mariadb/mysys/lf_hash.c
2015-01-13 10:15:21 +01:00

557 lines
16 KiB
C

/* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
extensible hash
TODO
try to get rid of dummy nodes ?
for non-unique hash, count only _distinct_ values
(but how to do it in lf_hash_delete ?)
*/
#include <my_global.h>
#include <m_string.h>
#include <my_sys.h>
#include <mysys_err.h>
#include <my_bit.h>
#include <lf.h>
/* An element of the list */
typedef struct {
intptr volatile link; /* a pointer to the next element in a list and a flag */
uint32 hashnr; /* reversed hash number, for sorting */
const uchar *key;
size_t keylen;
/*
data is stored here, directly after the keylen.
thus the pointer to data is (void*)(slist_element_ptr+1)
*/
} LF_SLIST;
const int LF_HASH_OVERHEAD= sizeof(LF_SLIST);
/*
a structure to pass the context (pointers two the three successive elements
in a list) from lfind to linsert/ldelete
*/
typedef struct {
intptr volatile *prev;
LF_SLIST *curr, *next;
} CURSOR;
/*
the last bit in LF_SLIST::link is a "deleted" flag.
the helper macros below convert it to a pure pointer or a pure flag
*/
#define PTR(V) (LF_SLIST *)((V) & (~(intptr)1))
#define DELETED(V) ((V) & 1)
/** walk the list, searching for an element or invoking a callback
Search for hashnr/key/keylen in the list starting from 'head' and
position the cursor. The list is ORDER BY hashnr, key
@param head start walking the list from this node
@param cs charset for comparing keys, NULL if callback is used
@param hashnr hash number to search for
@param key key to search for OR data for the callback
@param keylen length of the key to compare, 0 if callback is used
@param cursor for returning the found element
@param pins see lf_alloc-pin.c
@param callback callback action, invoked for every element
@note
cursor is positioned in either case
pins[0..2] are used, they are NOT removed on return
callback might see some elements twice (because of retries)
@return
if find: 0 - not found
1 - found
if callback:
0 - ok
1 - error (callbck returned 1)
*/
static int lfind(LF_SLIST * volatile *head, CHARSET_INFO *cs, uint32 hashnr,
const uchar *key, uint keylen, CURSOR *cursor, LF_PINS *pins,
my_hash_walk_action callback)
{
uint32 cur_hashnr;
const uchar *cur_key;
uint cur_keylen;
intptr link;
DBUG_ASSERT(!cs || !callback); /* should not be set both */
DBUG_ASSERT(!keylen || !callback); /* should not be set both */
retry:
cursor->prev= (intptr *)head;
do { /* PTR() isn't necessary below, head is a dummy node */
cursor->curr= (LF_SLIST *)(*cursor->prev);
lf_pin(pins, 1, cursor->curr);
} while (*cursor->prev != (intptr)cursor->curr && LF_BACKOFF);
for (;;)
{
if (unlikely(!cursor->curr))
return 0; /* end of the list */
cur_hashnr= cursor->curr->hashnr;
cur_keylen= cursor->curr->keylen;
cur_key= cursor->curr->key;
do {
link= cursor->curr->link;
cursor->next= PTR(link);
lf_pin(pins, 0, cursor->next);
} while (link != cursor->curr->link && LF_BACKOFF);
if (!DELETED(link))
{
if (unlikely(callback))
{
if (cur_hashnr & 1 && callback(cursor->curr + 1, (void*)key))
return 1;
}
else if (cur_hashnr >= hashnr)
{
int r= 1;
if (cur_hashnr > hashnr ||
(r= my_strnncoll(cs, cur_key, cur_keylen, key, keylen)) >= 0)
return !r;
}
cursor->prev= &(cursor->curr->link);
if (!(cur_hashnr & 1)) /* dummy node */
head= (LF_SLIST **)cursor->prev;
lf_pin(pins, 2, cursor->curr);
}
else
{
/*
we found a deleted node - be nice, help the other thread
and remove this deleted node
*/
if (my_atomic_casptr((void **) cursor->prev,
(void **) &cursor->curr, cursor->next) && LF_BACKOFF)
lf_alloc_free(pins, cursor->curr);
else
goto retry;
}
cursor->curr= cursor->next;
lf_pin(pins, 1, cursor->curr);
}
}
/*
DESCRIPTION
insert a 'node' in the list that starts from 'head' in the correct
position (as found by lfind)
RETURN
0 - inserted
not 0 - a pointer to a duplicate (not pinned and thus unusable)
NOTE
it uses pins[0..2], on return all pins are removed.
if there're nodes with the same key value, a new node is added before them.
