mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 01:04:19 +01:00
0c5d1342ae
This commit implements two phase binloggable ALTER. When a new @@session.binlog_alter_two_phase = YES ALTER query gets logged in two parts, the START ALTER and the COMMIT or ROLLBACK ALTER. START Alter is written in binlog as soon as necessary locks have been acquired for the table. The timing is such that any concurrent DML:s that update the same table are either committed, thus logged into binary log having done work on the old version of the table, or will be queued for execution on its new version. The "COMPLETE" COMMIT or ROLLBACK ALTER are written at the very point of a normal "single-piece" ALTER that is after the most of the query work is done. When its result is positive COMMIT ALTER is written, otherwise ROLLBACK ALTER is written with specific error happened after START ALTER phase. Replication of two-phase binloggable ALTER is cross-version safe. Specifically the OLD slave merely does not recognized the start alter part, still being able to process and memorize its gtid. Two phase logged ALTER is read from binlog by mysqlbinlog to produce BINLOG 'string', where 'string' contains base64 encoded Query_log_event containing either the start part of ALTER, or a completion part. The Query details can be displayed with `-v` flag, similarly to ROW format events. Notice, mysqlbinlog output containing parts of two-phase binloggable ALTER is processable correctly only by binlog_alter_two_phase server. @@log_warnings > 2 can reveal details of binlogging and slave side processing of the ALTER parts. The current commit also carries fixes to the following list of reported bugs: MDEV-27511, MDEV-27471, MDEV-27349, MDEV-27628, MDEV-27528. Thanks to all people involved into early discussion of the feature including Kristian Nielsen, those who helped to design, implement and test: Sergei Golubchik, Andrei Elkin who took the burden of the implemenation completion, Sujatha Sivakumar, Brandon Nesterenko, Alice Sherepa, Ramesh Sivaraman, Jan Lindstrom.
471 lines
16 KiB
C++
471 lines
16 KiB
C++
#ifndef RPL_PARALLEL_H
|
|
#define RPL_PARALLEL_H
|
|
|
|
#include "log_event.h"
|
|
|
|
|
|
struct rpl_parallel;
|
|
struct rpl_parallel_entry;
|
|
struct rpl_parallel_thread_pool;
|
|
extern struct rpl_parallel_thread_pool pool_bkp_for_pfs;
|
|
|
|
class Relay_log_info;
|
|
struct inuse_relaylog;
|
|
|
|
|
|
/*
|
|
Structure used to keep track of the parallel replication of a batch of
|
|
event-groups that group-committed together on the master.
|
|
|
|
It is used to ensure that every event group in one batch has reached the
|
|
commit stage before the next batch starts executing.
|
|
|
|
Note the lifetime of this structure:
|
|
|
|
- It is allocated when the first event in a new batch of group commits
|
|
is queued, from the free list rpl_parallel_entry::gco_free_list.
|
|
|
|
- The gco for the batch currently being queued is owned by
|
|
rpl_parallel_entry::current_gco. The gco for a previous batch that has
|
|
been fully queued is owned by the gco->prev_gco pointer of the gco for
|
|
the following batch.
|
|
|
|
- The worker thread waits on gco->COND_group_commit_orderer for
|
|
rpl_parallel_entry::count_committing_event_groups to reach wait_count
|
|
before starting; the first waiter links the gco into the next_gco
|
|
pointer of the gco of the previous batch for signalling.
|
|
|
|
- When an event group reaches the commit stage, it signals the
|
|
COND_group_commit_orderer if its gco->next_gco pointer is non-NULL and
|
|
rpl_parallel_entry::count_committing_event_groups has reached
|
|
gco->next_gco->wait_count.
|
|
|
|
- The gco lives until all its event groups have completed their commit.
|
|
This is detected by rpl_parallel_entry::last_committed_sub_id being
|
|
greater than or equal gco->last_sub_id. Once this happens, the gco is
|
|
freed. Note that since update of last_committed_sub_id can happen
|
|
out-of-order, the thread that frees a given gco can be for any later
|
|
event group, not necessarily an event group from the gco being freed.
|
|
*/
|
|
struct group_commit_orderer {
|
|
/* Wakeup condition, used with rpl_parallel_entry::LOCK_parallel_entry. */
|
|
mysql_cond_t COND_group_commit_orderer;
|
|
uint64 wait_count;
|
|
group_commit_orderer *prev_gco;
|
|
group_commit_orderer *next_gco;
|
|
/*
|
|
The sub_id of last event group in the previous GCO.
