mariadb/sql/partition_info.cc
gluh@mysql.com/eagle.(none) 9d42a09675 Bug#32167 another privilege bypass with DATA/INDEX DIRECORY(3rd version for 5.1)
added new function test_if_data_home_dir() which checks that
path does not contain mysql data home directory.
Using of 'mysql data home'/'any db name' in
DATA DIRECTORY & INDEX DIRECTORY is disallowed
2008-02-28 16:46:52 +04:00

1106 lines
31 KiB
C++

/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Some general useful functions */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif
#include "mysql_priv.h"
#ifdef WITH_PARTITION_STORAGE_ENGINE
#include "ha_partition.h"
partition_info *partition_info::get_clone()
{
if (!this)
return 0;
List_iterator<partition_element> part_it(partitions);
partition_element *part;
partition_info *clone= new partition_info();
if (!clone)
{
mem_alloc_error(sizeof(partition_info));
return NULL;
}
memcpy(clone, this, sizeof(partition_info));
clone->partitions.empty();
while ((part= (part_it++)))
{
List_iterator<partition_element> subpart_it(part->subpartitions);
partition_element *subpart;
partition_element *part_clone= new partition_element();
if (!part_clone)
{
mem_alloc_error(sizeof(partition_element));
return NULL;
}
memcpy(part_clone, part, sizeof(partition_element));
part_clone->subpartitions.empty();
while ((subpart= (subpart_it++)))
{
partition_element *subpart_clone= new partition_element();
if (!subpart_clone)
{
mem_alloc_error(sizeof(partition_element));
return NULL;
}
memcpy(subpart_clone, subpart, sizeof(partition_element));
part_clone->subpartitions.push_back(subpart_clone);
}
clone->partitions.push_back(part_clone);
}
return clone;
}
/*
Create a memory area where default partition names are stored and fill it
up with the names.
SYNOPSIS
create_default_partition_names()
part_no Partition number for subparts
no_parts Number of partitions
start_no Starting partition number
subpart Is it subpartitions
RETURN VALUE
A pointer to the memory area of the default partition names
DESCRIPTION
A support routine for the partition code where default values are
generated.
The external routine needing this code is check_partition_info
*/
#define MAX_PART_NAME_SIZE 8
char *partition_info::create_default_partition_names(uint part_no,
uint no_parts_arg,
uint start_no)
{
char *ptr= (char*) sql_calloc(no_parts_arg*MAX_PART_NAME_SIZE);
char *move_ptr= ptr;
uint i= 0;
DBUG_ENTER("create_default_partition_names");
if (likely(ptr != 0))
{
do
{
my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
move_ptr+=MAX_PART_NAME_SIZE;
} while (++i < no_parts_arg);
}
else
{
mem_alloc_error(no_parts_arg*MAX_PART_NAME_SIZE);
}
DBUG_RETURN(ptr);
}
/*
Create a unique name for the subpartition as part_name'sp''subpart_no'
SYNOPSIS
create_subpartition_name()
subpart_no Number of subpartition
part_name Name of partition
RETURN VALUES
>0 A reference to the created name string
0 Memory allocation error
*/
char *partition_info::create_subpartition_name(uint subpart_no,
const char *part_name)
{
uint size_alloc= strlen(part_name) + MAX_PART_NAME_SIZE;
char *ptr= (char*) sql_calloc(size_alloc);
DBUG_ENTER("create_subpartition_name");
if (likely(ptr != NULL))
{
my_sprintf(ptr, (ptr, "%ssp%u", part_name, subpart_no));
}
else
{
mem_alloc_error(size_alloc);
}
DBUG_RETURN(ptr);
}
/*
Set up all the default partitions not set-up by the user in the SQL
statement. Also perform a number of checks that the user hasn't tried
to use default values where no defaults exists.
SYNOPSIS
set_up_default_partitions()
file A reference to a handler of the table
info Create info
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine only accepts HASH and KEY partitioning and thus there is
no subpartitioning if this routine is successful.
