mariadb/sql/sp_head.cc
unknown ad8ff14165 Fixed BUG#6127: Stored procedure handlers within handlers don't work
Replaced the dumb in-handler/not-in-handler check with a proper recursion
    check of handlers being executed.
    (Re-commit in a different tree, to make push possible.)


mysql-test/r/sp.result:
  New test case for BUG#6127.
mysql-test/t/sp.test:
  New test case for BUG#6127.
sql/sp_head.cc:
  Replaced the setting of ctx->in_handler with a enter/exit handler methods.
sql/sp_rcontext.cc:
  Replaced the boolean in_handler flag with a stack of handlers being exectuted, for proper recursion check.
sql/sp_rcontext.h:
  Replaced the boolean in_handler flag with a stack of handlers being exectuted, for proper recursion check.
  (And added some comments in the sp_rcontext class.)
2005-09-26 18:22:00 +02:00

2896 lines
72 KiB
C++

/* Copyright (C) 2002 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "mysql_priv.h"
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif
#include "sp_head.h"
#include "sp.h"
#include "sp_pcontext.h"
#include "sp_rcontext.h"
#include "sp_cache.h"
Item_result
sp_map_result_type(enum enum_field_types type)
{
switch (type)
{
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_INT24:
return INT_RESULT;
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
return DECIMAL_RESULT;
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
return REAL_RESULT;
default:
return STRING_RESULT;
}
}
/*
SYNOPSIS
sp_get_flags_for_command()
DESCRIPTION
Returns a combination of:
* sp_head::MULTI_RESULTS: added if the 'cmd' is a command that might
result in multiple result sets being sent back.
* sp_head::CONTAINS_DYNAMIC_SQL: added if 'cmd' is one of PREPARE,
EXECUTE, DEALLOCATE.
*/
uint
sp_get_flags_for_command(LEX *lex)
{
uint flags;
switch (lex->sql_command) {
case SQLCOM_SELECT:
if (lex->result)
{
flags= 0; /* This is a SELECT with INTO clause */
break;
}
/* fallthrough */
case SQLCOM_ANALYZE:
case SQLCOM_CHECKSUM:
case SQLCOM_HA_READ:
case SQLCOM_SHOW_BINLOGS:
case SQLCOM_SHOW_BINLOG_EVENTS:
case SQLCOM_SHOW_CHARSETS:
case SQLCOM_SHOW_COLLATIONS:
case SQLCOM_SHOW_COLUMN_TYPES:
case SQLCOM_SHOW_CREATE:
case SQLCOM_SHOW_CREATE_DB:
case SQLCOM_SHOW_CREATE_FUNC:
case SQLCOM_SHOW_CREATE_PROC:
case SQLCOM_SHOW_DATABASES:
case SQLCOM_SHOW_ERRORS:
case SQLCOM_SHOW_FIELDS:
case SQLCOM_SHOW_GRANTS:
case SQLCOM_SHOW_INNODB_STATUS:
case SQLCOM_SHOW_KEYS:
case SQLCOM_SHOW_LOGS:
case SQLCOM_SHOW_MASTER_STAT:
case SQLCOM_SHOW_MUTEX_STATUS:
case SQLCOM_SHOW_NEW_MASTER:
case SQLCOM_SHOW_OPEN_TABLES:
case SQLCOM_SHOW_PRIVILEGES:
case SQLCOM_SHOW_PROCESSLIST:
case SQLCOM_SHOW_SLAVE_HOSTS:
case SQLCOM_SHOW_SLAVE_STAT:
case SQLCOM_SHOW_STATUS:
case SQLCOM_SHOW_STATUS_FUNC:
case SQLCOM_SHOW_STATUS_PROC:
case SQLCOM_SHOW_STORAGE_ENGINES:
case SQLCOM_SHOW_TABLES:
case SQLCOM_SHOW_VARIABLES:
case SQLCOM_SHOW_WARNS:
flags= sp_head::MULTI_RESULTS;
break;
/*
EXECUTE statement may return a result set, but doesn't have to.
We can't, however, know it in advance, and therefore must add
this statement here. This is ok, as is equivalent to a result-set
statement within an IF condition.
*/
case SQLCOM_EXECUTE:
flags= sp_head::MULTI_RESULTS | sp_head::CONTAINS_DYNAMIC_SQL;
break;
case SQLCOM_PREPARE:
case SQLCOM_DEALLOCATE_PREPARE:
flags= sp_head::CONTAINS_DYNAMIC_SQL;
break;
default:
flags= 0;
break;
}
return flags;
}
/*
Prepare Item for execution (call of fix_fields)
SYNOPSIS
sp_prepare_func_item()
thd thread handler
it_addr pointer on item refernce
RETURN
NULL error
prepared item
*/
static Item *
sp_prepare_func_item(THD* thd, Item **it_addr)
{
Item *it= *it_addr;
DBUG_ENTER("sp_prepare_func_item");
it_addr= it->this_item_addr(thd, it_addr);
if (!it->fixed && (*it_addr)->fix_fields(thd, it_addr))
{
DBUG_PRINT("info", ("fix_fields() failed"));
DBUG_RETURN(NULL);
}
DBUG_RETURN(*it_addr);
}
/* Macro to switch arena in sp_eval_func_item */
#define CREATE_ON_CALLERS_ARENA(new_command, condition, backup_arena) \
do \
{ \
if (condition) \
thd->set_n_backup_active_arena(thd->spcont->callers_arena, \
backup_arena); \
new_command; \
if (condition) \
thd->restore_active_arena(thd->spcont->callers_arena, \
backup_arena); \
} while(0)
/*
Evaluate an item and store it in the returned item
SYNOPSIS
sp_eval_func_item()
name - current thread object
it_addr - pointer to the item to evaluate
type - type of the item we evaluating
reuse - used if we would like to reuse existing item
instead of allocation of the new one
use_callers_arena - TRUE if we want to use caller's arena
rather then current one.
DESCRIPTION
We use this function to evaluate result for stored functions
and stored procedure parameters. It is also used to evaluate and
(re) allocate variables.
RETURN VALUES
Evaluated item is returned
*/
Item *
sp_eval_func_item(THD *thd, Item **it_addr, enum enum_field_types type,
Item *reuse, bool use_callers_arena)
{
DBUG_ENTER("sp_eval_func_item");
Item *it= sp_prepare_func_item(thd, it_addr);
uint rsize;
Query_arena backup_arena;
Item *old_item_next, *old_free_list, **p_free_list;
DBUG_PRINT("info", ("type: %d", type));
if (!it)
DBUG_RETURN(NULL);
if (reuse)
{
old_item_next= reuse->next;
p_free_list= use_callers_arena ? &thd->spcont->callers_arena->free_list :
&thd->free_list;
old_free_list= *p_free_list;
}
switch (sp_map_result_type(type)) {
case INT_RESULT:
{
longlong i= it->val_int();
if (it->null_value)
{
DBUG_PRINT("info", ("INT_RESULT: null"));
goto return_null_item;
}
DBUG_PRINT("info", ("INT_RESULT: %d", i));
CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_int(i),
use_callers_arena, &backup_arena);
break;
}
case REAL_RESULT:
{
double d= it->val_real();
uint8 decimals;
uint32 max_length;
if (it->null_value)
{
DBUG_PRINT("info", ("REAL_RESULT: null"));
goto return_null_item;
}
/*
There's some difference between Item::new_item() and the
constructor; the former crashes, the latter works... weird.
*/
decimals= it->decimals;
max_length= it->max_length;
DBUG_PRINT("info", ("REAL_RESULT: %g", d));
CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_float(d),
use_callers_arena, &backup_arena);
it->decimals= decimals;
it->max_length= max_length;
break;
}
case DECIMAL_RESULT:
{
my_decimal value, *val= it->val_decimal(&value);
if (it->null_value)
goto return_null_item;
CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_decimal(val),
use_callers_arena, &backup_arena);
#ifndef DBUG_OFF
{
char dbug_buff[DECIMAL_MAX_STR_LENGTH+1];
DBUG_PRINT("info", ("DECIMAL_RESULT: %s",
dbug_decimal_as_string(dbug_buff, val)));
}
#endif
break;
}
case STRING_RESULT:
{
char buffer[MAX_FIELD_WIDTH];
String tmp(buffer, sizeof(buffer), it->collation.collation);
String *s= it->val_str(&tmp);
if (type == MYSQL_TYPE_NULL || it->null_value)
{
DBUG_PRINT("info", ("STRING_RESULT: null"));
goto return_null_item;
}
DBUG_PRINT("info",("STRING_RESULT: %*s",
s->length(), s->c_ptr_quick()));
/*
Reuse mechanism in sp_eval_func_item() is only employed for assignments
to local variables and OUT/INOUT SP parameters repsesented by
Item_splocal. Usually we have some expression, which needs
to be calculated and stored into the local variable. However in the
case if "it" equals to "reuse", there is no "calculation" step. So,
no reason to employ reuse mechanism to save variable into itself.
*/
if (it == reuse)
DBUG_RETURN(it);
CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize)
Item_string(it->collation.collation),
use_callers_arena, &backup_arena);
/*
We have to use special constructor and allocate string
on system heap here. This is because usual Item_string
constructor would allocate memory in the callers arena.
This would lead to the memory leak in SP loops.
See Bug #11333 "Stored Procedure: Memory blow up on
repeated SELECT ... INTO query" for sample of such SP.
