mariadb/ndb/test/ndbapi/benchronja.cpp

1201 lines
43 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* ***************************************************
NODEREC
Perform benchmark of insert, update and delete transactions
Arguments:
-t Number of threads to start, default 1
-o Number of loops per thread, default 100000
* *************************************************** */
#include <ndb_global.h>
#include <NdbApi.hpp>
#include <NdbTest.hpp>
#include <NdbOut.hpp>
#include <NdbThread.h>
#include <NdbSleep.h>
#include <NdbMain.h>
#include <NdbTimer.hpp>
#include <NdbTick.h>
#include <random.h>
#define MAX_TIMERS 4
#define MAXSTRLEN 16
#define MAXATTR 64
#define MAXTABLES 64
#define MAXTHREADS 256
#define MAXATTRSIZE 8000
#define START_TIMER NdbTimer timer; timer.doStart();
#define STOP_TIMER timer.doStop();
#define START_TIMER_TOP NdbTimer timer_top; timer_top.doStart();
#define STOP_TIMER_TOP timer_top.doStop();
void* ThreadExec(void*);
struct ThreadNdb
{
int NoOfOps;
int ThreadNo;
Ndb* NdbRef;
};
static NdbThread* threadLife[MAXTHREADS];
static unsigned int tNoOfThreads;
static unsigned int tNoOfOpsPerExecute;
static unsigned int tNoOfRecords;
static unsigned int tNoOfOperations;
static int ThreadReady[MAXTHREADS];
static int ThreadStart[MAXTHREADS];
NDB_COMMAND(benchronja, "benchronja", "benchronja", "benchronja", 65535){
ndb_init();
ThreadNdb tabThread[MAXTHREADS];
int i = 0 ;
int cont = 0 ;
Ndb* pMyNdb = NULL ; //( "TEST_DB" );
int tmp = 0 ;
int nTest = 0 ;
char inp[100] ;
tNoOfThreads = 1; // Default Value
tNoOfOpsPerExecute = 1; // Default Value
tNoOfOperations = 100000; // Default Value
tNoOfRecords = 500 ; // Default Value <epaulsa: changed from original 500,000 to match 'initronja's' default
i = 1;
while (argc > 1)
{
if (strcmp(argv[i], "-t") == 0){
tNoOfThreads = atoi(argv[i+1]);
if ((tNoOfThreads < 1) || (tNoOfThreads > MAXTHREADS)) goto error_input;
}else if (strcmp(argv[i], "-o") == 0){
tNoOfOperations = atoi(argv[i+1]);
if (tNoOfOperations < 1) goto error_input;
}else if (strcmp(argv[i], "-r") == 0){
tNoOfRecords = atoi(argv[i+1]);
if ((tNoOfRecords < 1) || (tNoOfRecords > 1000000000)) goto error_input;
}else if (strcmp(argv[i], "-p") == 0){
nTest = atoi(argv[i+1]) ;
if (0 > nTest || 18 < nTest) goto error_input ;
}else if (strcmp(argv[i], "-c") == 0){
tNoOfOpsPerExecute = atoi(argv[i+1]);
if ((tNoOfOpsPerExecute < 1) || (tNoOfOpsPerExecute > 1024)) goto error_input;
}else{
goto error_input;
}
argc -= 2;
i = i + 2;
}
ndbout << "Initialisation started. " << endl;
pMyNdb = new Ndb("TEST_DB") ;
pMyNdb->init();
ndbout << "Initialisation completed. " << endl;
ndbout << endl << "Execute Ronja Benchmark" << endl;
ndbout << " NdbAPI node with id = " << pMyNdb->getNodeId() << endl;
ndbout << " " << tNoOfThreads << " thread(s) " << endl;
ndbout << " " << tNoOfOperations << " transaction(s) per thread and round " << endl;
if (pMyNdb->waitUntilReady(120) != 0) {
ndbout << "Benchmark failed - NDB is not ready" << endl;
delete pMyNdb ;
return NDBT_ProgramExit(NDBT_FAILED);
}//if
NdbThread_SetConcurrencyLevel(2 + tNoOfThreads);
for (i = 0; i < tNoOfThreads ; i++) {
ThreadReady[i] = 0;
ThreadStart[i] = 0;
}//for
for (i = 0; i < tNoOfThreads ; i++) {
tabThread[i].ThreadNo = i;
tabThread[i].NdbRef = NULL;
tabThread[i].NoOfOps = tNoOfOperations;
threadLife[i] = NdbThread_Create(ThreadExec,
(void**)&tabThread[i],
32768,
"RonjaThread",
NDB_THREAD_PRIO_LOW);
}//for
cont = 1;
while (cont) {
NdbSleep_MilliSleep(10);
cont = 0;
for (i = 0; i < tNoOfThreads ; i++)
if (!ThreadReady[i]) cont = 1;
}//while
ndbout << "All threads started" << endl;
if(!nTest){
for (;;){
inp[0] = 0;
ndbout << endl << "What to do next:" << endl;
ndbout << "1 \t=> Perform lookups in short table" << endl;
ndbout << "2 \t=> Perform lookups in long table" << endl;
ndbout << "3 \t=> Perform updates in short table" << endl;
ndbout << "4 \t=> Perform updates in long table" << endl;
ndbout << "5 \t=> Perform 50% lookups/50% updates in short table" << endl;
ndbout << "6 \t=> Perform 50% lookups/50% updates in long table" << endl;
ndbout << "7 \t=> Perform 80% lookups/20% updates in short table" << endl;
ndbout << "8 \t=> Perform 80% lookups/20% updates in long table" << endl;
ndbout << "9 \t=> Perform 25% lookups short/25% lookups long/25% updates short/25% updates long" << endl;
