error[0] != '\0') {
TRX_I_S_STRING_COPY(trx->detailed_error,
row->trx_foreign_key_error,
TRX_I_S_TRX_FK_ERROR_MAX_LEN, cache);
if (row->trx_foreign_key_error == NULL) {
return(FALSE);
}
} else {
row->trx_foreign_key_error = NULL;
}
row->trx_has_search_latch = (ibool) trx->has_search_latch;
row->trx_search_latch_timeout = trx->search_latch_timeout;
return(TRUE);
}
/*******************************************************************//**
Format the nth field of "rec" and put it in "buf". The result is always
NUL-terminated. Returns the number of bytes that were written to "buf"
(including the terminating NUL).
@return end of the result */
static
ulint
put_nth_field(
/*==========*/
char* buf, /*!< out: buffer */
ulint buf_size,/*!< in: buffer size in bytes */
ulint n, /*!< in: number of field */
const dict_index_t* index, /*!< in: index */
const rec_t* rec, /*!< in: record */
const ulint* offsets)/*!< in: record offsets, returned
by rec_get_offsets() */
{
const byte* data;
ulint data_len;
dict_field_t* dict_field;
ulint ret;
ut_ad(rec_offs_validate(rec, NULL, offsets));
if (buf_size == 0) {
return(0);
}
ret = 0;
if (n > 0) {
/* we must append ", " before the actual data */
if (buf_size < 3) {
buf[0] = '\0';
return(1);
}
memcpy(buf, ", ", 3);
buf += 2;
buf_size -= 2;
ret += 2;
}
/* now buf_size >= 1 */
data = rec_get_nth_field(rec, offsets, n, &data_len);
dict_field = dict_index_get_nth_field(index, n);
ret += row_raw_format((const char*) data, data_len,
dict_field, buf, buf_size);
return(ret);
}
/*******************************************************************//**
Fills the "lock_data" member of i_s_locks_row_t object.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
fill_lock_data(
/*===========*/
const char** lock_data,/*!< out: "lock_data" to fill */
const lock_t* lock, /*!< in: lock used to find the data */
ulint heap_no,/*!< in: rec num used to find the data */
trx_i_s_cache_t* cache) /*!< in/out: cache where to store
volatile data */
{
mtr_t mtr;
const buf_block_t* block;
const page_t* page;
const rec_t* rec;
ut_a(lock_get_type(lock) == LOCK_REC);
mtr_start(&mtr);
block = buf_page_try_get(lock_rec_get_space_id(lock),
lock_rec_get_page_no(lock),
&mtr);
if (block == NULL) {
*lock_data = NULL;
mtr_commit(&mtr);
return(TRUE);
}
page = (const page_t*) buf_block_get_frame(block);
rec = page_find_rec_with_heap_no(page, heap_no);
if (page_rec_is_infimum(rec)) {
*lock_data = ha_storage_put_str_memlim(
cache->storage, "infimum pseudo-record",
MAX_ALLOWED_FOR_STORAGE(cache));
} else if (page_rec_is_supremum(rec)) {
*lock_data = ha_storage_put_str_memlim(
cache->storage, "supremum pseudo-record",
MAX_ALLOWED_FOR_STORAGE(cache));
} else {
const dict_index_t* index;
ulint n_fields;
mem_heap_t* heap;
ulint offsets_onstack[REC_OFFS_NORMAL_SIZE];
ulint* offsets;
char buf[TRX_I_S_LOCK_DATA_MAX_LEN];
ulint buf_used;
ulint i;
rec_offs_init(offsets_onstack);
offsets = offsets_onstack;
index = lock_rec_get_index(lock);
n_fields = dict_index_get_n_unique(index);
ut_a(n_fields > 0);
heap = NULL;
offsets = rec_get_offsets(rec, index, offsets, n_fields,
&heap);
/* format and store the data */
buf_used = 0;
for (i = 0; i < n_fields; i++) {
buf_used += put_nth_field(
buf + buf_used, sizeof(buf) - buf_used,
i, index, rec, offsets) - 1;
}
*lock_data = (const char*) ha_storage_put_memlim(
cache->storage, buf, buf_used + 1,
MAX_ALLOWED_FOR_STORAGE(cache));
if (UNIV_UNLIKELY(heap != NULL)) {
/* this means that rec_get_offsets() has created a new
heap and has stored offsets in it; check that this is
really the case and free the heap */
ut_a(offsets != offsets_onstack);
mem_heap_free(heap);
