mariadb/sql/partition_info.cc
unknown 42d7e8c087 BUG#18750: Various problems with partition names, quotation marks
mysql-test/r/partition.result:
  Added new test cases
mysql-test/t/partition.test:
  Added new test cases
sql/partition_info.cc:
  Check partition names that they don't have trailing spaces
sql/share/errmsg.txt:
  Added error code for wrong partition names
sql/sql_partition.cc:
  New method to add partition name strings, ignore OPTION_SHOW_QUOTE_CREATE
sql/sql_show.cc:
  require_quotes had a bug with identifiers that consisted of only digits,
  these are allowed identifiers but must be quoted and require_quote didn't
  tell this.
sql/sql_yacc.yy:
  Partition names should identifers and not ident_or_text
2006-04-10 13:48:58 -04:00

758 lines
22 KiB
C++

/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Some general useful functions */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif
#include "mysql_priv.h"
#include "ha_partition.h"
#ifdef WITH_PARTITION_STORAGE_ENGINE
partition_info *partition_info::get_clone()
{
if (!this)
return 0;
List_iterator<partition_element> part_it(partitions);
partition_element *part;
partition_info *clone= new partition_info();
if (!clone)
{
mem_alloc_error(sizeof(partition_info));
return NULL;
}
memcpy(clone, this, sizeof(partition_info));
clone->partitions.empty();
while ((part= (part_it++)))
{
List_iterator<partition_element> subpart_it(part->subpartitions);
partition_element *subpart;
partition_element *part_clone= new partition_element();
if (!part_clone)
{
mem_alloc_error(sizeof(partition_element));
return NULL;
}
memcpy(part_clone, part, sizeof(partition_element));
part_clone->subpartitions.empty();
while ((subpart= (subpart_it++)))
{
partition_element *subpart_clone= new partition_element();
if (!subpart_clone)
{
mem_alloc_error(sizeof(partition_element));
return NULL;
}
memcpy(subpart_clone, subpart, sizeof(partition_element));
part_clone->subpartitions.push_back(subpart_clone);
}
clone->partitions.push_back(part_clone);
}
return clone;
}
/*
Create a memory area where default partition names are stored and fill it
up with the names.
SYNOPSIS
create_default_partition_names()
part_no Partition number for subparts
no_parts Number of partitions
start_no Starting partition number
subpart Is it subpartitions
RETURN VALUE
A pointer to the memory area of the default partition names
DESCRIPTION
A support routine for the partition code where default values are
generated.
The external routine needing this code is check_partition_info
*/
#define MAX_PART_NAME_SIZE 16
char *partition_info::create_default_partition_names(uint part_no, uint no_parts,
uint start_no, bool is_subpart)
{
char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
char *move_ptr= ptr;
uint i= 0;
DBUG_ENTER("create_default_partition_names");
if (likely(ptr != 0))
{
do
{
if (is_subpart)
my_sprintf(move_ptr, (move_ptr,"p%usp%u", part_no, (start_no + i)));
else
my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
move_ptr+=MAX_PART_NAME_SIZE;
} while (++i < no_parts);
}
else
{
mem_alloc_error(no_parts*MAX_PART_NAME_SIZE);
}
DBUG_RETURN(ptr);
}
/*
Set up all the default partitions not set-up by the user in the SQL
statement. Also perform a number of checks that the user hasn't tried
to use default values where no defaults exists.
SYNOPSIS
set_up_default_partitions()
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine only accepts HASH and KEY partitioning and thus there is
no subpartitioning if this routine is successful.
The external routine needing this code is check_partition_info
*/
bool partition_info::set_up_default_partitions(handler *file, ulonglong max_rows,
uint start_no)
{
uint i;
char *default_name;
bool result= TRUE;
DBUG_ENTER("partition_info::set_up_default_partitions");
if (part_type != HASH_PARTITION)
{
const char *error_string;
if (part_type == RANGE_PARTITION)
error_string= partition_keywords[PKW_RANGE].str;
else
error_string= partition_keywords[PKW_LIST].str;
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
goto end;
}
if (no_parts == 0)
no_parts= file->get_default_no_partitions(max_rows);
if (unlikely(no_parts > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name= create_default_partition_names(0, no_parts,
start_no,
FALSE)))))
goto end;
i= 0;
do
{
partition_element *part_elem= new partition_element();
if (likely(part_elem != 0 &&
(!partitions.push_back(part_elem))))
{
part_elem->engine_type= default_engine_type;
part_elem->partition_name= default_name;
default_name+=MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Set up all the default subpartitions not set-up by the user in the SQL
statement. Also perform a number of checks that the default partitioning
becomes an allowed partitioning scheme.