ndbout << "10\t=> Test bug with replicated interpreted updates, short table" << endl;
ndbout << "11\t=> Test interpreter functions, short table" << endl;
ndbout << "12\t=> Test bug with replicated interpreted updates, long table" << endl;
ndbout << "13\t=> Test interpreter functions, long table" << endl;
ndbout << "14\t=> Perform lookups in short table, no guess of TC" << endl;
ndbout << "15\t=> Perform lookups in long table, no guess of TC" << endl;
ndbout << "16\t=> Perform updates in short table, no guess of TC" << endl;
ndbout << "17\t=> Perform updates in long table, no guess of TC" << endl;
ndbout << "18\t=> Multi record updates of transactions" << endl;
ndbout << "All other responses will exit" << endl;
ndbout << "_____________________________" << endl << endl ;
int inp_i = 0;
do {
inp[inp_i] = (char) fgetc(stdin);
if (inp[inp_i] == '\n' || inp[inp_i] == EOF) {
inp[inp_i] ='\0';
break;
}
inp_i++;
} while (inp[inp_i - 1] != '\n' && inp[inp_i - 1] != EOF);
tmp = atoi(inp);
if ((tmp > 18) || (tmp <= 0)) break;
ndbout << "Starting test " << tmp << "..." << endl;
for (i = 0; i < tNoOfThreads ; i++){ ThreadStart[i] = tmp; }
cont = 1;
while (cont) {
NdbSleep_MilliSleep(10);
cont = 0;
for (i = 0; i < tNoOfThreads ; i++){
if (!ThreadReady[i]) cont = 1;
}
}//while
}//for(;;)
}else{
if(19 == nTest){
ndbout << "Executing all 18 available tests..." << endl << endl;
for (int count = 1; count < nTest; count++){
ndbout << "Test " << count << endl ;
ndbout << "------" << endl << endl ;
for (i = 0; i < tNoOfThreads ; i++) { ThreadStart[i] = count ; }
cont = 1;
while (cont) {
NdbSleep_MilliSleep(10);
cont = 0;
for (i = 0; i < tNoOfThreads ; i++){
if (!ThreadReady[i]) cont = 1;
}
}
}//for
}else{
ndbout << endl << "Executing test " << nTest << endl << endl;
for (i = 0; i < tNoOfThreads ; i++) { ThreadStart[i] = nTest ; }
cont = 1;
while (cont) {
NdbSleep_MilliSleep(10);
cont = 0;
for (i = 0; i < tNoOfThreads ; i++){
if (!ThreadReady[i]) cont = 1;
}
}
}//if(18 == nTest)
} //if(!nTest)
ndbout << "--------------------------------------------------" << endl;
for (i = 0; i < tNoOfThreads ; i++) ThreadReady[i] = 0;
// Signaling threads to stop
for (i = 0; i < tNoOfThreads ; i++) ThreadStart[i] = 999;
// Wait for threads to stop
cont = 1;
do {
NdbSleep_MilliSleep(1);
cont = 0;
for (i = 0; i < tNoOfThreads ; i++){
if (ThreadReady[i] == 0) cont = 1;
}
} while (cont == 1);
delete pMyNdb ;
ndbout << endl << "Ronja Benchmark completed" << endl;
return NDBT_ProgramExit(NDBT_OK) ;
error_input:
ndbout << endl << " Ivalid parameter(s)" << endl;
ndbout << " Usage: benchronja [-t threads][-r rec] [-o ops] [-c ops_per_exec] [-p test], where:" << endl;
ndbout << " threads - the number of threads to start; default: 1" << endl;
ndbout << " rec - the number of records in the tables; default: 500" << endl;
ndbout << " ops - the number of operations per transaction; default: 100000" << endl;
ndbout << " ops_per_exec - the number of operations per execution; default: 1" << endl ;
ndbout << " test - the number of test to execute; 19 executes all available tests; default: 0"<< endl ;
ndbout << " which enters a loop expecting manual input of test number to execute." << endl << endl ;
delete pMyNdb ;
return NDBT_ProgramExit(NDBT_WRONGARGS) ;
}
////////////////////////////////////////
void commitTrans(Ndb* aNdb, NdbConnection* aCon)
{
int ret = aCon->execute(Commit);
assert (ret != -1);
aNdb->closeTransaction(aCon);
}
void rollbackTrans(Ndb* aNdb, NdbConnection* aCon)
{
int ret = aCon->execute(Rollback);
assert (ret != -1);
aNdb->closeTransaction(aCon);
}
void updateNoCommit(NdbConnection* aCon, Uint32* flip, unsigned int key)
{
NdbOperation* theOperation;
*flip = *flip + 1;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->updateTuple();
theOperation->equal((Uint32)0, key);
theOperation->setValue((Uint32)1, (char*)flip);
int ret = aCon->execute(NoCommit);
assert (ret != -1);
}
void updateNoCommitFail(NdbConnection* aCon, unsigned int key)
{
NdbOperation* theOperation;
Uint32 flip = 0;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->updateTuple();
theOperation->equal((Uint32)0, key);
theOperation->setValue((Uint32)1, (char*)flip);
int ret = aCon->execute(NoCommit);
assert (ret == -1);