TODO: Usage of the system heap gives significant overhead,
however usual "reuse" mechanism does not work here, as
Item_string has no max size. That is, if we have a loop, which
has string variable with constantly increasing size, we would have
to allocate new pieces of memory again and again on each iteration.
In future we should probably reserve some area of memory for
not-very-large strings and reuse it. But for large strings
we would have to use system heap anyway.
*/
((Item_string*) it)->set_str_with_copy(s->ptr(), s->length());
break;
}
case ROW_RESULT:
default:
DBUG_ASSERT(0);
}
goto end;
return_null_item:
CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_null(),
use_callers_arena, &backup_arena);
end:
it->rsize= rsize;
if (reuse && it == reuse)
{
/*
The Item constructor registered itself in the arena free list,
while the item slot is reused, so we have to restore the list.
*/
it->next= old_item_next;
*p_free_list= old_free_list;
}
DBUG_RETURN(it);
}
/*
*
* sp_name
*
*/
void
sp_name::init_qname(THD *thd)
{
m_sroutines_key.length= m_db.length + m_name.length + 2;
if (!(m_sroutines_key.str= thd->alloc(m_sroutines_key.length + 1)))
return;
m_qname.length= m_sroutines_key.length - 1;
m_qname.str= m_sroutines_key.str + 1;
sprintf(m_qname.str, "%*s.%*s",
m_db.length, (m_db.length ? m_db.str : ""),
m_name.length, m_name.str);
}
sp_name *
sp_name_current_db_new(THD *thd, LEX_STRING name)
{
sp_name *qname;
if (! thd->db)
qname= new sp_name(name);
else
{
LEX_STRING db;
db.length= strlen(thd->db);
db.str= thd->strmake(thd->db, db.length);
qname= new sp_name(db, name);
}
qname->init_qname(thd);
return qname;
}
/* ------------------------------------------------------------------ */
/*
*
* sp_head
*
*/
void *
sp_head::operator new(size_t size)
{
DBUG_ENTER("sp_head::operator new");
MEM_ROOT own_root;
sp_head *sp;
init_alloc_root(&own_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC);
sp= (sp_head *) alloc_root(&own_root, size);
sp->main_mem_root= own_root;
DBUG_PRINT("info", ("mem_root 0x%lx", (ulong) &sp->mem_root));
DBUG_RETURN(sp);
}
void
sp_head::operator delete(void *ptr, size_t size)
{
DBUG_ENTER("sp_head::operator delete");
MEM_ROOT own_root;
sp_head *sp= (sp_head *) ptr;
/* Make a copy of main_mem_root as free_root will free the sp */
own_root= sp->main_mem_root;
DBUG_PRINT("info", ("mem_root 0x%lx moved to 0x%lx",
(ulong) &sp->mem_root, (ulong) &own_root));
free_root(&own_root, MYF(0));
DBUG_VOID_RETURN;
}
sp_head::sp_head()
:Query_arena(&main_mem_root, INITIALIZED_FOR_SP),
m_flags(0), m_returns_cs(NULL)
{
extern byte *
sp_table_key(const byte *ptr, uint *plen, my_bool first);
DBUG_ENTER("sp_head::sp_head");
m_backpatch.empty();
m_lex.empty();
hash_init(&m_sptabs, system_charset_info, 0, 0, 0, sp_table_key, 0, 0);
hash_init(&m_sroutines, system_charset_info, 0, 0, 0, sp_sroutine_key, 0, 0);
DBUG_VOID_RETURN;
}
void
sp_head::init(LEX *lex)
{
DBUG_ENTER("sp_head::init");
lex->spcont= m_pcont= new sp_pcontext(NULL);
/*
Altough trg_table_fields list is used only in triggers we init for all
types of stored procedures to simplify reset_lex()/restore_lex() code.
*/
lex->trg_table_fields.empty();
my_init_dynamic_array(&m_instr, sizeof(sp_instr *), 16, 8);
m_param_begin= m_param_end= m_body_begin= 0;
m_qname.str= m_db.str= m_name.str= m_params.str=
m_body.str= m_defstr.str= 0;
m_qname.length= m_db.length= m_name.length= m_params.length=
m_body.length= m_defstr.length= 0;
m_returns_cs= NULL;
DBUG_VOID_RETURN;
}
void
sp_head::init_strings(THD *thd, LEX *lex, sp_name *name)
{
DBUG_ENTER("sp_head::init_strings");
uint n; /* Counter for nul trimming */
/* During parsing, we must use thd->mem_root */
MEM_ROOT *root= thd->mem_root;
/* We have to copy strings to get them into the right memroot */
if (name)
{
m_db.length= name->m_db.length;
if (name->m_db.length == 0)
m_db.str= NULL;
else
m_db.str= strmake_root(root, name->m_db.str, name->m_db.length);
m_name.length= name->m_name.length;
m_name.str= strmake_root(root, name->m_name.str, name->m_name.length);
if (name->m_qname.length == 0)
name->init_qname(thd);
m_qname.length= name->m_qname.length;
m_qname.str= strmake_root(root, name->m_qname.str, m_qname.length);
}
else if (thd->db)
{
m_db.length= thd->db_length;
m_db.str= strmake_root(root, thd->db, m_db.length);
}
if (m_param_begin && m_param_end)
{
m_params.length= m_param_end - m_param_begin;
m_params.str= strmake_root(root,
(char *)m_param_begin, m_params.length);
}
m_body.length= lex->ptr - m_body_begin;
/* Trim nuls at the end */
n= 0;
while (m_body.length && m_body_begin[m_body.length-1] == '\0')
{
m_body.length-= 1;
n+= 1;
}
m_body.str= strmake_root(root, (char *)m_body_begin, m_body.length);
m_defstr.length= lex->ptr - lex->buf;
m_defstr.length-= n;
m_defstr.str= strmake_root(root, (char *)lex->buf, m_defstr.length);
DBUG_VOID_RETURN;
}
TYPELIB *
sp_head::create_typelib(List<String> *src)
{
TYPELIB *result= NULL;
CHARSET_INFO *cs= m_returns_cs;
DBUG_ENTER("sp_head::clone_typelib");
if (src->elements)
{
result= (TYPELIB*) alloc_root(mem_root, sizeof(TYPELIB));
result->count= src->elements;
result->name= "";
if (!(result->type_names=(const char **)
alloc_root(mem_root,(sizeof(char *)+sizeof(int))*(result->count+1))))
return 0;
result->type_lengths= (unsigned int *)(result->type_names + result->count+1);
List_iterator<String> it(*src);
String conv;
for (uint i=0; i < result->count; i++)
{
uint32 dummy;
uint length;
String *tmp= it++;
if (String::needs_conversion(tmp->length(), tmp->charset(),
cs, &dummy))
{
uint cnv_errs;
conv.copy(tmp->ptr(), tmp->length(), tmp->charset(), cs, &cnv_errs);
length= conv.length();
result->type_names[i]= (char*) strmake_root(mem_root, conv.ptr(),
length);
}
else
{
length= tmp->length();
result->type_names[i]= strmake_root(mem_root, tmp->ptr(), length);
}
// Strip trailing spaces.
length= cs->cset->lengthsp(cs, result->type_names[i], length);
result->type_lengths[i]= length;
((uchar *)result->type_names[i])[length]= '\0';
}
result->type_names[result->count]= 0;
result->type_lengths[result->count]= 0;
}
return result;
}
int
sp_head::create(THD *thd)
{
DBUG_ENTER("sp_head::create");
int ret;
DBUG_PRINT("info", ("type: %d name: %s params: %s body: %s",
m_type, m_name.str, m_params.str, m_body.str));
#ifndef DBUG_OFF
optimize();
{
String s;
sp_instr *i;
uint ip= 0;
while ((i = get_instr(ip)))
{
char buf[8];
sprintf(buf, "%4u: ", ip);
s.append(buf);
i->print(&s);
s.append('\n');
ip+= 1;
}
s.append('\0');
DBUG_PRINT("info", ("Code %s\n%s", m_qname.str, s.ptr()));
}
#endif
if (m_type == TYPE_ENUM_FUNCTION)
ret= sp_create_function(thd, this);
else
ret= sp_create_procedure(thd, this);
DBUG_RETURN(ret);
}
sp_head::~sp_head()
{
destroy();
if (m_thd)
restore_thd_mem_root(m_thd);
}
void
sp_head::destroy()
{
sp_instr *i;
LEX *lex;
DBUG_ENTER("sp_head::destroy");
DBUG_PRINT("info", ("name: %s", m_name.str));
for (uint ip = 0 ; (i = get_instr(ip)) ; ip++)
delete i;
delete_dynamic(&m_instr);
m_pcont->destroy();
free_items();
/*
If we have non-empty LEX stack then we just came out of parser with
error. Now we should delete all auxilary LEXes and restore original
THD::lex (In this case sp_head::restore_thd_mem_root() was not called
too, so m_thd points to the current thread context).
It is safe to not update LEX::ptr because further query string parsing
and execution will be stopped anyway.
*/
DBUG_ASSERT(m_lex.is_empty() || m_thd);
while ((lex= (LEX *)m_lex.pop()))
{
delete m_thd->lex;
m_thd->lex= lex;
}
hash_free(&m_sptabs);
hash_free(&m_sroutines);
DBUG_VOID_RETURN;
}
/*
This is only used for result fields from functions (both during
fix_length_and_dec() and evaluation).