|
|
Only valid if prev_gco != NULL.
|
|
*/
|
|
uint64 prior_sub_id;
|
|
/*
|
|
The sub_id of the last event group in this GCO. Only valid when next_gco
|
|
is non-NULL.
|
|
*/
|
|
uint64 last_sub_id;
|
|
/*
|
|
This flag is set when this GCO has been installed into the next_gco pointer
|
|
of the previous GCO.
|
|
*/
|
|
bool installed;
|
|
|
|
enum force_switch_bits
|
|
{
|
|
/*
|
|
This flag is set for a GCO in which we have event groups with multiple
|
|
different commit_id values from the master. This happens when we
|
|
optimistically try to execute in parallel transactions not known to be
|
|
conflict-free.
|
|
|
|
When this flag is set, in case of DDL we need to start a new GCO
|
|
regardless of current commit_id, as DDL is not safe to
|
|
speculatively apply in parallel with prior event groups.
|
|
*/
|
|
MULTI_BATCH= 1,
|
|
/*
|
|
This flag is set for a GCO that contains DDL. If set, it forces
|
|
a switch to a new GCO upon seeing a new commit_id, as DDL is not
|
|
safe to speculatively replicate in parallel with subsequent
|
|
transactions.
|
|
*/
|
|
FORCE_SWITCH= 2
|
|
};
|
|
uint8 flags;
|
|
};
|
|
|
|
|
|
struct rpl_parallel_thread {
|
|
bool delay_start;
|
|
bool running;
|
|
bool stop;
|
|
bool pause_for_ftwrl;
|
|
/*
|
|
0 = No start alter assigned
|
|
>0 = Start alter assigned
|
|
*/
|
|
uint64 current_start_alter_id;
|
|
uint32 current_start_alter_domain_id;
|
|
/*
|
|
This flag is true when Start Alter just needs to be binlogged only.
|
|
This scenario will happens when there is congestion , and we can not
|
|
allocate independent worker to start alter.
|
|
*/
|
|
bool reserved_start_alter_thread;
|
|
mysql_mutex_t LOCK_rpl_thread;
|
|
mysql_cond_t COND_rpl_thread;
|
|
mysql_cond_t COND_rpl_thread_queue;
|
|
mysql_cond_t COND_rpl_thread_stop;
|
|
struct rpl_parallel_thread *next; /* For free list. */
|
|
struct rpl_parallel_thread_pool *pool;
|
|
THD *thd;
|
|
/*
|
|
Who owns the thread, if any (it's a pointer into the
|
|
rpl_parallel_entry::rpl_threads array.
|
|
*/
|
|
struct rpl_parallel_thread **current_owner;
|
|
/* The rpl_parallel_entry of the owner. */
|
|
rpl_parallel_entry *current_entry;
|
|
struct queued_event {
|
|
queued_event *next;
|
|
/*
|
|
queued_event can hold either an event to be executed, or just a binlog
|
|
position to be updated without any associated event.
|
|
*/
|
|
enum queued_event_t {
|
|
QUEUED_EVENT,
|
|
QUEUED_POS_UPDATE,
|
|
QUEUED_MASTER_RESTART
|
|
} typ;
|
|
union {
|
|
Log_event *ev; /* QUEUED_EVENT */
|
|
rpl_parallel_entry *entry_for_queued; /* QUEUED_POS_UPDATE and
|
|
QUEUED_MASTER_RESTART */
|
|
};
|
|
rpl_group_info *rgi;
|
|
inuse_relaylog *ir;
|
|
ulonglong future_event_relay_log_pos;
|
|
char event_relay_log_name[FN_REFLEN];
|
|
char future_event_master_log_name[FN_REFLEN];
|
|
ulonglong event_relay_log_pos;
|
|
my_off_t future_event_master_log_pos;
|
|
size_t event_size;
|
|
} *event_queue, *last_in_queue;
|
|
uint64 queued_size;
|
|
/* These free lists are protected by LOCK_rpl_thread. */
|
|
queued_event *qev_free_list;
|
|
rpl_group_info *rgi_free_list;
|
|
group_commit_orderer *gco_free_list;
|
|
/*
|
|
These free lists are local to the thread, so need not be protected by any
|
|
lock. They are moved to the global free lists in batches in the function
|
|
batch_free(), to reduce LOCK_rpl_thread contention.
|
|
|
|
The lists are not NULL-terminated (as we do not need to traverse them).
|
|
Instead, if they are non-NULL, the loc_XXX_last_ptr_ptr points to the
|
|
`next' pointer of the last element, which is used to link into the front
|
|
of the global freelists.
