mirror of
https://github.com/MariaDB/server.git
synced 2025-02-02 20:11:42 +01:00
6378cae6bb
there will always be enough space for two node pointer records in an empty B-tree page. This was reported as Mantis issue #73. page_zip_rec_needs_ext(): Add the parameter n_fields, for accurate estimation of the compressed size of the data dictionary information. Given that this function is only invoked for records on leaf pages, require that there be enough space for one record in the compressed page. We check elsewhere that there will be enough room for two node pointer records on higher-level pages. btr_cur_optimistic_insert(): Ensure that there will be enough room for two node pointer records on an empty non-leaf page. The rule for leaf-page records will be enforced by the callers of page_zip_rec_needs_ext(). btr_cur_pessimistic_insert(): Remove the insufficient check that the leaf page record should be compressible by itself. Instead, now we require that two node pointer records fit on a non-leaf page, and one record will fit in uncompressed form on the leaf page. page_zip_write_header(), page_zip_write_rec(): Re-enable the debug assertions that were violated by the insufficient check in btr_cur_pessimistic_insert(). innodb_bug36172.test: Use a larger compressed page size.
738 lines
17 KiB
C
738 lines
17 KiB
C
/************************************************************************
|
|
SQL data field and tuple
|
|
|
|
(c) 1994-1996 Innobase Oy
|
|
|
|
Created 5/30/1994 Heikki Tuuri
|
|
*************************************************************************/
|
|
|
|
#include "data0data.h"
|
|
|
|
#ifdef UNIV_NONINL
|
|
#include "data0data.ic"
|
|
#endif
|
|
|
|
#include "rem0rec.h"
|
|
#include "rem0cmp.h"
|
|
#include "page0page.h"
|
|
#include "page0zip.h"
|
|
#include "dict0dict.h"
|
|
#include "btr0cur.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/* data pointers of tuple fields are initialized to point here
|
|
for error checking */
|
|
UNIV_INTERN byte data_error;
|
|
|
|
/* this is used to fool the compiler in dtuple_validate */
|
|
UNIV_INTERN ulint data_dummy;
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*************************************************************************
|
|
Tests if dfield data length and content is equal to the given. */
|
|
UNIV_INTERN
|
|
ibool
|
|
dfield_data_is_binary_equal(
|
|
/*========================*/
|
|
/* out: TRUE if equal */
|
|
const dfield_t* field, /* in: field */
|
|
ulint len, /* in: data length or UNIV_SQL_NULL */
|
|
const byte* data) /* in: data */
|
|
{
|
|
if (len != dfield_get_len(field)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
if (len == UNIV_SQL_NULL) {
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
if (0 != memcmp(dfield_get_data(field), data, len)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/****************************************************************
|
|
Compare two data tuples, respecting the collation of character fields. */
|
|
UNIV_INTERN
|
|
int
|
|
dtuple_coll_cmp(
|
|
/*============*/
|
|
/* out: 1, 0 , -1 if tuple1 is greater, equal,
|
|
less, respectively, than tuple2 */
|
|
const dtuple_t* tuple1, /* in: tuple 1 */
|
|
const dtuple_t* tuple2) /* in: tuple 2 */
|
|
{
|
|
ulint n_fields;
|
|
ulint i;
|
|
|
|
ut_ad(tuple1 && tuple2);
|
|
ut_ad(tuple1->magic_n == DATA_TUPLE_MAGIC_N);
|
|
ut_ad(tuple2->magic_n == DATA_TUPLE_MAGIC_N);
|
|
ut_ad(dtuple_check_typed(tuple1));
