mariadb/storage/innobase/lock/lock0lock.cc
Marko Mäkelä bfffe571ac Fix some GCC 7 warnings for InnoDB
buf_page_io_complete(): Do not test bpage for NULL, because
it is declared (and always passed) as nonnull.

buf_flush_batch(): Remove the constant local variable count=0.

fil_ibd_load(): Use magic comment to suppress -Wimplicit-fallthrough.

ut_stage_alter_t::inc(ulint): Disable references to an unused parameter.

lock_queue_validate(), sync_array_find_thread(), rbt_check_ordering():
Define only in debug builds.
2017-08-10 14:00:51 +03:00

8580 lines
227 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2014, 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file lock/lock0lock.cc
The transaction lock system
Created 5/7/1996 Heikki Tuuri
*******************************************************/
#define LOCK_MODULE_IMPLEMENTATION
#include "ha_prototypes.h"
#include <mysql/service_thd_error_context.h>
#include <sql_class.h>
#include "lock0lock.h"
#include "lock0priv.h"
#include "dict0mem.h"
#include "usr0sess.h"
#include "trx0purge.h"
#include "trx0sys.h"
#include "srv0mon.h"
#include "ut0vec.h"
#include "btr0btr.h"
#include "dict0boot.h"
#include "ut0new.h"
#include "row0sel.h"
#include "row0mysql.h"
#include "pars0pars.h"
#include <set>
#ifdef WITH_WSREP
#include <mysql/service_wsrep.h>
#endif /* WITH_WSREP */
/** Lock scheduling algorithm */
ulong innodb_lock_schedule_algorithm = INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS;
/** The value of innodb_deadlock_detect */
my_bool innobase_deadlock_detect;
/** Total number of cached record locks */
static const ulint REC_LOCK_CACHE = 8;
/** Maximum record lock size in bytes */
static const ulint REC_LOCK_SIZE = sizeof(ib_lock_t) + 256;
/** Total number of cached table locks */
static const ulint TABLE_LOCK_CACHE = 8;
/** Size in bytes, of the table lock instance */
static const ulint TABLE_LOCK_SIZE = sizeof(ib_lock_t);
/*********************************************************************//**
Checks if a waiting record lock request still has to wait in a queue.
@return lock that is causing the wait */
static
const lock_t*
lock_rec_has_to_wait_in_queue(
/*==========================*/
const lock_t* wait_lock); /*!< in: waiting record lock */
/*************************************************************//**
Grants a lock to a waiting lock request and releases the waiting transaction.
The caller must hold lock_sys->mutex. */
static
void
lock_grant(
/*=======*/
lock_t* lock, /*!< in/out: waiting lock request */
bool owns_trx_mutex); /*!< in: whether lock->trx->mutex is owned */
extern "C" void thd_rpl_deadlock_check(MYSQL_THD thd, MYSQL_THD other_thd);
extern "C" int thd_need_wait_reports(const MYSQL_THD thd);
extern "C" int thd_need_ordering_with(const MYSQL_THD thd, const MYSQL_THD other_thd);
extern "C" int thd_deadlock_victim_preference(const MYSQL_THD thd1, const MYSQL_THD thd2);
/** Print info of a table lock.
@param[in,out] file output stream
@param[in] lock table lock */
static
void
lock_table_print(FILE* file, const lock_t* lock);
/** Print info of a record lock.
@param[in,out] file output stream
@param[in] lock record lock */
static
void
lock_rec_print(FILE* file, const lock_t* lock);
/** Deadlock checker. */
class DeadlockChecker {
public:
/** Checks if a joining lock request results in a deadlock. If
a deadlock is found this function will resolve the deadlock
by choosing a victim transaction and rolling it back. It
will attempt to resolve all deadlocks. The returned transaction
id will be the joining transaction id or 0 if some other
transaction was chosen as a victim and rolled back or no
deadlock found.
@param lock lock the transaction is requesting
@param trx transaction requesting the lock
@return id of transaction chosen as victim or 0 */
static const trx_t* check_and_resolve(
const lock_t* lock,
trx_t* trx);
private:
/** Do a shallow copy. Default destructor OK.
@param trx the start transaction (start node)
@param wait_lock lock that a transaction wants
@param mark_start visited node counter */
DeadlockChecker(
const trx_t* trx,
const lock_t* wait_lock,
ib_uint64_t mark_start,
bool report_waiters)
:
m_cost(),
m_start(trx),
m_too_deep(),
m_wait_lock(wait_lock),
m_mark_start(mark_start),
m_n_elems(),
m_report_waiters(report_waiters)
{
}
/** Check if the search is too deep. */
bool is_too_deep() const
{
return(m_n_elems > LOCK_MAX_DEPTH_IN_DEADLOCK_CHECK
|| m_cost > LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK);
}
/** Save current state.
@param lock lock to push on the stack.
@param heap_no the heap number to push on the stack.
@return false if stack is full. */
bool push(const lock_t* lock, ulint heap_no)
{
ut_ad((lock_get_type_low(lock) & LOCK_REC)
|| (lock_get_type_low(lock) & LOCK_TABLE));
ut_ad(((lock_get_type_low(lock) & LOCK_TABLE) != 0)
== (heap_no == ULINT_UNDEFINED));
/* Ensure that the stack is bounded. */
if (m_n_elems >= UT_ARR_SIZE(s_states)) {
return(false);
}
state_t& state = s_states[m_n_elems++];
state.m_lock = lock;
state.m_wait_lock = m_wait_lock;
state.m_heap_no =heap_no;
return(true);
}
/** Restore state.
@param[out] lock current lock
@param[out] heap_no current heap_no */
void pop(const lock_t*& lock, ulint& heap_no)
{
ut_a(m_n_elems > 0);
const state_t& state = s_states[--m_n_elems];
lock = state.m_lock;
heap_no = state.m_heap_no;
m_wait_lock = state.m_wait_lock;
}
/** Check whether the node has been visited.
@param lock lock to check
@return true if the node has been visited */
bool is_visited(const lock_t* lock) const
{
return(lock->trx->lock.deadlock_mark > m_mark_start);
}
/** Get the next lock in the queue that is owned by a transaction
whose sub-tree has not already been searched.
Note: "next" here means PREV for table locks.
