mariadb/sql/mdl.cc
Dmitry Lenev eba5d30e67 Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.

Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".

The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.

The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.

A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.

Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.

In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.

We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.

The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.

This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.

To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.

This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.

Below follows the list of incompatible changes introduced by
this patch:

- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
  statements that acquire TL_WRITE_ALLOW_READ lock)
  wait for all transactions which has *updated* the table to
  complete.

- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
  (i.e. all statements which acquire TL_WRITE table-level lock) wait
  for all transaction which *updated or read* from the table
  to complete.
  As a consequence, innodb_table_locks=0 option no longer applies
  to LOCK TABLES ... WRITE.

- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
  statements or transactions which use tables being dropped or
  renamed, and instead wait for these transactions to complete.

- Since LOCK TABLES WRITE now takes a special metadata lock,
  not compatible with with reads or writes against the subject table
  and transaction-wide, thr_lock.c deadlock avoidance algorithm
  that used to ensure absence of deadlocks between LOCK TABLES
  WRITE and other statements is no longer sufficient, even for
  MyISAM. The wait-for graph based deadlock detector of MDL
  subsystem may sometimes be necessary and is involved. This may
  lead to ER_LOCK_DEADLOCK error produced for multi-statement
  transactions even if these only use MyISAM:

  session 1:         session 2:
  begin;

  update t1 ...      lock table t2 write, t1 write;
                     -- gets a lock on t2, blocks on t1

  update t2 ...
  (ER_LOCK_DEADLOCK)

- Finally,  support of LOW_PRIORITY option for LOCK TABLES ... WRITE
  was abandoned.
  LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
  priority as the usual LOCK TABLE ... WRITE.
  SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE  in
  the wait queue.

- We do not take upgradable metadata locks on implicitly
  locked tables. So if one has, say, a view v1 that uses
  table t1, and issues:
  LOCK TABLE v1 WRITE;
  FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
  an error is produced.
  In order to be able to perform DDL on a table under LOCK TABLES,
  the table must be locked explicitly in the LOCK TABLES list.

mysql-test/include/handler.inc:
  Adjusted test case to trigger an execution path on which bug 41110
  "crash with handler command when used concurrently with alter
  table" and bug 41112 "crash in mysql_ha_close_table/get_lock_data
  with alter table" were originally discovered. Left old test case
  which no longer triggers this execution path for the sake of
  coverage.
  Added test coverage for HANDLER SQL statements and type-aware
  metadata locks.
  Added a test for the global shared lock and HANDLER SQL.
  Updated tests to take into account that the old simple deadlock
  detection heuristics was replaced with a graph-based deadlock
  detector.
mysql-test/r/debug_sync.result:
  Updated results (see debug_sync.test).
mysql-test/r/handler_innodb.result:
  Updated results (see handler.inc test).
mysql-test/r/handler_myisam.result:
  Updated results (see handler.inc test).
mysql-test/r/innodb-lock.result:
  Updated results (see innodb-lock.test).
mysql-test/r/innodb_mysql_lock.result:
  Updated results (see innodb_mysql_lock.test).
mysql-test/r/lock.result:
  Updated results (see lock.test).
mysql-test/r/lock_multi.result:
  Updated results (see lock_multi.test).
mysql-test/r/lock_sync.result:
  Updated results (see lock_sync.test).
mysql-test/r/mdl_sync.result:
  Updated results (see mdl_sync.test).
mysql-test/r/sp-threads.result:
  SHOW PROCESSLIST output has changed due to the fact that waiting
  for LOCK TABLES WRITE now happens within metadata locking
  subsystem.
mysql-test/r/truncate_coverage.result:
  Updated results (see truncate_coverage.test).
mysql-test/suite/funcs_1/datadict/processlist_val.inc:
  SELECT FROM I_S.PROCESSLIST output has changed due to fact that
  waiting for LOCK TABLES WRITE now happens within metadata locking
  subsystem.
mysql-test/suite/funcs_1/r/processlist_val_no_prot.result:
  SELECT FROM I_S.PROCESSLIST output has changed due to fact that
  waiting for LOCK TABLES WRITE now happens within metadata locking
  subsystem.
mysql-test/suite/rpl/t/rpl_sp.test:
  Updated to a new SHOW PROCESSLIST state name.
mysql-test/t/debug_sync.test:
  Use LOCK TABLES READ instead of LOCK TABLES WRITE as the latter
  no longer allows to trigger execution path involving waiting on
  thr_lock.c lock and therefore reaching debug sync-point covered
  by this test.
mysql-test/t/innodb-lock.test:
  Adjusted test case to the fact that innodb_table_locks=0 option is
  no longer supported, since LOCK TABLES WRITE handles all its
  conflicts within MDL subsystem.
mysql-test/t/innodb_mysql_lock.test:
  Added test for bug #37346 "innodb does not detect deadlock between
  update and alter table".
mysql-test/t/lock.test:
  Added test coverage which checks the fact that we no longer support
  DDL under LOCK TABLES on tables which were locked implicitly.
  Adjusted existing test cases accordingly.
mysql-test/t/lock_multi.test:
  Added test for bug #46272 "MySQL 5.4.4, new MDL: unnecessary
  deadlock".  Adjusted other test cases to take into account the
  fact that waiting for LOCK TABLES ... WRITE now happens within MDL
  subsystem.
mysql-test/t/lock_sync.test:
  Since LOCK TABLES ... WRITE now takes SNRW metadata lock for
  tables locked explicitly we have to implicitly lock InnoDB tables
  (through view) to trigger the table-level lock conflict between
  TL_WRITE and TL_WRITE_ALLOW_WRITE.
mysql-test/t/mdl_sync.test:
  Added basic test coverage for type-of-operation-aware metadata
  locks. Also covered with tests some use cases involving HANDLER
  statements in which a deadlock could arise.
  Adjusted existing tests to take type-of-operation-aware MDL into
  account.
mysql-test/t/multi_update.test:
  Update to a new SHOW PROCESSLIST state name.
mysql-test/t/truncate_coverage.test:
  Adjusted test case after making LOCK TABLES WRITE to wait until
  transactions that use the table to be locked are completed.
  Updated to the changed name of DEBUG_SYNC point.
sql/handler.cc:
  Global read lock functionality has been
  moved into a class.
sql/lock.cc:
  Global read lock functionality has been
  moved into a class.
  Updated code to use the new MDL API.
sql/mdl.cc:
  Introduced new type-of-operation aware metadata locks.
  To do this:
  - Changed MDL_lock to use one list for waiting requests and one
    list for granted requests. For each list, added a bitmap
    that holds information what lock types a list contains.
    Added a helper class MDL_lock::List to manipulate with granted
    and waited lists while keeping the bitmaps in sync
    with list contents.
  - Changed lock-compatibility functions to use bitmaps that
    define compatibility.
  - Introduced a graph based deadlock detector inspired by
    waiting_threads.c from Maria implementation.
  - Now that we have a deadlock detector, and no longer have
    a global lock to protect individual lock objects, but rather
    use an rw lock per object, removed redundant code for upgrade,
    and the global read lock. Changed the MDL API to
    no longer require the caller to acquire the global
    intention exclusive lock by means of a separate method.
    Removed a few more methods that became redundant.
  - Removed deadlock detection heuristic, it has been made
    obsolete by the deadlock detector.
  - With operation-type-aware metadata locks, MDL subsystem has
    become aware of potential conflicts between DDL and open
    transactions. This made it possible to remove calls to
    mysql_abort_transactions_with_shared_lock() from acquisition
    paths for exclusive lock and lock upgrade. Now we can simply
    wait for these transactions to complete without fear of
    deadlock. Function mysql_lock_abort() has also become
    unnecessary for all conflicting cases except when a DDL
    conflicts with a connection that has an open HANDLER.
sql/mdl.h:
  Introduced new type-of-operation aware metadata locks.
  Introduced a graph based deadlock detector and supporting
  methods.
  Added comments.
  God rid of redundant API calls.
  Renamed m_lt_or_ha_sentinel to m_trans_sentinel,
  since now it guards the global read lock as well as
  LOCK TABLES and HANDLER locks.
sql/mysql_priv.h:
  Moved the global read lock functionality into a
  class.
  Added MYSQL_OPEN_FORCE_SHARED_MDL flag which forces
  open_tables() to take MDL_SHARED on tables instead of
  metadata locks specified in the parser. We use this to
  allow PREPARE run concurrently in presence of
  LOCK TABLES ... WRITE.
  Added signature for find_table_for_mdl_ugprade().
sql/set_var.cc:
  Global read lock functionality has been
  moved into a class.
sql/sp_head.cc:
  When creating TABLE_LIST elements for prelocking or
  system tables set the type of request for metadata
  lock according to the operation that will be performed
  on the table.
sql/sql_base.cc:
  - Updated code to use the new MDL API.
  - In order to avoid locks starvation we take upgradable
    locks all at once. As result implicitly locked tables no
    longer get an upgradable lock. Consequently DDL and FLUSH
    TABLES for such tables is prohibited.
    find_write_locked_table() was replaced by
    find_table_for_mdl_upgrade() function.
    open_table() was adjusted to return TABLE instance with
    upgradable ticket when necessary.
  - We no longer wait for all locks on OT_WAIT back off
    action -- only on the lock that caused the wait
    conflict. Moreover, now we distinguish cases when we
    have to wait due to conflict in MDL and old version
    of table in TDC.
  - Upate mysql_notify_threads_having_share_locks()
    to only abort thr_lock.c waits of threads that
    have open HANDLERs, since lock conflicts with only
    these threads now can lead to deadlocks not detectable
    by the MDL deadlock detector.
  - Remove mysql_abort_transactions_with_shared_locks()
    which is no longer needed.
sql/sql_class.cc:
  Global read lock functionality has been moved into a class.
  Re-arranged code in THD::cleanup() to simplify assert.
sql/sql_class.h:
  Introduced class to incapsulate global read lock
  functionality.
  Now sentinel in MDL subsystem guards the global read lock
  as well as LOCK TABLES and HANDLER locks. Adjusted code
  accordingly.
sql/sql_db.cc:
  Global read lock functionality has been moved into a class.
sql/sql_delete.cc:
  We no longer acquire upgradable metadata locks on tables
  which are locked by LOCK TABLES implicitly. As result
  TRUNCATE TABLE is no longer allowed for such tables.
  Updated code to use the new MDL API.
sql/sql_handler.cc:
  Inform MDL_context about presence of open HANDLERs.
  Since HANLDERs break MDL protocol by acquiring table-level
  lock while holding only S metadata lock on a table MDL
  subsystem should take special care about such contexts (Now
  this is the only case when mysql_lock_abort() is used).
sql/sql_parse.cc:
  Global read lock functionality has been moved into a class.
  Do not take upgradable metadata locks when opening tables
  for CREATE TABLE SELECT as it is not necessary and limits
  concurrency.
  When initializing TABLE_LIST objects before adding them
  to the table list set the type of request for metadata lock
  according to the operation that will be performed on the
  table.
  We no longer acquire upgradable metadata locks on tables
  which are locked by LOCK TABLES implicitly. As result FLUSH
  TABLES is no longer allowed for such tables.
sql/sql_prepare.cc:
  Use MYSQL_OPEN_FORCE_SHARED_MDL flag when opening
  tables during PREPARE. This allows PREPARE to run
  concurrently in presence of LOCK TABLES ... WRITE.
sql/sql_rename.cc:
  Global read lock functionality has been moved into a class.
sql/sql_show.cc:
  Updated code to use the new MDL API.
sql/sql_table.cc:
  Global read lock functionality has been moved into a class.
  We no longer acquire upgradable metadata locks on tables
  which are locked by LOCK TABLES implicitly. As result DROP
  TABLE is no longer allowed for such tables.
  Updated code to use the new MDL API.
sql/sql_trigger.cc:
  Global read lock functionality has been moved into a class.
  We no longer acquire upgradable metadata locks on tables
  which are locked by LOCK TABLES implicitly. As result
  CREATE/DROP TRIGGER is no longer allowed for such tables.
  Updated code to use the new MDL API.
sql/sql_view.cc:
  Global read lock functionality has been moved into a class.
  Fixed results of wrong merge that led to misuse of GLR API.
  CREATE VIEW statement is not a commit statement.
sql/table.cc:
  When resetting TABLE_LIST objects for PS or SP re-execution
  set the type of request for metadata lock according to the
  operation that will be performed on the table. Do the same
  in auxiliary function initializing metadata lock requests
  in a table list.
sql/table.h:
  When initializing TABLE_LIST objects set the type of request
  for metadata lock according to the operation that will be
  performed on the table.
sql/transaction.cc:
  Global read lock functionality has been moved into a class.
2010-02-01 14:43:06 +03:00