SYNOPSIS
set_up_default_subpartitions()
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine is only called for RANGE or LIST partitioning and those
need to be specified so only subpartitions are specified.
The external routine needing this code is check_partition_info
*/
bool partition_info::set_up_default_subpartitions(handler *file,
ulonglong max_rows)
{
uint i, j;
char *default_name, *name_ptr;
bool result= TRUE;
partition_element *part_elem;
List_iterator<partition_element> part_it(partitions);
DBUG_ENTER("partition_info::set_up_default_subpartitions");
if (no_subparts == 0)
no_subparts= file->get_default_no_partitions(max_rows);
if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
i= 0;
do
{
part_elem= part_it++;
j= 0;
name_ptr= create_default_partition_names(i, no_subparts, (uint)0, TRUE);
if (unlikely(!name_ptr))
goto end;
do
{
partition_element *subpart_elem= new partition_element();
if (likely(subpart_elem != 0 &&
(!part_elem->subpartitions.push_back(subpart_elem))))
{
subpart_elem->engine_type= default_engine_type;
subpart_elem->partition_name= name_ptr;
name_ptr+= MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++j < no_subparts);
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Support routine for check_partition_info
SYNOPSIS
set_up_defaults_for_partitioning()
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
Set up defaults for partition or subpartition (cannot set-up for both,
this will return an error.
*/
bool partition_info::set_up_defaults_for_partitioning(handler *file,
ulonglong max_rows,
uint start_no)
{
DBUG_ENTER("partition_info::set_up_defaults_for_partitioning");
if (!default_partitions_setup)
{
default_partitions_setup= TRUE;
if (use_default_partitions)
DBUG_RETURN(set_up_default_partitions(file, max_rows, start_no));
if (is_sub_partitioned() &&
use_default_subpartitions)
DBUG_RETURN(set_up_default_subpartitions(file, max_rows));
}
DBUG_RETURN(FALSE);
}
/*
A support function to check if a partition element's name is unique
SYNOPSIS
has_unique_name()
partition_element element to check
RETURN VALUES
TRUE Has unique name
FALSE Doesn't
*/
bool partition_info::has_unique_name(partition_element *element)
{
DBUG_ENTER("partition_info::has_unique_name");
const char *name_to_check= element->partition_name;
List_iterator<partition_element> parts_it(partitions);
partition_element *el;
while ((el= (parts_it++)))
{
if (!(my_strcasecmp(system_charset_info, el->partition_name,
name_to_check)) && el != element)
DBUG_RETURN(FALSE);
if (!el->subpartitions.is_empty())
{
partition_element *sub_el;
List_iterator<partition_element> subparts_it(el->subpartitions);
while ((sub_el= (subparts_it++)))
{
if (!(my_strcasecmp(system_charset_info, sub_el->partition_name,
name_to_check)) && sub_el != element)
DBUG_RETURN(FALSE);
}
}
}
DBUG_RETURN(TRUE);
}
/*
A support function to check partition names for duplication in a
partitioned table
SYNOPSIS
has_unique_names()
RETURN VALUES
TRUE Has unique part and subpart names
FALSE Doesn't
DESCRIPTION
Checks that the list of names in the partitions doesn't contain any
duplicated names.
*/
char *partition_info::has_unique_names()
{
DBUG_ENTER("partition_info::has_unique_names");
List_iterator<partition_element> parts_it(partitions);
partition_element *el;
while ((el= (parts_it++)))
{
if (! has_unique_name(el))
DBUG_RETURN(el->partition_name);
if (!el->subpartitions.is_empty())
{
List_iterator<partition_element> subparts_it(el->subpartitions);
partition_element *subel;
while ((subel= (subparts_it++)))
{
if (! has_unique_name(subel))
DBUG_RETURN(subel->partition_name);
}
}
}
DBUG_RETURN(NULL);
}
/*
Check that all partitions use the same storage engine.
This is currently a limitation in this version.
SYNOPSIS
check_engine_mix()
engine_array An array of engine identifiers
no_parts Total number of partitions
RETURN VALUE
TRUE Error, mixed engines
FALSE Ok, no mixed engines
DESCRIPTION
Current check verifies only that all handlers are the same.