*/
Field *
sp_head::make_field(uint max_length, const char *name, TABLE *dummy)
{
Field *field;
DBUG_ENTER("sp_head::make_field");
field= ::make_field((char *)0,
!m_returns_len ? max_length : m_returns_len,
(uchar *)"", 0, m_returns_pack, m_returns, m_returns_cs,
m_geom_returns, Field::NONE,
m_returns_typelib,
name ? name : (const char *)m_name.str, dummy);
DBUG_RETURN(field);
}
int cmp_splocal_locations(Item_splocal * const *a, Item_splocal * const *b)
{
return (int)((*a)->pos_in_query - (*b)->pos_in_query);
}
/*
StoredRoutinesBinlogging
Top-down overview:
1. Statements
Statements that have is_update_query(stmt) == TRUE are written into the
binary log verbatim.
Examples:
UPDATE tbl SET tbl.x = spfunc_w_side_effects()
UPDATE tbl SET tbl.x=1 WHERE spfunc_w_side_effect_that_returns_false(tbl.y)
Statements that have is_update_query(stmt) == FALSE (e.g. SELECTs) are not
written into binary log. Instead we catch function calls the statement
makes and write it into binary log separately (see #3).
We actually can easily write SELECT statements into the binary log in the
right order (we don't have issues with const tables being unlocked early
because SELECTs that use FUNCTIONs unlock all tables at once) We don't do
it because replication slave thread currently can't execute SELECT
statements. Fixing this is on the TODO.
2. PROCEDURE calls
CALL statements are not written into binary log. Instead
* Any FUNCTION invocation (in SET, IF, WHILE, OPEN CURSOR and other SP
instructions) is written into binlog separately.
* Each statement executed in SP is binlogged separately, according to rules
in #1, with the exception that we modify query string: we replace uses
of SP local variables with NAME_CONST('spvar_name', <spvar-value>) calls.
This substitution is done in subst_spvars().
3. FUNCTION calls
In sp_head::execute_function(), we check
* If this function invocation is done from a statement that is written
into the binary log.
* If there were any attempts to write events to the binary log during
function execution (grep for start_union_events and stop_union_events)
If the answers are No and Yes, we write the function call into the binary
log as "DO spfunc(<param1value>, <param2value>, ...)"
4. Miscellaneous issues.
4.1 User variables.
When we call mysql_bin_log.write() for an SP statement, thd->user_var_events
must hold set<{var_name, value}> pairs for all user variables used during
the statement execution.
This set is produced by tracking user variable reads during statement
execution.
Fo SPs, this has the following implications:
1) thd->user_var_events may contain events from several SP statements and
needs to be valid after exection of these statements was finished. In
order to achieve that, we
* Allocate user_var_events array elements on appropriate mem_root (grep
for user_var_events_alloc).
* Use is_query_in_union() to determine if user_var_event is created.
2) We need to empty thd->user_var_events after we have wrote a function
call. This is currently done by making
reset_dynamic(&thd->user_var_events);
calls in several different places. (TODO cosider moving this into
mysql_bin_log.write() function)
*/
/*
Replace thd->query{_length} with a string that one can write to the binlog.
SYNOPSIS
subst_spvars()
thd Current thread.
instr Instruction (we look for Item_splocal instances in
instr->free_list)
query_str Original query string
DESCRIPTION
The binlog-suitable string is produced by replacing references to SP local
variables with NAME_CONST('sp_var_name', value) calls.
RETURN
0 Ok, thd->query{_length} either has been appropriately replaced or
there is no need for replacements.
1 Out of memory error.
*/
static bool subst_spvars(THD *thd, sp_instr *instr, LEX_STRING *query_str)
{
DBUG_ENTER("subst_spvars");
if (thd->prelocked_mode == NON_PRELOCKED && mysql_bin_log.is_open())
{
Dynamic_array<Item_splocal*> sp_vars_uses;
char *pbuf, *cur, buffer[512];
String qbuf(buffer, sizeof(buffer), &my_charset_bin);
int prev_pos, res;
/* Find all instances of item_splocal used in this statement */
for (Item *item= instr->free_list; item; item= item->next)
{
if (item->is_splocal())
{
Item_splocal *item_spl= (Item_splocal*)item;
if (item_spl->pos_in_query)
sp_vars_uses.append(item_spl);
}
}
if (!sp_vars_uses.elements())
DBUG_RETURN(0);
/* Sort SP var refs by their occurences in the query */
sp_vars_uses.sort(cmp_splocal_locations);
/*
Construct a statement string where SP local var refs are replaced
with "NAME_CONST(name, value)"
*/
qbuf.length(0);
cur= query_str->str;
prev_pos= res= 0;
for (Item_splocal **splocal= sp_vars_uses.front();
splocal < sp_vars_uses.back(); splocal++)
{
Item *val;
/* append the text between sp ref occurences */
res|= qbuf.append(cur + prev_pos, (*splocal)->pos_in_query - prev_pos);
prev_pos= (*splocal)->pos_in_query + (*splocal)->m_name.length;
/* append the spvar substitute */
res|= qbuf.append(" NAME_CONST('");
res|= qbuf.append((*splocal)->m_name.str, (*splocal)->m_name.length);
res|= qbuf.append("',");
val= (*splocal)->this_item();
DBUG_PRINT("info", ("print %p", val));
val->print(&qbuf);
res|= qbuf.append(')');
if (res)
break;
}
res|= qbuf.append(cur + prev_pos, query_str->length - prev_pos);
if (res)
DBUG_RETURN(1);
if (!(pbuf= thd->strmake(qbuf.ptr(), qbuf.length())))
DBUG_RETURN(1);
thd->query= pbuf;
thd->query_length= qbuf.length();
}
DBUG_RETURN(0);
}
/*
Execute the routine. The main instruction jump loop is there
Assume the parameters already set.
RETURN
-1 on error
*/
int sp_head::execute(THD *thd)
{
DBUG_ENTER("sp_head::execute");
char olddb[128];
bool dbchanged;
sp_rcontext *ctx;
int ret= 0;
uint ip= 0;
ulong save_sql_mode;
Query_arena *old_arena;
/* per-instruction arena */
MEM_ROOT execute_mem_root;
Query_arena execute_arena(&execute_mem_root, INITIALIZED_FOR_SP),
backup_arena;
query_id_t old_query_id;
TABLE *old_derived_tables;
LEX *old_lex;
Item_change_list old_change_list;
String old_packet;
/* init per-instruction memroot */
init_alloc_root(&execute_mem_root, MEM_ROOT_BLOCK_SIZE, 0);
/* Use some extra margin for possible SP recursion and functions */
if (check_stack_overrun(thd, 4*STACK_MIN_SIZE, olddb))
{
DBUG_RETURN(-1);
}
if (m_flags & IS_INVOKED)
{
/*
We have to disable recursion for stored routines since in
many cases LEX structure and many Item's can't be used in
reentrant way now.
TODO: We can circumvent this problem by using separate
sp_head instances for each recursive invocation.
NOTE: Theoretically arguments of procedure can be evaluated
before its invocation so there should be no problem with
recursion. But since we perform cleanup for CALL statement
as for any other statement only after its execution, its LEX
structure is not reusable for recursive calls. Thus we have
to prohibit recursion for stored procedures too.
*/
my_error(ER_SP_NO_RECURSION, MYF(0));
DBUG_RETURN(-1);
}
m_flags|= IS_INVOKED;
dbchanged= FALSE;
if (m_db.length &&
(ret= sp_use_new_db(thd, m_db.str, olddb, sizeof(olddb), 0, &dbchanged)))
goto done;
if ((ctx= thd->spcont))
ctx->clear_handler();
thd->query_error= 0;
old_arena= thd->stmt_arena;
/*
We have to save/restore this info when we are changing call level to
be able properly do close_thread_tables() in instructions.
*/
old_query_id= thd->query_id;
old_derived_tables= thd->derived_tables;
thd->derived_tables= 0;
save_sql_mode= thd->variables.sql_mode;
thd->variables.sql_mode= m_sql_mode;
/*
It is also more efficient to save/restore current thd->lex once when
do it in each instruction
*/
old_lex= thd->lex;
/*
We should also save Item tree change list to avoid rollback something
too early in the calling query.
*/
old_change_list= thd->change_list;
thd->change_list.empty();
/*
Cursors will use thd->packet, so they may corrupt data which was prepared
for sending by upper level. OTOH cursors in the same routine can share this
buffer safely so let use use routine-local packet instead of having own
packet buffer for each cursor.
It is probably safe to use same thd->convert_buff everywhere.
*/
old_packet.swap(thd->packet);
/*
Switch to per-instruction arena here. We can do it since we cleanup
arena after every instruction.
*/
thd->set_n_backup_active_arena(&execute_arena, &backup_arena);
/*
Save callers arena in order to store instruction results and out
parameters in it later during sp_eval_func_item()
*/
thd->spcont->callers_arena= &backup_arena;
do
{
sp_instr *i;
uint hip; // Handler ip
i = get_instr(ip); // Returns NULL when we're done.
if (i == NULL)
break;
DBUG_PRINT("execute", ("Instruction %u", ip));
/* Don't change NOW() in FUNCTION or TRIGGER */
if (!thd->in_sub_stmt)
thd->set_time(); // Make current_time() et al work
/*
We have to set thd->stmt_arena before executing the instruction
to store in the instruction free_list all new items, created
during the first execution (for example expanding of '*' or the
items made during other permanent subquery transformations).
