mariadb/sql/sp_rcontext.cc
Dmitry Shulga 465c81b323 MDEV-5816: Stored programs: validation of stored program statements
Added re-parsing of failed statements inside a stored routine.

General idea of the patch is to install an instance of the class
Reprepare_observer before executing a next SP instruction and
re-parse a statement of this SP instruction in case of
its execution failure.

To implement the described approach the class sp_lex_keeper
has been extended with the method validate_lex_and_exec_core()
that is just a wrapper around the method reset_lex_and_exec_core()
with additional setting/resetting an instance of the class
Reprepare_observer on each iteration of SP instruction
execution.

If reset_lex_and_exec_core() returns error and an instance
of the class Reprepare_observer is installed before running
a SP instruction then a number of attempts to re-run the SP
instruction is checked against a max. limit and in case it doesn't
reach the limit a statement for the failed SP instruction is re-parsed.

Re-parsing of a statement for the failed SP instruction is implemented
by the new method sp_le_inst::parse_expr() that prepends
a SP instruction's statement with the clause 'SELECT' and parse it.
Own SP instruction MEM_ROOT and a separate free_list is used for
parsing of a SP statement. On successful re-parsing of SP instruction's
statement the virtual methods adjust_sql_command() and
on_after_expr_parsing() of the class sp_lex_instr is called
to update the SP instruction state with a new data created
on parsing the statement.

Few words about reason for prepending a SP instruction's statement
with the clause 'SELECT' - this is required step to produce a valid
SQL statement, since for some SP instructions the instructions statement
is not a valid SQL statement. Wrapping such text into 'SELECT ( )'
produces a correct operator from SQL syntax point of view.
2023-07-20 17:46:45 +07:00

910 lines
26 KiB
C++

/* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "sql_priv.h"
#include "unireg.h"
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif
#include "mysql.h"
#include "sp_head.h"
#include "sql_cursor.h"
#include "sp_instr.h" // class sp_instr, ...
#include "sp_rcontext.h"
#include "sp_pcontext.h"
#include "sql_select.h" // create_virtual_tmp_table
#include "sql_base.h" // open_tables_only_view_structure
#include "sql_acl.h" // SELECT_ACL
#include "sql_parse.h" // check_table_access
Sp_rcontext_handler_local sp_rcontext_handler_local;
Sp_rcontext_handler_package_body sp_rcontext_handler_package_body;
sp_rcontext *Sp_rcontext_handler_local::get_rcontext(sp_rcontext *ctx) const
{
return ctx;
}
sp_rcontext *Sp_rcontext_handler_package_body::get_rcontext(sp_rcontext *ctx) const
{
return ctx->m_sp->m_parent->m_rcontext;
}
const LEX_CSTRING *Sp_rcontext_handler_local::get_name_prefix() const
{
return &empty_clex_str;
}
const LEX_CSTRING *Sp_rcontext_handler_package_body::get_name_prefix() const
{
static const LEX_CSTRING sp_package_body_variable_prefix_clex_str=
{STRING_WITH_LEN("PACKAGE_BODY.")};
return &sp_package_body_variable_prefix_clex_str;
}
///////////////////////////////////////////////////////////////////////////
// sp_rcontext implementation.
///////////////////////////////////////////////////////////////////////////
sp_rcontext::sp_rcontext(sp_head *owner,
const sp_pcontext *root_parsing_ctx,
Field *return_value_fld,
bool in_sub_stmt)
:callers_arena(nullptr), end_partial_result_set(false),
pause_state(false), quit_func(false), instr_ptr(0),
m_sp(owner),
m_root_parsing_ctx(root_parsing_ctx),
m_var_table(NULL),
m_return_value_fld(return_value_fld),
m_return_value_set(false),
m_in_sub_stmt(in_sub_stmt),
m_handlers(PSI_INSTRUMENT_MEM), m_handler_call_stack(PSI_INSTRUMENT_MEM),
m_ccount(0)
{
}
sp_rcontext::~sp_rcontext()
{
delete m_var_table;
// Leave m_handlers, m_handler_call_stack, m_var_items, m_cstack
// and m_case_expr_holders untouched.