|
|
*/
|
|
queued_event *loc_qev_list, **loc_qev_last_ptr_ptr;
|
|
size_t loc_qev_size;
|
|
uint64 qev_free_pending;
|
|
rpl_group_info *loc_rgi_list, **loc_rgi_last_ptr_ptr;
|
|
group_commit_orderer *loc_gco_list, **loc_gco_last_ptr_ptr;
|
|
/* These keep track of batch update of inuse_relaylog refcounts. */
|
|
inuse_relaylog *accumulated_ir_last;
|
|
uint64 accumulated_ir_count;
|
|
|
|
char channel_name[MAX_CONNECTION_NAME];
|
|
uint channel_name_length;
|
|
rpl_gtid last_seen_gtid;
|
|
int last_error_number;
|
|
char last_error_message[MAX_SLAVE_ERRMSG];
|
|
ulonglong last_error_timestamp;
|
|
ulonglong worker_idle_time;
|
|
ulong last_trans_retry_count;
|
|
ulonglong start_time;
|
|
void start_time_tracker()
|
|
{
|
|
start_time= microsecond_interval_timer();
|
|
}
|
|
ulonglong compute_time_lapsed()
|
|
{
|
|
return (ulonglong)((microsecond_interval_timer() - start_time) / 1000000.0);
|
|
}
|
|
void add_to_worker_idle_time_and_reset()
|
|
{
|
|
worker_idle_time+= compute_time_lapsed();
|
|
start_time=0;
|
|
}
|
|
ulonglong get_worker_idle_time()
|
|
{
|
|
if (start_time)
|
|
return (worker_idle_time + compute_time_lapsed());
|
|
else
|
|
return worker_idle_time;
|
|
}
|
|
void enqueue(queued_event *qev)
|
|
{
|
|
if (last_in_queue)
|
|
last_in_queue->next= qev;
|
|
else
|
|
event_queue= qev;
|
|
last_in_queue= qev;
|
|
queued_size+= qev->event_size;
|
|
}
|
|
|
|
void dequeue1(queued_event *list)
|
|
{
|
|
DBUG_ASSERT(list == event_queue);
|
|
event_queue= last_in_queue= NULL;
|
|
}
|
|
|
|
void dequeue2(size_t dequeue_size)
|
|
{
|
|
queued_size-= dequeue_size;
|
|
}
|
|
|
|
queued_event *get_qev_common(Log_event *ev, ulonglong event_size);
|
|
queued_event *get_qev(Log_event *ev, ulonglong event_size,
|
|
Relay_log_info *rli);
|
|
queued_event *retry_get_qev(Log_event *ev, queued_event *orig_qev,
|
|
const char *relay_log_name,
|
|
ulonglong event_pos, ulonglong event_size);
|
|
/*
|
|
Put a qev on the local free list, to be later released to the global free
|
|
list by batch_free().
|
|
*/
|
|
void loc_free_qev(queued_event *qev);
|
|
/*
|
|
Release an rgi immediately to the global free list. Requires holding the
|
|
LOCK_rpl_thread mutex.
|
|
*/
|
|
void free_qev(queued_event *qev);
|
|
rpl_group_info *get_rgi(Relay_log_info *rli, Gtid_log_event *gtid_ev,
|
|
rpl_parallel_entry *e, ulonglong event_size);
|
|
/*
|
|
Put an gco on the local free list, to be later released to the global free
|
|
list by batch_free().
|
|
*/
|
|
void loc_free_rgi(rpl_group_info *rgi);
|
|
/*
|
|
Release an rgi immediately to the global free list. Requires holding the
|
|
LOCK_rpl_thread mutex.
|
|
*/
|
|
void free_rgi(rpl_group_info *rgi);
|
|
group_commit_orderer *get_gco(uint64 wait_count, group_commit_orderer *prev,
|
|
uint64 first_sub_id);
|
|
/*
|
|
Put a gco on the local free list, to be later released to the global free
|
|
list by batch_free().
|
|
*/
|
|
void loc_free_gco(group_commit_orderer *gco);
|
|
/*
|
|
Move all local free lists to the global ones. Requires holding
|
|
LOCK_rpl_thread.