}
}
mtr_commit(&mtr);
if (*lock_data == NULL) {
return(FALSE);
}
return(TRUE);
}
/*******************************************************************//**
Fills i_s_locks_row_t object. Returns its first argument.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
fill_locks_row(
/*===========*/
i_s_locks_row_t* row, /*!< out: result object that's filled */
const lock_t* lock, /*!< in: lock to get data from */
ulint heap_no,/*!< in: lock's record number
or ULINT_UNDEFINED if the lock
is a table lock */
trx_i_s_cache_t* cache) /*!< in/out: cache into which to copy
volatile strings */
{
row->lock_trx_id = lock_get_trx_id(lock);
row->lock_mode = lock_get_mode_str(lock);
row->lock_type = lock_get_type_str(lock);
row->lock_table = ha_storage_put_str_memlim(
cache->storage, lock_get_table_name(lock),
MAX_ALLOWED_FOR_STORAGE(cache));
/* memory could not be allocated */
if (row->lock_table == NULL) {
return(FALSE);
}
switch (lock_get_type(lock)) {
case LOCK_REC:
row->lock_index = ha_storage_put_str_memlim(
cache->storage, lock_rec_get_index_name(lock),
MAX_ALLOWED_FOR_STORAGE(cache));
/* memory could not be allocated */
if (row->lock_index == NULL) {
return(FALSE);
}
row->lock_space = lock_rec_get_space_id(lock);
row->lock_page = lock_rec_get_page_no(lock);
row->lock_rec = heap_no;
if (!fill_lock_data(&row->lock_data, lock, heap_no, cache)) {
/* memory could not be allocated */
return(FALSE);
}
break;
case LOCK_TABLE:
row->lock_index = NULL;
row->lock_space = ULINT_UNDEFINED;
row->lock_page = ULINT_UNDEFINED;
row->lock_rec = ULINT_UNDEFINED;
row->lock_data = NULL;
break;
default:
ut_error;
}
row->lock_table_id = lock_get_table_id(lock);
row->hash_chain.value = row;
return(TRUE);
}
/*******************************************************************//**
Fills i_s_lock_waits_row_t object. Returns its first argument.
@return result object that's filled */
static
i_s_lock_waits_row_t*
fill_lock_waits_row(
/*================*/
i_s_lock_waits_row_t* row, /*!< out: result object
that's filled */
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
relevant requested lock
row in innodb_locks */
const i_s_locks_row_t* blocking_lock_row)/*!< in: pointer to the
relevant blocking lock
row in innodb_locks */
{
row->requested_lock_row = requested_lock_row;
row->blocking_lock_row = blocking_lock_row;
return(row);
}
/*******************************************************************//**
Calculates a hash fold for a lock. For a record lock the fold is
calculated from 4 elements, which uniquely identify a lock at a given
point in time: transaction id, space id, page number, record number.
For a table lock the fold is table's id.
@return fold */
static
ulint
fold_lock(
/*======*/
const lock_t* lock, /*!< in: lock object to fold */
ulint heap_no)/*!< in: lock's record number
or ULINT_UNDEFINED if the lock
is a table lock */
{
#ifdef TEST_LOCK_FOLD_ALWAYS_DIFFERENT
static ulint fold = 0;
return(fold++);
#else
ulint ret;
switch (lock_get_type(lock)) {
case LOCK_REC:
ut_a(heap_no != ULINT_UNDEFINED);
ret = ut_fold_ulint_pair((ulint) lock_get_trx_id(lock),
lock_rec_get_space_id(lock));
ret = ut_fold_ulint_pair(ret,
lock_rec_get_page_no(lock));
ret = ut_fold_ulint_pair(ret, heap_no);
break;
case LOCK_TABLE:
/* this check is actually not necessary for continuing
correct operation, but something must have gone wrong if
it fails. */
ut_a(heap_no == ULINT_UNDEFINED);
ret = (ulint) lock_get_table_id(lock);
break;
default:
ut_error;
}
return(ret);
#endif
}
/*******************************************************************//**
Checks whether i_s_locks_row_t object represents a lock_t object.