2226 lines
62 KiB
C++

/* Copyright (C) 2007-2008 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "mdl.h"
#include "debug_sync.h"
#include <hash.h>
#include <mysqld_error.h>
void notify_shared_lock(THD *thd, MDL_ticket *conflicting_ticket);
static bool mdl_initialized= 0;
/**
A collection of all MDL locks. A singleton,
there is only one instance of the map in the server.
Maps MDL_key to MDL_lock instances.
*/
class MDL_map
{
public:
void init();
void destroy();
MDL_lock *find(const MDL_key *key);
MDL_lock *find_or_insert(const MDL_key *key);
void remove(MDL_lock *lock);
private:
bool move_from_hash_to_lock_mutex(MDL_lock *lock);
private:
/** All acquired locks in the server. */
HASH m_locks;
/* Protects access to m_locks hash. */
pthread_mutex_t m_mutex;
};
enum enum_deadlock_weight
{
MDL_DEADLOCK_WEIGHT_DML= 0,
MDL_DEADLOCK_WEIGHT_DDL= 100
};
/**
A context of the recursive traversal through all contexts
in all sessions in search for deadlock.
*/
class Deadlock_detection_context
{
public:
Deadlock_detection_context(MDL_context *start_arg)
: start(start_arg),
victim(NULL),
current_search_depth(0)
{ }
MDL_context *start;
MDL_context *victim;
uint current_search_depth;
static const uint MAX_SEARCH_DEPTH= 1000;
};
/**
Get a bit corresponding to enum_mdl_type value in a granted/waiting bitmaps
and compatibility matrices.
*/
#define MDL_BIT(A) static_cast<MDL_lock::bitmap_t>(1U << A)
/**
The lock context. Created internally for an acquired lock.
For a given name, there exists only one MDL_lock instance,
and it exists only when the lock has been granted.
Can be seen as an MDL subsystem's version of TABLE_SHARE.
This is an abstract class which lacks information about
compatibility rules for lock types. They should be specified
in its descendants.
*/
class MDL_lock
{
public:
typedef uchar bitmap_t;
class Ticket_list
{
public:
typedef I_P_List<MDL_ticket,
I_P_List_adapter<MDL_ticket,
&MDL_ticket::next_in_lock,
&MDL_ticket::prev_in_lock> >
List;
operator const List &() const { return m_list; }
Ticket_list() :m_bitmap(0) {}
void add_ticket(MDL_ticket *ticket);
void remove_ticket(MDL_ticket *ticket);
bool is_empty() const { return m_list.is_empty(); }
bitmap_t bitmap() const { return m_bitmap; }
private:
void clear_bit_if_not_in_list(enum_mdl_type type);
private:
/** List of tickets. */
List m_list;
/** Bitmap of types of tickets in this list. */
bitmap_t m_bitmap;
};
typedef Ticket_list::List::Iterator Ticket_iterator;
public:
/** The key of the object (data) being protected. */
MDL_key key;
void *cached_object;
mdl_cached_object_release_hook cached_object_release_hook;
/**
Read-write lock protecting this lock context.
TODO/FIXME: Replace with RW-lock which will prefer readers
on all platforms and not only on Linux.
*/
rw_lock_t m_rwlock;
bool is_empty() const
{
return (m_granted.is_empty() && m_waiting.is_empty());
}
virtual const bitmap_t *incompatible_granted_types_bitmap() const = 0;
virtual const bitmap_t *incompatible_waiting_types_bitmap() const = 0;
bool has_pending_conflicting_lock(enum_mdl_type type);
bool can_grant_lock(enum_mdl_type type, MDL_context *requstor_ctx) const;
inline static MDL_lock *create(const MDL_key *key);
void notify_shared_locks(MDL_context *ctx)
{
Ticket_iterator it(m_granted);
MDL_ticket *conflicting_ticket;
while ((conflicting_ticket= it++))
{
if (conflicting_ticket->get_ctx() != ctx)
notify_shared_lock(ctx->get_thd(), conflicting_ticket);
}
}
/**
Wake up contexts which are waiting to acquire lock on the object and
which may succeed now, when we released some lock on it or removed
some pending request from its waiters list (the latter can happen,
for example, when context trying to acquire exclusive on the object
lock is killed).
*/
void wake_up_waiters()
{
MDL_lock::Ticket_iterator it(m_waiting);
MDL_ticket *awake_ticket;
while ((awake_ticket= it++))
awake_ticket->get_ctx()->awake(MDL_context::NORMAL_WAKE_UP);
}
void remove_ticket(Ticket_list MDL_lock::*queue, MDL_ticket *ticket);
bool find_deadlock(MDL_ticket *waiting_ticket,
Deadlock_detection_context *deadlock_ctx);
/** List of granted tickets for this lock. */
Ticket_list m_granted;
/** Tickets for contexts waiting to acquire a lock. */
Ticket_list m_waiting;
public:
MDL_lock(const MDL_key *key_arg)
: key(key_arg),
cached_object(NULL),
cached_object_release_hook(NULL),
m_ref_usage(0),
m_ref_release(0),
m_is_destroyed(FALSE)
{
my_rwlock_init(&m_rwlock, NULL);
}
virtual ~MDL_lock()
{
rwlock_destroy(&m_rwlock);
}
inline static void destroy(MDL_lock *lock);
public:
/**
These three members are used to make it possible to separate
the mdl_locks.m_mutex mutex and MDL_lock::m_rwlock in
MDL_map::find_or_insert() for increased scalability.
The 'm_is_destroyed' member is only set by destroyers that
have both the mdl_locks.m_mutex and MDL_lock::m_rwlock, thus
holding any of the mutexes is sufficient to read it.
The 'm_ref_usage; is incremented under protection by
mdl_locks.m_mutex, but when 'm_is_destroyed' is set to TRUE, this
member is moved to be protected by the MDL_lock::m_rwlock.
This means that the MDL_map::find_or_insert() which only
holds the MDL_lock::m_rwlock can compare it to 'm_ref_release'
without acquiring mdl_locks.m_mutex again and if equal it can also
destroy the lock object safely.
The 'm_ref_release' is incremented under protection by
MDL_lock::m_rwlock.
Note since we are only interested in equality of these two
counters we don't have to worry about overflows as long as
their size is big enough to hold maximum number of concurrent
threads on the system.
*/
uint m_ref_usage;
uint m_ref_release;
bool m_is_destroyed;
};
/**
An implementation of the global metadata lock. The only locking modes
which are supported at the moment are SHARED and INTENTION EXCLUSIVE.
*/
class MDL_global_lock : public MDL_lock
{
public:
MDL_global_lock(const MDL_key *key_arg)
: MDL_lock(key_arg)
{ }
virtual const bitmap_t *incompatible_granted_types_bitmap() const
{
return m_granted_incompatible;
}
virtual const bitmap_t *incompatible_waiting_types_bitmap() const
{
return m_waiting_incompatible;
}
private:
static const bitmap_t m_granted_incompatible[MDL_TYPE_END];
static const bitmap_t m_waiting_incompatible[MDL_TYPE_END];
};
/**
An implementation of a per-object lock. Supports SHARED, SHARED_UPGRADABLE,
SHARED HIGH PRIORITY and EXCLUSIVE locks.
*/
class MDL_object_lock : public MDL_lock
{
public:
MDL_object_lock(const MDL_key *key_arg)
: MDL_lock(key_arg)
{ }
virtual const bitmap_t *incompatible_granted_types_bitmap() const
{
return m_granted_incompatible;
}
virtual const bitmap_t *incompatible_waiting_types_bitmap() const
{
return m_waiting_incompatible;
}
private:
static const bitmap_t m_granted_incompatible[MDL_TYPE_END];
static const bitmap_t m_waiting_incompatible[MDL_TYPE_END];
};
static MDL_map mdl_locks;
extern "C"
{
static uchar *
mdl_locks_key(const uchar *record, size_t *length,
my_bool not_used __attribute__((unused)))
{
MDL_lock *lock=(MDL_lock*) record;
*length= lock->key.length();
return (uchar*) lock->key.ptr();
}
} /* extern "C" */
/**
Initialize the metadata locking subsystem.
This function is called at server startup.
In particular, initializes the new global mutex and
the associated condition variable: LOCK_mdl and COND_mdl.
These locking primitives are implementation details of the MDL
subsystem and are private to it.
Note, that even though the new implementation adds acquisition
of a new global mutex to the execution flow of almost every SQL
statement, the design capitalizes on that to later save on
look ups in the table definition cache. This leads to reduced
contention overall and on LOCK_open in particular.
Please see the description of MDL_context::acquire_shared_lock()
for details.
*/
void mdl_init()
{
DBUG_ASSERT(! mdl_initialized);
mdl_initialized= TRUE;
mdl_locks.init();
}
/**
Release resources of metadata locking subsystem.
Destroys the global mutex and the condition variable.