Later this check will be more sophisticated.
*/
bool partition_info::check_engine_mix(handlerton **engine_array, uint no_parts)
{
uint i= 0;
bool result= FALSE;
DBUG_ENTER("partition_info::check_engine_mix");
do
{
if (engine_array[i] != engine_array[0])
{
result= TRUE;
break;
}
} while (++i < no_parts);
DBUG_RETURN(result);
}
/*
This routine allocates an array for all range constants to achieve a fast
check what partition a certain value belongs to. At the same time it does
also check that the range constants are defined in increasing order and
that the expressions are constant integer expressions.
SYNOPSIS
check_range_constants()
RETURN VALUE
TRUE An error occurred during creation of range constants
FALSE Successful creation of range constant mapping
DESCRIPTION
This routine is called from check_partition_info to get a quick error
before we came too far into the CREATE TABLE process. It is also called
from fix_partition_func every time we open the .frm file. It is only
called for RANGE PARTITIONed tables.
*/
bool partition_info::check_range_constants()
{
partition_element* part_def;
longlong current_largest_int= LONGLONG_MIN;
longlong part_range_value_int;
uint i;
List_iterator<partition_element> it(partitions);
bool result= TRUE;
DBUG_ENTER("partition_info::check_range_constants");
DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts));
part_result_type= INT_RESULT;
range_int_array= (longlong*)sql_alloc(no_parts * sizeof(longlong));
if (unlikely(range_int_array == NULL))
{
mem_alloc_error(no_parts * sizeof(longlong));
goto end;
}
i= 0;
do
{
part_def= it++;
if ((i != (no_parts - 1)) || !defined_max_value)
part_range_value_int= part_def->range_value;
else
part_range_value_int= LONGLONG_MAX;
if (likely(current_largest_int < part_range_value_int))
{
current_largest_int= part_range_value_int;
range_int_array[i]= part_range_value_int;
}
else
{
my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
A support routine for check_list_constants used by qsort to sort the
constant list expressions.
SYNOPSIS
list_part_cmp()
a First list constant to compare with
b Second list constant to compare with
RETURN VALUE
+1 a > b
0 a == b
-1 a < b
*/
int partition_info::list_part_cmp(const void* a, const void* b)
{
longlong a1= ((LIST_PART_ENTRY*)a)->list_value;
longlong b1= ((LIST_PART_ENTRY*)b)->list_value;
if (a1 < b1)
return -1;
else if (a1 > b1)
return +1;
else
return 0;
}
/*
This routine allocates an array for all list constants to achieve a fast
check what partition a certain value belongs to. At the same time it does
also check that there are no duplicates among the list constants and that
that the list expressions are constant integer expressions.
SYNOPSIS
check_list_constants()
RETURN VALUE
TRUE An error occurred during creation of list constants
FALSE Successful creation of list constant mapping
DESCRIPTION
This routine is called from check_partition_info to get a quick error
before we came too far into the CREATE TABLE process. It is also called
from fix_partition_func every time we open the .frm file. It is only
called for LIST PARTITIONed tables.
*/
bool partition_info::check_list_constants()
{
uint i;
uint list_index= 0;
longlong *list_value;
bool not_first;
bool result= TRUE;
longlong curr_value, prev_value;
partition_element* part_def;
bool found_null= FALSE;
List_iterator<partition_element> list_func_it(partitions);
DBUG_ENTER("partition_info::check_list_constants");
part_result_type= INT_RESULT;
no_list_values= 0;
/*
We begin by calculating the number of list values that have been
defined in the first step.
We use this number to allocate a properly sized array of structs
to keep the partition id and the value to use in that partition.
In the second traversal we assign them values in the struct array.
Finally we sort the array of structs in order of values to enable
a quick binary search for the proper value to discover the
partition id.
After sorting the array we check that there are no duplicates in the
list.