*/
static LF_SLIST *linsert(LF_SLIST * volatile *head, CHARSET_INFO *cs,
LF_SLIST *node, LF_PINS *pins, uint flags)
{
CURSOR cursor;
int res;
for (;;)
{
if (lfind(head, cs, node->hashnr, node->key, node->keylen,
&cursor, pins, 0) &&
(flags & LF_HASH_UNIQUE))
{
res= 0; /* duplicate found */
break;
}
else
{
node->link= (intptr)cursor.curr;
DBUG_ASSERT(node->link != (intptr)node); /* no circular references */
DBUG_ASSERT(cursor.prev != &node->link); /* no circular references */
if (my_atomic_casptr((void **) cursor.prev,
(void **)(char*) &cursor.curr, node))
{
res= 1; /* inserted ok */
break;
}
}
}
lf_unpin(pins, 0);
lf_unpin(pins, 1);
lf_unpin(pins, 2);
/*
Note that cursor.curr is not pinned here and the pointer is unreliable,
the object may dissapear anytime. But if it points to a dummy node, the
pointer is safe, because dummy nodes are never freed - initialize_bucket()
uses this fact.
*/
return res ? 0 : cursor.curr;
}
/*
DESCRIPTION
deletes a node as identified by hashnr/keey/keylen from the list
that starts from 'head'
RETURN
0 - ok
1 - not found
NOTE
it uses pins[0..2], on return all pins are removed.
*/
static int ldelete(LF_SLIST * volatile *head, CHARSET_INFO *cs, uint32 hashnr,
const uchar *key, uint keylen, LF_PINS *pins)
{
CURSOR cursor;
int res;
for (;;)
{
if (!lfind(head, cs, hashnr, key, keylen, &cursor, pins, 0))
{
res= 1; /* not found */
break;
}
else
{
/* mark the node deleted */
if (my_atomic_casptr((void **) (char*) &(cursor.curr->link),
(void **) (char*) &cursor.next,
(void *)(((intptr)cursor.next) | 1)))
{
/* and remove it from the list */
if (my_atomic_casptr((void **)cursor.prev,
(void **)(char*)&cursor.curr, cursor.next))
lf_alloc_free(pins, cursor.curr);
else
{
/*
somebody already "helped" us and removed the node ?
Let's check if we need to help that someone too!
(to ensure the number of "set DELETED flag" actions
is equal to the number of "remove from the list" actions)
*/
lfind(head, cs, hashnr, key, keylen, &cursor, pins, 0);
}
res= 0;
break;
}
}
}
lf_unpin(pins, 0);
lf_unpin(pins, 1);
lf_unpin(pins, 2);
return res;
}
/*
DESCRIPTION
searches for a node as identified by hashnr/keey/keylen in the list
that starts from 'head'
RETURN
0 - not found
node - found
NOTE
it uses pins[0..2], on return the pin[2] keeps the node found
all other pins are removed.
*/
static LF_SLIST *lsearch(LF_SLIST * volatile *head, CHARSET_INFO *cs,
uint32 hashnr, const uchar *key, uint keylen,
LF_PINS *pins)
{
CURSOR cursor;
int res= lfind(head, cs, hashnr, key, keylen, &cursor, pins, 0);
if (res)
lf_pin(pins, 2, cursor.curr);
else
lf_unpin(pins, 2);
lf_unpin(pins, 1);
lf_unpin(pins, 0);
return res ? cursor.curr : 0;
}
static inline const uchar* hash_key(const LF_HASH *hash,
const uchar *record, size_t *length)
{
if (hash->get_key)
return (*hash->get_key)(record, length, 0);
*length= hash->key_length;
return record + hash->key_offset;
}
/*
Compute the hash key value from the raw key.
@note, that the hash value is limited to 2^31, because we need one
bit to distinguish between normal and dummy nodes.