Called at server shutdown.
*/
void mdl_destroy()
{
if (mdl_initialized)
{
mdl_initialized= FALSE;
mdl_locks.destroy();
}
}
/** Initialize the global hash containing all MDL locks. */
void MDL_map::init()
{
pthread_mutex_init(&m_mutex, NULL);
my_hash_init(&m_locks, &my_charset_bin, 16 /* FIXME */, 0, 0,
mdl_locks_key, 0, 0);
}
/**
Destroy the global hash containing all MDL locks.
@pre It must be empty.
*/
void MDL_map::destroy()
{
DBUG_ASSERT(!m_locks.records);
pthread_mutex_destroy(&m_mutex);
my_hash_free(&m_locks);
}
/**
Find MDL_lock object corresponding to the key, create it
if it does not exist.
@retval non-NULL - Success. MDL_lock instance for the key with
locked MDL_lock::m_rwlock.
@retval NULL - Failure (OOM).
*/
MDL_lock* MDL_map::find_or_insert(const MDL_key *mdl_key)
{
MDL_lock *lock;
retry:
pthread_mutex_lock(&m_mutex);
if (!(lock= (MDL_lock*) my_hash_search(&m_locks,
mdl_key->ptr(),
mdl_key->length())))
{
lock= MDL_lock::create(mdl_key);
if (!lock || my_hash_insert(&m_locks, (uchar*)lock))
{
pthread_mutex_unlock(&m_mutex);
MDL_lock::destroy(lock);
return NULL;
}
}
if (move_from_hash_to_lock_mutex(lock))
goto retry;
return lock;
}
/**
Find MDL_lock object corresponding to the key.
@retval non-NULL - MDL_lock instance for the key with locked
MDL_lock::m_rwlock.
@retval NULL - There was no MDL_lock for the key.
*/
MDL_lock* MDL_map::find(const MDL_key *mdl_key)
{
MDL_lock *lock;
retry:
pthread_mutex_lock(&m_mutex);
if (!(lock= (MDL_lock*) my_hash_search(&m_locks,
mdl_key->ptr(),
mdl_key->length())))
{
pthread_mutex_unlock(&m_mutex);
return NULL;
}
if (move_from_hash_to_lock_mutex(lock))
goto retry;
return lock;
}
/**
Release mdl_locks.m_mutex mutex and lock MDL_lock::m_rwlock for lock
object from the hash. Handle situation when object was released
while the held no mutex.
@retval FALSE - Success.
@retval TRUE - Object was released while we held no mutex, caller
should re-try looking up MDL_lock object in the hash.
*/
bool MDL_map::move_from_hash_to_lock_mutex(MDL_lock *lock)
{
DBUG_ASSERT(! lock->m_is_destroyed);
safe_mutex_assert_owner(&m_mutex);
/*
We increment m_ref_usage which is a reference counter protected by
mdl_locks.m_mutex under the condition it is present in the hash and
m_is_destroyed is FALSE.
*/
lock->m_ref_usage++;
pthread_mutex_unlock(&m_mutex);
rw_wrlock(&lock->m_rwlock);
lock->m_ref_release++;
if (unlikely(lock->m_is_destroyed))
{
/*
Object was released while we held no mutex, we need to
release it if no others hold references to it, while our own
reference count ensured that the object as such haven't got
its memory released yet. We can also safely compare
m_ref_usage and m_ref_release since the object is no longer
present in the hash so no one will be able to find it and
increment m_ref_usage anymore.
*/
uint ref_usage= lock->m_ref_usage;
uint ref_release= lock->m_ref_release;
rw_unlock(&lock->m_rwlock);
if (ref_usage == ref_release)
MDL_lock::destroy(lock);
return TRUE;
}
return FALSE;
}
/**
Destroy MDL_lock object or delegate this responsibility to
whatever thread that holds the last outstanding reference to
it.
*/
void MDL_map::remove(MDL_lock *lock)
{
uint ref_usage, ref_release;
if (lock->cached_object)
(*lock->cached_object_release_hook)(lock->cached_object);
/*
Destroy the MDL_lock object, but ensure that anyone that is
holding a reference to the object is not remaining, if so he
has the responsibility to release it.
Setting of m_is_destroyed to TRUE while holding _both_
mdl_locks.m_mutex and MDL_lock::m_rwlock mutexes transfers the
protection of m_ref_usage from mdl_locks.m_mutex to
MDL_lock::m_rwlock while removal of object from the hash makes
it read-only. Therefore whoever acquires MDL_lock::m_rwlock next
will see most up to date version of m_ref_usage.
This means that when m_is_destroyed is TRUE and we hold the
MDL_lock::m_rwlock we can safely read the m_ref_usage
member.
*/
pthread_mutex_lock(&m_mutex);
my_hash_delete(&m_locks, (uchar*) lock);
lock->m_is_destroyed= TRUE;
ref_usage= lock->m_ref_usage;
ref_release= lock->m_ref_release;
rw_unlock(&lock->m_rwlock);
pthread_mutex_unlock(&m_mutex);
if (ref_usage == ref_release)
MDL_lock::destroy(lock);
}
/**
Initialize a metadata locking context.
This is to be called when a new server connection is created.
*/
MDL_context::MDL_context()
:m_trans_sentinel(NULL),
m_thd(NULL),
m_needs_thr_lock_abort(FALSE),
m_waiting_for(NULL),
m_deadlock_weight(0),
m_signal(NO_WAKE_UP)
{
my_rwlock_init(&m_waiting_for_lock, NULL);
pthread_mutex_init(&m_signal_lock, NULL);
pthread_cond_init(&m_signal_cond, NULL);
}
/**
Destroy metadata locking context.
Assumes and asserts that there are no active or pending locks
associated with this context at the time of the destruction.
Currently does nothing. Asserts that there are no pending
or satisfied lock requests. The pending locks must be released
prior to destruction. This is a new way to express the assertion
that all tables are closed before a connection is destroyed.
*/
void MDL_context::destroy()
{
DBUG_ASSERT(m_tickets.is_empty());
rwlock_destroy(&m_waiting_for_lock);
pthread_mutex_destroy(&m_signal_lock);
pthread_cond_destroy(&m_signal_cond);
}
/**
Initialize a lock request.
This is to be used for every lock request.
Note that initialization and allocation are split into two
calls. This is to allow flexible memory management of lock
requests. Normally a lock request is stored in statement memory
(e.g. is a member of struct TABLE_LIST), but we would also like
to allow allocation of lock requests in other memory roots,
for example in the grant subsystem, to lock privilege tables.
The MDL subsystem does not own or manage memory of lock requests.
@param mdl_namespace Id of namespace of object to be locked
@param db Name of database to which the object belongs
@param name Name of of the object
@param mdl_type The MDL lock type for the request.
*/
void MDL_request::init(MDL_key::enum_mdl_namespace mdl_namespace,
const char *db_arg,
const char *name_arg,
enum enum_mdl_type mdl_type_arg)
{
key.mdl_key_init(mdl_namespace, db_arg, name_arg);
type= mdl_type_arg;
ticket= NULL;
}
/**
Initialize a lock request using pre-built MDL_key.
@sa MDL_request::init(namespace, db, name, type).
@param key_arg The pre-built MDL key for the request.
@param mdl_type_arg The MDL lock type for the request.
*/
void MDL_request::init(const MDL_key *key_arg,
enum enum_mdl_type mdl_type_arg)
{
key.mdl_key_init(key_arg);
type= mdl_type_arg;
ticket= NULL;
}
/**
Allocate and initialize one lock request.
Same as mdl_init_lock(), but allocates the lock and the key buffer
on a memory root. Necessary to lock ad-hoc tables, e.g.
mysql.* tables of grant and data dictionary subsystems.
@param mdl_namespace Id of namespace of object to be locked
@param db Name of database to which object belongs
@param name Name of of object
@param root MEM_ROOT on which object should be allocated
@note The allocated lock request will have MDL_SHARED type.
@retval 0 Error if out of memory
@retval non-0 Pointer to an object representing a lock request
*/
MDL_request *
MDL_request::create(MDL_key::enum_mdl_namespace mdl_namespace, const char *db,
const char *name, enum_mdl_type mdl_type,
MEM_ROOT *root)
{
MDL_request *mdl_request;
if (!(mdl_request= (MDL_request*) alloc_root(root, sizeof(MDL_request))))
return NULL;
mdl_request->init(mdl_namespace, db, name, mdl_type);
return mdl_request;
}
uint MDL_request::get_deadlock_weight() const
{
return key.mdl_namespace() == MDL_key::GLOBAL ||
type > MDL_SHARED_NO_WRITE ?
MDL_DEADLOCK_WEIGHT_DDL : MDL_DEADLOCK_WEIGHT_DML;
}
/**
Auxiliary functions needed for creation/destruction of MDL_lock objects.
@note Also chooses an MDL_lock descendant appropriate for object namespace.
@todo This naive implementation should be replaced with one that saves
on memory allocation by reusing released objects.
*/
inline MDL_lock *MDL_lock::create(const MDL_key *mdl_key)