|
|
*/
|
|
void batch_free();
|
|
/* Update inuse_relaylog refcounts with what we have accumulated so far. */
|
|
void inuse_relaylog_refcount_update();
|
|
rpl_parallel_thread();
|
|
};
|
|
|
|
|
|
struct pool_bkp_for_pfs{
|
|
uint32 count;
|
|
bool inited;
|
|
struct rpl_parallel_thread **rpl_thread_arr;
|
|
void init(uint32 thd_count)
|
|
{
|
|
DBUG_ASSERT(thd_count);
|
|
rpl_thread_arr= (rpl_parallel_thread **)
|
|
my_malloc(PSI_INSTRUMENT_ME,
|
|
thd_count * sizeof(rpl_parallel_thread*),
|
|
MYF(MY_WME | MY_ZEROFILL));
|
|
for (uint i=0; i<thd_count; i++)
|
|
rpl_thread_arr[i]= (rpl_parallel_thread *)
|
|
my_malloc(PSI_INSTRUMENT_ME, sizeof(rpl_parallel_thread),
|
|
MYF(MY_WME | MY_ZEROFILL));
|
|
count= thd_count;
|
|
inited= true;
|
|
}
|
|
|
|
void destroy()
|
|
{
|
|
if (inited)
|
|
{
|
|
for (uint i=0; i<count; i++)
|
|
my_free(rpl_thread_arr[i]);
|
|
|
|
my_free(rpl_thread_arr);
|
|
rpl_thread_arr= NULL;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct rpl_parallel_thread_pool {
|
|
struct rpl_parallel_thread **threads;
|
|
struct rpl_parallel_thread *free_list;
|
|
mysql_mutex_t LOCK_rpl_thread_pool;
|
|
mysql_cond_t COND_rpl_thread_pool;
|
|
uint32 count;
|
|
bool inited;
|
|
|
|
/*
|
|
Lock first LOCK_rpl_thread_pool and then LOCK_rpl_thread to
|
|
update this variable.
|
|
*/
|
|
uint32 current_start_alters;
|
|
/*
|
|
While FTWRL runs, this counter is incremented to make SQL thread or
|
|
STOP/START slave not try to start new activity while that operation
|
|
is in progress.
|
|
*/
|
|
bool busy;
|
|
struct pool_bkp_for_pfs pfs_bkp;
|
|
|
|
rpl_parallel_thread_pool();
|
|
void copy_pool_for_pfs(Relay_log_info *rli);
|
|
int init(uint32 size);
|
|
void destroy();
|
|
void deactivate();
|
|
void destroy_cond_mutex();
|
|
struct rpl_parallel_thread *get_thread(rpl_parallel_thread **owner,
|
|
rpl_parallel_entry *entry);
|
|
void release_thread(rpl_parallel_thread *rpt);
|
|
};
|
|
|
|
|
|
struct rpl_parallel_entry {
|
|
mysql_mutex_t LOCK_parallel_entry;
|
|
mysql_cond_t COND_parallel_entry;
|
|
uint32 domain_id;
|
|
/*
|
|
Incremented by wait_for_workers_idle() and rpl_pause_for_ftwrl() to show
|
|
that they are waiting, so that finish_event_group knows to signal them
|
|
when last_committed_sub_id is increased.
|
|
*/
|
|
uint32 need_sub_id_signal;
|
|
uint64 last_commit_id;
|
|
uint32 pending_start_alters;
|
|
bool active;
|
|
/*
|
|
Set when SQL thread is shutting down, and no more events can be processed,
|
|
so worker threads must force abort any current transactions without
|
|
waiting for event groups to complete.
|
|
*/
|
|
bool force_abort;
|
|
/*
|
|
At STOP SLAVE (force_abort=true), we do not want to process all events in
|
|
the queue (which could unnecessarily delay stop, if a lot of events happen
|
|
to be queued). The stop_count provides a safe point at which to stop, so
|
|
that everything before becomes committed and nothing after does. The value
|
|
corresponds to group_commit_orderer::wait_count; if wait_count is less than
|
|
or equal to stop_count, we execute the associated event group, else we
|
|
skip it (and all following) and stop.
|
|
*/
|
|
uint64 stop_count;
|
|
|
|
/*
|
|
Cyclic array recording the last rpl_thread_max worker threads that we
|
|
queued event for. This is used to limit how many workers a single domain
|
|
can occupy (--slave-domain-parallel-threads).
|
|
|
|
Note that workers are never explicitly deleted from the array. Instead,
|
|
we need to check (under LOCK_rpl_thread) that the thread still belongs
|
|
to us before re-using (rpl_thread::current_owner).