}
void deleteNoCommit(NdbConnection* aCon, Uint32* flip, unsigned int key)
{
NdbOperation* theOperation;
*flip = 0;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->deleteTuple();
theOperation->equal((Uint32)0, key);
int ret = aCon->execute(NoCommit);
assert (ret != -1);
}
void insertNoCommit(NdbConnection* aCon, Uint32* flip, unsigned int key)
{
NdbOperation* theOperation;
Uint32 placeholder[100];
*flip = *flip + 1;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->insertTuple();
theOperation->equal((Uint32)0, key);
theOperation->setValue((Uint32)1, (char*)flip);
theOperation->setValue((Uint32)2, (char*)&placeholder[0]);
theOperation->setValue((Uint32)3, (char*)&placeholder[0]);
int ret = aCon->execute(NoCommit);
assert (ret != -1);
}
void writeNoCommit(NdbConnection* aCon, Uint32* flip, unsigned int key)
{
NdbOperation* theOperation;
Uint32 placeholder[100];
*flip = *flip + 1;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->writeTuple();
theOperation->equal((Uint32)0, key);
theOperation->setValue((Uint32)1, (char*)flip);
theOperation->setValue((Uint32)2, (char*)&placeholder[0]);
theOperation->setValue((Uint32)3, (char*)&placeholder[0]);
int ret = aCon->execute(NoCommit);
assert (ret != -1);
}
void readNoCommit(NdbConnection* aCon, Uint32* flip, Uint32 key, int expected_ret)
{
NdbOperation* theOperation;
Uint32 readFlip;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->readTuple();
theOperation->equal((Uint32)0, key);
theOperation->getValue((Uint32)1, (char*)&readFlip);
int ret = aCon->execute(NoCommit);
assert (ret == expected_ret);
if (ret == 0)
assert (*flip == readFlip);
}
void readDirtyNoCommit(NdbConnection* aCon, Uint32* flip, Uint32 key, int expected_ret)
{
NdbOperation* theOperation;
Uint32 readFlip;
theOperation = aCon->getNdbOperation("SHORT_REC");
theOperation->committedRead();
theOperation->equal((Uint32)0, key);
theOperation->getValue((Uint32)1, (char*)&readFlip);
int ret = aCon->execute(NoCommit);
assert (ret == expected_ret);
if (ret == 0)
assert (*flip == readFlip);
}
void readVerify(Ndb* aNdb, Uint32* flip, Uint32 key, int expected_ret)
{
NdbConnection* theTransaction;
theTransaction = aNdb->startTransaction();
readNoCommit(theTransaction, flip, key, expected_ret);
commitTrans(aNdb, theTransaction);
}
void readDirty(Ndb* aNdb, Uint32* flip, Uint32 key, int expected_ret)
{
NdbOperation* theOperation;
NdbConnection* theTransaction;
Uint32 readFlip;
theTransaction = aNdb->startTransaction();
theOperation = theTransaction->getNdbOperation("SHORT_REC");
theOperation->committedRead();
theOperation->equal((Uint32)0, key);
theOperation->getValue((Uint32)1, (char*)&readFlip);
int ret = theTransaction->execute(Commit);
assert (ret == expected_ret);
if (ret == 0)
assert (*flip == readFlip);
aNdb->closeTransaction(theTransaction);
}
int multiRecordTest(Ndb* aNdb, unsigned int key)
{
NdbConnection* theTransaction;
Uint32 flip = 0;
Uint32 save_flip;
ndbout << "0" << endl;
theTransaction = aNdb->startTransaction();
updateNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
updateNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
commitTrans(aNdb, theTransaction);
ndbout << "1 " << endl;
readVerify(aNdb, &flip, key, 0);
readDirty(aNdb, &flip, key, 0);
save_flip = flip;
ndbout << "1.1 " << endl;
theTransaction = aNdb->startTransaction();
deleteNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, -1);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readDirtyNoCommit(theTransaction, &flip, key, -1);
ndbout << "1.2 " << endl;
insertNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
ndbout << "1.3 " << endl;
updateNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
ndbout << "1.4 " << endl;
commitTrans(aNdb, theTransaction);
ndbout << "2 " << endl;
readDirty(aNdb, &flip, key, 0); // COMMITTED READ!!!
readVerify(aNdb, &flip, key, 0);
save_flip = flip;
theTransaction = aNdb->startTransaction();
deleteNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readDirtyNoCommit(theTransaction, &flip, key, -1); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, -1);
insertNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
updateNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readDirtyNoCommit(theTransaction, &flip, key, 0); // COMMITTED READ!!!
deleteNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, -1);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readDirtyNoCommit(theTransaction, &flip, key, -1);
rollbackTrans(aNdb, theTransaction);
ndbout << "3 " << endl;
flip = save_flip;
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readVerify(aNdb, &flip, key, 0);
theTransaction = aNdb->startTransaction();
updateNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readDirtyNoCommit(theTransaction, &flip, key, 0);
readNoCommit(theTransaction, &flip, key, 0);
deleteNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, -1);
readDirtyNoCommit(theTransaction, &flip, key, -1);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
insertNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
updateNoCommit(theTransaction, &flip, key);
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
deleteNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, 0); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, -1);
readDirtyNoCommit(theTransaction, &flip, key, -1);
commitTrans(aNdb, theTransaction);
ndbout << "4 " << endl;
readVerify(aNdb, &flip, key, -1);
theTransaction = aNdb->startTransaction();
insertNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, -1); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
deleteNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, -1); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, -1);
readDirtyNoCommit(theTransaction, &flip, key, -1);
insertNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, -1); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
updateNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, -1); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, 0);
readDirtyNoCommit(theTransaction, &flip, key, 0);
deleteNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &save_flip, key, -1); // COMMITTED READ!!!
readNoCommit(theTransaction, &flip, key, -1);
readDirtyNoCommit(theTransaction, &flip, key, -1);
commitTrans(aNdb, theTransaction);
ndbout << "5 " << endl;
readDirty(aNdb, &flip, key, -1); // COMMITTED READ!!!
readVerify(aNdb, &flip, key, -1);
theTransaction = aNdb->startTransaction();
insertNoCommit(theTransaction, &flip, key);
readDirty(aNdb, &flip, key, -1); // COMMITTED READ!!!
readDirtyNoCommit(theTransaction, &flip, key, 0); // COMMITTED READ!!!
commitTrans(aNdb, theTransaction);
readDirty(aNdb, &flip, key, 0); // COMMITTED READ!!!
ndbout << "6 " << endl;
theTransaction = aNdb->startTransaction();
deleteNoCommit(theTransaction, &flip, key);
updateNoCommitFail(theTransaction, key);
rollbackTrans(aNdb, theTransaction);
return 0;
}
int lookup(Ndb* aNdb, unsigned int key, unsigned int long_short, int guess){
int placeholder[500];
unsigned int flip, count;
int ret_value, i;
NdbConnection* theTransaction;
NdbOperation* theOperation;
if ( !aNdb ) return -1 ;
if (guess != 0)
theTransaction = aNdb->startTransaction((Uint32)0, (const char*)&key, (Uint32)4);
else
theTransaction = aNdb->startTransaction();
for (i = 0; i < tNoOfOpsPerExecute; i++) {
if (long_short == 0)
theOperation = theTransaction->getNdbOperation("SHORT_REC");
else
theOperation = theTransaction->getNdbOperation("LONG_REC");
if (theOperation == NULL) {
ndbout << "Table missing" << endl;
aNdb->closeTransaction(theTransaction) ;
return -1;
}//if
theOperation->simpleRead();
theOperation->equal((Uint32)0, key);
theOperation->getValue((Uint32)1, (char*)&flip);
theOperation->getValue((Uint32)2, (char*)&count);
if (theOperation->getValue((Uint32)3, (char*)&placeholder[0]) == NULL) {
ndbout << "Error in definition phase = " << theTransaction->getNdbError() << endl;
aNdb->closeTransaction(theTransaction);
return -1;
}//if
}//for
ret_value = theTransaction->execute(Commit);
if (ret_value == -1)
ndbout << "Error in lookup:" << theTransaction->getNdbError() << endl;
aNdb->closeTransaction(theTransaction);
return ret_value;
}//lookup()
int update(Ndb* aNdb, unsigned int key, unsigned int long_short, int guess)
{
int placeholder[500];
int ret_value, i;
unsigned int flip, count;
NdbConnection* theTransaction;
NdbOperation* theOperation;
if ( !aNdb ) return -1 ;
if (guess != 0)
theTransaction = aNdb->startTransaction((Uint32)0, (const char*)&key, (Uint32)4);
else
theTransaction = aNdb->startTransaction();
for (i = 0; i < tNoOfOpsPerExecute; i++) {
if (long_short == 0)
theOperation = theTransaction->getNdbOperation("SHORT_REC"); // Use table SHORT_REC
else
theOperation = theTransaction->getNdbOperation("LONG_REC"); // Use table LONG_REC
if (theOperation == NULL) {
ndbout << "Table missing" << endl;
aNdb->closeTransaction(theTransaction) ;
delete aNdb ;
return -1;
}//if
theOperation->interpretedUpdateTuple(); // Send interpreted program to NDB kernel
theOperation->equal((Uint32)0, key); // Search key
theOperation->getValue((Uint32)1, (char*)&flip); // Read value of flip
theOperation->getValue((Uint32)2, (char*)&count); // Read value of count
theOperation->getValue((Uint32)3, (char*)&placeholder[0]); // Read value of placeholder
theOperation->load_const_u32((Uint32)1, (Uint32)0); // Load register 1 with 0
theOperation->read_attr((Uint32)1, (Uint32)2); // Read Flip value into register 2