{
switch (mdl_key->mdl_namespace())
{
case MDL_key::GLOBAL:
return new MDL_global_lock(mdl_key);
default:
return new MDL_object_lock(mdl_key);
}
}
void MDL_lock::destroy(MDL_lock *lock)
{
delete lock;
}
/**
Auxiliary functions needed for creation/destruction of MDL_ticket
objects.
@todo This naive implementation should be replaced with one that saves
on memory allocation by reusing released objects.
*/
MDL_ticket *MDL_ticket::create(MDL_context *ctx_arg, enum_mdl_type type_arg)
{
return new MDL_ticket(ctx_arg, type_arg);
}
void MDL_ticket::destroy(MDL_ticket *ticket)
{
delete ticket;
}
/**
Helper functions and macros to be used for killable waiting in metadata
locking subsystem.
@sa THD::enter_cond()/exit_cond()/killed.
@note We can't use THD::enter_cond()/exit_cond()/killed directly here
since this will make metadata subsystem dependent on THD class
and thus prevent us from writing unit tests for it. And usage of
wrapper functions to access THD::killed/enter_cond()/exit_cond()
will probably introduce too much overhead.
*/
#define MDL_ENTER_COND(A, B, C, D) \
mdl_enter_cond(A, B, C, D, __func__, __FILE__, __LINE__)
static inline const char *mdl_enter_cond(THD *thd,
st_my_thread_var *mysys_var,
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const char *calling_func,
const char *calling_file,
const unsigned int calling_line)
{
safe_mutex_assert_owner(mutex);
mysys_var->current_mutex= mutex;
mysys_var->current_cond= cond;
DEBUG_SYNC(thd, "mdl_enter_cond");
return set_thd_proc_info(thd, "Waiting for table",
calling_func, calling_file, calling_line);
}
#define MDL_EXIT_COND(A, B, C, D) \
mdl_exit_cond(A, B, C, D, __func__, __FILE__, __LINE__)
static inline void mdl_exit_cond(THD *thd,
st_my_thread_var *mysys_var,
pthread_mutex_t *mutex,
const char* old_msg,
const char *calling_func,
const char *calling_file,
const unsigned int calling_line)
{
DBUG_ASSERT(mutex == mysys_var->current_mutex);
pthread_mutex_unlock(mutex);
pthread_mutex_lock(&mysys_var->mutex);
mysys_var->current_mutex= 0;
mysys_var->current_cond= 0;
pthread_mutex_unlock(&mysys_var->mutex);
DEBUG_SYNC(thd, "mdl_exit_cond");
(void) set_thd_proc_info(thd, old_msg, calling_func,
calling_file, calling_line);
}
MDL_context::mdl_signal_type MDL_context::wait()
{
const char *old_msg;
st_my_thread_var *mysys_var= my_thread_var;
mdl_signal_type result;
pthread_mutex_lock(&m_signal_lock);
old_msg= MDL_ENTER_COND(m_thd, mysys_var, &m_signal_cond, &m_signal_lock);
while (! m_signal && !mysys_var->abort)
pthread_cond_wait(&m_signal_cond, &m_signal_lock);
result= m_signal;
MDL_EXIT_COND(m_thd, mysys_var, &m_signal_lock, old_msg);
return result;
}
MDL_context::mdl_signal_type MDL_context::timed_wait(ulong timeout)
{
struct timespec abstime;
const char *old_msg;
mdl_signal_type result;
st_my_thread_var *mysys_var= my_thread_var;
pthread_mutex_lock(&m_signal_lock);
old_msg= MDL_ENTER_COND(m_thd, mysys_var, &m_signal_cond, &m_signal_lock);
if (! m_signal)
{
set_timespec(abstime, timeout);
pthread_cond_timedwait(&m_signal_cond, &m_signal_lock, &abstime);
}
result= (m_signal != NO_WAKE_UP) ? m_signal : TIMEOUT_WAKE_UP;
MDL_EXIT_COND(m_thd, mysys_var, &m_signal_lock, old_msg);
return result;
}
/**
Clear bit corresponding to the type of metadata lock in bitmap representing
set of such types if list of tickets does not contain ticket with such type.
@param[in,out] bitmap Bitmap representing set of types of locks.
@param[in] list List to inspect.
@param[in] type Type of metadata lock to look up in the list.
*/
void MDL_lock::Ticket_list::clear_bit_if_not_in_list(enum_mdl_type type)
{
MDL_lock::Ticket_iterator it(m_list);
const MDL_ticket *ticket;
while ((ticket= it++))
if (ticket->get_type() == type)
return;
m_bitmap&= ~ MDL_BIT(type);
}
/**
Add ticket to MDL_lock's list of waiting requests and
update corresponding bitmap of lock types.
*/
void MDL_lock::Ticket_list::add_ticket(MDL_ticket *ticket)
{
m_list.push_front(ticket);
m_bitmap|= MDL_BIT(ticket->get_type());
}
/**
Remove ticket from MDL_lock's list of requests and
update corresponding bitmap of lock types.
*/
void MDL_lock::Ticket_list::remove_ticket(MDL_ticket *ticket)
{
m_list.remove(ticket);
/*
Check if waiting queue has another ticket with the same type as
one which was removed. If there is no such ticket, i.e. we have
removed last ticket of particular type, then we need to update
bitmap of waiting ticket's types.
Note that in most common case, i.e. when shared lock is removed
from waiting queue, we are likely to find ticket of the same
type early without performing full iteration through the list.
So this method should not be too expensive.
*/
clear_bit_if_not_in_list(ticket->get_type());
}
/**
Compatibility (or rather "incompatibility") matrices for global metadata
lock. Arrays of bitmaps which elements specify which granted/waiting locks
are incompatible with type of lock being requested.
Here is how types of individual locks are translated to type of global lock:
----------------+-------------+
Type of request | Correspond. |
for indiv. lock | global lock |
----------------+-------------+
S, SH, SR, SW | IS |
SNW, SNRW, X | IX |
SNW, SNRW -> X | IX (*) |
The first array specifies if particular type of request can be satisfied
if there is granted global lock of certain type.
| Type of active |
Request | global lock |
type | IS(**) IX S |
---------+----------------+
IS | + + + |
IX | + + - |
S | + - + |
The second array specifies if particular type of request can be satisfied
if there is already waiting request for the global lock of certain type.
I.e. it specifies what is the priority of different lock types.
| Pending |
Request | global lock |
type | IS(**) IX S |
---------+--------------+
IS | + + + |
IX | + + - |
S | + + + |
Here: "+" -- means that request can be satisfied
"-" -- means that request can't be satisfied and should wait
(*) Since for upgradable locks we always take intention exclusive global
lock at the same time when obtaining the shared lock, there is no
need to obtain such lock during the upgrade itself.
(**) Since intention shared global locks are compatible with all other
type of locks we don't even have any accounting for them.
*/
const MDL_lock::bitmap_t MDL_global_lock::m_granted_incompatible[MDL_TYPE_END] =
{
MDL_BIT(MDL_SHARED), MDL_BIT(MDL_INTENTION_EXCLUSIVE), 0, 0, 0, 0, 0, 0
};
const MDL_lock::bitmap_t MDL_global_lock::m_waiting_incompatible[MDL_TYPE_END] =
{
MDL_BIT(MDL_SHARED), 0, 0, 0, 0, 0, 0, 0
};
/**
Compatibility (or rather "incompatibility") matrices for per-object
metadata lock. Arrays of bitmaps which elements specify which granted/
waiting locks are incompatible with type of lock being requested.
The first array specifies if particular type of request can be satisfied
if there is granted lock of certain type.
Request | Granted requests for lock |
type | S SH SR SW SNW SNRW X |
----------+------------------------------+
S | + + + + + + - |
SH | + + + + + + - |
SR | + + + + + - - |
SW | + + + + - - - |
SNW | + + + - - - - |
SNRW | + + - - - - - |
X | - - - - - - - |
SNW -> X | - - - 0 0 0 0 |
SNRW -> X | - - 0 0 0 0 0 |
The second array specifies if particular type of request can be satisfied
if there is waiting request for the same lock of certain type. In other
words it specifies what is the priority of different lock types.
Request | Pending requests for lock |
type | S SH SR SW SNW SNRW X |
----------+-----------------------------+
S | + + + + + + - |
SH | + + + + + + + |
SR | + + + + + - - |
SW | + + + + - - - |
SNW | + + + + + + - |
SNRW | + + + + + + - |
X | + + + + + + + |
SNW -> X | + + + + + + + |
SNRW -> X | + + + + + + + |
Here: "+" -- means that request can be satisfied
"-" -- means that request can't be satisfied and should wait
"0" -- means impossible situation which will trigger assert
@note In cases then current context already has "stronger" type
of lock on the object it will be automatically granted