@param lock Lock in queue
@param heap_no heap_no if lock is a record lock else ULINT_UNDEFINED
@return next lock or NULL if at end of queue */
const lock_t* get_next_lock(const lock_t* lock, ulint heap_no) const;
/** Get the first lock to search. The search starts from the current
wait_lock. What we are really interested in is an edge from the
current wait_lock's owning transaction to another transaction that has
a lock ahead in the queue. We skip locks where the owning transaction's
sub-tree has already been searched.
Note: The record locks are traversed from the oldest lock to the
latest. For table locks we go from latest to oldest.
For record locks, we first position the iterator on first lock on
the page and then reposition on the actual heap_no. This is required
due to the way the record lock has is implemented.
@param[out] heap_no if rec lock, else ULINT_UNDEFINED.
@return first lock or NULL */
const lock_t* get_first_lock(ulint* heap_no) const;
/** Notify that a deadlock has been detected and print the conflicting
transaction info.
@param lock lock causing deadlock */
void notify(const lock_t* lock) const;
/** Select the victim transaction that should be rolledback.
@return victim transaction */
const trx_t* select_victim() const;
/** Rollback transaction selected as the victim. */
void trx_rollback();
/** Looks iteratively for a deadlock. Note: the joining transaction
may have been granted its lock by the deadlock checks.
@return 0 if no deadlock else the victim transaction.*/
const trx_t* search();
/** Print transaction data to the deadlock file and possibly to stderr.
@param trx transaction
@param max_query_len max query length to print */
static void print(const trx_t* trx, ulint max_query_len);
/** rewind(3) the file used for storing the latest detected deadlock
and print a heading message to stderr if printing of all deadlocks to
stderr is enabled. */
static void start_print();
/** Print lock data to the deadlock file and possibly to stderr.
@param lock record or table type lock */
static void print(const lock_t* lock);
/** Print a message to the deadlock file and possibly to stderr.
@param msg message to print */
static void print(const char* msg);
/** Print info about transaction that was rolled back.
@param trx transaction rolled back
@param lock lock trx wants */
static void rollback_print(const trx_t* trx, const lock_t* lock);
private:
/** DFS state information, used during deadlock checking. */
struct state_t {
const lock_t* m_lock; /*!< Current lock */
const lock_t* m_wait_lock; /*!< Waiting for lock */
ulint m_heap_no; /*!< heap number if rec lock */
};
/** Used in deadlock tracking. Protected by lock_sys->mutex. */
static ib_uint64_t s_lock_mark_counter;
/** Calculation steps thus far. It is the count of the nodes visited. */
ulint m_cost;
/** Joining transaction that is requesting a lock in an
incompatible mode */
const trx_t* m_start;
/** TRUE if search was too deep and was aborted */
bool m_too_deep;
/** Lock that trx wants */
const lock_t* m_wait_lock;
/** Value of lock_mark_count at the start of the deadlock check. */
ib_uint64_t m_mark_start;
/** Number of states pushed onto the stack */
size_t m_n_elems;
/** This is to avoid malloc/free calls. */
static state_t s_states[MAX_STACK_SIZE];
/** Set if thd_rpl_deadlock_check() should be called for waits. */
bool m_report_waiters;
};
/** Counter to mark visited nodes during deadlock search. */
ib_uint64_t DeadlockChecker::s_lock_mark_counter = 0;
/** The stack used for deadlock searches. */
DeadlockChecker::state_t DeadlockChecker::s_states[MAX_STACK_SIZE];
#ifdef UNIV_DEBUG
/*********************************************************************//**
Validates the lock system.
@return TRUE if ok */
static
bool
lock_validate();
/*============*/
/*********************************************************************//**
Validates the record lock queues on a page.
@return TRUE if ok */
static
ibool
lock_rec_validate_page(
/*===================*/
const buf_block_t* block) /*!< in: buffer block */
MY_ATTRIBUTE((warn_unused_result));
#endif /* UNIV_DEBUG */
/* The lock system */
lock_sys_t* lock_sys = NULL;
/** We store info on the latest deadlock error to this buffer. InnoDB
Monitor will then fetch it and print */
static bool lock_deadlock_found = false;
/** Only created if !srv_read_only_mode */
static FILE* lock_latest_err_file;
/*********************************************************************//**
Reports that a transaction id is insensible, i.e., in the future. */
void
lock_report_trx_id_insanity(
/*========================*/
trx_id_t trx_id, /*!< in: trx id */
const rec_t* rec, /*!< in: user record */
dict_index_t* index, /*!< in: index */
const ulint* offsets, /*!< in: rec_get_offsets(rec, index) */
trx_id_t max_trx_id) /*!< in: trx_sys_get_max_trx_id() */
{
ib::error()
<< "Transaction id " << trx_id
<< " associated with record" << rec_offsets_print(rec, offsets)
<< " in index " << index->name
<< " of table " << index->table->name
<< " is greater than the global counter " << max_trx_id
<< "! The table is corrupted.";
}
/*********************************************************************//**
Checks that a transaction id is sensible, i.e., not in the future.
@return true if ok */
#ifdef UNIV_DEBUG
#else
static MY_ATTRIBUTE((warn_unused_result))
#endif
bool
lock_check_trx_id_sanity(
/*=====================*/
trx_id_t trx_id, /*!< in: trx id */
const rec_t* rec, /*!< in: user record */
dict_index_t* index, /*!< in: index */
const ulint* offsets) /*!< in: rec_get_offsets(rec, index) */
{
ut_ad(rec_offs_validate(rec, index, offsets));
trx_id_t max_trx_id = trx_sys_get_max_trx_id();
bool is_ok = trx_id < max_trx_id;
if (!is_ok) {
lock_report_trx_id_insanity(
trx_id, rec, index, offsets, max_trx_id);
}
return(is_ok);
}
/*********************************************************************//**
Checks that a record is seen in a consistent read.