|
|
ut_ad(dtuple_check_typed(tuple2));
|
|
|
|
n_fields = dtuple_get_n_fields(tuple1);
|
|
|
|
if (n_fields != dtuple_get_n_fields(tuple2)) {
|
|
|
|
return(n_fields < dtuple_get_n_fields(tuple2) ? -1 : 1);
|
|
}
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
int cmp;
|
|
const dfield_t* field1 = dtuple_get_nth_field(tuple1, i);
|
|
const dfield_t* field2 = dtuple_get_nth_field(tuple2, i);
|
|
|
|
cmp = cmp_dfield_dfield(field1, field2);
|
|
|
|
if (cmp) {
|
|
return(cmp);
|
|
}
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*************************************************************************
|
|
Sets number of fields used in a tuple. Normally this is set in
|
|
dtuple_create, but if you want later to set it smaller, you can use this. */
|
|
UNIV_INTERN
|
|
void
|
|
dtuple_set_n_fields(
|
|
/*================*/
|
|
dtuple_t* tuple, /* in: tuple */
|
|
ulint n_fields) /* in: number of fields */
|
|
{
|
|
ut_ad(tuple);
|
|
|
|
tuple->n_fields = n_fields;
|
|
tuple->n_fields_cmp = n_fields;
|
|
}
|
|
|
|
/**************************************************************
|
|
Checks that a data field is typed. */
|
|
static
|
|
ibool
|
|
dfield_check_typed_no_assert(
|
|
/*=========================*/
|
|
/* out: TRUE if ok */
|
|
const dfield_t* field) /* in: data field */
|
|
{
|
|
if (dfield_get_type(field)->mtype > DATA_MYSQL
|
|
|| dfield_get_type(field)->mtype < DATA_VARCHAR) {
|
|
|
|
fprintf(stderr,
|
|
"InnoDB: Error: data field type %lu, len %lu\n",
|
|
(ulong) dfield_get_type(field)->mtype,
|
|
(ulong) dfield_get_len(field));
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**************************************************************
|
|
Checks that a data tuple is typed. */
|
|
UNIV_INTERN
|
|
ibool
|
|
dtuple_check_typed_no_assert(
|
|
/*=========================*/
|
|
/* out: TRUE if ok */
|
|
const dtuple_t* tuple) /* in: tuple */
|
|
{
|
|
const dfield_t* field;
|
|
ulint i;
|
|
|
|
if (dtuple_get_n_fields(tuple) > REC_MAX_N_FIELDS) {
|
|
fprintf(stderr,
|
|
"InnoDB: Error: index entry has %lu fields\n",
|
|
(ulong) dtuple_get_n_fields(tuple));
|
|
dump:
|
|
fputs("InnoDB: Tuple contents: ", stderr);
|
|
dtuple_print(stderr, tuple);
|
|
putc('\n', stderr);
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
|
|
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
|
|
if (!dfield_check_typed_no_assert(field)) {
|
|
goto dump;
|
|
}
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**************************************************************
|
|
Checks that a data field is typed. Asserts an error if not. */
|
|
UNIV_INTERN
|
|
ibool
|
|
dfield_check_typed(
|
|
/*===============*/
|
|
/* out: TRUE if ok */
|
|
const dfield_t* field) /* in: data field */
|
|
{
|
|
if (dfield_get_type(field)->mtype > DATA_MYSQL
|
|
|| dfield_get_type(field)->mtype < DATA_VARCHAR) {
|
|
|
|
fprintf(stderr,
|
|
"InnoDB: Error: data field type %lu, len %lu\n",
|
|
(ulong) dfield_get_type(field)->mtype,
|
|
(ulong) dfield_get_len(field));
|
|
|
|
ut_error;
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**************************************************************
|
|
Checks that a data tuple is typed. Asserts an error if not. */
|
|
UNIV_INTERN
|
|
ibool
|
|
dtuple_check_typed(
|
|
/*===============*/
|
|
/* out: TRUE if ok */
|
|
const dtuple_t* tuple) /* in: tuple */
|
|
{
|
|
const dfield_t* field;
|
|
ulint i;
|
|
|
|
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