thanks to usage of the MDL_context::find_ticket() method.
*/
const MDL_lock::bitmap_t
MDL_object_lock::m_granted_incompatible[MDL_TYPE_END] =
{
0,
MDL_BIT(MDL_EXCLUSIVE),
MDL_BIT(MDL_EXCLUSIVE),
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE),
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
MDL_BIT(MDL_SHARED_NO_WRITE),
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
MDL_BIT(MDL_SHARED_NO_WRITE) | MDL_BIT(MDL_SHARED_WRITE),
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
MDL_BIT(MDL_SHARED_NO_WRITE) | MDL_BIT(MDL_SHARED_WRITE) |
MDL_BIT(MDL_SHARED_READ),
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
MDL_BIT(MDL_SHARED_NO_WRITE) | MDL_BIT(MDL_SHARED_WRITE) |
MDL_BIT(MDL_SHARED_READ) | MDL_BIT(MDL_SHARED_HIGH_PRIO) |
MDL_BIT(MDL_SHARED)
};
const MDL_lock::bitmap_t
MDL_object_lock::m_waiting_incompatible[MDL_TYPE_END] =
{
0,
MDL_BIT(MDL_EXCLUSIVE),
0,
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE),
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
MDL_BIT(MDL_SHARED_NO_WRITE),
MDL_BIT(MDL_EXCLUSIVE),
MDL_BIT(MDL_EXCLUSIVE),
0
};
/**
Check if request for the metadata lock can be satisfied given its
current state.
@param type_arg The requested lock type.
@param requestor_ctx The MDL context of the requestor.
@retval TRUE Lock request can be satisfied
@retval FALSE There is some conflicting lock.
@note In cases then current context already has "stronger" type
of lock on the object it will be automatically granted
thanks to usage of the MDL_context::find_ticket() method.
*/
bool
MDL_lock::can_grant_lock(enum_mdl_type type_arg,
MDL_context *requestor_ctx) const
{
bool can_grant= FALSE;
bitmap_t waiting_incompat_map= incompatible_waiting_types_bitmap()[type_arg];
bitmap_t granted_incompat_map= incompatible_granted_types_bitmap()[type_arg];
/*
New lock request can be satisfied iff:
- There are no incompatible types of satisfied requests
in other contexts
- There are no waiting requests which have higher priority
than this request.
*/
if (! (m_waiting.bitmap() & waiting_incompat_map))
{
if (! (m_granted.bitmap() & granted_incompat_map))
can_grant= TRUE;
else
{
Ticket_iterator it(m_granted);
MDL_ticket *ticket;
/* Check that the incompatible lock belongs to some other context. */
while ((ticket= it++))
{
if (ticket->get_ctx() != requestor_ctx &&
ticket->is_incompatible_when_granted(type_arg))
break;
}
if (ticket == NULL) /* Incompatible locks are our own. */
can_grant= TRUE;
}
}
return can_grant;
}
/** Remove a ticket from waiting or pending queue and wakeup up waiters. */
void MDL_lock::remove_ticket(Ticket_list MDL_lock::*list, MDL_ticket *ticket)
{
rw_wrlock(&m_rwlock);
(this->*list).remove_ticket(ticket);
if (is_empty())
mdl_locks.remove(this);
else
{
/*
There can be some contexts waiting to acquire a lock
which now might be able to do it. Wake them up!
*/
wake_up_waiters();
rw_unlock(&m_rwlock);
}
}
/**
Check if we have any pending locks which conflict with existing
shared lock.
@pre The ticket must match an acquired lock.
@return TRUE if there is a conflicting lock request, FALSE otherwise.
*/
bool MDL_lock::has_pending_conflicting_lock(enum_mdl_type type)
{
bool result;
safe_mutex_assert_not_owner(&LOCK_open);
rw_rdlock(&m_rwlock);
result= (m_waiting.bitmap() & incompatible_granted_types_bitmap()[type]);
rw_unlock(&m_rwlock);
return result;
}
/**
Check if ticket represents metadata lock of "stronger" or equal type
than specified one. I.e. if metadata lock represented by ticket won't
allow any of locks which are not allowed by specified type of lock.
@return TRUE if ticket has stronger or equal type
FALSE otherwise.
*/
bool MDL_ticket::has_stronger_or_equal_type(enum_mdl_type type) const
{
const MDL_lock::bitmap_t *
granted_incompat_map= m_lock->incompatible_granted_types_bitmap();
return ! (granted_incompat_map[type] & ~(granted_incompat_map[m_type]));
}
bool MDL_ticket::is_incompatible_when_granted(enum_mdl_type type) const
{
return (MDL_BIT(m_type) &
m_lock->incompatible_granted_types_bitmap()[type]);
}
bool MDL_ticket::is_incompatible_when_waiting(enum_mdl_type type) const
{
return (MDL_BIT(m_type) &
m_lock->incompatible_waiting_types_bitmap()[type]);
}
/**
Acquire global intention exclusive lock.
@param[in] mdl_request Lock request object for lock to be acquired
@retval FALSE Success. The lock has been acquired.
@retval TRUE Error.
*/
bool
MDL_context::acquire_global_intention_exclusive_lock(MDL_request *mdl_request)
{
DBUG_ASSERT(mdl_request->key.mdl_namespace() == MDL_key::GLOBAL &&
mdl_request->type == MDL_INTENTION_EXCLUSIVE);
/*
If this is a non-recursive attempt to acquire global intention
exclusive lock we might have to wait until active global shared
lock or pending requests will go away. Since we won't hold any
resources (except associated with open HANDLERs) while doing it
deadlocks are not possible.
*/
DBUG_ASSERT(is_lock_owner(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE) ||
! has_locks() ||
(m_trans_sentinel && m_tickets.front() == m_trans_sentinel));
return acquire_lock(mdl_request);
}
/**
Check whether the context already holds a compatible lock ticket
on an object.
Start searching the transactional locks. If not
found in the list of transactional locks, look at LOCK TABLES
and HANDLER locks.
@param mdl_request Lock request object for lock to be acquired
@param[out] is_transactional FALSE if we pass beyond m_trans_sentinel
while searching for ticket, otherwise TRUE.
@note Tickets which correspond to lock types "stronger" than one
being requested are also considered compatible.
@return A pointer to the lock ticket for the object or NULL otherwise.
*/
MDL_ticket *
MDL_context::find_ticket(MDL_request *mdl_request,
bool *is_transactional)
{
MDL_ticket *ticket;
Ticket_iterator it(m_tickets);
*is_transactional= TRUE;
while ((ticket= it++))
{
if (ticket == m_trans_sentinel)
*is_transactional= FALSE;
if (mdl_request->key.is_equal(&ticket->m_lock->key) &&
ticket->has_stronger_or_equal_type(mdl_request->type))
break;
}
return ticket;
}
/**
Acquire one lock with waiting for conflicting locks to go away if needed.
@note This is an internal method which should not be used outside of MDL
subsystem as in most cases simply waiting for conflicting locks to
go away will lead to deadlock.
@param mdl_request [in/out] Lock request object for lock to be acquired
@retval FALSE Success. MDL_request::ticket points to the ticket
for the lock.
@retval TRUE Failure (Out of resources or waiting is aborted),
*/
bool
MDL_context::acquire_lock(MDL_request *mdl_request)
{
return acquire_lock_impl(mdl_request);
}
/**
Try to acquire one lock.
Unlike exclusive locks, shared locks are acquired one by
one. This is interface is chosen to simplify introduction of
the new locking API to the system. MDL_context::try_acquire_lock()
is currently used from open_table(), and there we have only one
table to work with.
This function may also be used to try to acquire an exclusive
lock on a destination table, by ALTER TABLE ... RENAME.
Returns immediately without any side effect if encounters a lock
conflict. Otherwise takes the lock.
FIXME: Compared to lock_table_name_if_not_cached() (from 5.1)
it gives slightly more false negatives.
@param mdl_request [in/out] Lock request object for lock to be acquired
@retval FALSE Success. The lock may have not been acquired.
Check the ticket, if it's NULL, a conflicting lock
exists and another attempt should be made after releasing
all current locks and waiting for conflicting lock go
away (using MDL_context::wait_for_lock()).
@retval TRUE Out of resources, an error has been reported.
*/
bool
MDL_context::try_acquire_lock(MDL_request *mdl_request)
{
MDL_lock *lock;
MDL_key *key= &mdl_request->key;
MDL_ticket *ticket;
bool is_transactional;
DBUG_ASSERT(mdl_request->type < MDL_SHARED_NO_WRITE ||
(is_lock_owner(MDL_key::GLOBAL, "", "",
MDL_INTENTION_EXCLUSIVE)));
DBUG_ASSERT(mdl_request->ticket == NULL);