// They are allocated in mem roots and will be freed accordingly.
}
sp_rcontext *sp_rcontext::create(THD *thd,
sp_head *owner,
const sp_pcontext *root_parsing_ctx,
Field *return_value_fld,
Row_definition_list &field_def_lst)
{
SELECT_LEX *save_current_select;
sp_rcontext *ctx= new (thd->mem_root) sp_rcontext(owner,
root_parsing_ctx,
return_value_fld,
thd->in_sub_stmt);
if (!ctx)
return NULL;
/* Reset current_select as it's checked in Item_ident::Item_ident */
save_current_select= thd->lex->current_select;
thd->lex->current_select= 0;
if (ctx->alloc_arrays(thd) ||
ctx->init_var_table(thd, field_def_lst) ||
ctx->init_var_items(thd, field_def_lst))
{
delete ctx;
ctx= 0;
}
thd->lex->current_select= save_current_select;
return ctx;
}
bool Row_definition_list::append_uniq(MEM_ROOT *mem_root, Spvar_definition *var)
{
DBUG_ASSERT(elements);
uint unused;
if (unlikely(find_row_field_by_name(&var->field_name, &unused)))
{
my_error(ER_DUP_FIELDNAME, MYF(0), var->field_name.str);
return true;
}
return push_back(var, mem_root);
}
bool Row_definition_list::
adjust_formal_params_to_actual_params(THD *thd, List<Item> *args)
{
List_iterator<Spvar_definition> it(*this);
List_iterator<Item> it_args(*args);
DBUG_ASSERT(elements >= args->elements );
Spvar_definition *def;
Item *arg;
while ((def= it++) && (arg= it_args++))
{
if (def->type_handler()->adjust_spparam_type(def, arg))
return true;
}
return false;
}
bool Row_definition_list::
adjust_formal_params_to_actual_params(THD *thd,
Item **args, uint arg_count)
{
List_iterator<Spvar_definition> it(*this);
DBUG_ASSERT(elements >= arg_count );
Spvar_definition *def;
for (uint i= 0; (def= it++) && (i < arg_count) ; i++)
{
if (def->type_handler()->adjust_spparam_type(def, args[i]))
return true;
}
return false;
}
bool sp_rcontext::alloc_arrays(THD *thd)
{
{
size_t n= m_root_parsing_ctx->max_cursor_index();
m_cstack.reset(
static_cast<sp_cursor **> (
thd->alloc(n * sizeof (sp_cursor*))),
n);
}
{
size_t n= m_root_parsing_ctx->get_num_case_exprs();
m_case_expr_holders.reset(
static_cast<Item_cache **> (
thd->calloc(n * sizeof (Item_cache*))),
n);
}
return !m_cstack.array() || !m_case_expr_holders.array();
}
bool sp_rcontext::init_var_table(THD *thd,
List<Spvar_definition> &field_def_lst)
{
if (!m_root_parsing_ctx->max_var_index())
return false;
DBUG_ASSERT(field_def_lst.elements == m_root_parsing_ctx->max_var_index());
if (!(m_var_table= create_virtual_tmp_table(thd, field_def_lst)))
return true;
return false;
}
/**
Check if we have access to use a column as a %TYPE reference.
@return false - OK
@return true - access denied
*/
static inline bool
check_column_grant_for_type_ref(THD *thd, TABLE_LIST *table_list,
const char *str, size_t length,
Field *fld)
{
#ifndef NO_EMBEDDED_ACCESS_CHECKS
table_list->table->grant.want_privilege= SELECT_ACL;
return check_column_grant_in_table_ref(thd, table_list, str, length, fld);
#else
return false;
#endif
}
/**
This method implementation is very close to fill_schema_table_by_open().