|
|
*/
|
|
rpl_parallel_thread **rpl_threads;
|
|
uint32 rpl_thread_max;
|
|
uint32 rpl_thread_idx;
|
|
/*
|
|
The sub_id of the last transaction to commit within this domain_id.
|
|
Must be accessed under LOCK_parallel_entry protection.
|
|
|
|
Event groups commit in order, so the rpl_group_info for an event group
|
|
will be alive (at least) as long as
|
|
rpl_group_info::gtid_sub_id > last_committed_sub_id. This can be used to
|
|
safely refer back to previous event groups if they are still executing,
|
|
and ignore them if they completed, without requiring explicit
|
|
synchronisation between the threads.
|
|
*/
|
|
uint64 last_committed_sub_id;
|
|
/*
|
|
The sub_id of the last event group in this replication domain that was
|
|
queued for execution by a worker thread.
|
|
*/
|
|
uint64 current_sub_id;
|
|
/*
|
|
The largest sub_id that has started its transaction. Protected by
|
|
LOCK_parallel_entry.
|
|
|
|
(Transactions can start out-of-order, so this value signifies that no
|
|
transactions with larger sub_id have started, but not necessarily that all
|
|
transactions with smaller sub_id have started).
|
|
*/
|
|
uint64 largest_started_sub_id;
|
|
rpl_group_info *current_group_info;
|
|
/*
|
|
If we get an error in some event group, we set the sub_id of that event
|
|
group here. Then later event groups (with higher sub_id) can know not to
|
|
try to start (event groups that already started will be rolled back when
|
|
wait_for_prior_commit() returns error).
|
|
The value is ULONGLONG_MAX when no error occurred.
|
|
*/
|
|
uint64 stop_on_error_sub_id;
|
|
/*
|
|
During FLUSH TABLES WITH READ LOCK, transactions with sub_id larger than
|
|
this value must not start, but wait until the global read lock is released.
|
|
The value is set to ULONGLONG_MAX when no FTWRL is pending.
|
|
*/
|
|
uint64 pause_sub_id;
|
|
/* Total count of event groups queued so far. */
|
|
uint64 count_queued_event_groups;
|
|
/*
|
|
Count of event groups that have started (but not necessarily completed)
|
|
the commit phase. We use this to know when every event group in a previous
|
|
batch of master group commits have started committing on the slave, so
|
|
that it is safe to start executing the events in the following batch.
|
|
*/
|
|
uint64 count_committing_event_groups;
|
|
/* The group_commit_orderer object for the events currently being queued. */
|
|
group_commit_orderer *current_gco;
|
|
/* Relay log info of replication source for this entry. */
|
|
Relay_log_info *rli;
|
|
|
|
rpl_parallel_thread * choose_thread(rpl_group_info *rgi, bool *did_enter_cond,
|
|
PSI_stage_info *old_stage,
|
|
Gtid_log_event *gtid_ev);
|
|
rpl_parallel_thread *
|
|
choose_thread_internal(uint idx, bool *did_enter_cond, rpl_group_info *rgi,
|
|
PSI_stage_info *old_stage);
|
|
int queue_master_restart(rpl_group_info *rgi,
|
|
Format_description_log_event *fdev);
|
|
};
|
|
struct rpl_parallel {
|
|
HASH domain_hash;
|
|
rpl_parallel_entry *current;
|
|
bool sql_thread_stopping;
|
|
|
|
rpl_parallel();
|
|
~rpl_parallel();
|
|
void reset();
|
|
rpl_parallel_entry *find(uint32 domain_id, Relay_log_info *rli);
|
|
void wait_for_done(THD *thd, Relay_log_info *rli);
|
|
void stop_during_until();
|
|
bool workers_idle();
|
|
int wait_for_workers_idle(THD *thd);
|
|
int do_event(rpl_group_info *serial_rgi, Log_event *ev, ulonglong event_size);
|
|
};
|
|
|
|
|
|
extern struct rpl_parallel_thread_pool global_rpl_thread_pool;
|
|
|
|
|
|
extern int rpl_parallel_resize_pool_if_no_slaves(void);
|
|
extern int rpl_parallel_activate_pool(rpl_parallel_thread_pool *pool);
|
|
extern int rpl_parallel_inactivate_pool(rpl_parallel_thread_pool *pool);
|
|
extern bool process_gtid_for_restart_pos(Relay_log_info *rli, rpl_gtid *gtid);
|
|
extern int rpl_pause_for_ftwrl(THD *thd);
|
|
extern void rpl_unpause_after_ftwrl(THD *thd);
|
|
|
|
#endif /* RPL_PARALLEL_H */
|