*/
static inline uint calc_hash(LF_HASH *hash, const uchar *key, uint keylen)
{
ulong nr1= 1, nr2= 4;
hash->charset->coll->hash_sort(hash->charset, (uchar*) key, keylen,
&nr1, &nr2);
return nr1 & INT_MAX32;
}
#define MAX_LOAD 1.0 /* average number of elements in a bucket */
static int initialize_bucket(LF_HASH *, LF_SLIST * volatile*, uint, LF_PINS *);
/*
Initializes lf_hash, the arguments are compatible with hash_init
@note element_size sets both the size of allocated memory block for
lf_alloc and a size of memcpy'ed block size in lf_hash_insert. Typically
they are the same, indeed. But LF_HASH::element_size can be decreased
after lf_hash_init, and then lf_alloc will allocate larger block that
lf_hash_insert will copy over. It is desireable if part of the element
is expensive to initialize - for example if there is a mutex or
DYNAMIC_ARRAY. In this case they should be initialize in the
LF_ALLOCATOR::constructor, and lf_hash_insert should not overwrite them.
See wt_init() for example.
*/
void lf_hash_init(LF_HASH *hash, uint element_size, uint flags,
uint key_offset, uint key_length, my_hash_get_key get_key,
CHARSET_INFO *charset)
{
lf_alloc_init(&hash->alloc, sizeof(LF_SLIST)+element_size,
offsetof(LF_SLIST, key));
lf_dynarray_init(&hash->array, sizeof(LF_SLIST *));
hash->size= 1;
hash->count= 0;
hash->element_size= element_size;
hash->flags= flags;
hash->charset= charset ? charset : &my_charset_bin;
hash->key_offset= key_offset;
hash->key_length= key_length;
hash->get_key= get_key;
DBUG_ASSERT(get_key ? !key_offset && !key_length : key_length);
}
void lf_hash_destroy(LF_HASH *hash)
{
LF_SLIST *el, **head= (LF_SLIST **)lf_dynarray_value(&hash->array, 0);
if (head)
{
el= *head;
while (el)
{
intptr next= el->link;
if (el->hashnr & 1)
lf_alloc_direct_free(&hash->alloc, el); /* normal node */
else
my_free(el); /* dummy node */
el= (LF_SLIST *)next;
}
}
lf_alloc_destroy(&hash->alloc);
lf_dynarray_destroy(&hash->array);
}
/*
DESCRIPTION
inserts a new element to a hash. it will have a _copy_ of
data, not a pointer to it.
RETURN
0 - inserted
1 - didn't (unique key conflict)
-1 - out of memory
NOTE
see linsert() for pin usage notes
*/
int lf_hash_insert(LF_HASH *hash, LF_PINS *pins, const void *data)
{
int csize, bucket, hashnr;
LF_SLIST *node, * volatile *el;
node= (LF_SLIST *)lf_alloc_new(pins);
if (unlikely(!node))
return -1;
memcpy(node+1, data, hash->element_size);
node->key= hash_key(hash, (uchar *)(node+1), &node->keylen);
hashnr= calc_hash(hash, node->key, node->keylen);
bucket= hashnr % hash->size;
el= lf_dynarray_lvalue(&hash->array, bucket);
if (unlikely(!el))
return -1;
if (*el == NULL && unlikely(initialize_bucket(hash, el, bucket, pins)))
return -1;
node->hashnr= my_reverse_bits(hashnr) | 1; /* normal node */
if (linsert(el, hash->charset, node, pins, hash->flags))
{
lf_alloc_free(pins, node);
return 1;
}
csize= hash->size;
if ((my_atomic_add32(&hash->count, 1)+1.0) / csize > MAX_LOAD)
my_atomic_cas32(&hash->size, &csize, csize*2);
return 0;
}
/*
DESCRIPTION
deletes an element with the given key from the hash (if a hash is
not unique and there're many elements with this key - the "first"
matching element is deleted)
RETURN
0 - deleted
1 - didn't (not found)
NOTE
see ldelete() for pin usage notes
*/
int lf_hash_delete(LF_HASH *hash, LF_PINS *pins, const void *key, uint keylen)
{
LF_SLIST * volatile *el;
uint bucket, hashnr= calc_hash(hash, (uchar *)key, keylen);
/* hide OOM errors - if we cannot initalize a bucket, try the previous one */