*/
i= 0;
do
{
part_def= list_func_it++;
if (part_def->has_null_value)
{
if (found_null)
{
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
goto end;
}
has_null_value= TRUE;
has_null_part_id= i;
found_null= TRUE;
}
List_iterator<longlong> list_val_it1(part_def->list_val_list);
while (list_val_it1++)
no_list_values++;
} while (++i < no_parts);
list_func_it.rewind();
list_array= (LIST_PART_ENTRY*)sql_alloc(no_list_values*sizeof(LIST_PART_ENTRY));
if (unlikely(list_array == NULL))
{
mem_alloc_error(no_list_values * sizeof(LIST_PART_ENTRY));
goto end;
}
i= 0;
do
{
part_def= list_func_it++;
List_iterator<longlong> list_val_it2(part_def->list_val_list);
while ((list_value= list_val_it2++))
{
list_array[list_index].list_value= *list_value;
list_array[list_index++].partition_id= i;
}
} while (++i < no_parts);
qsort((void*)list_array, no_list_values, sizeof(LIST_PART_ENTRY),
&list_part_cmp);
not_first= FALSE;
i= prev_value= 0; //prev_value initialised to quiet compiler
do
{
curr_value= list_array[i].list_value;
if (likely(!not_first || prev_value != curr_value))
{
prev_value= curr_value;
not_first= TRUE;
}
else
{
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
goto end;
}
} while (++i < no_list_values);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
This code is used early in the CREATE TABLE and ALTER TABLE process.
SYNOPSIS
check_partition_info()
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
engine_type Return value for used engine in partitions
RETURN VALUE
TRUE Error, something went wrong
FALSE Ok, full partition data structures are now generated
DESCRIPTION
We will check that the partition info requested is possible to set-up in
this version. This routine is an extension of the parser one could say.
If defaults were used we will generate default data structures for all
partitions.
*/
bool partition_info::check_partition_info(handlerton **eng_type,
handler *file, ulonglong max_rows)
{
handlerton **engine_array= NULL;
uint part_count= 0;
uint i, tot_partitions;
bool result= TRUE;
char *same_name;
DBUG_ENTER("partition_info::check_partition_info");
if (unlikely(!is_sub_partitioned() &&
!(use_default_subpartitions && use_default_no_subpartitions)))
{
my_error(ER_SUBPARTITION_ERROR, MYF(0));
goto end;
}
if (unlikely(is_sub_partitioned() &&
(!(part_type == RANGE_PARTITION ||
part_type == LIST_PARTITION))))
{
/* Only RANGE and LIST partitioning can be subpartitioned */
my_error(ER_SUBPARTITION_ERROR, MYF(0));
goto end;
}
if (unlikely(set_up_defaults_for_partitioning(file, max_rows, (uint)0)))
goto end;
tot_partitions= get_tot_partitions();
if (unlikely(tot_partitions > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if ((same_name= has_unique_names()))
{
my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name);
goto end;
}
engine_array= (handlerton**)my_malloc(tot_partitions * sizeof(handlerton *),
MYF(MY_WME));
if (unlikely(!engine_array))
goto end;
i= 0;
{
List_iterator<partition_element> part_it(partitions);
do
{
partition_element *part_elem= part_it++;
if (!is_sub_partitioned())
{
if (check_table_name(part_elem->partition_name,
strlen(part_elem->partition_name)))
{
my_error(ER_WRONG_PARTITION_NAME, MYF(0));
goto end;
}
if (part_elem->engine_type == NULL)
part_elem->engine_type= default_engine_type;
DBUG_PRINT("info", ("engine = %d",
ha_legacy_type(part_elem->engine_type)));
engine_array[part_count++]= part_elem->engine_type;
}
else
{
uint j= 0;
List_iterator<partition_element> sub_it(part_elem->subpartitions);
do
{
part_elem= sub_it++;
if (check_table_name(part_elem->partition_name,
strlen(part_elem->partition_name)))
{
my_error(ER_WRONG_PARTITION_NAME, MYF(0));
goto end;
}
if (part_elem->engine_type == NULL)
part_elem->engine_type= default_engine_type;
DBUG_PRINT("info", ("engine = %u",
ha_legacy_type(part_elem->engine_type)));
engine_array[part_count++]= part_elem->engine_type;
} while (++j < no_subparts);
}
} while (++i < no_parts);
}
if (unlikely(partition_info::check_engine_mix(engine_array, part_count)))
{
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
goto end;
}
if (eng_type)
*eng_type= (handlerton*)engine_array[0];
/*
We need to check all constant expressions that they are of the correct
type and that they are increasing for ranges and not overlapping for
list constants.
*/
if (unlikely((part_type == RANGE_PARTITION && check_range_constants()) ||
(part_type == LIST_PARTITION && check_list_constants())))
goto end;
result= FALSE;
end:
my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR));
DBUG_RETURN(result);
}
#endif /* WITH_PARTITION_STORAGE_ENGINE */