*/
thd->stmt_arena= i;
/*
Will write this SP statement into binlog separately
(TODO: consider changing the condition to "not inside event union")
*/
if (thd->prelocked_mode == NON_PRELOCKED)
thd->user_var_events_alloc= thd->mem_root;
ret= i->execute(thd, &ip);
/*
If this SP instruction have sent eof, it has caused no_send_error to be
set. Clear it back to allow the next instruction to send error. (multi-
statement execution code clears no_send_error between statements too)
*/
thd->net.no_send_error= 0;
if (i->free_list)
cleanup_items(i->free_list);
i->state= Query_arena::EXECUTED;
/*
If we've set thd->user_var_events_alloc to mem_root of this SP
statement, clean all the events allocated in it.
*/
if (thd->prelocked_mode == NON_PRELOCKED)
{
reset_dynamic(&thd->user_var_events);
thd->user_var_events_alloc= NULL;//DEBUG
}
/* we should cleanup free_list and memroot, used by instruction */
thd->free_items();
free_root(&execute_mem_root, MYF(0));
/*
Check if an exception has occurred and a handler has been found
Note: We havo to check even if ret==0, since warnings (and some
errors don't return a non-zero value.
We also have to check even if thd->killed != 0, since some
errors return with this even when a handler has been found
(e.g. "bad data").
*/
if (ctx)
{
uint hf;
switch (ctx->found_handler(&hip, &hf)) {
case SP_HANDLER_NONE:
break;
case SP_HANDLER_CONTINUE:
thd->restore_active_arena(&execute_arena, &backup_arena);
ctx->save_variables(hf);
thd->set_n_backup_active_arena(&execute_arena, &backup_arena);
ctx->push_hstack(ip);
// Fall through
default:
ip= hip;
ret= 0;
ctx->clear_handler();
ctx->enter_handler(hip);
thd->clear_error();
thd->killed= THD::NOT_KILLED;
continue;
}
}
} while (ret == 0 && !thd->killed);
thd->restore_active_arena(&execute_arena, &backup_arena);
/* Restore all saved */
old_packet.swap(thd->packet);
DBUG_ASSERT(thd->change_list.is_empty());
thd->change_list= old_change_list;
/* To avoid wiping out thd->change_list on old_change_list destruction */
old_change_list.empty();
thd->lex= old_lex;
thd->query_id= old_query_id;
DBUG_ASSERT(!thd->derived_tables);
thd->derived_tables= old_derived_tables;
thd->variables.sql_mode= save_sql_mode;
thd->stmt_arena= old_arena;
state= EXECUTED;
done:
DBUG_PRINT("info", ("ret=%d killed=%d query_error=%d",
ret, thd->killed, thd->query_error));
if (thd->killed)
ret= -1;
/* If the DB has changed, the pointer has changed too, but the
original thd->db will then have been freed */
if (dbchanged)
{
if (! thd->killed)
ret= mysql_change_db(thd, olddb, 0);
}
m_flags&= ~IS_INVOKED;
DBUG_RETURN(ret);
}
/*
Execute a function:
- evaluate parameters
- call sp_head::execute
- evaluate the return value
SYNOPSIS
sp_head::execute_function()
thd Thread handle
argp Passed arguments (these are items from containing statement?)
argcount Number of passed arguments. We need to check if this is
correct.
resp OUT Put result item here (q: is it a constant Item always?)
RETURN
0 on OK
other on error
*/
int
sp_head::execute_function(THD *thd, Item **argp, uint argcount, Item **resp)
{
Item **param_values;
ulonglong binlog_save_options;
bool need_binlog_call;
DBUG_ENTER("sp_head::execute_function");
DBUG_PRINT("info", ("function %s", m_name.str));
uint csize = m_pcont->max_pvars();
uint params = m_pcont->current_pvars();
uint hmax = m_pcont->max_handlers();
uint cmax = m_pcont->max_cursors();
sp_rcontext *octx = thd->spcont;
sp_rcontext *nctx = NULL;
uint i;
int ret= -1; // Assume error
if (argcount != params)
{
/*
Need to use my_error here, or it will not terminate the
invoking query properly.
*/
my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0),
"FUNCTION", m_qname.str, params, argcount);
goto end;
}
if (!(param_values= (Item**)thd->alloc(sizeof(Item*)*argcount)))
DBUG_RETURN(-1);
// QQ Should have some error checking here? (types, etc...)
if (!(nctx= new sp_rcontext(csize, hmax, cmax)))
goto end;
for (i= 0 ; i < argcount ; i++)
{
sp_pvar_t *pvar = m_pcont->find_pvar(i);
Item *it= sp_eval_func_item(thd, argp++, pvar->type, NULL, FALSE);
param_values[i]= it;
if (!it)
goto end; // EOM error
nctx->push_item(it);
}
/*
The rest of the frame are local variables which are all IN.
Push NULLs to get the right size (and make the reuse mechanism work) -
the will be initialized by set instructions in each frame.
*/
for (; i < csize ; i++)
nctx->push_item(NULL);
thd->spcont= nctx;
binlog_save_options= thd->options;
need_binlog_call= mysql_bin_log.is_open() && (thd->options & OPTION_BIN_LOG);
if (need_binlog_call)
{
reset_dynamic(&thd->user_var_events);
mysql_bin_log.start_union_events(thd);
}
thd->options&= ~OPTION_BIN_LOG;
ret= execute(thd);
thd->options= binlog_save_options;
if (need_binlog_call)
mysql_bin_log.stop_union_events(thd);
if (need_binlog_call && thd->binlog_evt_union.unioned_events)
{
char buf[256];
String bufstr(buf, sizeof(buf), &my_charset_bin);
bufstr.length(0);
bufstr.append("DO ", 3);
append_identifier(thd, &bufstr, m_name.str, m_name.length);
bufstr.append('(');
for (uint i=0; i < argcount; i++)
{
if (i)
bufstr.append(',');
param_values[i]->print(&bufstr);
}
bufstr.append(')');
Query_log_event qinfo(thd, bufstr.ptr(), bufstr.length(),
thd->binlog_evt_union.unioned_events_trans, FALSE);
if (mysql_bin_log.write(&qinfo) &&
thd->binlog_evt_union.unioned_events_trans)
{
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR,
"Invoked ROUTINE modified a transactional table but MySQL "
"failed to reflect this change in the binary log");
}
reset_dynamic(&thd->user_var_events);
}
if (m_type == TYPE_ENUM_FUNCTION && ret == 0)
{
/* We need result only in function but not in trigger */
Item *it= nctx->get_result();
if (it)
*resp= sp_eval_func_item(thd, &it, m_returns, NULL, FALSE);
else
{
my_error(ER_SP_NORETURNEND, MYF(0), m_name.str);
ret= -1;
}
}
nctx->pop_all_cursors(); // To avoid memory leaks after an error
delete nctx; // Doesn't do anything
thd->spcont= octx;
end:
DBUG_RETURN(ret);
}
static Item_func_get_user_var *item_is_user_var(Item *it)
{
if (it->type() == Item::FUNC_ITEM)
{
Item_func *fi= static_cast<Item_func*>(it);
if (fi->functype() == Item_func::GUSERVAR_FUNC)
return static_cast<Item_func_get_user_var*>(fi);
}
return NULL;
}
/*
Execute a procedure.
SYNOPSIS
sp_head::execute_procedure()
thd Thread handle
args List of values passed as arguments.
DESCRIPTION
The function does the following steps:
- Set all parameters
- call sp_head::execute
- copy back values of INOUT and OUT parameters
RETURN
0 Ok
-1 Error
*/
int sp_head::execute_procedure(THD *thd, List<Item> *args)
{
int ret= 0;
uint csize = m_pcont->max_pvars();
uint params = m_pcont->current_pvars();
uint hmax = m_pcont->max_handlers();
uint cmax = m_pcont->max_cursors();
sp_rcontext *save_spcont, *octx;
sp_rcontext *nctx = NULL;
DBUG_ENTER("sp_head::execute_procedure");
DBUG_PRINT("info", ("procedure %s", m_name.str));
if (args->elements != params)
{
my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "PROCEDURE",
m_qname.str, params, args->elements);
DBUG_RETURN(-1);
}
save_spcont= octx= thd->spcont;
if (! octx)
{ // Create a temporary old context
if (!(octx= new sp_rcontext(csize, hmax, cmax)))
DBUG_RETURN(-1);
thd->spcont= octx;
/* set callers_arena to thd, for upper-level function to work */
thd->spcont->callers_arena= thd;
}
if (!(nctx= new sp_rcontext(csize, hmax, cmax)))
{
thd->spcont= save_spcont;
DBUG_RETURN(-1);
}
if (csize > 0 || hmax > 0 || cmax > 0)
{
Item_null *nit= NULL; // Re-use this, and only create if needed
uint i;
List_iterator<Item> li(*args);
Item *it;
/* Evaluate SP arguments (i.e. get the values passed as parameters) */
// QQ: Should do type checking?