*/
bool Qualified_column_ident::resolve_type_ref(THD *thd, Column_definition *def)
{
Open_tables_backup open_tables_state_backup;
thd->reset_n_backup_open_tables_state(&open_tables_state_backup);
TABLE_LIST *table_list;
Field *src;
LEX *save_lex= thd->lex;
bool rc= true;
sp_lex_local lex(thd, thd->lex);
thd->lex= &lex;
lex.context_analysis_only= CONTEXT_ANALYSIS_ONLY_VIEW;
// Make %TYPE variables see temporary tables that shadow permanent tables
thd->temporary_tables= open_tables_state_backup.temporary_tables;
if ((table_list=
lex.first_select_lex()->add_table_to_list(thd, this, NULL, 0,
TL_READ_NO_INSERT,
MDL_SHARED_READ)) &&
!check_table_access(thd, SELECT_ACL, table_list, TRUE, UINT_MAX, FALSE) &&
!open_tables_only_view_structure(thd, table_list,
thd->mdl_context.has_locks()))
{
if (likely((src= lex.query_tables->table->find_field_by_name(&m_column))))
{
if (!(rc= check_column_grant_for_type_ref(thd, table_list,
m_column.str,
m_column.length, src)))
{
*def= Column_definition(thd, src, NULL/*No defaults,no constraints*/);
def->flags&= (uint) ~NOT_NULL_FLAG;
rc= def->sp_prepare_create_field(thd, thd->mem_root);
}
}
else
my_error(ER_BAD_FIELD_ERROR, MYF(0), m_column.str, table.str);
}
lex.unit.cleanup();
thd->temporary_tables= NULL; // Avoid closing temporary tables
close_thread_tables(thd);
thd->lex= save_lex;
thd->restore_backup_open_tables_state(&open_tables_state_backup);
return rc;
}
/**
This method resolves the structure of a variable declared as:
rec t1%ROWTYPE;
It opens the table "t1" and copies its structure to %ROWTYPE variable.
*/
bool Table_ident::resolve_table_rowtype_ref(THD *thd,
Row_definition_list &defs)
{
Open_tables_backup open_tables_state_backup;
thd->reset_n_backup_open_tables_state(&open_tables_state_backup);
TABLE_LIST *table_list;
LEX *save_lex= thd->lex;
bool rc= true;
/*
Create a temporary LEX on stack and switch to it.
In case of VIEW, open_tables_only_view_structure() will open more
tables/views recursively. We want to avoid them to stick to the current LEX.
*/
sp_lex_local lex(thd, thd->lex);
thd->lex= &lex;
lex.context_analysis_only= CONTEXT_ANALYSIS_ONLY_VIEW;
// Make %ROWTYPE variables see temporary tables that shadow permanent tables
thd->temporary_tables= open_tables_state_backup.temporary_tables;
if ((table_list=
lex.first_select_lex()->add_table_to_list(thd, this, NULL, 0,
TL_READ_NO_INSERT,
MDL_SHARED_READ)) &&
!check_table_access(thd, SELECT_ACL, table_list, TRUE, UINT_MAX, FALSE) &&
!open_tables_only_view_structure(thd, table_list,
thd->mdl_context.has_locks()))
{
for (Field **src= lex.query_tables->table->field; *src; src++)
{
/*
Make field names on the THD memory root,
as the table will be closed and freed soon,
in the end of this method.
*/
LEX_CSTRING tmp= src[0]->field_name;
Spvar_definition *def;
if ((rc= check_column_grant_for_type_ref(thd, table_list,
tmp.str, tmp.length,src[0])) ||
(rc= !(src[0]->field_name.str= thd->strmake(tmp.str, tmp.length))) ||
(rc= !(def= new (thd->mem_root) Spvar_definition(thd, *src))))
break;
src[0]->field_name.str= tmp.str; // Restore field name, just in case.