theOperation->branch_eq((Uint32)1, (Uint32)2, (Uint32)0); // If Flip (register 2) == 0 (register 1) goto label 0
theOperation->branch_label((Uint32)1); // Goto label 1
theOperation->def_label((Uint32)0); // Define label 0
theOperation->load_const_u32((Uint32)1, (Uint32)1); // Load register 1 with 1
theOperation->def_label((Uint32)1); // Define label 0
theOperation->write_attr((Uint32)1, (Uint32)1); // Write 1 (register 1) into Flip
ret_value = theOperation->incValue((Uint32)2, (Uint32)1); // Increment Count by 1
if (ret_value == -1) {
ndbout << "Error in definition phase " << endl;
aNdb->closeTransaction(theTransaction);
return ret_value;
}//if
}//for
ret_value = theTransaction->execute(Commit); // Perform the actual read and update
if (ret_value == -1) {
ndbout << "Error in update:" << theTransaction->getNdbError() << endl;
aNdb->closeTransaction(theTransaction); // < epaulsa
return ret_value ;
}//if
aNdb->closeTransaction(theTransaction);
return ret_value;
}//update()
int update_bug(Ndb* aNdb, unsigned int key, unsigned int long_short)
{
int placeholder[500];
int ret_value, i;
unsigned int flip, count;
NdbConnection* theTransaction;
NdbOperation* theOperation;
if ( !aNdb ) return -1 ;
theTransaction = aNdb->startTransaction();
for (i = 0; i < tNoOfOpsPerExecute; i++) {
if (long_short == 0)
theOperation = theTransaction->getNdbOperation("SHORT_REC"); // Use table SHORT_REC
else
theOperation = theTransaction->getNdbOperation("LONG_REC"); // Use table LONG_REC
if (theOperation == NULL) {
ndbout << "Table missing" << endl;
aNdb->closeTransaction(theTransaction) ;
return -1;
}//if
theOperation->interpretedUpdateTuple(); // Send interpreted program to NDB kernel
theOperation->equal((Uint32)0, key); // Search key
theOperation->getValue((Uint32)1, (char*)&flip); // Read value of flip
theOperation->getValue((Uint32)2, (char*)&count); // Read value of count
theOperation->getValue((Uint32)3, (char*)&placeholder[0]); // Read value of placeholder
theOperation->load_const_u32((Uint32)1, (Uint32)0); // Load register 1 with 0
theOperation->read_attr((Uint32)1, (Uint32)2); // Read Flip value into register 2
theOperation->branch_eq((Uint32)1, (Uint32)2, (Uint32)0); // If Flip (register 2) == 0 (register 1) goto label 0
theOperation->branch_label((Uint32)1); // Goto label 1
theOperation->def_label((Uint32)0); // Define label 0
theOperation->load_const_u32((Uint32)1, (Uint32)1); // Load register 1 with 1
theOperation->def_label((Uint32)1); // Define label 0
theOperation->write_attr((Uint32)1, (Uint32)1); // Write 1 (register 1) into Flip
ret_value = theOperation->incValue((Uint32)2, (Uint32)1); // Increment Count by 1
if (ret_value == -1) {
ndbout << "Error in definition phase " << endl;
aNdb->closeTransaction(theTransaction);
return ret_value;
}//if
}//for
ret_value = theTransaction->execute(NoCommit); // Perform the actual read and update
if (ret_value == -1) {
ndbout << "Error in update:" << theTransaction->getNdbError() << endl;
aNdb->closeTransaction(theTransaction);
return ret_value ;
}//if
aNdb->closeTransaction(theTransaction);
return ret_value;
}//update_bug()
int update_interpreter_test(Ndb* aNdb, unsigned int key, unsigned int long_short)
{
int placeholder[500];
int ret_value, i;
unsigned int flip, count;
NdbConnection* theTransaction;
NdbOperation* theOperation;
Uint32 Tlabel = 0;
if ( !aNdb ) return -1 ;
//------------------------------------------------------------------------------
// Start the transaction and get a unique transaction id
//------------------------------------------------------------------------------
theTransaction = aNdb->startTransaction();
for (i = 0; i < tNoOfOpsPerExecute; i++) {
//------------------------------------------------------------------------------
// Get the proper table object and load schema information if not already
// present.
//------------------------------------------------------------------------------
if (long_short == 0)
theOperation = theTransaction->getNdbOperation("SHORT_REC"); // Use table SHORT_REC
else
theOperation = theTransaction->getNdbOperation("LONG_REC"); // Use table LONG_REC
if (theOperation == NULL) {
ndbout << "Table missing" << endl;
aNdb->closeTransaction(theTransaction) ;
return -1;
}//if
//------------------------------------------------------------------------------
// Define the operation type and the tuple key (primary key in this case).
//------------------------------------------------------------------------------
theOperation->interpretedUpdateTuple(); // Send interpreted program to NDB kernel
theOperation->equal((Uint32)0, key); // Search key
//------------------------------------------------------------------------------
// Perform initial read of attributes before updating them
//------------------------------------------------------------------------------
theOperation->getValue((Uint32)1, (char*)&flip); // Read value of flip
theOperation->getValue((Uint32)2, (char*)&count); // Read value of count
theOperation->getValue((Uint32)3, (char*)&placeholder[0]); // Read value of placeholder
//------------------------------------------------------------------------------
// Test that the various branch operations can handle things correctly.