/* Don't take chances in production. */
mdl_request->ticket= NULL;
safe_mutex_assert_not_owner(&LOCK_open);
/*
Check whether the context already holds a shared lock on the object,
and if so, grant the request.
*/
if ((ticket= find_ticket(mdl_request, &is_transactional)))
{
DBUG_ASSERT(ticket->m_lock);
DBUG_ASSERT(ticket->m_type >= mdl_request->type);
/*
If the request is for a transactional lock, and we found
a transactional lock, just reuse the found ticket.
It's possible that we found a transactional lock,
but the request is for a HANDLER lock. In that case HANDLER
code will clone the ticket (see below why it's needed).
If the request is for a transactional lock, and we found
a HANDLER lock, create a copy, to make sure that when user
does HANDLER CLOSE, the transactional lock is not released.
If the request is for a handler lock, and we found a
HANDLER lock, also do the clone. HANDLER CLOSE for one alias
should not release the lock on the table HANDLER opened through
a different alias.
*/
mdl_request->ticket= ticket;
if (!is_transactional && clone_ticket(mdl_request))
{
/* Clone failed. */
mdl_request->ticket= NULL;
return TRUE;
}
return FALSE;
}
if (!(ticket= MDL_ticket::create(this, mdl_request->type)))
return TRUE;
/* The below call implicitly locks MDL_lock::m_rwlock on success. */
if (!(lock= mdl_locks.find_or_insert(key)))
{
MDL_ticket::destroy(ticket);
return TRUE;
}
if (lock->can_grant_lock(mdl_request->type, this))
{
lock->m_granted.add_ticket(ticket);
rw_unlock(&lock->m_rwlock);
ticket->m_lock= lock;
m_tickets.push_front(ticket);
mdl_request->ticket= ticket;
}
else
{
/* We can't get here if we allocated a new lock. */
DBUG_ASSERT(! lock->is_empty());
rw_unlock(&lock->m_rwlock);
MDL_ticket::destroy(ticket);
}
return FALSE;
}
/**
Create a copy of a granted ticket.
This is used to make sure that HANDLER ticket
is never shared with a ticket that belongs to
a transaction, so that when we HANDLER CLOSE,
we don't release a transactional ticket, and
vice versa -- when we COMMIT, we don't mistakenly
release a ticket for an open HANDLER.
@retval TRUE Out of memory.
@retval FALSE Success.
*/
bool
MDL_context::clone_ticket(MDL_request *mdl_request)
{
MDL_ticket *ticket;
safe_mutex_assert_not_owner(&LOCK_open);
/*
By submitting mdl_request->type to MDL_ticket::create()
we effectively downgrade the cloned lock to the level of
the request.
*/
if (!(ticket= MDL_ticket::create(this, mdl_request->type)))
return TRUE;
/* clone() is not supposed to be used to get a stronger lock. */
DBUG_ASSERT(ticket->m_type <= mdl_request->ticket->m_type);
ticket->m_lock= mdl_request->ticket->m_lock;
mdl_request->ticket= ticket;
rw_wrlock(&ticket->m_lock->m_rwlock);
ticket->m_lock->m_granted.add_ticket(ticket);
rw_unlock(&ticket->m_lock->m_rwlock);
m_tickets.push_front(ticket);
return FALSE;
}
/**
Notify a thread holding a shared metadata lock which
conflicts with a pending exclusive lock.
@param thd Current thread context
@param conflicting_ticket Conflicting metadata lock
*/
void notify_shared_lock(THD *thd, MDL_ticket *conflicting_ticket)
{
/* Only try to abort locks on which we back off. */
if (conflicting_ticket->get_type() < MDL_SHARED_NO_WRITE)
{
MDL_context *conflicting_ctx= conflicting_ticket->get_ctx();
THD *conflicting_thd= conflicting_ctx->get_thd();
DBUG_ASSERT(thd != conflicting_thd); /* Self-deadlock */
/*
If thread which holds conflicting lock is waiting on table-level
lock or some other non-MDL resource we might need to wake it up
by calling code outside of MDL.
*/
mysql_notify_thread_having_shared_lock(thd, conflicting_thd,
conflicting_ctx->get_needs_thr_lock_abort());
}
}
/**
Auxiliary method for acquiring an exclusive lock.
@param mdl_request Request for the lock to be acqured.
@note Should not be used outside of MDL subsystem. Instead one
should call acquire_lock() or acquire_locks()
methods which ensure that conditions for deadlock-free
lock acquisition are fulfilled.
@retval FALSE Success
@retval TRUE Failure
*/
bool MDL_context::acquire_lock_impl(MDL_request *mdl_request)
{
MDL_lock *lock;
MDL_ticket *ticket;
bool not_used;
st_my_thread_var *mysys_var= my_thread_var;
MDL_key *key= &mdl_request->key;
safe_mutex_assert_not_owner(&LOCK_open);
DBUG_ASSERT(mdl_request->ticket == NULL);
/* Don't take chances in production. */
mdl_request->ticket= NULL;
/*
Check whether the context already holds an exclusive lock on the object,
and if so, grant the request.
*/
if ((ticket= find_ticket(mdl_request, &not_used)))
{
DBUG_ASSERT(ticket->m_lock);
mdl_request->ticket= ticket;
return FALSE;
}
DBUG_ASSERT(mdl_request->type < MDL_SHARED_NO_WRITE ||
is_lock_owner(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE));
/* Early allocation: ticket will be needed in any case. */
if (!(ticket= MDL_ticket::create(this, mdl_request->type)))
return TRUE;
/* The below call implicitly locks MDL_lock::m_rwlock on success. */
if (!(lock= mdl_locks.find_or_insert(key)))
{
MDL_ticket::destroy(ticket);
return TRUE;
}
ticket->m_lock= lock;
lock->m_waiting.add_ticket(ticket);
while (!lock->can_grant_lock(mdl_request->type, this))
{
wait_reset();
if (ticket->is_upgradable_or_exclusive())
lock->notify_shared_locks(this);
rw_unlock(&lock->m_rwlock);
set_deadlock_weight(mdl_request->get_deadlock_weight());
will_wait_for(ticket);
/* There is a shared or exclusive lock on the object. */
DEBUG_SYNC(m_thd, "mdl_acquire_lock_wait");
bool is_deadlock= (find_deadlock() || timed_wait(1) == VICTIM_WAKE_UP);
stop_waiting();
if (is_deadlock || mysys_var->abort)
{
lock->remove_ticket(&MDL_lock::m_waiting, ticket);
MDL_ticket::destroy(ticket);
if (is_deadlock)
my_error(ER_LOCK_DEADLOCK, MYF(0));
return TRUE;
}
rw_wrlock(&lock->m_rwlock);
}
lock->m_waiting.remove_ticket(ticket);
lock->m_granted.add_ticket(ticket);
if (ticket->get_type() == MDL_EXCLUSIVE && lock->cached_object)
(*lock->cached_object_release_hook)(lock->cached_object);
lock->cached_object= NULL;
rw_unlock(&lock->m_rwlock);
m_tickets.push_front(ticket);
mdl_request->ticket= ticket;
return FALSE;
}
extern "C" int mdl_request_ptr_cmp(const void* ptr1, const void* ptr2)
{
MDL_request *req1= *(MDL_request**)ptr1;
MDL_request *req2= *(MDL_request**)ptr2;
return req1->key.cmp(&req2->key);
}
/**
Acquire exclusive locks. There must be no granted locks in the
context.
This is a replacement of lock_table_names(). It is used in
RENAME, DROP and other DDL SQL statements.
@param mdl_requests List of requests for locks to be acquired.
@note The list of requests should not contain non-exclusive lock requests.
There should not be any acquired locks in the context.
@note Assumes that one already owns global intention exclusive lock.
@retval FALSE Success
@retval TRUE Failure
*/
bool MDL_context::acquire_locks(MDL_request_list *mdl_requests)
{
MDL_request_list::Iterator it(*mdl_requests);
MDL_request **sort_buf, **p_req;
uint req_count= mdl_requests->elements();
if (req_count == 0)
return FALSE;
/*
To reduce deadlocks, the server acquires all exclusive
locks at once. For shared locks, try_acquire_lock() is
used instead.
*/
DBUG_ASSERT(m_tickets.is_empty() || m_tickets.front() == m_trans_sentinel);
/* Sort requests according to MDL_key. */
if (! (sort_buf= (MDL_request **)my_malloc(req_count *
sizeof(MDL_request*),
MYF(MY_WME))))
return TRUE;
for (p_req= sort_buf; p_req < sort_buf + req_count; p_req++)
*p_req= it++;
my_qsort(sort_buf, req_count, sizeof(MDL_request*),
mdl_request_ptr_cmp);
for (p_req= sort_buf; p_req < sort_buf + req_count; p_req++)
{
if (acquire_lock_impl(*p_req))
goto err;
}
my_free(sort_buf, MYF(0));
return FALSE;
err:
/* Release locks we have managed to acquire so far. */
for (req_count= p_req - sort_buf, p_req= sort_buf;
p_req < sort_buf + req_count; p_req++)
{
release_lock((*p_req)->ticket);
/* Reset lock request back to its initial state. */
(*p_req)->ticket= NULL;
}
my_free(sort_buf, MYF(0));
return TRUE;
}
/**
Upgrade a shared metadata lock to exclusive.