|
|
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
|
|
ut_a(dfield_check_typed(field));
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/**************************************************************
|
|
Validates the consistency of a tuple which must be complete, i.e,
|
|
all fields must have been set. */
|
|
UNIV_INTERN
|
|
ibool
|
|
dtuple_validate(
|
|
/*============*/
|
|
/* out: TRUE if ok */
|
|
const dtuple_t* tuple) /* in: tuple */
|
|
{
|
|
const dfield_t* field;
|
|
const byte* data;
|
|
ulint n_fields;
|
|
ulint len;
|
|
ulint i;
|
|
ulint j;
|
|
|
|
ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N);
|
|
|
|
n_fields = dtuple_get_n_fields(tuple);
|
|
|
|
/* We dereference all the data of each field to test
|
|
for memory traps */
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
len = dfield_get_len(field);
|
|
|
|
if (!dfield_is_null(field)) {
|
|
|
|
data = dfield_get_data(field);
|
|
UNIV_MEM_ASSERT_RW(data, len);
|
|
|
|
for (j = 0; j < len; j++) {
|
|
|
|
data_dummy += *data; /* fool the compiler not
|
|
to optimize out this
|
|
code */
|
|
data++;
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_a(dtuple_check_typed(tuple));
|
|
|
|
return(TRUE);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*****************************************************************
|
|
Pretty prints a dfield value according to its data type. */
|
|
UNIV_INTERN
|
|
void
|
|
dfield_print(
|
|
/*=========*/
|
|
const dfield_t* dfield) /* in: dfield */
|
|
{
|
|
const byte* data;
|
|
ulint len;
|
|
ulint i;
|
|
|
|
len = dfield_get_len(dfield);
|
|
data = dfield_get_data(dfield);
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
fputs("NULL", stderr);
|
|
|
|
return;
|
|
}
|
|
|
|
switch (dtype_get_mtype(dfield_get_type(dfield))) {
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
for (i = 0; i < len; i++) {
|
|
int c = *data++;
|
|
putc(isprint(c) ? c : ' ', stderr);
|
|
}
|
|
|
|
if (dfield_is_ext(dfield)) {
|
|
fputs("(external)", stderr);
|
|
}
|
|
break;
|
|
case DATA_INT:
|
|
ut_a(len == 4); /* only works for 32-bit integers */
|
|
fprintf(stderr, "%d", (int)mach_read_from_4(data));
|
|
break;
|
|
default:
|
|
ut_error;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************
|
|
Pretty prints a dfield value according to its data type. Also the hex string
|
|
is printed if a string contains non-printable characters. */
|
|
UNIV_INTERN
|
|
void
|
|
dfield_print_also_hex(
|
|
/*==================*/
|
|
const dfield_t* dfield) /* in: dfield */
|
|
{
|
|
const byte* data;
|
|
ulint len;
|
|
ulint prtype;
|
|
ulint i;
|
|
ibool print_also_hex;
|
|
|
|
len = dfield_get_len(dfield);
|
|
data = dfield_get_data(dfield);
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
fputs("NULL", stderr);
|
|
|
|
return;
|
|
}
|
|
|
|
prtype = dtype_get_prtype(dfield_get_type(dfield));
|
|
|
|
switch (dtype_get_mtype(dfield_get_type(dfield))) {
|
|
dulint id;
|
|
case DATA_INT:
|
|
switch (len) {
|
|
ulint val;
|
|
case 1:
|
|
val = mach_read_from_1(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x80;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
val = mach_read_from_2(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x8000;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
val = mach_read_from_3(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x800000;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