@return true if sees, or false if an earlier version of the record
should be retrieved */
bool
lock_clust_rec_cons_read_sees(
/*==========================*/
const rec_t* rec, /*!< in: user record which should be read or
passed over by a read cursor */
dict_index_t* index, /*!< in: clustered index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
ReadView* view) /*!< in: consistent read view */
{
ut_ad(dict_index_is_clust(index));
ut_ad(page_rec_is_user_rec(rec));
ut_ad(rec_offs_validate(rec, index, offsets));
/* Temp-tables are not shared across connections and multiple
transactions from different connections cannot simultaneously
operate on same temp-table and so read of temp-table is
always consistent read. */
if (srv_read_only_mode || dict_table_is_temporary(index->table)) {
ut_ad(view == 0 || dict_table_is_temporary(index->table));
return(true);
}
/* NOTE that we call this function while holding the search
system latch. */
trx_id_t trx_id = row_get_rec_trx_id(rec, index, offsets);
return(view->changes_visible(trx_id, index->table->name));
}
/*********************************************************************//**
Checks that a non-clustered index record is seen in a consistent read.
NOTE that a non-clustered index page contains so little information on
its modifications that also in the case false, the present version of
rec may be the right, but we must check this from the clustered index
record.
@return true if certainly sees, or false if an earlier version of the
clustered index record might be needed */
bool
lock_sec_rec_cons_read_sees(
/*========================*/
const rec_t* rec, /*!< in: user record which
should be read or passed over
by a read cursor */
const dict_index_t* index, /*!< in: index */
const ReadView* view) /*!< in: consistent read view */
{
ut_ad(page_rec_is_user_rec(rec));
/* NOTE that we might call this function while holding the search
system latch. */
if (recv_recovery_is_on()) {
return(false);
} else if (dict_table_is_temporary(index->table)) {
/* Temp-tables are not shared across connections and multiple
transactions from different connections cannot simultaneously
operate on same temp-table and so read of temp-table is
always consistent read. */
return(true);
}
trx_id_t max_trx_id = page_get_max_trx_id(page_align(rec));
ut_ad(max_trx_id > 0);
return(view->sees(max_trx_id));
}
/*********************************************************************//**
Creates the lock system at database start. */
void
lock_sys_create(
/*============*/
ulint n_cells) /*!< in: number of slots in lock hash table */
{
ulint lock_sys_sz;
lock_sys_sz = sizeof(*lock_sys) + OS_THREAD_MAX_N * sizeof(srv_slot_t);
lock_sys = static_cast<lock_sys_t*>(ut_zalloc_nokey(lock_sys_sz));
void* ptr = &lock_sys[1];
lock_sys->waiting_threads = static_cast<srv_slot_t*>(ptr);
lock_sys->last_slot = lock_sys->waiting_threads;
mutex_create(LATCH_ID_LOCK_SYS, &lock_sys->mutex);
mutex_create(LATCH_ID_LOCK_SYS_WAIT, &lock_sys->wait_mutex);
lock_sys->timeout_event = os_event_create(0);
lock_sys->rec_hash = hash_create(n_cells);
lock_sys->prdt_hash = hash_create(n_cells);
lock_sys->prdt_page_hash = hash_create(n_cells);
if (!srv_read_only_mode) {
lock_latest_err_file = os_file_create_tmpfile(NULL);
ut_a(lock_latest_err_file);
}
}
/** Calculates the fold value of a lock: used in migrating the hash table.
@param[in] lock record lock object
@return folded value */
static
ulint
lock_rec_lock_fold(
const lock_t* lock)
{
return(lock_rec_fold(lock->un_member.rec_lock.space,
lock->un_member.rec_lock.page_no));
}
/** Resize the lock hash tables.
@param[in] n_cells number of slots in lock hash table */
void
lock_sys_resize(
ulint n_cells)
{
hash_table_t* old_hash;
lock_mutex_enter();
old_hash = lock_sys->rec_hash;
lock_sys->rec_hash = hash_create(n_cells);
HASH_MIGRATE(old_hash, lock_sys->rec_hash, lock_t, hash,
lock_rec_lock_fold);
hash_table_free(old_hash);
old_hash = lock_sys->prdt_hash;
lock_sys->prdt_hash = hash_create(n_cells);
HASH_MIGRATE(old_hash, lock_sys->prdt_hash, lock_t, hash,
lock_rec_lock_fold);
hash_table_free(old_hash);
old_hash = lock_sys->prdt_page_hash;
lock_sys->prdt_page_hash = hash_create(n_cells);
HASH_MIGRATE(old_hash, lock_sys->prdt_page_hash, lock_t, hash,
lock_rec_lock_fold);
hash_table_free(old_hash);
/* need to update block->lock_hash_val */
for (ulint i = 0; i < srv_buf_pool_instances; ++i) {
buf_pool_t* buf_pool = buf_pool_from_array(i);
buf_pool_mutex_enter(buf_pool);
buf_page_t* bpage;
bpage = UT_LIST_GET_FIRST(buf_pool->LRU);
while (bpage != NULL) {
if (buf_page_get_state(bpage)
== BUF_BLOCK_FILE_PAGE) {
buf_block_t* block;
block = reinterpret_cast<buf_block_t*>(
bpage);
block->lock_hash_val
= lock_rec_hash(
bpage->id.space(),
bpage->id.page_no());
}
bpage = UT_LIST_GET_NEXT(LRU, bpage);
}
buf_pool_mutex_exit(buf_pool);
}
lock_mutex_exit();
}
/*********************************************************************//**
Closes the lock system at database shutdown. */
void
lock_sys_close(void)
/*================*/
{
if (lock_latest_err_file != NULL) {
fclose(lock_latest_err_file);
lock_latest_err_file = NULL;
}
hash_table_free(lock_sys->rec_hash);
hash_table_free(lock_sys->prdt_hash);
hash_table_free(lock_sys->prdt_page_hash);
os_event_destroy(lock_sys->timeout_event);
mutex_destroy(&lock_sys->mutex);
mutex_destroy(&lock_sys->wait_mutex);
srv_slot_t* slot = lock_sys->waiting_threads;
for (ulint i = 0; i < OS_THREAD_MAX_N; i++, ++slot) {
if (slot->event != NULL) {
os_event_destroy(slot->event);
}
}
ut_free(lock_sys);
lock_sys = NULL;
}
/*********************************************************************//**
Gets the size of a lock struct.
@return size in bytes */
ulint
lock_get_size(void)
/*===============*/
{
return((ulint) sizeof(lock_t));
}
/*********************************************************************//**
Gets the source table of an ALTER TABLE transaction. The table must be
covered by an IX or IS table lock.