The external routine needing this code is check_partition_info
*/
bool partition_info::set_up_default_partitions(handler *file,
HA_CREATE_INFO *info,
uint start_no)
{
uint i;
char *default_name;
bool result= TRUE;
DBUG_ENTER("partition_info::set_up_default_partitions");
if (part_type != HASH_PARTITION)
{
const char *error_string;
if (part_type == RANGE_PARTITION)
error_string= partition_keywords[PKW_RANGE].str;
else
error_string= partition_keywords[PKW_LIST].str;
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
goto end;
}
if ((no_parts == 0) &&
((no_parts= file->get_default_no_partitions(info)) == 0))
{
my_error(ER_PARTITION_NOT_DEFINED_ERROR, MYF(0), "partitions");
goto end;
}
if (unlikely(no_parts > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name= create_default_partition_names(0, no_parts,
start_no)))))
goto end;
i= 0;
do
{
partition_element *part_elem= new partition_element();
if (likely(part_elem != 0 &&
(!partitions.push_back(part_elem))))
{
part_elem->engine_type= default_engine_type;
part_elem->partition_name= default_name;
default_name+=MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Set up all the default subpartitions not set-up by the user in the SQL
statement. Also perform a number of checks that the default partitioning
becomes an allowed partitioning scheme.
SYNOPSIS
set_up_default_subpartitions()
file A reference to a handler of the table
info Create info
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine is only called for RANGE or LIST partitioning and those
need to be specified so only subpartitions are specified.
The external routine needing this code is check_partition_info
*/
bool partition_info::set_up_default_subpartitions(handler *file,
HA_CREATE_INFO *info)
{
uint i, j;
bool result= TRUE;
partition_element *part_elem;
List_iterator<partition_element> part_it(partitions);
DBUG_ENTER("partition_info::set_up_default_subpartitions");
if (no_subparts == 0)
no_subparts= file->get_default_no_partitions(info);
if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
i= 0;
do
{
part_elem= part_it++;
j= 0;
do
{
partition_element *subpart_elem= new partition_element(part_elem);
if (likely(subpart_elem != 0 &&
(!part_elem->subpartitions.push_back(subpart_elem))))
{
char *ptr= create_subpartition_name(j, part_elem->partition_name);
if (!ptr)
goto end;
subpart_elem->engine_type= default_engine_type;
subpart_elem->partition_name= ptr;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++j < no_subparts);
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Support routine for check_partition_info
SYNOPSIS
set_up_defaults_for_partitioning()
file A reference to a handler of the table
info Create info
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
Set up defaults for partition or subpartition (cannot set-up for both,
this will return an error.
*/
bool partition_info::set_up_defaults_for_partitioning(handler *file,
HA_CREATE_INFO *info,
uint start_no)
{
DBUG_ENTER("partition_info::set_up_defaults_for_partitioning");
if (!default_partitions_setup)
{
default_partitions_setup= TRUE;
if (use_default_partitions)
DBUG_RETURN(set_up_default_partitions(file, info, start_no));
if (is_sub_partitioned() &&
use_default_subpartitions)
DBUG_RETURN(set_up_default_subpartitions(file, info));
}
DBUG_RETURN(FALSE);
}
/*
A support function to check if a partition element's name is unique
SYNOPSIS
has_unique_name()
partition_element element to check
RETURN VALUES
TRUE Has unique name
FALSE Doesn't
*/
bool partition_info::has_unique_name(partition_element *element)
{
DBUG_ENTER("partition_info::has_unique_name");
const char *name_to_check= element->partition_name;
List_iterator<partition_element> parts_it(partitions);
partition_element *el;
while ((el= (parts_it++)))
{
if (!(my_strcasecmp(system_charset_info, el->partition_name,
name_to_check)) && el != element)
DBUG_RETURN(FALSE);
if (!el->subpartitions.is_empty())
{
partition_element *sub_el;
List_iterator<partition_element> subparts_it(el->subpartitions);
while ((sub_el= (subparts_it++)))
{
if (!(my_strcasecmp(system_charset_info, sub_el->partition_name,
name_to_check)) && sub_el != element)
DBUG_RETURN(FALSE);
}
}
}
DBUG_RETURN(TRUE);
}
/*
A support function to check partition names for duplication in a
partitioned table
SYNOPSIS
has_unique_names()
RETURN VALUES
TRUE Has unique part and subpart names
FALSE Doesn't
DESCRIPTION
Checks that the list of names in the partitions doesn't contain any
duplicated names.
*/
char *partition_info::has_unique_names()
{
DBUG_ENTER("partition_info::has_unique_names");
List_iterator<partition_element> parts_it(partitions);
partition_element *el;
while ((el= (parts_it++)))
{
if (! has_unique_name(el))
DBUG_RETURN(el->partition_name);
if (!el->subpartitions.is_empty())
{
List_iterator<partition_element> subparts_it(el->subpartitions);
partition_element *subel;
while ((subel= (subparts_it++)))
{
if (! has_unique_name(subel))
DBUG_RETURN(subel->partition_name);
}
}
}
DBUG_RETURN(NULL);
}
/*
Check that all partitions use the same storage engine.