// Test first 2 + 3 = 5 with 32 bit registers
// Next test the same with 32 bit + 64 bit = 64
//------------------------------------------------------------------------------
theOperation->load_const_u32((Uint32)4, (Uint32)0); // Load register 4 with 0
theOperation->load_const_u32((Uint32)0, (Uint32)0);
theOperation->load_const_u32((Uint32)1, (Uint32)3);
theOperation->load_const_u32((Uint32)2, (Uint32)5);
theOperation->load_const_u32((Uint32)3, (Uint32)1);
theOperation->def_label(Tlabel++);
theOperation->def_label(Tlabel++);
theOperation->sub_reg((Uint32)2, (Uint32)3, (Uint32)2);
theOperation->branch_ne((Uint32)2, (Uint32)0, (Uint32)0);
theOperation->load_const_u32((Uint32)2, (Uint32)5);
theOperation->sub_reg((Uint32)1, (Uint32)3, (Uint32)1);
theOperation->branch_ne((Uint32)1, (Uint32)0, (Uint32)1);
theOperation->load_const_u32((Uint32)1, (Uint32)2); // Load register 1 with 2
theOperation->load_const_u32((Uint32)2, (Uint32)3); // Load register 2 with 3
theOperation->add_reg((Uint32)1, (Uint32)2, (Uint32)1); // 2+3 = 5 into reg 1
theOperation->load_const_u32((Uint32)2, (Uint32)5); // Load register 2 with 5
theOperation->def_label(Tlabel++);
theOperation->branch_eq((Uint32)1, (Uint32)2, Tlabel);
theOperation->interpret_exit_nok((Uint32)6001);
theOperation->def_label(Tlabel++);
theOperation->branch_ne((Uint32)1, (Uint32)2, Tlabel);
theOperation->branch_label(Tlabel + 1);
theOperation->def_label(Tlabel++);
theOperation->interpret_exit_nok((Uint32)6002);
theOperation->def_label(Tlabel++);
theOperation->branch_lt((Uint32)1, (Uint32)2, Tlabel);
theOperation->branch_label(Tlabel + 1);
theOperation->def_label(Tlabel++);
theOperation->interpret_exit_nok((Uint32)6003);
theOperation->def_label(Tlabel++);
theOperation->branch_gt((Uint32)1, (Uint32)2, Tlabel);
theOperation->branch_label(Tlabel + 1);
theOperation->def_label(Tlabel++);
theOperation->interpret_exit_nok((Uint32)6005);
theOperation->def_label(Tlabel++);
theOperation->branch_eq_null((Uint32)1, Tlabel);
theOperation->branch_label(Tlabel + 1);
theOperation->def_label(Tlabel++);
theOperation->interpret_exit_nok((Uint32)6006);
theOperation->def_label(Tlabel++);
theOperation->branch_ne_null((Uint32)1,Tlabel);
theOperation->interpret_exit_nok((Uint32)6007);
theOperation->def_label(Tlabel++);
theOperation->branch_ge((Uint32)1, (Uint32)2, Tlabel);
theOperation->interpret_exit_nok((Uint32)6008);
theOperation->def_label(Tlabel++);
theOperation->branch_eq_null((Uint32)6,Tlabel);
theOperation->interpret_exit_nok((Uint32)6009);
theOperation->def_label(Tlabel++);
theOperation->branch_ne_null((Uint32)6, Tlabel);
theOperation->branch_label(Tlabel + 1);
theOperation->def_label(Tlabel++);
theOperation->interpret_exit_nok((Uint32)6010);
theOperation->def_label(Tlabel++);
theOperation->load_const_u32((Uint32)5, (Uint32)1);
theOperation->add_reg((Uint32)4, (Uint32)5, (Uint32)4);
theOperation->load_const_u32((Uint32)5, (Uint32)1);
theOperation->branch_eq((Uint32)4, (Uint32)5, Tlabel);
theOperation->load_const_u32((Uint32)5, (Uint32)2);
theOperation->branch_eq((Uint32)4, (Uint32)5, (Tlabel + 1));
theOperation->load_const_u32((Uint32)5, (Uint32)3);
theOperation->branch_eq((Uint32)4, (Uint32)5, (Tlabel + 2));
theOperation->load_const_u32((Uint32)5, (Uint32)4);
theOperation->branch_eq((Uint32)4, (Uint32)5, (Tlabel + 3));
theOperation->branch_label(Tlabel + 4);
theOperation->def_label(Tlabel++);
theOperation->load_const_u32((Uint32)1, (Uint32)200000);
theOperation->load_const_u32((Uint32)2, (Uint32)300000);
theOperation->add_reg((Uint32)1, (Uint32)2, (Uint32)1);
theOperation->load_const_u32((Uint32)2, (Uint32)500000);
theOperation->branch_label((Uint32)2);
theOperation->def_label(Tlabel++);