DBUG_PRINT("info",(" %.*s: eval args", m_name.length, m_name.str));
for (i = 0 ; (it= li++) && i < params ; i++)
{
sp_pvar_t *pvar= m_pcont->find_pvar(i);
if (pvar)
{
if (pvar->mode != sp_param_in)
{
if (!it->is_splocal() && !item_is_user_var(it))
{
my_error(ER_SP_NOT_VAR_ARG, MYF(0), i+1, m_qname.str);
ret= -1;
break;
}
}
if (pvar->mode == sp_param_out)
{
if (! nit)
{
if (!(nit= new Item_null()))
{
ret= -1;
break;
}
}
nctx->push_item(nit); // OUT
}
else
{
Item *it2= sp_eval_func_item(thd, li.ref(), pvar->type, NULL, FALSE);
if (!it2)
{
ret= -1; // Eval failed
break;
}
nctx->push_item(it2); // IN or INOUT
}
}
}
/*
Okay, got values for all arguments. Close tables that might be used by
arguments evaluation. If arguments evaluation required prelocking mode,
we'll leave it here.
*/
if (!thd->in_sub_stmt)
close_thread_tables(thd, 0, 0);
DBUG_PRINT("info",(" %.*s: eval args done", m_name.length, m_name.str));
/*
The rest of the frame are local variables which are all IN.
Push NULLs to get the right size (and make the reuse mechanism work) -
the will be initialized by set instructions in each frame.
*/
for (; i < csize ; i++)
nctx->push_item(NULL);
}
thd->spcont= nctx;
if (! ret)
ret= execute(thd);
/*
In the case when we weren't able to employ reuse mechanism for
OUT/INOUT paranmeters, we should reallocate memory. This
allocation should be done on the arena which will live through
all execution of calling routine.
*/
thd->spcont->callers_arena= octx->callers_arena;
if (!ret && csize > 0)
{
List_iterator<Item> li(*args);
Item *it;
/*
Copy back all OUT or INOUT values to the previous frame, or
set global user variables
*/
for (uint i = 0 ; (it= li++) && i < params ; i++)
{
sp_pvar_t *pvar= m_pcont->find_pvar(i);
if (pvar->mode != sp_param_in)
{
if (it->is_splocal())
{
// Have to copy the item to the caller's mem_root
Item *copy;
uint offset= static_cast<Item_splocal *>(it)->get_offset();
Item *val= nctx->get_item(i);
Item *orig= octx->get_item(offset);
/*
We might need to allocate new item if we weren't able to
employ reuse mechanism. Then we should do it on the callers arena.
*/
copy= sp_eval_func_item(thd, &val, pvar->type, orig, TRUE); // Copy
if (!copy)
{
ret= -1;
break;
}
if (copy != orig)
octx->set_item(offset, copy);
}
else
{
Item_func_get_user_var *guv= item_is_user_var(it);
if (guv)
{
Item *item= nctx->get_item(i);
Item_func_set_user_var *suv;
suv= new Item_func_set_user_var(guv->get_name(), item);
/*
we do not check suv->fixed, because it can't be fixed after
creation
*/
suv->fix_fields(thd, &item);
suv->fix_length_and_dec();
suv->check();
suv->update();
}
}
}
}
}
if (!save_spcont)
delete octx; // Does nothing
nctx->pop_all_cursors(); // To avoid memory leaks after an error
delete nctx; // Does nothing
thd->spcont= save_spcont;
DBUG_RETURN(ret);
}
// Reset lex during parsing, before we parse a sub statement.
void
sp_head::reset_lex(THD *thd)
{
DBUG_ENTER("sp_head::reset_lex");
LEX *sublex;
LEX *oldlex= thd->lex;
my_lex_states state= oldlex->next_state; // Keep original next_state
(void)m_lex.push_front(oldlex);
thd->lex= sublex= new st_lex;
/* Reset most stuff. The length arguments doesn't matter here. */
lex_start(thd, oldlex->buf, (ulong) (oldlex->end_of_query - oldlex->ptr));
/*
* next_state is normally the same (0), but it happens that we swap lex in
* "mid-sentence", so we must restore it.
*/
sublex->next_state= state;
/* We must reset ptr and end_of_query again */
sublex->ptr= oldlex->ptr;
sublex->end_of_query= oldlex->end_of_query;
sublex->tok_start= oldlex->tok_start;
sublex->yylineno= oldlex->yylineno;
/* And keep the SP stuff too */
sublex->sphead= oldlex->sphead;
sublex->spcont= oldlex->spcont;
/* And trigger related stuff too */
sublex->trg_chistics= oldlex->trg_chistics;
sublex->trg_table_fields.empty();
sublex->sp_lex_in_use= FALSE;
DBUG_VOID_RETURN;
}
// Restore lex during parsing, after we have parsed a sub statement.
void
sp_head::restore_lex(THD *thd)
{
DBUG_ENTER("sp_head::restore_lex");
LEX *sublex= thd->lex;
LEX *oldlex= (LEX *)m_lex.pop();
if (! oldlex)
return; // Nothing to restore
// Update some state in the old one first
oldlex->ptr= sublex->ptr;
oldlex->next_state= sublex->next_state;
oldlex->trg_table_fields.push_back(&sublex->trg_table_fields);
/*
Add routines which are used by statement to respective set for
this routine.
*/
sp_update_sp_used_routines(&m_sroutines, &sublex->sroutines);
/*
Merge tables used by this statement (but not by its functions or
procedures) to multiset of tables used by this routine.
*/
merge_table_list(thd, sublex->query_tables, sublex);
if (! sublex->sp_lex_in_use)
delete sublex;
thd->lex= oldlex;
DBUG_VOID_RETURN;
}
void
sp_head::push_backpatch(sp_instr *i, sp_label_t *lab)
{
bp_t *bp= (bp_t *)sql_alloc(sizeof(bp_t));
if (bp)
{
bp->lab= lab;
bp->instr= i;
(void)m_backpatch.push_front(bp);
}
}
void
sp_head::backpatch(sp_label_t *lab)
{
bp_t *bp;
uint dest= instructions();
List_iterator_fast<bp_t> li(m_backpatch);
while ((bp= li++))
{
if (bp->lab == lab ||
(bp->lab->type == SP_LAB_REF &&
my_strcasecmp(system_charset_info, bp->lab->name, lab->name) == 0))
{
if (bp->lab->type != SP_LAB_REF)
bp->instr->backpatch(dest, lab->ctx);
else
{
sp_label_t *dstlab= bp->lab->ctx->find_label(lab->name);
if (dstlab)
{
bp->lab= lab;
bp->instr->backpatch(dest, dstlab->ctx);
}
}
}
}
}
int
sp_head::check_backpatch(THD *thd)
{
bp_t *bp;
List_iterator_fast<bp_t> li(m_backpatch);
while ((bp= li++))
{
if (bp->lab->type == SP_LAB_REF)
{
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "GOTO", bp->lab->name);
return -1;
}
}
return 0;
}
void
sp_head::set_info(char *definer, uint definerlen,
longlong created, longlong modified,
st_sp_chistics *chistics, ulong sql_mode)
{
char *p= strchr(definer, '@');
uint len;
if (! p)
p= definer; // Weird...
len= p-definer;
m_definer_user.str= strmake_root(mem_root, definer, len);
m_definer_user.length= len;
len= definerlen-len-1;
m_definer_host.str= strmake_root(mem_root, p+1, len);
m_definer_host.length= len;
m_created= created;
m_modified= modified;
m_chistics= (st_sp_chistics *) memdup_root(mem_root, (char*) chistics,
sizeof(*chistics));
if (m_chistics->comment.length == 0)
m_chistics->comment.str= 0;
else
m_chistics->comment.str= strmake_root(mem_root,
m_chistics->comment.str,
m_chistics->comment.length);
m_sql_mode= sql_mode;
}
void
sp_head::reset_thd_mem_root(THD *thd)
{
DBUG_ENTER("sp_head::reset_thd_mem_root");
m_thd_root= thd->mem_root;
thd->mem_root= &main_mem_root;
DBUG_PRINT("info", ("mem_root 0x%lx moved to thd mem root 0x%lx",
(ulong) &mem_root, (ulong) &thd->mem_root));
free_list= thd->free_list; // Keep the old list
thd->free_list= NULL; // Start a new one
/* Copy the db, since substatements will point to it */
m_thd_db= thd->db;
thd->db= thd->strmake(thd->db, thd->db_length);
m_thd= thd;
DBUG_VOID_RETURN;
}
void
sp_head::restore_thd_mem_root(THD *thd)
{
DBUG_ENTER("sp_head::restore_thd_mem_root");
Item *flist= free_list; // The old list
set_query_arena(thd); // Get new free_list and mem_root
state= INITIALIZED_FOR_SP;
DBUG_PRINT("info", ("mem_root 0x%lx returned from thd mem root 0x%lx",
(ulong) &mem_root, (ulong) &thd->mem_root));
thd->free_list= flist; // Restore the old one
thd->db= m_thd_db; // Restore the original db pointer
thd->mem_root= m_thd_root;
m_thd= NULL;
DBUG_VOID_RETURN;
}
/*
Check if a user has access right to a routine
SYNOPSIS
check_show_routine_access()
thd Thread handler
sp SP
full_access Set to 1 if the user has SELECT right to the
'mysql.proc' able or is the owner of the routine
RETURN
0 ok
1 error
*/
bool check_show_routine_access(THD *thd, sp_head *sp, bool *full_access)
{
TABLE_LIST tables;
bzero((char*) &tables,sizeof(tables));
tables.db= (char*) "mysql";
tables.table_name= tables.alias= (char*) "proc";
*full_access= (!check_table_access(thd, SELECT_ACL, &tables, 1) ||
(!strcmp(sp->m_definer_user.str,
thd->security_ctx->priv_user) &&
!strcmp(sp->m_definer_host.str,
thd->security_ctx->priv_host)));
if (!*full_access)
return check_some_routine_access(thd, sp->m_db.str, sp->m_name.str,
sp->m_type == TYPE_ENUM_PROCEDURE);
return 0;
}
int
sp_head::show_create_procedure(THD *thd)
{
Protocol *protocol= thd->protocol;
char buff[2048];
String buffer(buff, sizeof(buff), system_charset_info);
int res;
List<Item> field_list;
byte *sql_mode_str;
ulong sql_mode_len;
bool full_access;
DBUG_ENTER("sp_head::show_create_procedure");
DBUG_PRINT("info", ("procedure %s", m_name.str));
LINT_INIT(sql_mode_str);
LINT_INIT(sql_mode_len);
if (check_show_routine_access(thd, this, &full_access))
return 1;
sql_mode_str=
sys_var_thd_sql_mode::symbolic_mode_representation(thd,
m_sql_mode,
&sql_mode_len);
field_list.push_back(new Item_empty_string("Procedure", NAME_LEN));
field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len));
// 1024 is for not to confuse old clients
field_list.push_back(new Item_empty_string("Create Procedure",
max(buffer.length(), 1024)));
if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS |
Protocol::SEND_EOF))
{
res= 1;
goto done;
}
protocol->prepare_for_resend();
protocol->store(m_name.str, m_name.length, system_charset_info);
protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info);
if (full_access)
protocol->store(m_defstr.str, m_defstr.length, system_charset_info);
res= protocol->write();
send_eof(thd);
done:
DBUG_RETURN(res);
}
/*
Add instruction to SP
SYNOPSIS
sp_head::add_instr()
instr Instruction
*/
void sp_head::add_instr(sp_instr *instr)
{
instr->free_list= m_thd->free_list;
m_thd->free_list= 0;
/*
Memory root of every instruction is designated for permanent
transformations (optimizations) made on the parsed tree during
the first execution. It points to the memory root of the
entire stored procedure, as their life span is equal.