This is currently a limitation in this version.
SYNOPSIS
check_engine_mix()
engine_array An array of engine identifiers
no_parts Total number of partitions
RETURN VALUE
TRUE Error, mixed engines
FALSE Ok, no mixed engines
DESCRIPTION
Current check verifies only that all handlers are the same.
Later this check will be more sophisticated.
*/
bool partition_info::check_engine_mix(handlerton **engine_array, uint no_parts)
{
uint i= 0;
DBUG_ENTER("partition_info::check_engine_mix");
do
{
if (engine_array[i] != engine_array[0])
{
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
DBUG_RETURN(TRUE);
}
} while (++i < no_parts);
if (engine_array[0]->flags & HTON_NO_PARTITION)
{
my_error(ER_PARTITION_MERGE_ERROR, MYF(0));
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
/*
This routine allocates an array for all range constants to achieve a fast
check what partition a certain value belongs to. At the same time it does
also check that the range constants are defined in increasing order and
that the expressions are constant integer expressions.
SYNOPSIS
check_range_constants()
RETURN VALUE
TRUE An error occurred during creation of range constants
FALSE Successful creation of range constant mapping
DESCRIPTION
This routine is called from check_partition_info to get a quick error
before we came too far into the CREATE TABLE process. It is also called
from fix_partition_func every time we open the .frm file. It is only
called for RANGE PARTITIONed tables.
*/
bool partition_info::check_range_constants()
{
partition_element* part_def;
longlong current_largest;
longlong part_range_value;
bool first= TRUE;
uint i;
List_iterator<partition_element> it(partitions);
bool result= TRUE;
bool signed_flag= !part_expr->unsigned_flag;
DBUG_ENTER("partition_info::check_range_constants");
DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts));
LINT_INIT(current_largest);
part_result_type= INT_RESULT;
range_int_array= (longlong*)sql_alloc(no_parts * sizeof(longlong));
if (unlikely(range_int_array == NULL))
{
mem_alloc_error(no_parts * sizeof(longlong));
goto end;
}
i= 0;
do
{
part_def= it++;
if ((i != (no_parts - 1)) || !defined_max_value)
{
part_range_value= part_def->range_value;
if (!signed_flag)
part_range_value-= 0x8000000000000000ULL;
}
else
part_range_value= LONGLONG_MAX;
if (first)
{
current_largest= part_range_value;
range_int_array[0]= part_range_value;
first= FALSE;
}
else
{
if (likely(current_largest < part_range_value))
{
current_largest= part_range_value;
range_int_array[i]= part_range_value;
}
else if (defined_max_value &&
current_largest == part_range_value &&
part_range_value == LONGLONG_MAX &&
i == (no_parts - 1))
{
range_int_array[i]= part_range_value;
}
else
{
my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
goto end;
}
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Support routines for check_list_constants used by qsort to sort the
constant list expressions. One routine for unsigned and one for signed.
SYNOPSIS
list_part_cmp()
a First list constant to compare with
b Second list constant to compare with
RETURN VALUE
+1 a > b
0 a == b
-1 a < b
*/
int partition_info::list_part_cmp(const void* a, const void* b)
{
longlong a1= ((LIST_PART_ENTRY*)a)->list_value;
longlong b1= ((LIST_PART_ENTRY*)b)->list_value;
if (a1 < b1)
return -1;
else if (a1 > b1)
return +1;
else
return 0;
}
/*
This routine allocates an array for all list constants to achieve a fast
check what partition a certain value belongs to. At the same time it does
also check that there are no duplicates among the list constants and that
that the list expressions are constant integer expressions.
SYNOPSIS
check_list_constants()
RETURN VALUE
TRUE An error occurred during creation of list constants
FALSE Successful creation of list constant mapping
DESCRIPTION
This routine is called from check_partition_info to get a quick error
before we came too far into the CREATE TABLE process. It is also called
from fix_partition_func every time we open the .frm file. It is only
called for LIST PARTITIONed tables.
*/
bool partition_info::check_list_constants()
{
uint i;
uint list_index= 0;
part_elem_value *list_value;
bool result= TRUE;
longlong curr_value, prev_value, type_add, calc_value;
partition_element* part_def;
bool found_null= FALSE;
List_iterator<partition_element> list_func_it(partitions);
DBUG_ENTER("partition_info::check_list_constants");
part_result_type= INT_RESULT;
no_list_values= 0;
/*
We begin by calculating the number of list values that have been
defined in the first step.