val = mach_read_from_4(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x80000000;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 6:
|
|
id = mach_read_from_6(data);
|
|
fprintf(stderr, "{%lu %lu}",
|
|
ut_dulint_get_high(id),
|
|
ut_dulint_get_low(id));
|
|
break;
|
|
|
|
case 7:
|
|
id = mach_read_from_7(data);
|
|
fprintf(stderr, "{%lu %lu}",
|
|
ut_dulint_get_high(id),
|
|
ut_dulint_get_low(id));
|
|
break;
|
|
case 8:
|
|
id = mach_read_from_8(data);
|
|
fprintf(stderr, "{%lu %lu}",
|
|
ut_dulint_get_high(id),
|
|
ut_dulint_get_low(id));
|
|
break;
|
|
default:
|
|
goto print_hex;
|
|
}
|
|
break;
|
|
|
|
case DATA_SYS:
|
|
switch (prtype & DATA_SYS_PRTYPE_MASK) {
|
|
case DATA_TRX_ID:
|
|
id = mach_read_from_6(data);
|
|
|
|
fprintf(stderr, "trx_id " TRX_ID_FMT,
|
|
TRX_ID_PREP_PRINTF(id));
|
|
break;
|
|
|
|
case DATA_ROLL_PTR:
|
|
id = mach_read_from_7(data);
|
|
|
|
fprintf(stderr, "roll_ptr {%lu %lu}",
|
|
ut_dulint_get_high(id), ut_dulint_get_low(id));
|
|
break;
|
|
|
|
case DATA_ROW_ID:
|
|
id = mach_read_from_6(data);
|
|
|
|
fprintf(stderr, "row_id {%lu %lu}",
|
|
ut_dulint_get_high(id), ut_dulint_get_low(id));
|
|
break;
|
|
|
|
default:
|
|
id = mach_dulint_read_compressed(data);
|
|
|
|
fprintf(stderr, "mix_id {%lu %lu}",
|
|
ut_dulint_get_high(id), ut_dulint_get_low(id));
|
|
}
|
|
break;
|
|
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
print_also_hex = FALSE;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
int c = *data++;
|
|
|
|
if (!isprint(c)) {
|
|
print_also_hex = TRUE;
|
|
|
|
fprintf(stderr, "\\x%02x", (unsigned char) c);
|
|
} else {
|
|
putc(c, stderr);
|
|
}
|
|
}
|
|
|
|
if (dfield_is_ext(dfield)) {
|
|
fputs("(external)", stderr);
|
|
}
|
|
|
|
if (!print_also_hex) {
|
|
break;
|
|
}
|
|
|
|
data = dfield_get_data(dfield);
|
|
/* fall through */
|
|
|
|
case DATA_BINARY:
|
|
default:
|
|
print_hex:
|
|
fputs(" Hex: ",stderr);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
fprintf(stderr, "%02lx", (ulint) *data++);
|
|
}
|
|
|
|
if (dfield_is_ext(dfield)) {
|
|
fputs("(external)", stderr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************
|
|
Print a dfield value using ut_print_buf. */
|
|
static
|
|
void
|
|
dfield_print_raw(
|
|
/*=============*/
|
|
FILE* f, /* in: output stream */
|
|
const dfield_t* dfield) /* in: dfield */
|
|
{
|
|
ulint len = dfield_get_len(dfield);
|
|
if (!dfield_is_null(dfield)) {
|
|
ulint print_len = ut_min(len, 1000);
|
|
ut_print_buf(f, dfield_get_data(dfield), print_len);
|
|
if (len != print_len) {
|
|
fprintf(f, "(total %lu bytes%s)",
|
|
(ulong) len,
|
|
dfield_is_ext(dfield) ? ", external" : "");
|
|
}
|
|
} else {
|
|
fputs(" SQL NULL", f);
|
|
}
|
|
}
|
|
|
|
/**************************************************************
|
|
The following function prints the contents of a tuple. */
|
|
UNIV_INTERN
|
|
void
|
|
dtuple_print(
|
|
/*=========*/
|
|
FILE* f, /* in: output stream */
|
|
const dtuple_t* tuple) /* in: tuple */
|
|
{
|
|
ulint n_fields;
|
|
ulint i;
|
|
|
|
n_fields = dtuple_get_n_fields(tuple);
|
|
|
|
fprintf(f, "DATA TUPLE: %lu fields;\n", (ulong) n_fields);
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
fprintf(f, " %lu:", (ulong) i);
|
|
|
|
dfield_print_raw(f, dtuple_get_nth_field(tuple, i));
|
|
|
|
putc(';', f);
|
|
}
|
|
|
|
putc('\n', f);
|
|
ut_ad(dtuple_validate(tuple));
|
|
}
|
|
|
|
/******************************************************************
|
|