def->flags&= (uint) ~NOT_NULL_FLAG;
if ((rc= def->sp_prepare_create_field(thd, thd->mem_root)))
break;
defs.push_back(def, thd->mem_root);
}
}
lex.unit.cleanup();
thd->temporary_tables= NULL; // Avoid closing temporary tables
close_thread_tables(thd);
thd->lex= save_lex;
thd->restore_backup_open_tables_state(&open_tables_state_backup);
return rc;
}
bool Row_definition_list::resolve_type_refs(THD *thd)
{
List_iterator<Spvar_definition> it(*this);
Spvar_definition *def;
while ((def= it++))
{
if (def->is_column_type_ref() &&
def->column_type_ref()->resolve_type_ref(thd, def))
return true;
}
return false;
};
bool sp_rcontext::init_var_items(THD *thd,
List<Spvar_definition> &field_def_lst)
{
uint num_vars= m_root_parsing_ctx->max_var_index();
m_var_items.reset(
static_cast<Item_field **> (
thd->alloc(num_vars * sizeof (Item *))),
num_vars);
if (!m_var_items.array())
return true;
DBUG_ASSERT(field_def_lst.elements == num_vars);
List_iterator<Spvar_definition> it(field_def_lst);
Spvar_definition *def= it++;
for (uint idx= 0; idx < num_vars; ++idx, def= it++)
{
Field *field= m_var_table->field[idx];
if (def->is_table_rowtype_ref())
{
Row_definition_list defs;
Item_field_row *item= new (thd->mem_root) Item_field_row(thd, field);
if (!(m_var_items[idx]= item) ||
def->table_rowtype_ref()->resolve_table_rowtype_ref(thd, defs) ||
item->row_create_items(thd, &defs))
return true;
}
else if (def->is_cursor_rowtype_ref())
{
Row_definition_list defs;
Item_field_row *item= new (thd->mem_root) Item_field_row(thd, field);
if (!(m_var_items[idx]= item))
return true;
}
else if (def->is_row())
{
Item_field_row *item= new (thd->mem_root) Item_field_row(thd, field);
if (!(m_var_items[idx]= item) ||
item->row_create_items(thd, def->row_field_definitions()))
return true;
}
else
{
if (!(m_var_items[idx]= new (thd->mem_root) Item_field(thd, field)))
return true;
}
}
return false;
}
bool Item_field_row::row_create_items(THD *thd, List<Spvar_definition> *list)
{
DBUG_ASSERT(list);
DBUG_ASSERT(field);
Virtual_tmp_table **ptable= field->virtual_tmp_table_addr();
DBUG_ASSERT(ptable);
if (!(ptable[0]= create_virtual_tmp_table(thd, *list)))
return true;
if (alloc_arguments(thd, list->elements))
return true;
List_iterator<Spvar_definition> it(*list);
Spvar_definition *def;
for (arg_count= 0; (def= it++); arg_count++)
{
if (!(args[arg_count]= new (thd->mem_root)
Item_field(thd, ptable[0]->field[arg_count])))
return true;
}
return false;
}
bool sp_rcontext::set_return_value(THD *thd, Item **return_value_item)
{
DBUG_ASSERT(m_return_value_fld);
m_return_value_set = true;
return thd->sp_eval_expr(m_return_value_fld, return_value_item);
}
void sp_rcontext::push_cursor(sp_cursor *c)
{
m_cstack[m_ccount++]= c;
}
void sp_rcontext::pop_cursor(THD *thd)
{
DBUG_ASSERT(m_ccount > 0);
if (m_cstack[m_ccount - 1]->is_open())
m_cstack[m_ccount - 1]->close(thd);
m_ccount--;
}
void sp_rcontext::pop_cursors(THD *thd, size_t count)
{
DBUG_ASSERT(m_ccount >= count);
while (count--)
pop_cursor(thd);
}
bool sp_rcontext::push_handler(sp_instr_hpush_jump *entry)
{
return m_handlers.append(entry);
}
void sp_rcontext::pop_handlers(size_t count)
{
DBUG_ASSERT(m_handlers.elements() >= count);
for (size_t i= 0; i < count; ++i)
m_handlers.pop();
}
bool sp_rcontext::handle_sql_condition(THD *thd,
uint *ip,
const sp_instr *cur_spi)
{
DBUG_ENTER("sp_rcontext::handle_sql_condition");
/*
If this is a fatal sub-statement error, and this runtime
context corresponds to a sub-statement, no CONTINUE/EXIT
handlers from this context are applicable: try to locate one
in the outer scope.