theOperation->load_const_u32((Uint32)1, (Uint32)200000);
theOperation->load_const_u32((Uint32)2, (Uint32)300000);
theOperation->add_reg((Uint32)1, (Uint32)2, (Uint32)1);
theOperation->load_const_u32((Uint32)2, (Uint32)500000);
theOperation->branch_label((Uint32)2);
theOperation->def_label(Tlabel++);
theOperation->load_const_u32((Uint32)1, (Uint32)2);
Uint64 x = 0;
theOperation->load_const_u64((Uint32)2, (Uint64)(x - 1));
theOperation->add_reg((Uint32)1, (Uint32)2, (Uint32)1);
theOperation->load_const_u32((Uint32)2, (Uint32)1);
theOperation->branch_label((Uint32)2);
theOperation->def_label(Tlabel++);
theOperation->load_const_u32((Uint32)1, (Uint32)2);
theOperation->load_const_u64((Uint32)2, (Uint64)(x - 1));
theOperation->add_reg((Uint32)1, (Uint32)2, (Uint32)1);
theOperation->load_const_u64((Uint32)2, (Uint64)1);
theOperation->branch_label((Uint32)2);
theOperation->def_label(Tlabel++);
theOperation->read_attr((Uint32)1, (Uint32)2);
theOperation->branch_eq((Uint32)1, (Uint32)2, Tlabel);
theOperation->load_const_u32((Uint32)1, (Uint32)0);
theOperation->branch_label(Tlabel + 1);
theOperation->def_label(Tlabel++);
theOperation->load_const_u32((Uint32)1, (Uint32)1);
theOperation->def_label(Tlabel++);
theOperation->write_attr((Uint32)1, (Uint32)1);
ret_value = theOperation->incValue((Uint32)2, (Uint32)1);
if (ret_value == -1) {
ndbout << "Error in definition phase " << endl;
ndbout << "Error = " << theOperation->getNdbError() << " on line = " << theOperation->getNdbErrorLine() << endl;
aNdb->closeTransaction(theTransaction);
return ret_value;
}//if
}//for
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
ret_value = theTransaction->execute(Commit); // Perform the actual read and update
if (ret_value == -1) {
ndbout << "Error in update:" << theTransaction->getNdbError() << endl;
aNdb->closeTransaction(theTransaction); // < epaulsa
return ret_value ;
}//if
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
aNdb->closeTransaction(theTransaction);
return ret_value;
}//update_interpreter_test()
void* ThreadExec(void* ThreadData){
ThreadNdb* tabThread = (ThreadNdb*)ThreadData;
Ndb* pMyNdb = NULL ;
myRandom48Init(NdbTick_CurrentMillisecond());
int Tsuccess = 0 ;
int check = 0 ;
int loop_count_ops = 0;
int count, i, Ti;
int tType = 0 ;
int remType = 0 ;
unsigned int thread_no = 0 ;
unsigned long total_milliseconds;
unsigned int key = 0 ;
unsigned int prob = 0 ;
unsigned long transaction_time = 0 ;
unsigned long transaction_max_time = 0 ;
unsigned long min_time, max_time[MAX_TIMERS];
double mean_time, mean_square_time, std_time;
thread_no = tabThread->ThreadNo;
pMyNdb = tabThread->NdbRef;
if (!pMyNdb) {
pMyNdb = new Ndb( "TEST_DB" );
pMyNdb->init();
}//if
for (;;){
min_time = 0xFFFFFFFF;
//for (Ti = 0; Ti < MAX_TIMERS ; Ti++) max_time[Ti] = 0;
memset(&max_time, 0, sizeof max_time) ;
mean_time = 0;
mean_square_time = 0;
ThreadReady[thread_no] = 1;
while (!ThreadStart[thread_no]){
NdbSleep_MilliSleep(1);
}
// Check if signal to exit is received
if (ThreadStart[thread_no] == 999){
delete pMyNdb;
pMyNdb = NULL ;
ThreadReady[thread_no] = 1;
return 0 ;
}//if
tType = ThreadStart[thread_no];
remType = tType;
ThreadStart[thread_no] = 0;
ThreadReady[thread_no] = 0 ;
// Start transaction, type of transaction
// is received in the array ThreadStart
loop_count_ops = tNoOfOperations;
START_TIMER_TOP
for (count=0 ; count < loop_count_ops ; count++) {
Tsuccess = 0;
//----------------------------------------------------
// Generate a random key between 0 and tNoOfRecords - 1
//----------------------------------------------------
key = myRandom48(tNoOfRecords);
//----------------------------------------------------
// Start time measurement of transaction.