Moves parts of long fields in entry to the big record vector so that
|
|
the size of tuple drops below the maximum record size allowed in the
|
|
database. Moves data only from those fields which are not necessary
|
|
to determine uniquely the insertion place of the tuple in the index. */
|
|
UNIV_INTERN
|
|
big_rec_t*
|
|
dtuple_convert_big_rec(
|
|
/*===================*/
|
|
/* out, own: created big record vector,
|
|
NULL if we are not able to shorten
|
|
the entry enough, i.e., if there are
|
|
too many fixed-length or short fields
|
|
in entry or the index is clustered */
|
|
dict_index_t* index, /* in: index */
|
|
dtuple_t* entry, /* in/out: index entry */
|
|
ulint* n_ext) /* in/out: number of
|
|
externally stored columns */
|
|
{
|
|
mem_heap_t* heap;
|
|
big_rec_t* vector;
|
|
dfield_t* dfield;
|
|
dict_field_t* ifield;
|
|
ulint size;
|
|
ulint n_fields;
|
|
ulint local_len;
|
|
ulint local_prefix_len;
|
|
|
|
if (UNIV_UNLIKELY(!dict_index_is_clust(index))) {
|
|
return(NULL);
|
|
}
|
|
|
|
if (dict_table_get_format(index->table) < DICT_TF_FORMAT_ZIP) {
|
|
/* up to MySQL 5.1: store a 768-byte prefix locally */
|
|
local_len = BTR_EXTERN_FIELD_REF_SIZE + DICT_MAX_INDEX_COL_LEN;
|
|
} else {
|
|
/* new-format table: do not store any BLOB prefix locally */
|
|
local_len = BTR_EXTERN_FIELD_REF_SIZE;
|
|
}
|
|
|
|
ut_a(dtuple_check_typed_no_assert(entry));
|
|
|
|
size = rec_get_converted_size(index, entry, *n_ext);
|
|
|
|
if (UNIV_UNLIKELY(size > 1000000000)) {
|
|
fprintf(stderr,
|
|
"InnoDB: Warning: tuple size very big: %lu\n",
|
|
(ulong) size);
|
|
fputs("InnoDB: Tuple contents: ", stderr);
|
|
dtuple_print(stderr, entry);
|
|
putc('\n', stderr);
|
|
}
|
|
|
|
heap = mem_heap_create(size + dtuple_get_n_fields(entry)
|
|
* sizeof(big_rec_field_t) + 1000);
|
|
|
|
vector = mem_heap_alloc(heap, sizeof(big_rec_t));
|
|
|
|
vector->heap = heap;
|
|
vector->fields = mem_heap_alloc(heap, dtuple_get_n_fields(entry)
|
|
* sizeof(big_rec_field_t));
|
|
|
|
/* Decide which fields to shorten: the algorithm is to look for
|
|
a variable-length field that yields the biggest savings when
|
|
stored externally */
|
|
|
|
n_fields = 0;
|
|
|
|
while (page_zip_rec_needs_ext(rec_get_converted_size(index, entry,
|
|
*n_ext),
|
|
dict_table_is_comp(index->table),
|
|
dict_index_get_n_fields(index),
|
|
dict_table_zip_size(index->table))) {
|
|
ulint i;
|
|
ulint longest = 0;
|
|
ulint longest_i = ULINT_MAX;
|
|
byte* data;
|
|
big_rec_field_t* b;
|
|
|
|
for (i = dict_index_get_n_unique_in_tree(index);
|
|
i < dtuple_get_n_fields(entry); i++) {
|
|
ulint savings;
|
|
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
ifield = dict_index_get_nth_field(index, i);
|
|
|
|
/* Skip fixed-length, NULL, externally stored,
|
|
or short columns */
|
|
|
|
if (ifield->fixed_len
|
|
|| dfield_is_null(dfield)
|
|
|| dfield_is_ext(dfield)
|
|
|| dfield_get_len(dfield) <= local_len
|
|
|| dfield_get_len(dfield)
|
|
<= BTR_EXTERN_FIELD_REF_SIZE * 2) {
|
|
goto skip_field;
|
|
}
|
|
|
|
savings = dfield_get_len(dfield) - local_len;
|
|
|
|
/* Check that there would be savings */
|
|
if (longest >= savings) {
|
|
goto skip_field;
|
|
}
|
|
|
|
longest_i = i;
|
|
longest = savings;
|
|
|
|
skip_field:
|
|
continue;
|
|
}
|
|
|
|
if (!longest) {
|
|
/* Cannot shorten more */
|
|
|
|
mem_heap_free(heap);
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/* Move data from field longest_i to big rec vector.