*/
if (unlikely(thd->is_fatal_sub_stmt_error) && m_in_sub_stmt)
DBUG_RETURN(false);
Diagnostics_area *da= thd->get_stmt_da();
const sp_handler *found_handler= NULL;
const Sql_condition *found_condition= NULL;
if (unlikely(thd->is_error()))
{
found_handler=
cur_spi->m_ctx->find_handler(da->get_error_condition_identity());
if (found_handler)
found_condition= da->get_error_condition();
/*
Found condition can be NULL if the diagnostics area was full
when the error was raised. It can also be NULL if
Diagnostics_area::set_error_status(uint sql_error) was used.
In these cases, make a temporary Sql_condition here so the
error can be handled.
*/
if (!found_condition)
{
found_condition=
new (callers_arena->mem_root) Sql_condition(callers_arena->mem_root,
da->get_error_condition_identity(),
da->message(),
da->current_row_for_warning());
}
}
else if (da->current_statement_warn_count())
{
Diagnostics_area::Sql_condition_iterator it= da->sql_conditions();
const Sql_condition *c;
// Here we need to find the last warning/note from the stack.
// In MySQL most substantial warning is the last one.
// (We could have used a reverse iterator here if one existed)
while ((c= it++))
{
if (c->get_level() == Sql_condition::WARN_LEVEL_WARN ||
c->get_level() == Sql_condition::WARN_LEVEL_NOTE)
{
const sp_handler *handler= cur_spi->m_ctx->find_handler(*c);
if (handler)
{
found_handler= handler;
found_condition= c;
}
}
}
}
if (!found_handler)
DBUG_RETURN(false);
// At this point, we know that:
// - there is a pending SQL-condition (error or warning);
// - there is an SQL-handler for it.
DBUG_ASSERT(found_condition);
sp_instr_hpush_jump *handler_entry= NULL;
for (size_t i= 0; i < m_handlers.elements(); ++i)
{
sp_instr_hpush_jump *h= m_handlers.at(i);
if (h->get_handler() == found_handler)
{
handler_entry= h;
break;
}
}
/*
handler_entry usually should not be NULL here, as that indicates
that the parser context thinks a HANDLER should be activated,
but the runtime context cannot find it.
However, this can happen (and this is in line with the Standard)
if SQL-condition has been raised before DECLARE HANDLER instruction
is processed.
For example:
CREATE PROCEDURE p()
BEGIN
DECLARE v INT DEFAULT 'get'; -- raises SQL-warning here
DECLARE EXIT HANDLER ... -- this handler does not catch the warning
END
*/
if (!handler_entry)
DBUG_RETURN(false);
// Mark active conditions so that they can be deleted when the handler exits.
da->mark_sql_conditions_for_removal();
uint continue_ip= handler_entry->get_handler()->type == sp_handler::CONTINUE ?
cur_spi->get_cont_dest() : 0;
/* End aborted result set. */
if (end_partial_result_set)
thd->protocol->end_partial_result_set(thd);
/* Reset error state. */
thd->clear_error();
thd->reset_killed(); // Some errors set thd->killed, (e.g. "bad data").
/* Add a frame to handler-call-stack. */
Sql_condition_info *cond_info=
new (callers_arena->mem_root) Sql_condition_info(found_condition,
callers_arena);
Handler_call_frame *frame=
new (callers_arena->mem_root) Handler_call_frame(cond_info, continue_ip);
m_handler_call_stack.append(frame);
*ip= handler_entry->m_ip + 1;
DBUG_RETURN(true);
}
uint sp_rcontext::exit_handler(Diagnostics_area *da)
{
DBUG_ENTER("sp_rcontext::exit_handler");
DBUG_ASSERT(m_handler_call_stack.elements() > 0);
Handler_call_frame *f= m_handler_call_stack.pop();
/*
Remove the SQL conditions that were present in DA when the
handler was activated.