@return the source table of transaction, if it is covered by an IX or
IS table lock; dest if there is no source table, and NULL if the
transaction is locking more than two tables or an inconsistency is
found */
dict_table_t*
lock_get_src_table(
/*===============*/
trx_t* trx, /*!< in: transaction */
dict_table_t* dest, /*!< in: destination of ALTER TABLE */
lock_mode* mode) /*!< out: lock mode of the source table */
{
dict_table_t* src;
lock_t* lock;
ut_ad(!lock_mutex_own());
src = NULL;
*mode = LOCK_NONE;
/* The trx mutex protects the trx_locks for our purposes.
Other transactions could want to convert one of our implicit
record locks to an explicit one. For that, they would need our
trx mutex. Waiting locks can be removed while only holding
lock_sys->mutex, but this is a running transaction and cannot
thus be holding any waiting locks. */
trx_mutex_enter(trx);
for (lock = UT_LIST_GET_FIRST(trx->lock.trx_locks);
lock != NULL;
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
lock_table_t* tab_lock;
lock_mode lock_mode;
if (!(lock_get_type_low(lock) & LOCK_TABLE)) {
/* We are only interested in table locks. */
continue;
}
tab_lock = &lock->un_member.tab_lock;
if (dest == tab_lock->table) {
/* We are not interested in the destination table. */
continue;
} else if (!src) {
/* This presumably is the source table. */
src = tab_lock->table;
if (UT_LIST_GET_LEN(src->locks) != 1
|| UT_LIST_GET_FIRST(src->locks) != lock) {
/* We only support the case when
there is only one lock on this table. */
src = NULL;
goto func_exit;
}
} else if (src != tab_lock->table) {
/* The transaction is locking more than
two tables (src and dest): abort */
src = NULL;
goto func_exit;
}
/* Check that the source table is locked by
LOCK_IX or LOCK_IS. */
lock_mode = lock_get_mode(lock);
if (lock_mode == LOCK_IX || lock_mode == LOCK_IS) {
if (*mode != LOCK_NONE && *mode != lock_mode) {
/* There are multiple locks on src. */
src = NULL;
goto func_exit;
}
*mode = lock_mode;
}
}
if (!src) {
/* No source table lock found: flag the situation to caller */
src = dest;
}
func_exit:
trx_mutex_exit(trx);
return(src);
}
/*********************************************************************//**
Determine if the given table is exclusively "owned" by the given
transaction, i.e., transaction holds LOCK_IX and possibly LOCK_AUTO_INC
on the table.
@return TRUE if table is only locked by trx, with LOCK_IX, and
possibly LOCK_AUTO_INC */
ibool
lock_is_table_exclusive(
/*====================*/
const dict_table_t* table, /*!< in: table */
const trx_t* trx) /*!< in: transaction */
{
const lock_t* lock;
ibool ok = FALSE;
ut_ad(table);
ut_ad(trx);
lock_mutex_enter();
for (lock = UT_LIST_GET_FIRST(table->locks);
lock != NULL;
lock = UT_LIST_GET_NEXT(locks, &lock->un_member.tab_lock)) {
if (lock->trx != trx) {
/* A lock on the table is held
by some other transaction. */
goto not_ok;
}
if (!(lock_get_type_low(lock) & LOCK_TABLE)) {
/* We are interested in table locks only. */
continue;
}
switch (lock_get_mode(lock)) {
case LOCK_IX:
ok = TRUE;
break;
case LOCK_AUTO_INC:
/* It is allowed for trx to hold an
auto_increment lock. */
break;
default:
not_ok:
/* Other table locks than LOCK_IX are not allowed. */
ok = FALSE;
goto func_exit;
}
}
func_exit:
lock_mutex_exit();
return(ok);
}
/*********************************************************************//**
Sets the wait flag of a lock and the back pointer in trx to lock. */
UNIV_INLINE
void
lock_set_lock_and_trx_wait(
/*=======================*/
lock_t* lock, /*!< in: lock */
trx_t* trx) /*!< in/out: trx */
{
ut_ad(lock);
ut_ad(lock->trx == trx);
ut_ad(trx->lock.wait_lock == NULL);
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(trx));
trx->lock.wait_lock = lock;
lock->type_mode |= LOCK_WAIT;
}
/**********************************************************************//**
The back pointer to a waiting lock request in the transaction is set to NULL
and the wait bit in lock type_mode is reset. */
UNIV_INLINE
void
lock_reset_lock_and_trx_wait(
/*=========================*/
lock_t* lock) /*!< in/out: record lock */
{
ut_ad(lock_get_wait(lock));
ut_ad(lock_mutex_own());
if (lock->trx->lock.wait_lock &&
lock->trx->lock.wait_lock != lock) {
const char* stmt=NULL;
const char* stmt2=NULL;
size_t stmt_len;
trx_id_t trx_id = 0;
stmt = lock->trx->mysql_thd
? innobase_get_stmt_unsafe(
lock->trx->mysql_thd, &stmt_len)
: NULL;
if (lock->trx->lock.wait_lock &&
lock->trx->lock.wait_lock->trx) {
trx_id = lock->trx->lock.wait_lock->trx->id;
stmt2 = lock->trx->lock.wait_lock->trx->mysql_thd
? innobase_get_stmt_unsafe(
lock->trx->lock.wait_lock
->trx->mysql_thd, &stmt_len)
: NULL;
}
ib::error() <<
"Trx id " << lock->trx->id
<< " is waiting a lock in statement "
<< (stmt ? stmt : "NULL")
<< " for this trx id " << trx_id
<< " and statement "
<< (stmt2 ? stmt2 : "NULL")
<< "wait_lock " << lock->trx->lock.wait_lock;
ut_ad(0);
}
lock->trx->lock.wait_lock = NULL;
lock->type_mode &= ~LOCK_WAIT;
}
/*********************************************************************//**
Gets the gap flag of a record lock.
@return LOCK_GAP or 0 */
UNIV_INLINE
ulint
lock_rec_get_gap(
/*=============*/
const lock_t* lock) /*!< in: record lock */
{
ut_ad(lock);
ut_ad(lock_get_type_low(lock) == LOCK_REC);
return(lock->type_mode & LOCK_GAP);
}
/*********************************************************************//**
Gets the LOCK_REC_NOT_GAP flag of a record lock.