*/
instr->mem_root= &main_mem_root;
insert_dynamic(&m_instr, (gptr)&instr);
}
int
sp_head::show_create_function(THD *thd)
{
Protocol *protocol= thd->protocol;
char buff[2048];
String buffer(buff, sizeof(buff), system_charset_info);
int res;
List<Item> field_list;
byte *sql_mode_str;
ulong sql_mode_len;
bool full_access;
DBUG_ENTER("sp_head::show_create_function");
DBUG_PRINT("info", ("procedure %s", m_name.str));
LINT_INIT(sql_mode_str);
LINT_INIT(sql_mode_len);
if (check_show_routine_access(thd, this, &full_access))
return 1;
sql_mode_str=
sys_var_thd_sql_mode::symbolic_mode_representation(thd,
m_sql_mode,
&sql_mode_len);
field_list.push_back(new Item_empty_string("Function",NAME_LEN));
field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len));
field_list.push_back(new Item_empty_string("Create Function",
max(buffer.length(),1024)));
if (protocol->send_fields(&field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
{
res= 1;
goto done;
}
protocol->prepare_for_resend();
protocol->store(m_name.str, m_name.length, system_charset_info);
protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info);
if (full_access)
protocol->store(m_defstr.str, m_defstr.length, system_charset_info);
res= protocol->write();
send_eof(thd);
done:
DBUG_RETURN(res);
}
/*
TODO: what does this do??
*/
void sp_head::optimize()
{
List<sp_instr> bp;
sp_instr *i;
uint src, dst;
opt_mark(0);
bp.empty();
src= dst= 0;
while ((i= get_instr(src)))
{
if (! i->marked)
{
delete i;
src+= 1;
}
else
{
if (src != dst)
{
sp_instr *ibp;
List_iterator_fast<sp_instr> li(bp);
set_dynamic(&m_instr, (gptr)&i, dst);
while ((ibp= li++))
{
sp_instr_jump *ji= static_cast<sp_instr_jump *>(ibp);
if (ji->m_dest == src)
ji->m_dest= dst;
}
}
i->opt_move(dst, &bp);
src+= 1;
dst+= 1;
}
}
m_instr.elements= dst;
bp.empty();
}
void
sp_head::opt_mark(uint ip)
{
sp_instr *i;
while ((i= get_instr(ip)) && !i->marked)
ip= i->opt_mark(this);
}
/*
Prepare LEX and thread for execution of instruction, if requested open
and lock LEX's tables, execute instruction's core function, perform
cleanup afterwards.
SYNOPSIS
reset_lex_and_exec_core()
thd - thread context
nextp - out - next instruction
open_tables - if TRUE then check read access to tables in LEX's table
list and open and lock them (used in instructions which
need to calculate some expression and don't execute
complete statement).
sp_instr - instruction for which we prepare context, and which core
function execute by calling its exec_core() method.
NOTE
We are not saving/restoring some parts of THD which may need this because
we do this once for whole routine execution in sp_head::execute().
RETURN VALUE
0/non-0 - Success/Failure
*/
int
sp_lex_keeper::reset_lex_and_exec_core(THD *thd, uint *nextp,
bool open_tables, sp_instr* instr)
{
int res= 0;
DBUG_ASSERT(!thd->derived_tables);
DBUG_ASSERT(thd->change_list.is_empty());
/*
Use our own lex.
We should not save old value since it is saved/restored in
sp_head::execute() when we are entering/leaving routine.
*/
thd->lex= m_lex;
VOID(pthread_mutex_lock(&LOCK_thread_count));
thd->query_id= next_query_id();
VOID(pthread_mutex_unlock(&LOCK_thread_count));
if (thd->prelocked_mode == NON_PRELOCKED)
{
/*
This statement will enter/leave prelocked mode on its own.
Entering prelocked mode changes table list and related members
of LEX, so we'll need to restore them.
*/
if (lex_query_tables_own_last)
{
/*
We've already entered/left prelocked mode with this statement.
Attach the list of tables that need to be prelocked and mark m_lex
as having such list attached.
*/
*lex_query_tables_own_last= prelocking_tables;
m_lex->mark_as_requiring_prelocking(lex_query_tables_own_last);
}
}
reinit_stmt_before_use(thd, m_lex);
/*
If requested check whenever we have access to tables in LEX's table list
and open and lock them before executing instructtions core function.
*/
if (open_tables &&
(check_table_access(thd, SELECT_ACL, m_lex->query_tables, 0) ||
open_and_lock_tables(thd, m_lex->query_tables)))
res= -1;
if (!res)
res= instr->exec_core(thd, nextp);
m_lex->unit.cleanup();
thd->proc_info="closing tables";
close_thread_tables(thd);
thd->proc_info= 0;
if (m_lex->query_tables_own_last)
{
/*
We've entered and left prelocking mode when executing statement
stored in m_lex.
m_lex->query_tables(->next_global)* list now has a 'tail' - a list
of tables that are added for prelocking. (If this is the first
execution, the 'tail' was added by open_tables(), otherwise we've
attached it above in this function).
Now we'll save the 'tail', and detach it.
*/
lex_query_tables_own_last= m_lex->query_tables_own_last;
prelocking_tables= *lex_query_tables_own_last;
*lex_query_tables_own_last= NULL;
m_lex->mark_as_requiring_prelocking(NULL);
}
thd->rollback_item_tree_changes();
/*
Unlike for PS we should not call Item's destructors for newly created
items after execution of each instruction in stored routine. This is
because SP often create Item (like Item_int, Item_string etc...) when
they want to store some value in local variable, pass return value and
etc... So their life time should be longer than one instruction.