*/
da->remove_marked_sql_conditions();
uint continue_ip= f->continue_ip;
DBUG_RETURN(continue_ip);
}
int sp_rcontext::set_variable(THD *thd, uint idx, Item **value)
{
DBUG_ENTER("sp_rcontext::set_variable");
DBUG_ASSERT(value);
DBUG_RETURN(thd->sp_eval_expr(m_var_table->field[idx], value));
}
int sp_rcontext::set_variable_row_field(THD *thd, uint var_idx, uint field_idx,
Item **value)
{
DBUG_ENTER("sp_rcontext::set_variable_row_field");
DBUG_ASSERT(value);
Virtual_tmp_table *vtable= virtual_tmp_table_for_row(var_idx);
DBUG_RETURN(thd->sp_eval_expr(vtable->field[field_idx], value));
}
int sp_rcontext::set_variable_row_field_by_name(THD *thd, uint var_idx,
const LEX_CSTRING &field_name,
Item **value)
{
DBUG_ENTER("sp_rcontext::set_variable_row_field_by_name");
uint field_idx;
if (find_row_field_by_name_or_error(&field_idx, var_idx, field_name))
DBUG_RETURN(1);
DBUG_RETURN(set_variable_row_field(thd, var_idx, field_idx, value));
}
int sp_rcontext::set_variable_row(THD *thd, uint var_idx, List<Item> &items)
{
DBUG_ENTER("sp_rcontext::set_variable_row");
DBUG_ASSERT(get_variable(var_idx)->cols() == items.elements);
Virtual_tmp_table *vtable= virtual_tmp_table_for_row(var_idx);
Sp_eval_expr_state state(thd);
DBUG_RETURN(vtable->sp_set_all_fields_from_item_list(thd, items));
}
Virtual_tmp_table *sp_rcontext::virtual_tmp_table_for_row(uint var_idx)
{
DBUG_ASSERT(get_variable(var_idx)->type() == Item::FIELD_ITEM);
DBUG_ASSERT(get_variable(var_idx)->cmp_type() == ROW_RESULT);
Field *field= m_var_table->field[var_idx];
Virtual_tmp_table **ptable= field->virtual_tmp_table_addr();
DBUG_ASSERT(ptable);
DBUG_ASSERT(ptable[0]);
return ptable[0];
}
bool sp_rcontext::find_row_field_by_name_or_error(uint *field_idx,
uint var_idx,
const LEX_CSTRING &field_name)
{
Virtual_tmp_table *vtable= virtual_tmp_table_for_row(var_idx);
Field *row= m_var_table->field[var_idx];
return vtable->sp_find_field_by_name_or_error(field_idx,
row->field_name, field_name);
}
Item_cache *sp_rcontext::create_case_expr_holder(THD *thd,
const Item *item) const
{
Item_cache *holder;
Query_arena current_arena;
thd->set_n_backup_active_arena(thd->spcont->callers_arena, &current_arena);
holder= item->get_cache(thd);
thd->restore_active_arena(thd->spcont->callers_arena, &current_arena);
return holder;
}
bool sp_rcontext::set_case_expr(THD *thd, int case_expr_id,
Item **case_expr_item_ptr)
{
Item *case_expr_item= thd->sp_prepare_func_item(case_expr_item_ptr, 1);
if (!case_expr_item)
return true;
if (!m_case_expr_holders[case_expr_id] ||
m_case_expr_holders[case_expr_id]->result_type() !=
case_expr_item->result_type())
{
m_case_expr_holders[case_expr_id]=
create_case_expr_holder(thd, case_expr_item);
}
m_case_expr_holders[case_expr_id]->store(case_expr_item);
m_case_expr_holders[case_expr_id]->cache_value();
return false;
}
///////////////////////////////////////////////////////////////////////////
// sp_cursor implementation.