|
|
|
|
We store the first bytes locally to the record. Then
|
|
we can calculate all ordering fields in all indexes
|
|
from locally stored data. */
|
|
|
|
dfield = dtuple_get_nth_field(entry, longest_i);
|
|
ifield = dict_index_get_nth_field(index, longest_i);
|
|
local_prefix_len = local_len - BTR_EXTERN_FIELD_REF_SIZE;
|
|
|
|
b = &vector->fields[n_fields];
|
|
b->field_no = longest_i;
|
|
b->len = dfield_get_len(dfield) - local_prefix_len;
|
|
b->data = (char*) dfield_get_data(dfield) + local_prefix_len;
|
|
|
|
/* Allocate the locally stored part of the column. */
|
|
data = mem_heap_alloc(heap, local_len);
|
|
|
|
/* Copy the local prefix. */
|
|
memcpy(data, dfield_get_data(dfield), local_prefix_len);
|
|
/* Clear the extern field reference (BLOB pointer). */
|
|
memset(data + local_prefix_len, 0, BTR_EXTERN_FIELD_REF_SIZE);
|
|
#if 0
|
|
/* The following would fail the Valgrind checks in
|
|
page_cur_insert_rec_low() and page_cur_insert_rec_zip().
|
|
The BLOB pointers in the record will be initialized after
|
|
the record and the BLOBs have been written. */
|
|
UNIV_MEM_ALLOC(data + local_prefix_len,
|
|
BTR_EXTERN_FIELD_REF_SIZE);
|
|
#endif
|
|
|
|
dfield_set_data(dfield, data, local_len);
|
|
dfield_set_ext(dfield);
|
|
|
|
n_fields++;
|
|
(*n_ext)++;
|
|
ut_ad(n_fields < dtuple_get_n_fields(entry));
|
|
}
|
|
|
|
vector->n_fields = n_fields;
|
|
return(vector);
|
|
}
|
|
|
|
/******************************************************************
|
|
Puts back to entry the data stored in vector. Note that to ensure the
|
|
fields in entry can accommodate the data, vector must have been created
|
|
from entry with dtuple_convert_big_rec. */
|
|
UNIV_INTERN
|
|
void
|
|
dtuple_convert_back_big_rec(
|
|
/*========================*/
|
|
dict_index_t* index __attribute__((unused)), /* in: index */
|
|
dtuple_t* entry, /* in: entry whose data was put to vector */
|
|
big_rec_t* vector) /* in, own: big rec vector; it is
|
|
freed in this function */
|
|
{
|
|
big_rec_field_t* b = vector->fields;
|
|
const big_rec_field_t* const end = b + vector->n_fields;
|
|
|
|
for (; b < end; b++) {
|
|
dfield_t* dfield;
|
|
ulint local_len;
|
|
|
|
dfield = dtuple_get_nth_field(entry, b->field_no);
|
|
local_len = dfield_get_len(dfield);
|
|
|
|
ut_ad(dfield_is_ext(dfield));
|
|
ut_ad(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
|
|
local_len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
|
|
ut_ad(local_len <= DICT_MAX_INDEX_COL_LEN);
|
|
|
|
dfield_set_data(dfield,
|
|
(char*) b->data - local_len,
|
|
b->len + local_len);
|
|
}
|
|
|
|
mem_heap_free(vector->heap);
|
|
}
|