@return TRUE if they match */
static
ibool
locks_row_eq_lock(
/*==============*/
const i_s_locks_row_t* row, /*!< in: innodb_locks row */
const lock_t* lock, /*!< in: lock object */
ulint heap_no)/*!< in: lock's record number
or ULINT_UNDEFINED if the lock
is a table lock */
{
#ifdef TEST_NO_LOCKS_ROW_IS_EVER_EQUAL_TO_LOCK_T
return(0);
#else
switch (lock_get_type(lock)) {
case LOCK_REC:
ut_a(heap_no != ULINT_UNDEFINED);
return(row->lock_trx_id == lock_get_trx_id(lock)
&& row->lock_space == lock_rec_get_space_id(lock)
&& row->lock_page == lock_rec_get_page_no(lock)
&& row->lock_rec == heap_no);
case LOCK_TABLE:
/* this check is actually not necessary for continuing
correct operation, but something must have gone wrong if
it fails. */
ut_a(heap_no == ULINT_UNDEFINED);
return(row->lock_trx_id == lock_get_trx_id(lock)
&& row->lock_table_id == lock_get_table_id(lock));
default:
ut_error;
return(FALSE);
}
#endif
}
/*******************************************************************//**
Searches for a row in the innodb_locks cache that has a specified id.
This happens in O(1) time since a hash table is used. Returns pointer to
the row or NULL if none is found.
@return row or NULL */
static
i_s_locks_row_t*
search_innodb_locks(
/*================*/
trx_i_s_cache_t* cache, /*!< in: cache */
const lock_t* lock, /*!< in: lock to search for */
ulint heap_no)/*!< in: lock's record number
or ULINT_UNDEFINED if the lock
is a table lock */
{
i_s_hash_chain_t* hash_chain;
HASH_SEARCH(
/* hash_chain->"next" */
next,
/* the hash table */
cache->locks_hash,
/* fold */
fold_lock(lock, heap_no),
/* the type of the next variable */
i_s_hash_chain_t*,
/* auxiliary variable */
hash_chain,
/* assertion on every traversed item */
,
/* this determines if we have found the lock */
locks_row_eq_lock(hash_chain->value, lock, heap_no));
if (hash_chain == NULL) {
return(NULL);
}
/* else */
return(hash_chain->value);
}
/*******************************************************************//**
Adds new element to the locks cache, enlarging it if necessary.
Returns a pointer to the added row. If the row is already present then
no row is added and a pointer to the existing row is returned.
If row can not be allocated then NULL is returned.
@return row */
static
i_s_locks_row_t*
add_lock_to_cache(
/*==============*/
trx_i_s_cache_t* cache, /*!< in/out: cache */
const lock_t* lock, /*!< in: the element to add */
ulint heap_no)/*!< in: lock's record number
or ULINT_UNDEFINED if the lock
is a table lock */
{
i_s_locks_row_t* dst_row;
#ifdef TEST_ADD_EACH_LOCKS_ROW_MANY_TIMES
ulint i;
for (i = 0; i < 10000; i++) {
#endif
#ifndef TEST_DO_NOT_CHECK_FOR_DUPLICATE_ROWS
/* quit if this lock is already present */
dst_row = search_innodb_locks(cache, lock, heap_no);
if (dst_row != NULL) {
return(dst_row);
}
#endif
dst_row = (i_s_locks_row_t*)
table_cache_create_empty_row(&cache->innodb_locks, cache);
/* memory could not be allocated */
if (dst_row == NULL) {
return(NULL);
}
if (!fill_locks_row(dst_row, lock, heap_no, cache)) {
/* memory could not be allocated */
cache->innodb_locks.rows_used--;
return(NULL);
}
#ifndef TEST_DO_NOT_INSERT_INTO_THE_HASH_TABLE
HASH_INSERT(
/* the type used in the hash chain */
i_s_hash_chain_t,
/* hash_chain->"next" */
next,
/* the hash table */
cache->locks_hash,
/* fold */
fold_lock(lock, heap_no),
/* add this data to the hash */
&dst_row->hash_chain);
#endif
#ifdef TEST_ADD_EACH_LOCKS_ROW_MANY_TIMES
} /* for()-loop */
#endif
return(dst_row);
}
/*******************************************************************//**
Adds new pair of locks to the lock waits cache.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
add_lock_wait_to_cache(
/*===================*/
trx_i_s_cache_t* cache, /*!< in/out: cache */
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
relevant requested lock
row in innodb_locks */
const i_s_locks_row_t* blocking_lock_row)/*!< in: pointer to the
relevant blocking lock
row in innodb_locks */
{
i_s_lock_waits_row_t* dst_row;
dst_row = (i_s_lock_waits_row_t*)
table_cache_create_empty_row(&cache->innodb_lock_waits,
cache);
/* memory could not be allocated */
if (dst_row == NULL) {
return(FALSE);
}
fill_lock_waits_row(dst_row, requested_lock_row, blocking_lock_row);
return(TRUE);
}
/*******************************************************************//**
Adds transaction's relevant (important) locks to cache.