//----------------------------------------------------
START_TIMER
//do {
switch (remType){
case 1:
//----------------------------------------------------
// Only lookups in short record table
//----------------------------------------------------
Tsuccess = lookup(pMyNdb, key, 0, 1);
break;
case 2:
//----------------------------------------------------
// Only lookups in long record table
//----------------------------------------------------
Tsuccess = lookup(pMyNdb, key, 1, 1);
break;
case 3:
//----------------------------------------------------
// Only updates in short record table
//----------------------------------------------------
Tsuccess = update(pMyNdb, key, 0, 1);
break;
case 4:
//----------------------------------------------------
// Only updates in long record table
//----------------------------------------------------
Tsuccess = update(pMyNdb, key, 1, 1);
break;
case 5:
//----------------------------------------------------
// 50% read/50 % update in short record table
//----------------------------------------------------
prob = myRandom48(100);
if (prob < 50)
Tsuccess = update(pMyNdb, key, 0, 1);
else
Tsuccess = lookup(pMyNdb, key, 0, 1);
break;
case 6:
//----------------------------------------------------
// 50% read/50 % update in long record table
//----------------------------------------------------
prob = myRandom48(100);
if (prob < 50)
Tsuccess = update(pMyNdb, key, 1, 1);
else
Tsuccess = lookup(pMyNdb, key, 1, 1);
break;
case 7:
//----------------------------------------------------
// 80 read/20 % update in short record table
//----------------------------------------------------
prob = myRandom48(100);
if (prob < 20)
Tsuccess = update(pMyNdb, key, 0, 1);
else
Tsuccess = lookup(pMyNdb, key, 0, 1);
break;
case 8:
//----------------------------------------------------
// 80 read/20 % update in long record table
//----------------------------------------------------
prob = myRandom48(100);
if (prob < 20)
Tsuccess = update(pMyNdb, key, 1, 1);
else
Tsuccess = lookup(pMyNdb, key, 1, 1);
break;
case 9:
//----------------------------------------------------
// 25 read short/25 % read long/25 % update short/25 % update long
//----------------------------------------------------
prob = myRandom48(100);
if (prob < 25)
Tsuccess = update(pMyNdb, key, 0, 1);
else if (prob < 50)
Tsuccess = update(pMyNdb, key, 1, 1);
else if (prob < 75)
Tsuccess = lookup(pMyNdb, key, 0, 1);
else
Tsuccess = lookup(pMyNdb, key, 1, 1);
break;
case 10:
//----------------------------------------------------
// Test bug with replicated interpreted update, short table
//----------------------------------------------------
Tsuccess = update_bug(pMyNdb, key, 0);
break;
case 11:
//----------------------------------------------------
// Test interpreter functions, short table
//----------------------------------------------------
Tsuccess = update_interpreter_test(pMyNdb, key, 0);
break;
case 12:
//----------------------------------------------------
// Test bug with replicated interpreted update, long table
//----------------------------------------------------
Tsuccess = update_bug(pMyNdb, key, 1);
break;
case 13:
//----------------------------------------------------
// Test interpreter functions, long table
//----------------------------------------------------
Tsuccess = update_interpreter_test(pMyNdb, key, 1);
break;
case 14:
//----------------------------------------------------
// Only lookups in short record table
//----------------------------------------------------
Tsuccess = lookup(pMyNdb, key, 0, 0);
break;
case 15:
//----------------------------------------------------
// Only lookups in long record table
//----------------------------------------------------
Tsuccess = lookup(pMyNdb, key, 1, 0);
break;
case 16:
//----------------------------------------------------
// Only updates in short record table
//----------------------------------------------------
Tsuccess = update(pMyNdb, key, 0, 0);
break;
case 17:
//----------------------------------------------------
// Only updates in long record table
//----------------------------------------------------
Tsuccess = update(pMyNdb, key, 1, 0);
break;
case 18:
Tsuccess = multiRecordTest(pMyNdb, key);
break;
default:
break;
}//switch
//} while (0);//
if(-1 == Tsuccess) {
NDBT_ProgramExit(NDBT_FAILED);
exit(-1);
} // for
//----------------------------------------------------
// Stop time measurement of transaction.
//----------------------------------------------------
STOP_TIMER
transaction_time = (unsigned long)timer.elapsedTime() ;//stopTimer(&theStartTime);
//----------------------------------------------------
// Perform calculations of time measurements.
//----------------------------------------------------
transaction_max_time = transaction_time;
for (Ti = 0; Ti < MAX_TIMERS; Ti++) {
if (transaction_max_time > max_time[Ti]) {
Uint32 tmp = max_time[Ti];
max_time[Ti] = transaction_max_time;
transaction_max_time = tmp;
}//if
}//if
if (transaction_time < min_time) min_time = transaction_time;
mean_time = (double)transaction_time + mean_time;
mean_square_time = (double)(transaction_time * transaction_time) + mean_square_time;
}//for
//----------------------------------------------------
// Calculate mean and standard deviation
//----------------------------------------------------
STOP_TIMER_TOP
total_milliseconds = (unsigned long)timer_top.elapsedTime() ;//stopTimer(&total_time);
mean_time = mean_time / loop_count_ops;
mean_square_time = mean_square_time / loop_count_ops;
std_time = sqrt(mean_square_time - (mean_time * mean_time));
//----------------------------------------------------
// Report statistics
//----------------------------------------------------
ndbout << "Thread = " << thread_no << " reporting:" << endl ;
ndbout << "------------------------------" << endl ;
ndbout << "Total time is " << (unsigned int)(total_milliseconds /1000);
ndbout << " seconds and " << (unsigned int)(total_milliseconds % 1000);
ndbout << " milliseconds" << endl;
ndbout << "Minimum time = " << (unsigned int)min_time << " milliseconds" << endl;
for (Ti = 0; Ti < MAX_TIMERS; Ti++) {
ndbout << "Maximum timer " << Ti << " = " << (unsigned int)max_time[Ti] << " milliseconds" << endl;
ndbout << "Mean time = " << (unsigned int)mean_time << " milliseconds" << endl;
ndbout << "Standard deviation on time = " << (unsigned int)std_time;
ndbout << " milliseconds" << endl << endl ;
}//for
ndbout << endl ;
} // for(;;)
delete pMyNdb ;
return 0 ;
}