Used in ALTER TABLE, when a copy of the table with the
new definition has been constructed.
@note In case of failure to upgrade lock (e.g. because upgrader
was killed) leaves lock in its original state (locked in
shared mode).
@note There can be only one upgrader for a lock or we will have deadlock.
This invariant is ensured by code outside of metadata subsystem usually
by obtaining some sort of exclusive table-level lock (e.g. TL_WRITE,
TL_WRITE_ALLOW_READ) before performing upgrade of metadata lock.
@retval FALSE Success
@retval TRUE Failure (thread was killed)
*/
bool
MDL_context::upgrade_shared_lock_to_exclusive(MDL_ticket *mdl_ticket)
{
MDL_request mdl_xlock_request;
MDL_ticket *mdl_svp= mdl_savepoint();
bool is_new_ticket;
DBUG_ENTER("MDL_ticket::upgrade_shared_lock_to_exclusive");
DEBUG_SYNC(get_thd(), "mdl_upgrade_shared_lock_to_exclusive");
/*
Do nothing if already upgraded. Used when we FLUSH TABLE under
LOCK TABLES and a table is listed twice in LOCK TABLES list.
*/
if (mdl_ticket->m_type == MDL_EXCLUSIVE)
DBUG_RETURN(FALSE);
/* Only allow upgrades from MDL_SHARED_NO_WRITE/NO_READ_WRITE */
DBUG_ASSERT(mdl_ticket->m_type == MDL_SHARED_NO_WRITE ||
mdl_ticket->m_type == MDL_SHARED_NO_READ_WRITE);
mdl_xlock_request.init(&mdl_ticket->m_lock->key, MDL_EXCLUSIVE);
if (acquire_lock_impl(&mdl_xlock_request))
DBUG_RETURN(TRUE);
is_new_ticket= ! has_lock(mdl_svp, mdl_xlock_request.ticket);
/* Merge the acquired and the original lock. @todo: move to a method. */
rw_wrlock(&mdl_ticket->m_lock->m_rwlock);
if (is_new_ticket)
mdl_ticket->m_lock->m_granted.remove_ticket(mdl_xlock_request.ticket);
/*
Set the new type of lock in the ticket. To update state of
MDL_lock object correctly we need to temporarily exclude
ticket from the granted queue and then include it back.
*/
mdl_ticket->m_lock->m_granted.remove_ticket(mdl_ticket);
mdl_ticket->m_type= MDL_EXCLUSIVE;
mdl_ticket->m_lock->m_granted.add_ticket(mdl_ticket);
rw_unlock(&mdl_ticket->m_lock->m_rwlock);
if (is_new_ticket)
{
m_tickets.remove(mdl_xlock_request.ticket);
MDL_ticket::destroy(mdl_xlock_request.ticket);
}
DBUG_RETURN(FALSE);
}
bool MDL_lock::find_deadlock(MDL_ticket *waiting_ticket,
Deadlock_detection_context *deadlock_ctx)
{
MDL_ticket *ticket;
bool result= FALSE;
rw_rdlock(&m_rwlock);
Ticket_iterator granted_it(m_granted);
Ticket_iterator waiting_it(m_waiting);
while ((ticket= granted_it++))
{
if (ticket->is_incompatible_when_granted(waiting_ticket->get_type()) &&
ticket->get_ctx() != waiting_ticket->get_ctx() &&
ticket->get_ctx() == deadlock_ctx->start)
{
result= TRUE;
goto end;
}
}
while ((ticket= waiting_it++))
{
if (ticket->is_incompatible_when_waiting(waiting_ticket->get_type()) &&
ticket->get_ctx() != waiting_ticket->get_ctx() &&
ticket->get_ctx() == deadlock_ctx->start)
{
result= TRUE;
goto end;
}
}
granted_it.rewind();
while ((ticket= granted_it++))
{
if (ticket->is_incompatible_when_granted(waiting_ticket->get_type()) &&
ticket->get_ctx() != waiting_ticket->get_ctx() &&
ticket->get_ctx()->find_deadlock(deadlock_ctx))
{
result= TRUE;
goto end;
}
}
waiting_it.rewind();
while ((ticket= waiting_it++))
{
if (ticket->is_incompatible_when_waiting(waiting_ticket->get_type()) &&
ticket->get_ctx() != waiting_ticket->get_ctx() &&
ticket->get_ctx()->find_deadlock(deadlock_ctx))
{
result= TRUE;
goto end;
}
}
end:
rw_unlock(&m_rwlock);
return result;
}
bool MDL_context::find_deadlock(Deadlock_detection_context *deadlock_ctx)
{
bool result= FALSE;
rw_rdlock(&m_waiting_for_lock);
if (m_waiting_for)
{
/*
QQ: should we rather be checking for NO_WAKE_UP ?
We want to do check signal only when m_waiting_for is set
to avoid reading left-overs from previous kills.
*/
if (peek_signal() != VICTIM_WAKE_UP)
{
if (++deadlock_ctx->current_search_depth >
deadlock_ctx->MAX_SEARCH_DEPTH)
result= TRUE;
else
result= m_waiting_for->m_lock->find_deadlock(m_waiting_for,
deadlock_ctx);
--deadlock_ctx->current_search_depth;
}
}
if (result)
{
if (! deadlock_ctx->victim)
deadlock_ctx->victim= this;
else if (deadlock_ctx->victim->m_deadlock_weight >= m_deadlock_weight)
{
rw_unlock(&deadlock_ctx->victim->m_waiting_for_lock);
deadlock_ctx->victim= this;
}
else
rw_unlock(&m_waiting_for_lock);
}
else
rw_unlock(&m_waiting_for_lock);
return result;
}
bool MDL_context::find_deadlock()
{
Deadlock_detection_context deadlock_ctx(this);
while (1)
{
if (! find_deadlock(&deadlock_ctx))
{
/* No deadlocks are found! */
break;
}
if (deadlock_ctx.victim != this)
{
deadlock_ctx.victim->awake(VICTIM_WAKE_UP);
rw_unlock(&deadlock_ctx.victim->m_waiting_for_lock);
/*
After adding new arc to waiting graph we found that it participates
in some loop (i.e. there is a deadlock). We decided to destroy this
loop by removing some arc other than newly added. Since this doesn't
guarantee that all loops created by addition of this arc are
destroyed we have to repeat search.
*/
continue;
}
else
{
DBUG_ASSERT(&deadlock_ctx.victim->m_waiting_for_lock == &m_waiting_for_lock);
rw_unlock(&deadlock_ctx.victim->m_waiting_for_lock);
return TRUE;
}
}
return FALSE;
}
/**
Wait until there will be no locks that conflict with lock requests
in the given list.
This is a part of the locking protocol and must be used by the
acquirer of shared locks after a back-off.
Does not acquire the locks!
@retval FALSE Success. One can try to obtain metadata locks.
@retval TRUE Failure (thread was killed or deadlock is possible).
*/
bool
MDL_context::wait_for_lock(MDL_request *mdl_request)
{
MDL_lock *lock;
st_my_thread_var *mysys_var= my_thread_var;
safe_mutex_assert_not_owner(&LOCK_open);
DBUG_ASSERT(mdl_request->ticket == NULL);
while (!mysys_var->abort)
{
/*
We have to check if there are some HANDLERs open by this thread
which conflict with some pending exclusive locks. Otherwise we
might have a deadlock in situations when we are waiting for
pending writer to go away, which in its turn waits for HANDLER
open by our thread.
TODO: investigate situations in which we need to broadcast on
COND_mdl because of above scenario.
*/
mysql_ha_flush(m_thd);
MDL_key *key= &mdl_request->key;
/* The below call implicitly locks MDL_lock::m_rwlock on success. */
if (! (lock= mdl_locks.find(key)))
return FALSE;
if (lock->can_grant_lock(mdl_request->type, this))
{
rw_unlock(&lock->m_rwlock);
return FALSE;
}
MDL_ticket *pending_ticket;
if (! (pending_ticket= MDL_ticket::create(this, mdl_request->type)))
{
rw_unlock(&lock->m_rwlock);
return TRUE;
}
pending_ticket->m_lock= lock;
lock->m_waiting.add_ticket(pending_ticket);
wait_reset();
rw_unlock(&lock->m_rwlock);
set_deadlock_weight(MDL_DEADLOCK_WEIGHT_DML);
will_wait_for(pending_ticket);
bool is_deadlock= (find_deadlock() || wait() == VICTIM_WAKE_UP);
stop_waiting();
lock->remove_ticket(&MDL_lock::m_waiting, pending_ticket);
MDL_ticket::destroy(pending_ticket);
if (is_deadlock)
{
my_error(ER_LOCK_DEADLOCK, MYF(0));
return TRUE;
}
}
return mysys_var->abort;
}
/**
Release lock.
@param ticket Ticket for lock to be released.
*/
void MDL_context::release_lock(MDL_ticket *ticket)
{
MDL_lock *lock= ticket->m_lock;
DBUG_ENTER("MDL_context::release_lock");
DBUG_PRINT("enter", ("db=%s name=%s", lock->key.db_name(),
lock->key.name()));
DBUG_ASSERT(this == ticket->get_ctx());
safe_mutex_assert_not_owner(&LOCK_open);
if (ticket == m_trans_sentinel)
m_trans_sentinel= ++Ticket_list::Iterator(m_tickets, ticket);
lock->remove_ticket(&MDL_lock::m_granted, ticket);
m_tickets.remove(ticket);
MDL_ticket::destroy(ticket);
DBUG_VOID_RETURN;
}
/**
Release all locks associated with the context. If the sentinel
is not NULL, do not release locks stored in the list after and
including the sentinel.
Transactional locks are added to the beginning of the list, i.e.
stored in reverse temporal order. This allows to employ this
function to:
- back off in case of a lock conflict.
- release all locks in the end of a transaction
- rollback to a savepoint.