If the transaction is waiting, then the wait lock is added to
innodb_locks and a pointer to the added row is returned in
requested_lock_row, otherwise requested_lock_row is set to NULL.
If rows can not be allocated then FALSE is returned and the value of
requested_lock_row is undefined.
@return FALSE if allocation fails */
static
ibool
add_trx_relevant_locks_to_cache(
/*============================*/
trx_i_s_cache_t* cache, /*!< in/out: cache */
const trx_t* trx, /*!< in: transaction */
i_s_locks_row_t** requested_lock_row)/*!< out: pointer to the
requested lock row, or NULL or
undefined */
{
ut_ad(mutex_own(&kernel_mutex));
/* If transaction is waiting we add the wait lock and all locks
from another transactions that are blocking the wait lock. */
if (trx->que_state == TRX_QUE_LOCK_WAIT) {
const lock_t* curr_lock;
ulint wait_lock_heap_no;
i_s_locks_row_t* blocking_lock_row;
lock_queue_iterator_t iter;
ut_a(trx->wait_lock != NULL);
wait_lock_heap_no
= wait_lock_get_heap_no(trx->wait_lock);
/* add the requested lock */
*requested_lock_row
= add_lock_to_cache(cache, trx->wait_lock,
wait_lock_heap_no);
/* memory could not be allocated */
if (*requested_lock_row == NULL) {
return(FALSE);
}
/* then iterate over the locks before the wait lock and
add the ones that are blocking it */
lock_queue_iterator_reset(&iter, trx->wait_lock,
ULINT_UNDEFINED);
curr_lock = lock_queue_iterator_get_prev(&iter);
while (curr_lock != NULL) {
if (lock_has_to_wait(trx->wait_lock,
curr_lock)) {
/* add the lock that is
blocking trx->wait_lock */
blocking_lock_row
= add_lock_to_cache(
cache, curr_lock,
/* heap_no is the same
for the wait and waited
locks */
wait_lock_heap_no);
/* memory could not be allocated */
if (blocking_lock_row == NULL) {
return(FALSE);
}
/* add the relation between both locks
to innodb_lock_waits */
if (!add_lock_wait_to_cache(
cache, *requested_lock_row,
blocking_lock_row)) {
/* memory could not be allocated */
return(FALSE);
}
}
curr_lock = lock_queue_iterator_get_prev(&iter);
}
} else {
*requested_lock_row = NULL;
}
return(TRUE);
}
/** The minimum time that a cache must not be updated after it has been
read for the last time; measured in microseconds. We use this technique
to ensure that SELECTs which join several INFORMATION SCHEMA tables read
the same version of the cache. */
#define CACHE_MIN_IDLE_TIME_US 100000 /* 0.1 sec */
/*******************************************************************//**
Checks if the cache can safely be updated.
@return TRUE if can be updated */
static
ibool
can_cache_be_updated(
/*=================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
ullint now;
/* Here we read cache->last_read without acquiring its mutex
because last_read is only updated when a shared rw lock on the
whole cache is being held (see trx_i_s_cache_end_read()) and
we are currently holding an exclusive rw lock on the cache.