We use this number to allocate a properly sized array of structs
to keep the partition id and the value to use in that partition.
In the second traversal we assign them values in the struct array.
Finally we sort the array of structs in order of values to enable
a quick binary search for the proper value to discover the
partition id.
After sorting the array we check that there are no duplicates in the
list.
*/
i= 0;
do
{
part_def= list_func_it++;
if (part_def->has_null_value)
{
if (found_null)
{
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
goto end;
}
has_null_value= TRUE;
has_null_part_id= i;
found_null= TRUE;
}
List_iterator<part_elem_value> list_val_it1(part_def->list_val_list);
while (list_val_it1++)
no_list_values++;
} while (++i < no_parts);
list_func_it.rewind();
list_array= (LIST_PART_ENTRY*)sql_alloc((no_list_values+1) *
sizeof(LIST_PART_ENTRY));
if (unlikely(list_array == NULL))
{
mem_alloc_error(no_list_values * sizeof(LIST_PART_ENTRY));
goto end;
}
i= 0;
/*
Fix to be able to reuse signed sort functions also for unsigned
partition functions.
*/
type_add= (longlong)(part_expr->unsigned_flag ?
0x8000000000000000ULL :
0ULL);
do
{
part_def= list_func_it++;
List_iterator<part_elem_value> list_val_it2(part_def->list_val_list);
while ((list_value= list_val_it2++))
{
calc_value= list_value->value - type_add;
list_array[list_index].list_value= calc_value;
list_array[list_index++].partition_id= i;
}
} while (++i < no_parts);
if (fixed && no_list_values)
{
bool first= TRUE;
my_qsort((void*)list_array, no_list_values, sizeof(LIST_PART_ENTRY),
&list_part_cmp);
i= 0;
LINT_INIT(prev_value);
do
{
DBUG_ASSERT(i < no_list_values);
curr_value= list_array[i].list_value;
if (likely(first || prev_value != curr_value))
{
prev_value= curr_value;
first= FALSE;
}
else
{
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
goto end;
}
} while (++i < no_list_values);
}
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
This code is used early in the CREATE TABLE and ALTER TABLE process.
SYNOPSIS
check_partition_info()
file A reference to a handler of the table
info Create info
engine_type Return value for used engine in partitions
check_partition_function Should we check the partition function
RETURN VALUE
TRUE Error, something went wrong
FALSE Ok, full partition data structures are now generated
DESCRIPTION
We will check that the partition info requested is possible to set-up in
this version. This routine is an extension of the parser one could say.
If defaults were used we will generate default data structures for all
partitions.
*/
bool partition_info::check_partition_info(THD *thd, handlerton **eng_type,
handler *file, HA_CREATE_INFO *info,
bool check_partition_function)
{
handlerton **engine_array= NULL;
uint part_count= 0;
uint i, tot_partitions;
bool result= TRUE;
char *same_name;
DBUG_ENTER("partition_info::check_partition_info");
if (check_partition_function)
{
int err= 0;
if (part_type != HASH_PARTITION || !list_of_part_fields)
{
err= part_expr->walk(&Item::check_partition_func_processor, 0,
NULL);
if (!err && is_sub_partitioned() && !list_of_subpart_fields)
err= subpart_expr->walk(&Item::check_partition_func_processor, 0,
NULL);
}
if (err)
{
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
goto end;
}
}
if (unlikely(!is_sub_partitioned() &&
!(use_default_subpartitions && use_default_no_subpartitions)))
{
my_error(ER_SUBPARTITION_ERROR, MYF(0));
goto end;
}
if (unlikely(is_sub_partitioned() &&
(!(part_type == RANGE_PARTITION ||
part_type == LIST_PARTITION))))
{