///////////////////////////////////////////////////////////////////////////
/*
Open an SP cursor
SYNOPSIS
open()
THD Thread handler
RETURN
0 in case of success, -1 otherwise
*/
int sp_cursor::open(THD *thd)
{
if (server_side_cursor)
{
my_message(ER_SP_CURSOR_ALREADY_OPEN,
ER_THD(thd, ER_SP_CURSOR_ALREADY_OPEN),
MYF(0));
return -1;
}
if (mysql_open_cursor(thd, &result, &server_side_cursor))
return -1;
return 0;
}
int sp_cursor::close(THD *thd)
{
if (! server_side_cursor)
{
my_message(ER_SP_CURSOR_NOT_OPEN, ER_THD(thd, ER_SP_CURSOR_NOT_OPEN),
MYF(0));
return -1;
}
sp_cursor_statistics::reset();
destroy();
return 0;
}
void sp_cursor::destroy()
{
delete server_side_cursor;
server_side_cursor= NULL;
}
int sp_cursor::fetch(THD *thd, List<sp_variable> *vars, bool error_on_no_data)
{
if (! server_side_cursor)
{
my_message(ER_SP_CURSOR_NOT_OPEN, ER_THD(thd, ER_SP_CURSOR_NOT_OPEN),
MYF(0));
return -1;
}
if (vars->elements != result.get_field_count() &&
(vars->elements != 1 ||
result.get_field_count() !=
thd->spcont->get_variable(vars->head()->offset)->cols()))
{
my_message(ER_SP_WRONG_NO_OF_FETCH_ARGS,
ER_THD(thd, ER_SP_WRONG_NO_OF_FETCH_ARGS), MYF(0));
return -1;
}
m_fetch_count++;
DBUG_EXECUTE_IF("bug23032_emit_warning",
push_warning(thd, Sql_condition::WARN_LEVEL_WARN,
ER_UNKNOWN_ERROR,
ER_THD(thd, ER_UNKNOWN_ERROR)););
result.set_spvar_list(vars);
DBUG_ASSERT(!thd->is_error());
/* Attempt to fetch one row */
if (server_side_cursor->is_open())
{
server_side_cursor->fetch(1);
if (thd->is_error())
return -1; // e.g. data type conversion failed
}
/*
If the cursor was pointing after the last row, the fetch will
close it instead of sending any rows.
*/
if (! server_side_cursor->is_open())
{
m_found= false;
if (!error_on_no_data)
return 0;
my_message(ER_SP_FETCH_NO_DATA, ER_THD(thd, ER_SP_FETCH_NO_DATA), MYF(0));
return -1;
}
m_found= true;
m_row_count++;
return 0;
}
bool sp_cursor::export_structure(THD *thd, Row_definition_list *list)
{
return server_side_cursor->export_structure(thd, list);
}
///////////////////////////////////////////////////////////////////////////
// sp_cursor::Select_fetch_into_spvars implementation.
///////////////////////////////////////////////////////////////////////////
int sp_cursor::Select_fetch_into_spvars::prepare(List<Item> &fields,
SELECT_LEX_UNIT *u)
{
/*
Cache the number of columns in the result set in order to easily
return an error if column count does not match value count.
*/
field_count= fields.elements;
return select_result_interceptor::prepare(fields, u);
}
bool sp_cursor::Select_fetch_into_spvars::
send_data_to_variable_list(List<sp_variable> &vars, List<Item> &items)
{
List_iterator_fast<sp_variable> spvar_iter(vars);
List_iterator_fast<Item> item_iter(items);
sp_variable *spvar;
Item *item;
/* Must be ensured by the caller */
DBUG_ASSERT(vars.elements == items.elements);
/*
Assign the row fetched from a server side cursor to stored
procedure variables.
*/
for (; spvar= spvar_iter++, item= item_iter++; )
{
if (thd->spcont->set_variable(thd, spvar->offset, &item))
return true;
}
return false;
}
int sp_cursor::Select_fetch_into_spvars::send_data(List<Item> &items)
{
Item *item;
/*
If we have only one variable in spvar_list, and this is a ROW variable,
and the number of fields in the ROW variable matches the number of
fields in the query result, we fetch to this ROW variable.
If there is one variable, and it is a ROW variable, but its number
of fields does not match the number of fields in the query result,
we go through send_data_to_variable_list(). It will report an error
on attempt to assign a scalar value to a ROW variable.
*/
return spvar_list->elements == 1 &&
(item= thd->spcont->get_variable(spvar_list->head()->offset)) &&
item->type_handler() == &type_handler_row &&
item->cols() == items.elements ?
thd->spcont->set_variable_row(thd, spvar_list->head()->offset, items) :
send_data_to_variable_list(*spvar_list, items);
}