for (bucket= hashnr % hash->size; ;bucket= my_clear_highest_bit(bucket))
{
el= lf_dynarray_lvalue(&hash->array, bucket);
if (el && (*el || initialize_bucket(hash, el, bucket, pins) == 0))
break;
if (unlikely(bucket == 0))
return 1; /* if there's no bucket==0, the hash is empty */
}
if (ldelete(el, hash->charset, my_reverse_bits(hashnr) | 1,
(uchar *)key, keylen, pins))
{
return 1;
}
my_atomic_add32(&hash->count, -1);
return 0;
}
/*
RETURN
a pointer to an element with the given key (if a hash is not unique and
there're many elements with this key - the "first" matching element)
NULL if nothing is found
NOTE
see lsearch() for pin usage notes
*/
void *lf_hash_search_using_hash_value(LF_HASH *hash, LF_PINS *pins,
my_hash_value_type hashnr,
const void *key, uint keylen)
{
LF_SLIST * volatile *el, *found;
uint bucket;
/* hide OOM errors - if we cannot initalize a bucket, try the previous one */
for (bucket= hashnr % hash->size; ;bucket= my_clear_highest_bit(bucket))
{
el= lf_dynarray_lvalue(&hash->array, bucket);
if (el && (*el || initialize_bucket(hash, el, bucket, pins) == 0))
break;
if (unlikely(bucket == 0))
return 0; /* if there's no bucket==0, the hash is empty */
}
found= lsearch(el, hash->charset, my_reverse_bits(hashnr) | 1,
(uchar *)key, keylen, pins);
return found ? found+1 : 0;
}
/**
Iterate over all elements in hash and call function with the element
@note
If one of 'action' invocations returns 1 the iteration aborts.
'action' might see some elements twice!
@retval 0 ok
@retval 1 error (action returned 1)
*/
int lf_hash_iterate(LF_HASH *hash, LF_PINS *pins,
my_hash_walk_action action, void *argument)
{
CURSOR cursor;
uint bucket= 0;
int res;
LF_SLIST * volatile *el;
el= lf_dynarray_lvalue(&hash->array, bucket);
if (unlikely(!el))
return 0; /* if there's no bucket==0, the hash is empty */
if (*el == NULL && unlikely(initialize_bucket(hash, el, bucket, pins)))
return 0; /* if there's no bucket==0, the hash is empty */
res= lfind(el, 0, 0, (uchar*)argument, 0, &cursor, pins, action);
lf_unpin(pins, 2);
lf_unpin(pins, 1);
lf_unpin(pins, 0);
return res;
}
void *lf_hash_search(LF_HASH *hash, LF_PINS *pins, const void *key, uint keylen)
{
return lf_hash_search_using_hash_value(hash, pins,
calc_hash(hash, (uchar*) key, keylen),
key, keylen);
}
static const uchar *dummy_key= (uchar*)"";
/*
RETURN
0 - ok
-1 - out of memory
*/
static int initialize_bucket(LF_HASH *hash, LF_SLIST * volatile *node,
uint bucket, LF_PINS *pins)
{
uint parent= my_clear_highest_bit(bucket);
LF_SLIST *dummy= (LF_SLIST *)my_malloc(sizeof(LF_SLIST), MYF(MY_WME));
LF_SLIST **tmp= 0, *cur;
LF_SLIST * volatile *el= lf_dynarray_lvalue(&hash->array, parent);
if (unlikely(!el || !dummy))
return -1;
if (*el == NULL && bucket &&
unlikely(initialize_bucket(hash, el, parent, pins)))
return -1;
dummy->hashnr= my_reverse_bits(bucket) | 0; /* dummy node */
dummy->key= dummy_key;
dummy->keylen= 0;
if ((cur= linsert(el, hash->charset, dummy, pins, LF_HASH_UNIQUE)))
{
my_free(dummy);
dummy= cur;
}
my_atomic_casptr((void **)node, (void **)(char*) &tmp, dummy);
/*
note that if the CAS above failed (after linsert() succeeded),
it would mean that some other thread has executed linsert() for
the same dummy node, its linsert() failed, it picked up our
dummy node (in "dummy= cur") and executed the same CAS as above.
Which means that even if CAS above failed we don't need to retry,
and we should not free(dummy) - there's no memory leak here
*/
return 0;
}