/* Only RANGE and LIST partitioning can be subpartitioned */
my_error(ER_SUBPARTITION_ERROR, MYF(0));
goto end;
}
if (unlikely(set_up_defaults_for_partitioning(file, info, (uint)0)))
goto end;
if (!(tot_partitions= get_tot_partitions()))
{
my_error(ER_PARTITION_NOT_DEFINED_ERROR, MYF(0), "partitions");
goto end;
}
if (unlikely(tot_partitions > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if ((same_name= has_unique_names()))
{
my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name);
goto end;
}
engine_array= (handlerton**)my_malloc(tot_partitions * sizeof(handlerton *),
MYF(MY_WME));
if (unlikely(!engine_array))
goto end;
i= 0;
{
List_iterator<partition_element> part_it(partitions);
do
{
partition_element *part_elem= part_it++;
if (part_elem->engine_type == NULL)
part_elem->engine_type= default_engine_type;
if (thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE)
part_elem->data_file_name= part_elem->index_file_name= 0;
if (!is_sub_partitioned())
{
if (check_table_name(part_elem->partition_name,
strlen(part_elem->partition_name)))
{
my_error(ER_WRONG_PARTITION_NAME, MYF(0));
goto end;
}
DBUG_PRINT("info", ("engine = %d",
ha_legacy_type(part_elem->engine_type)));
engine_array[part_count++]= part_elem->engine_type;
}
else
{
uint j= 0;
List_iterator<partition_element> sub_it(part_elem->subpartitions);
do
{
partition_element *sub_elem= sub_it++;
if (check_table_name(sub_elem->partition_name,
strlen(sub_elem->partition_name)))
{
my_error(ER_WRONG_PARTITION_NAME, MYF(0));
goto end;
}
if (sub_elem->engine_type == NULL)
sub_elem->engine_type= default_engine_type;
DBUG_PRINT("info", ("engine = %u",
ha_legacy_type(sub_elem->engine_type)));
engine_array[part_count++]= sub_elem->engine_type;
} while (++j < no_subparts);
}
} while (++i < no_parts);
}
if (unlikely(partition_info::check_engine_mix(engine_array, part_count)))
goto end;
if (eng_type)
*eng_type= (handlerton*)engine_array[0];
/*
We need to check all constant expressions that they are of the correct
type and that they are increasing for ranges and not overlapping for
list constants.
*/
if (fixed)
{
if (unlikely((part_type == RANGE_PARTITION && check_range_constants()) ||
(part_type == LIST_PARTITION && check_list_constants())))
goto end;
}
result= FALSE;
end:
my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR));
DBUG_RETURN(result);
}
/*
Print error for no partition found
SYNOPSIS
print_no_partition_found()
table Table object
RETURN VALUES
*/
void partition_info::print_no_partition_found(TABLE *table)
{
char buf[100];
char *buf_ptr= (char*)&buf;
TABLE_LIST table_list;
bzero(&table_list, sizeof(table_list));
table_list.db= table->s->db.str;
table_list.table_name= table->s->table_name.str;
if (check_single_table_access(current_thd,
SELECT_ACL, &table_list, TRUE))
my_message(ER_NO_PARTITION_FOR_GIVEN_VALUE,
ER(ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT), MYF(0));
else
{
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
if (part_expr->null_value)
buf_ptr= (char*)"NULL";
else
longlong2str(err_value, buf,
part_expr->unsigned_flag ? 10 : -10);
my_error(ER_NO_PARTITION_FOR_GIVEN_VALUE, MYF(0), buf_ptr);
dbug_tmp_restore_column_map(table->read_set, old_map);
}
}
/*
Set up buffers and arrays for fields requiring preparation
SYNOPSIS
set_up_charset_field_preps()
RETURN VALUES
TRUE Memory Allocation error
FALSE Success
DESCRIPTION
Set up arrays and buffers for fields that require special care for
calculation of partition id. This is used for string fields with
variable length or string fields with fixed length that isn't using
the binary collation.