@return LOCK_REC_NOT_GAP or 0 */
UNIV_INLINE
ulint
lock_rec_get_rec_not_gap(
/*=====================*/
const lock_t* lock) /*!< in: record lock */
{
ut_ad(lock);
ut_ad(lock_get_type_low(lock) == LOCK_REC);
return(lock->type_mode & LOCK_REC_NOT_GAP);
}
/*********************************************************************//**
Gets the waiting insert flag of a record lock.
@return LOCK_INSERT_INTENTION or 0 */
UNIV_INLINE
ulint
lock_rec_get_insert_intention(
/*==========================*/
const lock_t* lock) /*!< in: record lock */
{
ut_ad(lock);
ut_ad(lock_get_type_low(lock) == LOCK_REC);
return(lock->type_mode & LOCK_INSERT_INTENTION);
}
/*********************************************************************//**
Checks if a lock request for a new lock has to wait for request lock2.
@return TRUE if new lock has to wait for lock2 to be removed */
UNIV_INLINE
ibool
lock_rec_has_to_wait(
/*=================*/
bool for_locking,
/*!< in is called locking or releasing */
const trx_t* trx, /*!< in: trx of new lock */
ulint type_mode,/*!< in: precise mode of the new lock
to set: LOCK_S or LOCK_X, possibly
ORed to LOCK_GAP or LOCK_REC_NOT_GAP,
LOCK_INSERT_INTENTION */
const lock_t* lock2, /*!< in: another record lock; NOTE that
it is assumed that this has a lock bit
set on the same record as in the new
lock we are setting */
bool lock_is_on_supremum)
/*!< in: TRUE if we are setting the
lock on the 'supremum' record of an
index page: we know then that the lock
request is really for a 'gap' type lock */
{
ut_ad(trx && lock2);
ut_ad(lock_get_type_low(lock2) == LOCK_REC);
if (trx != lock2->trx
&& !lock_mode_compatible(static_cast<lock_mode>(
LOCK_MODE_MASK & type_mode),
lock_get_mode(lock2))) {
/* We have somewhat complex rules when gap type record locks
cause waits */
if ((lock_is_on_supremum || (type_mode & LOCK_GAP))
&& !(type_mode & LOCK_INSERT_INTENTION)) {
/* Gap type locks without LOCK_INSERT_INTENTION flag
do not need to wait for anything. This is because
different users can have conflicting lock types
on gaps. */
return(FALSE);
}
if (!(type_mode & LOCK_INSERT_INTENTION)
&& lock_rec_get_gap(lock2)) {
/* Record lock (LOCK_ORDINARY or LOCK_REC_NOT_GAP
does not need to wait for a gap type lock */
return(FALSE);
}
if ((type_mode & LOCK_GAP)
&& lock_rec_get_rec_not_gap(lock2)) {
/* Lock on gap does not need to wait for
a LOCK_REC_NOT_GAP type lock */
return(FALSE);
}
if (lock_rec_get_insert_intention(lock2)) {
/* No lock request needs to wait for an insert
intention lock to be removed. This is ok since our
rules allow conflicting locks on gaps. This eliminates
a spurious deadlock caused by a next-key lock waiting
for an insert intention lock; when the insert
intention lock was granted, the insert deadlocked on
the waiting next-key lock.
Also, insert intention locks do not disturb each
other. */
return(FALSE);
}
if ((type_mode & LOCK_GAP || lock_rec_get_gap(lock2)) &&
!thd_need_ordering_with(trx->mysql_thd,
lock2->trx->mysql_thd)) {
/* If the upper server layer has already decided on the
commit order between the transaction requesting the
lock and the transaction owning the lock, we do not
need to wait for gap locks. Such ordeering by the upper
server layer happens in parallel replication, where the
commit order is fixed to match the original order on the
master.
Such gap locks are mainly needed to get serialisability
between transactions so that they will be binlogged in
the correct order so that statement-based replication
will give the correct results. Since the right order
was already determined on the master, we do not need
to enforce it again here.
Skipping the locks is not essential for correctness,
since in case of deadlock we will just kill the later
transaction and retry it. But it can save some
unnecessary rollbacks and retries. */
return (FALSE);
}
#ifdef WITH_WSREP
/* if BF thread is locking and has conflict with another BF
thread, we need to look at trx ordering and lock types */
if (wsrep_thd_is_BF(trx->mysql_thd, FALSE) &&
wsrep_thd_is_BF(lock2->trx->mysql_thd, TRUE)) {
if (wsrep_debug) {
ib::info() <<
"BF-BF lock conflict, locking: " << for_locking;
lock_rec_print(stderr, lock2);
ib::info() << " SQL1: "
<< wsrep_thd_query(trx->mysql_thd);
ib::info() << " SQL2: "
<< wsrep_thd_query(lock2->trx->mysql_thd);
}
if (wsrep_trx_order_before(trx->mysql_thd,
lock2->trx->mysql_thd) &&
(type_mode & LOCK_MODE_MASK) == LOCK_X &&
(lock2->type_mode & LOCK_MODE_MASK) == LOCK_X) {
if (for_locking || wsrep_debug) {
/* exclusive lock conflicts are not
accepted */
ib::info() <<
"BF-BF X lock conflict,"
"mode: " << type_mode <<
" supremum: " << lock_is_on_supremum;
ib::info() <<
"conflicts states: my "
<< wsrep_thd_conflict_state(trx->mysql_thd, FALSE)
<< " locked "
<< wsrep_thd_conflict_state(lock2->trx->mysql_thd, FALSE);
lock_rec_print(stderr, lock2);
ib::info() << " SQL1: "
<< wsrep_thd_query(trx->mysql_thd);
ib::info() << " SQL2: "
<< wsrep_thd_query(lock2->trx->mysql_thd);
if (for_locking) {
return FALSE;
}
}
} else {
/* if lock2->index->n_uniq <=
lock2->index->n_user_defined_cols
operation is on uniq index
*/
if (wsrep_debug) {
ib::info() <<
"BF conflict, modes: "
<< type_mode << ":" << lock2->type_mode
<< " idx: " << lock2->index->name()
<< " table: " << lock2->index->table->name.m_name
<< " n_uniq: " << lock2->index->n_uniq
<< " n_user: " << lock2->index->n_user_defined_cols;
ib::info() << " SQL1: "
<< wsrep_thd_query(trx->mysql_thd);
ib::info() << " SQL2: "
<< wsrep_thd_query(lock2->trx->mysql_thd);
}
return FALSE;
}
}
#endif /* WITH_WSREP */
return(TRUE);
}
return(FALSE);
}
/*********************************************************************//**
Checks if a lock request lock1 has to wait for request lock2.