So it is not possible for last_read to be updated while we are
reading it. */
#ifdef UNIV_SYNC_DEBUG
ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif
now = ut_time_us(NULL);
if (now - cache->last_read > CACHE_MIN_IDLE_TIME_US) {
return(TRUE);
}
return(FALSE);
}
/*******************************************************************//**
Declare a cache empty, preparing it to be filled up. Not all resources
are freed because they can be reused. */
static
void
trx_i_s_cache_clear(
/*================*/
trx_i_s_cache_t* cache) /*!< out: cache to clear */
{
cache->innodb_trx.rows_used = 0;
cache->innodb_locks.rows_used = 0;
cache->innodb_lock_waits.rows_used = 0;
hash_table_clear(cache->locks_hash);
ha_storage_empty(&cache->storage);
}
/*******************************************************************//**
Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
table cache buffer. Cache must be locked for write. */
static
void
fetch_data_into_cache(
/*==================*/
trx_i_s_cache_t* cache) /*!< in/out: cache */
{
trx_t* trx;
i_s_trx_row_t* trx_row;
i_s_locks_row_t* requested_lock_row;
ut_ad(mutex_own(&kernel_mutex));
trx_i_s_cache_clear(cache);
/* We iterate over the list of all transactions and add each one
to innodb_trx's cache. We also add all locks that are relevant
to each transaction into innodb_locks' and innodb_lock_waits'
caches. */
for (trx = UT_LIST_GET_FIRST(trx_sys->trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
if (!add_trx_relevant_locks_to_cache(cache, trx,
&requested_lock_row)) {
cache->is_truncated = TRUE;
return;
}
trx_row = (i_s_trx_row_t*)
table_cache_create_empty_row(&cache->innodb_trx,
cache);
/* memory could not be allocated */
if (trx_row == NULL) {
cache->is_truncated = TRUE;
return;
}
if (!fill_trx_row(trx_row, trx, requested_lock_row, cache)) {
/* memory could not be allocated */
cache->innodb_trx.rows_used--;
cache->is_truncated = TRUE;
return;
}
}
cache->is_truncated = FALSE;
}
/*******************************************************************//**
Update the transactions cache if it has not been read for some time.
Called from handler/i_s.cc.
@return 0 - fetched, 1 - not */
UNIV_INTERN
int
trx_i_s_possibly_fetch_data_into_cache(
/*===================================*/
trx_i_s_cache_t* cache) /*!< in/out: cache */
{
if (!can_cache_be_updated(cache)) {
return(1);
}
/* We need to read trx_sys and record/table lock queues */
mutex_enter(&kernel_mutex);
fetch_data_into_cache(cache);
mutex_exit(&kernel_mutex);
return(0);
}
/*******************************************************************//**
Returns TRUE if the data in the cache is truncated due to the memory
limit posed by TRX_I_S_MEM_LIMIT.
@return TRUE if truncated */
UNIV_INTERN
ibool
trx_i_s_cache_is_truncated(
/*=======================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
return(cache->is_truncated);
}
/*******************************************************************//**
Initialize INFORMATION SCHEMA trx related cache. */
UNIV_INTERN
void
trx_i_s_cache_init(
/*===============*/
trx_i_s_cache_t* cache) /*!< out: cache to init */
{
/* The latching is done in the following order:
acquire trx_i_s_cache_t::rw_lock, X
acquire kernel_mutex
release kernel_mutex
release trx_i_s_cache_t::rw_lock
acquire trx_i_s_cache_t::rw_lock, S
acquire trx_i_s_cache_t::last_read_mutex
release trx_i_s_cache_t::last_read_mutex
release trx_i_s_cache_t::rw_lock */
rw_lock_create(trx_i_s_cache_lock_key, &cache->rw_lock,
SYNC_TRX_I_S_RWLOCK);
cache->last_read = 0;
mutex_create(cache_last_read_mutex_key,
&cache->last_read_mutex, SYNC_TRX_I_S_LAST_READ);
table_cache_init(&cache->innodb_trx, sizeof(i_s_trx_row_t));
table_cache_init(&cache->innodb_locks, sizeof(i_s_locks_row_t));
table_cache_init(&cache->innodb_lock_waits,
sizeof(i_s_lock_waits_row_t));
cache->locks_hash = hash_create(LOCKS_HASH_CELLS_NUM);
cache->storage = ha_storage_create(CACHE_STORAGE_INITIAL_SIZE,
CACHE_STORAGE_HASH_CELLS);
cache->mem_allocd = 0;
cache->is_truncated = FALSE;
}
/*******************************************************************//**
Free the INFORMATION SCHEMA trx related cache. */
UNIV_INTERN
void
trx_i_s_cache_free(
/*===============*/
trx_i_s_cache_t* cache) /*!< in, own: cache to free */
{
hash_table_free(cache->locks_hash);
ha_storage_free(cache->storage);
table_cache_free(&cache->innodb_trx);
table_cache_free(&cache->innodb_locks);
table_cache_free(&cache->innodb_lock_waits);
memset(cache, 0, sizeof *cache);
}
/*******************************************************************//**
Issue a shared/read lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_start_read(
/*=====================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
rw_lock_s_lock(&cache->rw_lock);
}
/*******************************************************************//**
Release a shared/read lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_end_read(
/*===================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
ullint now;
#ifdef UNIV_SYNC_DEBUG
ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_SHARED));
#endif
/* update cache last read time */
now = ut_time_us(NULL);
mutex_enter(&cache->last_read_mutex);
cache->last_read = now;
mutex_exit(&cache->last_read_mutex);
rw_lock_s_unlock(&cache->rw_lock);
}
/*******************************************************************//**
Issue an exclusive/write lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_start_write(
/*======================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
rw_lock_x_lock(&cache->rw_lock);
}
/*******************************************************************//**
Release an exclusive/write lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_end_write(
/*====================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
#ifdef UNIV_SYNC_DEBUG
ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif
rw_lock_x_unlock(&cache->rw_lock);
}
/*******************************************************************//**
Selects a INFORMATION SCHEMA table cache from the whole cache.