The sentinel semantics is used to support LOCK TABLES
mode and HANDLER statements: locks taken by these statements
survive COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT.
*/
void MDL_context::release_locks_stored_before(MDL_ticket *sentinel)
{
MDL_ticket *ticket;
Ticket_iterator it(m_tickets);
DBUG_ENTER("MDL_context::release_locks_stored_before");
if (m_tickets.is_empty())
DBUG_VOID_RETURN;
while ((ticket= it++) && ticket != sentinel)
{
DBUG_PRINT("info", ("found lock to release ticket=%p", ticket));
release_lock(ticket);
}
/*
If all locks were released, then the sentinel was not present
in the list. It must never happen because the sentinel was
bogus, i.e. pointed to a ticket that no longer exists.
*/
DBUG_ASSERT(! m_tickets.is_empty() || sentinel == NULL);
DBUG_VOID_RETURN;
}
/**
Release all locks in the context which correspond to the same name/
object as this lock request.
@param ticket One of the locks for the name/object for which all
locks should be released.
*/
void MDL_context::release_all_locks_for_name(MDL_ticket *name)
{
/* Use MDL_ticket::m_lock to identify other locks for the same object. */
MDL_lock *lock= name->m_lock;
/* Remove matching lock tickets from the context. */
MDL_ticket *ticket;
Ticket_iterator it_ticket(m_tickets);
while ((ticket= it_ticket++))
{
DBUG_ASSERT(ticket->m_lock);
/*
We rarely have more than one ticket in this loop,
let's not bother saving on pthread_cond_broadcast().
*/
if (ticket->m_lock == lock)
release_lock(ticket);
}
}
/**
Downgrade an exclusive lock to shared metadata lock.
@param type Type of lock to which exclusive lock should be downgraded.
*/
void MDL_ticket::downgrade_exclusive_lock(enum_mdl_type type)
{
safe_mutex_assert_not_owner(&LOCK_open);
/*
Do nothing if already downgraded. Used when we FLUSH TABLE under
LOCK TABLES and a table is listed twice in LOCK TABLES list.
*/
if (m_type != MDL_EXCLUSIVE)
return;
rw_wrlock(&m_lock->m_rwlock);
/*
To update state of MDL_lock object correctly we need to temporarily
exclude ticket from the granted queue and then include it back.
*/
m_lock->m_granted.remove_ticket(this);
m_type= type;
m_lock->m_granted.add_ticket(this);
m_lock->wake_up_waiters();
rw_unlock(&m_lock->m_rwlock);
}
/**
Auxiliary function which allows to check if we have some kind of lock on
a object. Returns TRUE if we have a lock of a given or stronger type.
@param mdl_namespace Id of object namespace
@param db Name of the database
@param name Name of the object
@param mdl_type Lock type. Pass in the weakest type to find
out if there is at least some lock.
@return TRUE if current context contains satisfied lock for the object,
FALSE otherwise.
*/
bool
MDL_context::is_lock_owner(MDL_key::enum_mdl_namespace mdl_namespace,
const char *db, const char *name,
enum_mdl_type mdl_type)
{
MDL_request mdl_request;
bool is_transactional_unused;
mdl_request.init(mdl_namespace, db, name, mdl_type);
MDL_ticket *ticket= find_ticket(&mdl_request, &is_transactional_unused);
DBUG_ASSERT(ticket == NULL || ticket->m_lock);
return ticket;
}
/**
Check if we have any pending locks which conflict with existing shared lock.
@pre The ticket must match an acquired lock.
@return TRUE if there is a conflicting lock request, FALSE otherwise.
*/
bool MDL_ticket::has_pending_conflicting_lock() const
{
return m_lock->has_pending_conflicting_lock(m_type);
}
/**
Associate pointer to an opaque object with a lock.
@param cached_object Pointer to the object
@param release_hook Cleanup function to be called when MDL subsystem
decides to remove lock or associate another object.
This is used to cache a pointer to TABLE_SHARE in the lock
structure. Such caching can save one acquisition of LOCK_open
and one table definition cache lookup for every table.
Since the pointer may be stored only inside an acquired lock,
the caching is only effective when there is more than one lock
granted on a given table.
This function has the following usage pattern:
- try to acquire an MDL lock
- when done, call for mdl_get_cached_object(). If it returns NULL, our
thread has the only lock on this table.
- look up TABLE_SHARE in the table definition cache
- call mdl_set_cache_object() to assign the share to the opaque pointer.
The release hook is invoked when the last shared metadata
lock on this name is released.
*/
void
MDL_ticket::set_cached_object(void *cached_object,
mdl_cached_object_release_hook release_hook)
{
DBUG_ENTER("mdl_set_cached_object");
DBUG_PRINT("enter", ("db=%s name=%s cached_object=%p",
m_lock->key.db_name(), m_lock->key.name(),
cached_object));
/*
TODO: This assumption works now since we do get_cached_object()
and set_cached_object() in the same critical section. Once
this becomes false we will have to call release_hook here and
use additional mutex protecting 'cached_object' member.
*/
DBUG_ASSERT(!m_lock->cached_object);
m_lock->cached_object= cached_object;
m_lock->cached_object_release_hook= release_hook;
DBUG_VOID_RETURN;
}
/**
Get a pointer to an opaque object that associated with the lock.
@param ticket Lock ticket for the lock which the object is associated to.
@return Pointer to an opaque object associated with the lock.
*/
void *MDL_ticket::get_cached_object()
{
return m_lock->cached_object;
}
/**
Releases metadata locks that were acquired after a specific savepoint.
@note Used to release tickets acquired during a savepoint unit.
@note It's safe to iterate and unlock any locks after taken after this
savepoint because other statements that take other special locks
cause a implicit commit (ie LOCK TABLES).
@param mdl_savepont The last acquired MDL lock when the
savepoint was set.
*/
void MDL_context::rollback_to_savepoint(MDL_ticket *mdl_savepoint)
{
DBUG_ENTER("MDL_context::rollback_to_savepoint");
/* If savepoint is NULL, it is from the start of the transaction. */
release_locks_stored_before(mdl_savepoint ?
mdl_savepoint : m_trans_sentinel);
DBUG_VOID_RETURN;
}
/**
Release locks acquired by normal statements (SELECT, UPDATE,
DELETE, etc) in the course of a transaction. Do not release
HANDLER locks, if there are any.
This method is used at the end of a transaction, in
implementation of COMMIT (implicit or explicit) and ROLLBACK.
*/
void MDL_context::release_transactional_locks()
{
DBUG_ENTER("MDL_context::release_transactional_locks");
release_locks_stored_before(m_trans_sentinel);
DBUG_VOID_RETURN;
}
/**
Does this savepoint have this lock?
@retval TRUE The ticket is older than the savepoint and
is not LT, HA or GLR ticket. Thus it belongs
to the savepoint.
@retval FALSE The ticket is newer than the savepoint
or is an LT, HA or GLR ticket.
*/
bool MDL_context::has_lock(MDL_ticket *mdl_savepoint,
MDL_ticket *mdl_ticket)
{
MDL_ticket *ticket;
/* Start from the beginning, most likely mdl_ticket's been just acquired. */
MDL_context::Ticket_iterator it(m_tickets);
bool found_savepoint= FALSE;
while ((ticket= it++) && ticket != m_trans_sentinel)
{
/*
First met the savepoint. The ticket must be
somewhere after it.
*/
if (ticket == mdl_savepoint)
found_savepoint= TRUE;
/*
Met the ticket. If we haven't yet met the savepoint,
the ticket is newer than the savepoint.
*/
if (ticket == mdl_ticket)
return found_savepoint;
}
/* Reached m_trans_sentinel. The ticket must be LT, HA or GRL ticket. */
return FALSE;
}
/**
Rearrange the ticket to reside in the part of the list that's
beyond m_trans_sentinel. This effectively changes the ticket
life cycle, from automatic to manual: i.e. the ticket is no
longer released by MDL_context::release_transactional_locks() or
MDL_context::rollback_to_savepoint(), it must be released manually.
*/
void MDL_context::move_ticket_after_trans_sentinel(MDL_ticket *mdl_ticket)
{
m_tickets.remove(mdl_ticket);
if (m_trans_sentinel == NULL)
{
m_trans_sentinel= mdl_ticket;
/* sic: linear from the number of transactional tickets acquired so-far! */
m_tickets.push_back(mdl_ticket);
}
else
m_tickets.insert_after(m_trans_sentinel, mdl_ticket);
}