@return TRUE if lock1 has to wait for lock2 to be removed */
ibool
lock_has_to_wait(
/*=============*/
const lock_t* lock1, /*!< in: waiting lock */
const lock_t* lock2) /*!< in: another lock; NOTE that it is
assumed that this has a lock bit set
on the same record as in lock1 if the
locks are record locks */
{
ut_ad(lock1 && lock2);
if (lock1->trx != lock2->trx
&& !lock_mode_compatible(lock_get_mode(lock1),
lock_get_mode(lock2))) {
if (lock_get_type_low(lock1) == LOCK_REC) {
ut_ad(lock_get_type_low(lock2) == LOCK_REC);
/* If this lock request is for a supremum record
then the second bit on the lock bitmap is set */
if (lock1->type_mode
& (LOCK_PREDICATE | LOCK_PRDT_PAGE)) {
return(lock_prdt_has_to_wait(
lock1->trx, lock1->type_mode,
lock_get_prdt_from_lock(lock1),
lock2));
} else {
return(lock_rec_has_to_wait(false,
lock1->trx, lock1->type_mode, lock2,
lock_rec_get_nth_bit(lock1, true)));
}
}
return(TRUE);
}
return(FALSE);
}
/*============== RECORD LOCK BASIC FUNCTIONS ============================*/
/**********************************************************************//**
Looks for a set bit in a record lock bitmap. Returns ULINT_UNDEFINED,
if none found.
@return bit index == heap number of the record, or ULINT_UNDEFINED if
none found */
ulint
lock_rec_find_set_bit(
/*==================*/
const lock_t* lock) /*!< in: record lock with at least one bit set */
{
for (ulint i = 0; i < lock_rec_get_n_bits(lock); ++i) {
if (lock_rec_get_nth_bit(lock, i)) {
return(i);
}
}
return(ULINT_UNDEFINED);
}
/** Reset the nth bit of a record lock.
@param[in,out] lock record lock
@param[in] i index of the bit that will be reset
@return previous value of the bit */
UNIV_INLINE
byte
lock_rec_reset_nth_bit(
lock_t* lock,
ulint i)
{
ut_ad(lock_get_type_low(lock) == LOCK_REC);
ut_ad(i < lock->un_member.rec_lock.n_bits);
byte* b = reinterpret_cast<byte*>(&lock[1]) + (i >> 3);
byte mask = static_cast<byte>(1U << (i & 7));
byte bit = *b & mask;
*b &= ~mask;
if (bit != 0) {
ut_ad(lock->trx->lock.n_rec_locks > 0);
--lock->trx->lock.n_rec_locks;
}
return(bit);
}
/** Reset the nth bit of a record lock.
@param[in,out] lock record lock
@param[in] i index of the bit that will be reset
@param[in] type whether the lock is in wait mode */
void
lock_rec_trx_wait(
lock_t* lock,
ulint i,
ulint type)
{
lock_rec_reset_nth_bit(lock, i);
if (type & LOCK_WAIT) {
lock_reset_lock_and_trx_wait(lock);
}
}
/*********************************************************************//**
Determines if there are explicit record locks on a page.
@return an explicit record lock on the page, or NULL if there are none */
lock_t*
lock_rec_expl_exist_on_page(
/*========================*/
ulint space, /*!< in: space id */
ulint page_no)/*!< in: page number */
{
lock_t* lock;
lock_mutex_enter();
/* Only used in ibuf pages, so rec_hash is good enough */
lock = lock_rec_get_first_on_page_addr(lock_sys->rec_hash,
space, page_no);
lock_mutex_exit();
return(lock);
}
/*********************************************************************//**
Resets the record lock bitmap to zero. NOTE: does not touch the wait_lock
pointer in the transaction! This function is used in lock object creation
and resetting. */
static
void
lock_rec_bitmap_reset(
/*==================*/
lock_t* lock) /*!< in: record lock */
{
ulint n_bytes;
ut_ad(lock_get_type_low(lock) == LOCK_REC);
/* Reset to zero the bitmap which resides immediately after the lock
struct */
n_bytes = lock_rec_get_n_bits(lock) / 8;
ut_ad((lock_rec_get_n_bits(lock) % 8) == 0);
memset(&lock[1], 0, n_bytes);
}
/*********************************************************************//**
Copies a record lock to heap.
@return copy of lock */
static
lock_t*
lock_rec_copy(
/*==========*/
const lock_t* lock, /*!< in: record lock */
mem_heap_t* heap) /*!< in: memory heap */
{
ulint size;
ut_ad(lock_get_type_low(lock) == LOCK_REC);
size = sizeof(lock_t) + lock_rec_get_n_bits(lock) / 8;
return(static_cast<lock_t*>(mem_heap_dup(heap, lock, size)));
}
/*********************************************************************//**
Gets the previous record lock set on a record.
@return previous lock on the same record, NULL if none exists */
const lock_t*
lock_rec_get_prev(
/*==============*/
const lock_t* in_lock,/*!< in: record lock */
ulint heap_no)/*!< in: heap number of the record */
{
lock_t* lock;
ulint space;
ulint page_no;
lock_t* found_lock = NULL;
hash_table_t* hash;
ut_ad(lock_mutex_own());
ut_ad(lock_get_type_low(in_lock) == LOCK_REC);
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
hash = lock_hash_get(in_lock->type_mode);
for (lock = lock_rec_get_first_on_page_addr(hash, space, page_no);
/* No op */;
lock = lock_rec_get_next_on_page(lock)) {
ut_ad(lock);
if (lock == in_lock) {
return(found_lock);
}
if (lock_rec_get_nth_bit(lock, heap_no)) {
found_lock = lock;
}
}
}
/*============= FUNCTIONS FOR ANALYZING RECORD LOCK QUEUE ================*/
/*********************************************************************//**
Checks if a transaction has a GRANTED explicit lock on rec stronger or equal
to precise_mode.