*/
bool partition_info::set_up_charset_field_preps()
{
Field *field, **ptr;
uchar **char_ptrs;
unsigned i;
size_t size;
uint tot_fields= 0;
uint tot_part_fields= 0;
uint tot_subpart_fields= 0;
DBUG_ENTER("set_up_charset_field_preps");
if (!(part_type == HASH_PARTITION &&
list_of_part_fields) &&
check_part_func_fields(part_field_array, FALSE))
{
ptr= part_field_array;
/* Set up arrays and buffers for those fields */
while ((field= *(ptr++)))
{
if (field_is_partition_charset(field))
{
tot_part_fields++;
tot_fields++;
}
}
size= tot_part_fields * sizeof(char*);
if (!(char_ptrs= (uchar**)sql_calloc(size)))
goto error;
part_field_buffers= char_ptrs;
if (!(char_ptrs= (uchar**)sql_calloc(size)))
goto error;
restore_part_field_ptrs= char_ptrs;
size= (tot_part_fields + 1) * sizeof(Field*);
if (!(char_ptrs= (uchar**)sql_alloc(size)))
goto error;
part_charset_field_array= (Field**)char_ptrs;
ptr= part_field_array;
i= 0;
while ((field= *(ptr++)))
{
if (field_is_partition_charset(field))
{
uchar *field_buf;
size= field->pack_length();
if (!(field_buf= (uchar*) sql_calloc(size)))
goto error;
part_charset_field_array[i]= field;
part_field_buffers[i++]= field_buf;
}
}
part_charset_field_array[i]= NULL;
}
if (is_sub_partitioned() && !list_of_subpart_fields &&
check_part_func_fields(subpart_field_array, FALSE))
{
/* Set up arrays and buffers for those fields */
ptr= subpart_field_array;
while ((field= *(ptr++)))
{
if (field_is_partition_charset(field))
{
tot_subpart_fields++;
tot_fields++;
}
}
size= tot_subpart_fields * sizeof(char*);
if (!(char_ptrs= (uchar**) sql_calloc(size)))
goto error;
subpart_field_buffers= char_ptrs;
if (!(char_ptrs= (uchar**) sql_calloc(size)))
goto error;
restore_subpart_field_ptrs= char_ptrs;
size= (tot_subpart_fields + 1) * sizeof(Field*);
if (!(char_ptrs= (uchar**) sql_alloc(size)))
goto error;
subpart_charset_field_array= (Field**)char_ptrs;
ptr= subpart_field_array;
i= 0;
while ((field= *(ptr++)))
{
CHARSET_INFO *cs;
uchar *field_buf;
LINT_INIT(field_buf);
if (!field_is_partition_charset(field))
continue;
cs= ((Field_str*)field)->charset();
size= field->pack_length();
if (!(field_buf= (uchar*) sql_calloc(size)))
goto error;
subpart_charset_field_array[i]= field;
subpart_field_buffers[i++]= field_buf;
}
subpart_charset_field_array[i]= NULL;
}
if (tot_fields)
{
uint k;
size= tot_fields*sizeof(char**);
if (!(char_ptrs= (uchar**)sql_calloc(size)))
goto error;
full_part_field_buffers= char_ptrs;
if (!(char_ptrs= (uchar**)sql_calloc(size)))
goto error;
restore_full_part_field_ptrs= char_ptrs;
size= (tot_fields + 1) * sizeof(char**);
if (!(char_ptrs= (uchar**)sql_calloc(size)))
goto error;
full_part_charset_field_array= (Field**)char_ptrs;
for (i= 0; i < tot_part_fields; i++)
{
full_part_charset_field_array[i]= part_charset_field_array[i];
full_part_field_buffers[i]= part_field_buffers[i];
}
k= tot_part_fields;
for (i= 0; i < tot_subpart_fields; i++)
{
uint j;
bool found= FALSE;
field= subpart_charset_field_array[i];
for (j= 0; j < tot_part_fields; j++)
{
if (field == part_charset_field_array[i])
found= TRUE;
}
if (!found)
{
full_part_charset_field_array[k]= subpart_charset_field_array[i];
full_part_field_buffers[k]= subpart_field_buffers[i];
k++;
}
}
full_part_charset_field_array[k]= NULL;
}
DBUG_RETURN(FALSE);
error:
mem_alloc_error(size);
DBUG_RETURN(TRUE);
}
/*
Check if path does not contain mysql data home directory
for partition elements with data directory and index directory
SYNOPSIS
check_partition_dirs()
part_info partition_info struct
RETURN VALUES
0 ok
1 error
*/
bool check_partition_dirs(partition_info *part_info)
{
if (!part_info)
return 0;
partition_element *part_elem;
List_iterator<partition_element> part_it(part_info->partitions);
while ((part_elem= part_it++))
{
if (part_elem->subpartitions.elements)
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
partition_element *subpart_elem;
while ((subpart_elem= sub_it++))
{
if (test_if_data_home_dir(subpart_elem->data_file_name))
goto dd_err;
if (test_if_data_home_dir(subpart_elem->index_file_name))
goto id_err;
}
}
else
{
if (test_if_data_home_dir(part_elem->data_file_name))
goto dd_err;
if (test_if_data_home_dir(part_elem->index_file_name))
goto id_err;
}
}
return 0;
dd_err:
my_error(ER_WRONG_ARGUMENTS,MYF(0),"DATA DIRECORY");
return 1;
id_err:
my_error(ER_WRONG_ARGUMENTS,MYF(0),"INDEX DIRECORY");
return 1;
}
#endif /* WITH_PARTITION_STORAGE_ENGINE */