cleanup_items() is called in sp_head::execute()
*/
return res;
}
/*
sp_instr class functions
*/
int sp_instr::exec_core(THD *thd, uint *nextp)
{
DBUG_ASSERT(0);
return 0;
}
/*
sp_instr_stmt class functions
*/
int
sp_instr_stmt::execute(THD *thd, uint *nextp)
{
char *query;
uint32 query_length;
int res;
DBUG_ENTER("sp_instr_stmt::execute");
DBUG_PRINT("info", ("command: %d", m_lex_keeper.sql_command()));
query= thd->query;
query_length= thd->query_length;
if (!(res= alloc_query(thd, m_query.str, m_query.length+1)) &&
!(res=subst_spvars(thd, this, &m_query)))
{
/*
(the order of query cache and subst_spvars calls is irrelevant because
queries with SP vars can't be cached)
*/
if (query_cache_send_result_to_client(thd,
thd->query, thd->query_length) <= 0)
{
res= m_lex_keeper.reset_lex_and_exec_core(thd, nextp, FALSE, this);
query_cache_end_of_result(thd);
}
else
*nextp= m_ip+1;
thd->query= query;
thd->query_length= query_length;
}
DBUG_RETURN(res);
}
void
sp_instr_stmt::print(String *str)
{
str->reserve(12);
str->append("stmt ");
str->qs_append((uint)m_lex_keeper.sql_command());
}
int
sp_instr_stmt::exec_core(THD *thd, uint *nextp)
{
int res= mysql_execute_command(thd);
*nextp= m_ip+1;
return res;
}
/*
sp_instr_set class functions
*/
int
sp_instr_set::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_set::execute");
DBUG_PRINT("info", ("offset: %u", m_offset));
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_set::exec_core(THD *thd, uint *nextp)
{
int res= thd->spcont->set_item_eval(thd, m_offset, &m_value, m_type);
*nextp = m_ip+1;
return res;
}
void
sp_instr_set::print(String *str)
{
str->reserve(12);
str->append("set ");
str->qs_append(m_offset);
str->append(' ');
m_value->print(str);
}
/*
sp_instr_set_trigger_field class functions
*/
int
sp_instr_set_trigger_field::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_set_trigger_field::execute");
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_set_trigger_field::exec_core(THD *thd, uint *nextp)
{
int res= 0;
Item *it= sp_prepare_func_item(thd, &value);
if (!it ||
!trigger_field->fixed && trigger_field->fix_fields(thd, 0) ||
(it->save_in_field(trigger_field->field, 0) < 0))
res= -1;
*nextp = m_ip+1;
return res;
}
void
sp_instr_set_trigger_field::print(String *str)
{
str->append("set ", 4);
trigger_field->print(str);
str->append(":=", 2);
value->print(str);
}
/*
sp_instr_jump class functions
*/
int
sp_instr_jump::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_jump::execute");
DBUG_PRINT("info", ("destination: %u", m_dest));
*nextp= m_dest;
DBUG_RETURN(0);
}
void
sp_instr_jump::print(String *str)
{
str->reserve(12);
str->append("jump ");
str->qs_append(m_dest);
}
uint
sp_instr_jump::opt_mark(sp_head *sp)
{
m_dest= opt_shortcut_jump(sp, this);
if (m_dest != m_ip+1) /* Jumping to following instruction? */
marked= 1;
m_optdest= sp->get_instr(m_dest);
return m_dest;
}
uint
sp_instr_jump::opt_shortcut_jump(sp_head *sp, sp_instr *start)
{
uint dest= m_dest;
sp_instr *i;
while ((i= sp->get_instr(dest)))
{
uint ndest;
if (start == i || this == i)
break;
ndest= i->opt_shortcut_jump(sp, start);
if (ndest == dest)
break;
dest= ndest;
}
return dest;
}
void
sp_instr_jump::opt_move(uint dst, List<sp_instr> *bp)
{
if (m_dest > m_ip)
bp->push_back(this); // Forward
else if (m_optdest)
m_dest= m_optdest->m_ip; // Backward
m_ip= dst;
}
/*
sp_instr_jump_if class functions
*/
int
sp_instr_jump_if::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_jump_if::execute");
DBUG_PRINT("info", ("destination: %u", m_dest));
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_jump_if::exec_core(THD *thd, uint *nextp)
{
Item *it;
int res;
it= sp_prepare_func_item(thd, &m_expr);
if (!it)
res= -1;
else
{
res= 0;
if (it->val_bool())
*nextp = m_dest;
else
*nextp = m_ip+1;
}
return res;
}
void
sp_instr_jump_if::print(String *str)
{
str->reserve(12);
str->append("jump_if ");
str->qs_append(m_dest);
str->append(' ');
m_expr->print(str);
}
uint
sp_instr_jump_if::opt_mark(sp_head *sp)
{
sp_instr *i;
marked= 1;
if ((i= sp->get_instr(m_dest)))
{
m_dest= i->opt_shortcut_jump(sp, this);
m_optdest= sp->get_instr(m_dest);
}
sp->opt_mark(m_dest);
return m_ip+1;
}
/*
sp_instr_jump_if_not class functions
*/
int
sp_instr_jump_if_not::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_jump_if_not::execute");
DBUG_PRINT("info", ("destination: %u", m_dest));
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_jump_if_not::exec_core(THD *thd, uint *nextp)
{
Item *it;
int res;
it= sp_prepare_func_item(thd, &m_expr);
if (! it)
res= -1;
else
{
res= 0;
if (! it->val_bool())
*nextp = m_dest;
else
*nextp = m_ip+1;
}
return res;
}
void
sp_instr_jump_if_not::print(String *str)
{
str->reserve(16);
str->append("jump_if_not ");
str->qs_append(m_dest);
str->append(' ');
m_expr->print(str);
}
uint
sp_instr_jump_if_not::opt_mark(sp_head *sp)
{
sp_instr *i;
marked= 1;
if ((i= sp->get_instr(m_dest)))
{
m_dest= i->opt_shortcut_jump(sp, this);
m_optdest= sp->get_instr(m_dest);
}
sp->opt_mark(m_dest);
return m_ip+1;
}
/*
sp_instr_freturn class functions
*/
int
sp_instr_freturn::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_freturn::execute");
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_freturn::exec_core(THD *thd, uint *nextp)
{
Item *it;
int res;
it= sp_eval_func_item(thd, &m_value, m_type, NULL, TRUE);
if (! it)
res= -1;
else
{
res= 0;
thd->spcont->set_result(it);
}
*nextp= UINT_MAX;
return res;
}
void
sp_instr_freturn::print(String *str)
{
str->reserve(12);
str->append("freturn ");
str->qs_append((uint)m_type);
str->append(' ');
m_value->print(str);
}
/*
sp_instr_hpush_jump class functions
*/
int
sp_instr_hpush_jump::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_hpush_jump::execute");
List_iterator_fast<sp_cond_type_t> li(m_cond);
sp_cond_type_t *p;
while ((p= li++))
thd->spcont->push_handler(p, m_ip+1, m_type, m_frame);
*nextp= m_dest;
DBUG_RETURN(0);
}
void
sp_instr_hpush_jump::print(String *str)
{
str->reserve(32);
str->append("hpush_jump ");
str->qs_append(m_dest);
str->append(" t=");
str->qs_append(m_type);
str->append(" f=");
str->qs_append(m_frame);
str->append(" h=");
str->qs_append(m_ip+1);
}
uint
sp_instr_hpush_jump::opt_mark(sp_head *sp)
{
sp_instr *i;
marked= 1;
if ((i= sp->get_instr(m_dest)))
{
m_dest= i->opt_shortcut_jump(sp, this);
m_optdest= sp->get_instr(m_dest);
}
sp->opt_mark(m_dest);
return m_ip+1;
}
/*
sp_instr_hpop class functions
*/
int
sp_instr_hpop::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_hpop::execute");
thd->spcont->pop_handlers(m_count);
*nextp= m_ip+1;
DBUG_RETURN(0);
}
void
sp_instr_hpop::print(String *str)
{
str->reserve(12);
str->append("hpop ");
str->qs_append(m_count);
}
void
sp_instr_hpop::backpatch(uint dest, sp_pcontext *dst_ctx)
{
m_count= m_ctx->diff_handlers(dst_ctx);
}
/*
sp_instr_hreturn class functions
*/
int
sp_instr_hreturn::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_hreturn::execute");
if (m_dest)
*nextp= m_dest;
else
{
thd->spcont->restore_variables(m_frame);
*nextp= thd->spcont->pop_hstack();
}
thd->spcont->exit_handler();
DBUG_RETURN(0);
}
void
sp_instr_hreturn::print(String *str)
{
str->reserve(16);
str->append("hreturn ");
str->qs_append(m_frame);
if (m_dest)
str->qs_append(m_dest);
}
uint
sp_instr_hreturn::opt_mark(sp_head *sp)
{
if (m_dest)
return sp_instr_jump::opt_mark(sp);
else
{
marked= 1;
return UINT_MAX;
}
}
/*
sp_instr_cpush class functions
*/
int
sp_instr_cpush::execute(THD *thd, uint *nextp)
{
Query_arena backup_arena;
DBUG_ENTER("sp_instr_cpush::execute");
/*
We should create cursors in the callers arena, as
it could be (and usually is) used in several instructions.
*/
thd->set_n_backup_active_arena(thd->spcont->callers_arena, &backup_arena);
thd->spcont->push_cursor(&m_lex_keeper, this);
thd->restore_active_arena(thd->spcont->callers_arena, &backup_arena);
*nextp= m_ip+1;
DBUG_RETURN(0);
}
void
sp_instr_cpush::print(String *str)
{
str->append("cpush");
}
/*
sp_instr_cpop class functions
*/
int
sp_instr_cpop::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_cpop::execute");
thd->spcont->pop_cursors(m_count);
*nextp= m_ip+1;
DBUG_RETURN(0);
}
void
sp_instr_cpop::print(String *str)
{
str->reserve(12);
str->append("cpop ");
str->qs_append(m_count);
}
void
sp_instr_cpop::backpatch(uint dest, sp_pcontext *dst_ctx)
{
m_count= m_ctx->diff_cursors(dst_ctx);
}
/*
sp_instr_copen class functions
*/
int
sp_instr_copen::execute(THD *thd, uint *nextp)
{
/*
We don't store a pointer to the cursor in the instruction to be
able to reuse the same instruction among different threads in future.
*/
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res;
DBUG_ENTER("sp_instr_copen::execute");
if (! c)
res= -1;
else
{
sp_lex_keeper *lex_keeper= c->get_lex_keeper();
Query_arena *old_arena= thd->stmt_arena;
/*
Get the Query_arena from the cpush instruction, which contains
the free_list of the query, so new items (if any) are stored in
the right free_list, and we can cleanup after each open.
*/
thd->stmt_arena= c->get_instr();
res= lex_keeper->reset_lex_and_exec_core(thd, nextp, FALSE, this);
/* Cleanup the query's items */
if (thd->stmt_arena->free_list)
cleanup_items(thd->stmt_arena->free_list);
thd->stmt_arena= old_arena;
/*
Work around the fact that errors in selects are not returned properly
(but instead converted into a warning), so if a condition handler
caught, we have lost the result code.