@return lock or NULL */
UNIV_INLINE
lock_t*
lock_rec_has_expl(
/*==============*/
ulint precise_mode,/*!< in: LOCK_S or LOCK_X
possibly ORed to LOCK_GAP or
LOCK_REC_NOT_GAP, for a
supremum record we regard this
always a gap type request */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no,/*!< in: heap number of the record */
const trx_t* trx) /*!< in: transaction */
{
lock_t* lock;
ut_ad(lock_mutex_own());
ut_ad((precise_mode & LOCK_MODE_MASK) == LOCK_S
|| (precise_mode & LOCK_MODE_MASK) == LOCK_X);
ut_ad(!(precise_mode & LOCK_INSERT_INTENTION));
for (lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) {
if (lock->trx == trx
&& !lock_rec_get_insert_intention(lock)
&& lock_mode_stronger_or_eq(
lock_get_mode(lock),
static_cast<lock_mode>(
precise_mode & LOCK_MODE_MASK))
&& !lock_get_wait(lock)
&& (!lock_rec_get_rec_not_gap(lock)
|| (precise_mode & LOCK_REC_NOT_GAP)
|| heap_no == PAGE_HEAP_NO_SUPREMUM)
&& (!lock_rec_get_gap(lock)
|| (precise_mode & LOCK_GAP)
|| heap_no == PAGE_HEAP_NO_SUPREMUM)) {
return(lock);
}
}
return(NULL);
}
#ifdef UNIV_DEBUG
/*********************************************************************//**
Checks if some other transaction has a lock request in the queue.
@return lock or NULL */
static
const lock_t*
lock_rec_other_has_expl_req(
/*========================*/
lock_mode mode, /*!< in: LOCK_S or LOCK_X */
const buf_block_t* block, /*!< in: buffer block containing
the record */
bool wait, /*!< in: whether also waiting locks
are taken into account */
ulint heap_no,/*!< in: heap number of the record */
const trx_t* trx) /*!< in: transaction, or NULL if
requests by all transactions
are taken into account */
{
ut_ad(lock_mutex_own());
ut_ad(mode == LOCK_X || mode == LOCK_S);
/* Only GAP lock can be on SUPREMUM, and we are not looking for
GAP lock */
if (heap_no == PAGE_HEAP_NO_SUPREMUM) {
return(NULL);
}
for (const lock_t* lock = lock_rec_get_first(lock_sys->rec_hash,
block, heap_no);
lock != NULL;
lock = lock_rec_get_next_const(heap_no, lock)) {
if (lock->trx != trx
&& !lock_rec_get_gap(lock)
&& (wait || !lock_get_wait(lock))
&& lock_mode_stronger_or_eq(lock_get_mode(lock), mode)) {
return(lock);
}
}
return(NULL);
}
#endif /* UNIV_DEBUG */
#ifdef WITH_WSREP
static
void
wsrep_kill_victim(
/*==============*/
const trx_t * const trx,
const lock_t *lock)
{
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(lock->trx));
/* quit for native mysql */
if (!wsrep_on(trx->mysql_thd)) {
return;
}
my_bool bf_this = wsrep_thd_is_BF(trx->mysql_thd, FALSE);
my_bool bf_other = wsrep_thd_is_BF(lock->trx->mysql_thd, TRUE);
if ((bf_this && !bf_other) ||
(bf_this && bf_other && wsrep_trx_order_before(
trx->mysql_thd, lock->trx->mysql_thd))) {
if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
if (wsrep_debug) {
ib::info() << "WSREP: BF victim waiting\n";
}
/* cannot release lock, until our lock
is in the queue*/
} else if (lock->trx != trx) {
if (wsrep_log_conflicts) {
if (bf_this) {
ib::info() << "*** Priority TRANSACTION:";
} else {
ib::info() << "*** Victim TRANSACTION:";
}
wsrep_trx_print_locking(stderr, trx, 3000);
if (bf_other) {
ib::info() << "*** Priority TRANSACTION:";
} else {
ib::info() << "*** Victim TRANSACTION:";
}
wsrep_trx_print_locking(stderr, lock->trx, 3000);
ib::info() << "*** WAITING FOR THIS LOCK TO BE GRANTED:";
if (lock_get_type(lock) == LOCK_REC) {
lock_rec_print(stderr, lock);
} else {
lock_table_print(stderr, lock);
}
ib::info() << " SQL1: "
<< wsrep_thd_query(trx->mysql_thd);
ib::info() << " SQL2: "
<< wsrep_thd_query(lock->trx->mysql_thd);
}
lock->trx->abort_type = TRX_WSREP_ABORT;
wsrep_innobase_kill_one_trx(trx->mysql_thd,
(const trx_t*) trx, lock->trx, TRUE);
lock->trx->abort_type = TRX_SERVER_ABORT;
}
}
}
#endif /* WITH_WSREP */
/*********************************************************************//**
Checks if some other transaction has a conflicting explicit lock request
in the queue, so that we have to wait.
@return lock or NULL */
static
const lock_t*
lock_rec_other_has_conflicting(
/*===========================*/
ulint mode, /*!< in: LOCK_S or LOCK_X,
possibly ORed to LOCK_GAP or
LOC_REC_NOT_GAP,
LOCK_INSERT_INTENTION */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no,/*!< in: heap number of the record */
const trx_t* trx) /*!< in: our transaction */
{
const lock_t* lock;
ut_ad(lock_mutex_own());
bool is_supremum = (heap_no == PAGE_HEAP_NO_SUPREMUM);
for (lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
lock != NULL;
lock = lock_rec_get_next_const(heap_no, lock)) {
if (lock_rec_has_to_wait(true, trx, mode, lock, is_supremum)) {
#ifdef WITH_WSREP
if (wsrep_on(trx->mysql_thd)) {
trx_mutex_enter(lock->trx);
wsrep_kill_victim((trx_t *)trx, (lock_t *)lock);
trx_mutex_exit(lock->trx);
}
#endif /* WITH_WSREP */
return(lock);
}
}
return(NULL);
}
/*********************************************************************//**
Checks if some transaction has an implicit x-lock on a record in a secondary
index.