@return table cache */
static
i_s_table_cache_t*
cache_select_table(
/*===============*/
trx_i_s_cache_t* cache, /*!< in: whole cache */
enum i_s_table table) /*!< in: which table */
{
i_s_table_cache_t* table_cache;
#ifdef UNIV_SYNC_DEBUG
ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_SHARED)
|| rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif
switch (table) {
case I_S_INNODB_TRX:
table_cache = &cache->innodb_trx;
break;
case I_S_INNODB_LOCKS:
table_cache = &cache->innodb_locks;
break;
case I_S_INNODB_LOCK_WAITS:
table_cache = &cache->innodb_lock_waits;
break;
default:
ut_error;
}
return(table_cache);
}
/*******************************************************************//**
Retrieves the number of used rows in the cache for a given
INFORMATION SCHEMA table.
@return number of rows */
UNIV_INTERN
ulint
trx_i_s_cache_get_rows_used(
/*========================*/
trx_i_s_cache_t* cache, /*!< in: cache */
enum i_s_table table) /*!< in: which table */
{
i_s_table_cache_t* table_cache;
table_cache = cache_select_table(cache, table);
return(table_cache->rows_used);
}
/*******************************************************************//**
Retrieves the nth row (zero-based) in the cache for a given
INFORMATION SCHEMA table.
@return row */
UNIV_INTERN
void*
trx_i_s_cache_get_nth_row(
/*======================*/
trx_i_s_cache_t* cache, /*!< in: cache */
enum i_s_table table, /*!< in: which table */
ulint n) /*!< in: row number */
{
i_s_table_cache_t* table_cache;
ulint i;
void* row;
table_cache = cache_select_table(cache, table);
ut_a(n < table_cache->rows_used);
row = NULL;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].offset
+ table_cache->chunks[i].rows_allocd > n) {
row = (char*) table_cache->chunks[i].base
+ (n - table_cache->chunks[i].offset)
* table_cache->row_size;
break;
}
}
ut_a(row != NULL);
return(row);
}
/*******************************************************************//**
Crafts a lock id string from a i_s_locks_row_t object. Returns its
second argument. This function aborts if there is not enough space in
lock_id. Be sure to provide at least TRX_I_S_LOCK_ID_MAX_LEN + 1 if you
want to be 100% sure that it will not abort.
@return resulting lock id */
UNIV_INTERN
char*
trx_i_s_create_lock_id(
/*===================*/
const i_s_locks_row_t* row, /*!< in: innodb_locks row */
char* lock_id,/*!< out: resulting lock_id */
ulint lock_id_size)/*!< in: size of the lock id
buffer */
{
int res_len;
/* please adjust TRX_I_S_LOCK_ID_MAX_LEN if you change this */
if (row->lock_space != ULINT_UNDEFINED) {
/* record lock */
res_len = ut_snprintf(lock_id, lock_id_size,
TRX_ID_FMT ":%lu:%lu:%lu",
row->lock_trx_id, row->lock_space,
row->lock_page, row->lock_rec);
} else {
/* table lock */
res_len = ut_snprintf(lock_id, lock_id_size,
TRX_ID_FMT ":%llu",
row->lock_trx_id,
row->lock_table_id);
}
/* the typecast is safe because snprintf(3) never returns
negative result */
ut_a(res_len >= 0);
ut_a((ulint) res_len < lock_id_size);
return(lock_id);
}