*/
if (!res)
{
uint dummy1, dummy2;
if (thd->spcont->found_handler(&dummy1, &dummy2))
res= -1;
}
/* TODO: Assert here that we either have an error or a cursor */
}
DBUG_RETURN(res);
}
int
sp_instr_copen::exec_core(THD *thd, uint *nextp)
{
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res= c->open(thd);
*nextp= m_ip+1;
return res;
}
void
sp_instr_copen::print(String *str)
{
str->reserve(12);
str->append("copen ");
str->qs_append(m_cursor);
}
/*
sp_instr_cclose class functions
*/
int
sp_instr_cclose::execute(THD *thd, uint *nextp)
{
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res;
DBUG_ENTER("sp_instr_cclose::execute");
if (! c)
res= -1;
else
res= c->close(thd);
*nextp= m_ip+1;
DBUG_RETURN(res);
}
void
sp_instr_cclose::print(String *str)
{
str->reserve(12);
str->append("cclose ");
str->qs_append(m_cursor);
}
/*
sp_instr_cfetch class functions
*/
int
sp_instr_cfetch::execute(THD *thd, uint *nextp)
{
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res;
Query_arena backup_arena;
DBUG_ENTER("sp_instr_cfetch::execute");
res= c ? c->fetch(thd, &m_varlist) : -1;
*nextp= m_ip+1;
DBUG_RETURN(res);
}
void
sp_instr_cfetch::print(String *str)
{
List_iterator_fast<struct sp_pvar> li(m_varlist);
sp_pvar_t *pv;
str->reserve(12);
str->append("cfetch ");
str->qs_append(m_cursor);
while ((pv= li++))
{
str->reserve(8);
str->append(' ');
str->qs_append(pv->offset);
}
}
/*
sp_instr_error class functions
*/
int
sp_instr_error::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_error::execute");
my_message(m_errcode, ER(m_errcode), MYF(0));
*nextp= m_ip+1;
DBUG_RETURN(-1);
}
void
sp_instr_error::print(String *str)
{
str->reserve(12);
str->append("error ");
str->qs_append(m_errcode);
}
/* ------------------------------------------------------------------ */
/*
Security context swapping
*/
#ifndef NO_EMBEDDED_ACCESS_CHECKS
bool
sp_change_security_context(THD *thd, sp_head *sp, Security_context **backup)
{
*backup= 0;
if (sp->m_chistics->suid != SP_IS_NOT_SUID &&
(strcmp(sp->m_definer_user.str,
thd->security_ctx->priv_user) ||
my_strcasecmp(system_charset_info, sp->m_definer_host.str,
thd->security_ctx->priv_host)))
{
if (acl_getroot_no_password(&sp->m_security_ctx, sp->m_definer_user.str,
sp->m_definer_host.str,
sp->m_definer_host.str,
sp->m_db.str))
{
my_error(ER_NO_SUCH_USER, MYF(0), sp->m_definer_user.str,
sp->m_definer_host.str);
return TRUE;
}
*backup= thd->security_ctx;
thd->security_ctx= &sp->m_security_ctx;
}
return FALSE;
}
void
sp_restore_security_context(THD *thd, Security_context *backup)
{
if (backup)
thd->security_ctx= backup;
}
#endif /* NO_EMBEDDED_ACCESS_CHECKS */
/*
Structure that represent all instances of one table
in optimized multi-set of tables used by routine.
*/
typedef struct st_sp_table
{
LEX_STRING qname; /* Multi-set key: db_name\0table_name\0alias\0 */
uint db_length, table_name_length;
bool temp; /* true if corresponds to a temporary table */
thr_lock_type lock_type; /* lock type used for prelocking */
uint lock_count;
uint query_lock_count;
} SP_TABLE;
byte *
sp_table_key(const byte *ptr, uint *plen, my_bool first)
{
SP_TABLE *tab= (SP_TABLE *)ptr;
*plen= tab->qname.length;
return (byte *)tab->qname.str;
}
/*
Merge the list of tables used by some query into the multi-set of
tables used by routine.
SYNOPSIS
merge_table_list()
thd - thread context
table - table list
lex_for_tmp_check - LEX of the query for which we are merging
table list.
NOTE
This method will use LEX provided to check whenever we are creating
temporary table and mark it as such in target multi-set.
RETURN VALUE
TRUE - Success
FALSE - Error
*/
bool
sp_head::merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check)
{
SP_TABLE *tab;
if (lex_for_tmp_check->sql_command == SQLCOM_DROP_TABLE &&
lex_for_tmp_check->drop_temporary)
return TRUE;
for (uint i= 0 ; i < m_sptabs.records ; i++)
{
tab= (SP_TABLE *)hash_element(&m_sptabs, i);
tab->query_lock_count= 0;
}
for (; table ; table= table->next_global)
if (!table->derived && !table->schema_table)
{
char tname[(NAME_LEN + 1) * 3]; // db\0table\0alias\0
uint tlen, alen;
tlen= table->db_length;
memcpy(tname, table->db, tlen);
tname[tlen++]= '\0';
memcpy(tname+tlen, table->table_name, table->table_name_length);
tlen+= table->table_name_length;
tname[tlen++]= '\0';
alen= strlen(table->alias);
memcpy(tname+tlen, table->alias, alen);
tlen+= alen;
tname[tlen]= '\0';
/*
It is safe to store pointer to table list elements in hash,
since they are supposed to have the same lifetime.
*/
if ((tab= (SP_TABLE *)hash_search(&m_sptabs, (byte *)tname, tlen)))
{
if (tab->lock_type < table->lock_type)
tab->lock_type= table->lock_type; // Use the table with the highest lock type
tab->query_lock_count++;
if (tab->query_lock_count > tab->lock_count)
tab->lock_count++;
}
else
{
if (!(tab= (SP_TABLE *)thd->calloc(sizeof(SP_TABLE))))
return FALSE;
tab->qname.length= tlen;
tab->qname.str= (char*) thd->memdup(tname, tab->qname.length + 1);
if (!tab->qname.str)
return FALSE;
if (lex_for_tmp_check->sql_command == SQLCOM_CREATE_TABLE &&
lex_for_tmp_check->query_tables == table &&
lex_for_tmp_check->create_info.options & HA_LEX_CREATE_TMP_TABLE)
tab->temp= TRUE;
tab->table_name_length= table->table_name_length;
tab->db_length= table->db_length;
tab->lock_type= table->lock_type;
tab->lock_count= tab->query_lock_count= 1;
my_hash_insert(&m_sptabs, (byte *)tab);
}
}
return TRUE;
}
/*
Add tables used by routine to the table list.
SYNOPSIS
add_used_tables_to_table_list()
thd - thread context
query_tables_last_ptr - (in/out) pointer the next_global member of last
element of the list where tables will be added
(or to its root).
DESCRIPTION
Converts multi-set of tables used by this routine to table list and adds
this list to the end of table list specified by 'query_tables_last_ptr'.
Elements of list will be allocated in PS memroot, so this list will be
persistent between PS executions.
RETURN VALUE
TRUE - if some elements were added, FALSE - otherwise.
*/
bool
sp_head::add_used_tables_to_table_list(THD *thd,
TABLE_LIST ***query_tables_last_ptr)
{
uint i;
Query_arena *arena, backup;
bool result= FALSE;
DBUG_ENTER("sp_head::add_used_tables_to_table_list");
/*
Use persistent arena for table list allocation to be PS friendly.
*/
arena= thd->activate_stmt_arena_if_needed(&backup);
for (i=0 ; i < m_sptabs.records ; i++)
{
char *tab_buff;
TABLE_LIST *table;
SP_TABLE *stab= (SP_TABLE *)hash_element(&m_sptabs, i);
if (stab->temp)
continue;
if (!(tab_buff= (char *)thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST)) *
stab->lock_count)))
DBUG_RETURN(FALSE);
for (uint j= 0; j < stab->lock_count; j++)
{
table= (TABLE_LIST *)tab_buff;
/*
It's enough to just copy the pointers as the data will not change
during the lifetime of the SP. If the SP is used by PS, we assume
that the PS will be invalidated if the functions is deleted or
changed.
*/
table->db= stab->qname.str;
table->db_length= stab->db_length;
table->table_name= table->db + table->db_length + 1;
table->table_name_length= stab->table_name_length;
table->alias= table->table_name + table->table_name_length + 1;
table->lock_type= stab->lock_type;
table->cacheable_table= 1;
table->prelocking_placeholder= 1;
/* Everyting else should be zeroed */
**query_tables_last_ptr= table;
table->prev_global= *query_tables_last_ptr;
*query_tables_last_ptr= &table->next_global;
tab_buff+= ALIGN_SIZE(sizeof(TABLE_LIST));
result= TRUE;
}
}
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(result);
}
/*
Simple function for adding an explicetly named (systems) table to
the global table list, e.g. "mysql", "proc".
*/
TABLE_LIST *
sp_add_to_query_tables(THD *thd, LEX *lex,
const char *db, const char *name,
thr_lock_type locktype)
{
TABLE_LIST *table;
if (!(table= (TABLE_LIST *)thd->calloc(sizeof(TABLE_LIST))))
{
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(TABLE_LIST));
return NULL;
}
table->db_length= strlen(db);
table->db= thd->strmake(db, table->db_length);
table->table_name_length= strlen(name);
table->table_name= thd->strmake(name, table->table_name_length);
table->alias= thd->strdup(name);
table->lock_type= locktype;
table->select_lex= lex->current_select; // QQ?
table->cacheable_table= 1;
lex->add_to_query_tables(table);
return table;
}