@return transaction id of the transaction which has the x-lock, or 0;
NOTE that this function can return false positives but never false
negatives. The caller must confirm all positive results by calling
trx_is_active(). */
static
trx_t*
lock_sec_rec_some_has_impl(
/*=======================*/
const rec_t* rec, /*!< in: user record */
dict_index_t* index, /*!< in: secondary index */
const ulint* offsets)/*!< in: rec_get_offsets(rec, index) */
{
trx_t* trx;
trx_id_t max_trx_id;
const page_t* page = page_align(rec);
ut_ad(!lock_mutex_own());
ut_ad(!trx_sys_mutex_own());
ut_ad(!dict_index_is_clust(index));
ut_ad(page_rec_is_user_rec(rec));
ut_ad(rec_offs_validate(rec, index, offsets));
max_trx_id = page_get_max_trx_id(page);
/* Some transaction may have an implicit x-lock on the record only
if the max trx id for the page >= min trx id for the trx list, or
database recovery is running. We do not write the changes of a page
max trx id to the log, and therefore during recovery, this value
for a page may be incorrect. */
if (max_trx_id < trx_rw_min_trx_id() && !recv_recovery_is_on()) {
trx = 0;
} else if (!lock_check_trx_id_sanity(max_trx_id, rec, index, offsets)) {
/* The page is corrupt: try to avoid a crash by returning 0 */
trx = 0;
/* In this case it is possible that some transaction has an implicit
x-lock. We have to look in the clustered index. */
} else {
trx = row_vers_impl_x_locked(rec, index, offsets);
}
return(trx);
}
#ifdef UNIV_DEBUG
/*********************************************************************//**
Checks if some transaction, other than given trx_id, has an explicit
lock on the given rec, in the given precise_mode.
@return the transaction, whose id is not equal to trx_id, that has an
explicit lock on the given rec, in the given precise_mode or NULL.*/
static
trx_t*
lock_rec_other_trx_holds_expl(
/*==========================*/
ulint precise_mode, /*!< in: LOCK_S or LOCK_X
possibly ORed to LOCK_GAP or
LOCK_REC_NOT_GAP. */
trx_t* trx, /*!< in: trx holding implicit
lock on rec */
const rec_t* rec, /*!< in: user record */
const buf_block_t* block) /*!< in: buffer block
containing the record */
{
trx_t* holds = NULL;
lock_mutex_enter();
if (trx_t* impl_trx = trx_rw_is_active(trx->id, NULL, false)) {
ulint heap_no = page_rec_get_heap_no(rec);
mutex_enter(&trx_sys->mutex);
for (trx_t* t = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
t != NULL;
t = UT_LIST_GET_NEXT(trx_list, t)) {
lock_t* expl_lock = lock_rec_has_expl(
precise_mode, block, heap_no, t);
if (expl_lock && expl_lock->trx != impl_trx) {
/* An explicit lock is held by trx other than
the trx holding the implicit lock. */
holds = expl_lock->trx;
break;
}
}
mutex_exit(&trx_sys->mutex);
}
lock_mutex_exit();
return(holds);
}
#endif /* UNIV_DEBUG */
/*********************************************************************//**
Return approximate number or record locks (bits set in the bitmap) for
this transaction. Since delete-marked records may be removed, the
record count will not be precise.
The caller must be holding lock_sys->mutex. */
ulint
lock_number_of_rows_locked(
/*=======================*/
const trx_lock_t* trx_lock) /*!< in: transaction locks */
{
ut_ad(lock_mutex_own());
return(trx_lock->n_rec_locks);
}
/*********************************************************************//**
Return the number of table locks for a transaction.
The caller must be holding lock_sys->mutex. */
ulint
lock_number_of_tables_locked(
/*=========================*/
const trx_lock_t* trx_lock) /*!< in: transaction locks */
{
const lock_t* lock;
ulint n_tables = 0;
ut_ad(lock_mutex_own());
for (lock = UT_LIST_GET_FIRST(trx_lock->trx_locks);
lock != NULL;
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
if (lock_get_type_low(lock) == LOCK_TABLE) {
n_tables++;
}
}
return(n_tables);
}
/*============== RECORD LOCK CREATION AND QUEUE MANAGEMENT =============*/
#ifdef WITH_WSREP
static
void
wsrep_print_wait_locks(
/*===================*/
lock_t* c_lock) /* conflicting lock to print */
{
if (wsrep_debug && c_lock->trx->lock.wait_lock != c_lock) {
ib::info() << "WSREP: c_lock != wait lock";
ib::info() << " SQL: "
<< wsrep_thd_query(c_lock->trx->mysql_thd);
if (lock_get_type_low(c_lock) & LOCK_TABLE) {
lock_table_print(stderr, c_lock);
} else {
lock_rec_print(stderr, c_lock);
}
if (lock_get_type_low(c_lock->trx->lock.wait_lock) & LOCK_TABLE) {
lock_table_print(stderr, c_lock->trx->lock.wait_lock);
} else {
lock_rec_print(stderr, c_lock->trx->lock.wait_lock);
}
}
}
#endif /* WITH_WSREP */
/**
Check of the lock is on m_rec_id.
@param[in] lock Lock to compare with
@return true if the record lock is on m_rec_id*/
/**
@param[in] rhs Lock to compare with
@return true if the record lock equals rhs */
bool
RecLock::is_on_row(const lock_t* lock) const
{
ut_ad(lock_get_type_low(lock) == LOCK_REC);
const lock_rec_t& other = lock->un_member.rec_lock;
return(other.space == m_rec_id.m_space_id
&& other.page_no == m_rec_id.m_page_no
&& lock_rec_get_nth_bit(lock, m_rec_id.m_heap_no));
}
/**
Do some checks and prepare for creating a new record lock */
void
RecLock::prepare() const
{
ut_ad(lock_mutex_own());
ut_ad(m_trx == thr_get_trx(m_thr));
/* Test if there already is some other reason to suspend thread:
we do not enqueue a lock request if the query thread should be
stopped anyway */
if (que_thr_stop(m_thr)) {
ut_error;
}
switch (trx_get_dict_operation(m_trx)) {
case TRX_DICT_OP_NONE:
break;
case TRX_DICT_OP_TABLE:
case TRX_DICT_OP_INDEX:
ib::error() << "A record lock wait happens in a dictionary"
" operation. index " << m_index->name
<< " of table " << m_index->table->name
<< ". " << BUG_REPORT_MSG;
ut_ad(0);
}
ut_ad(m_index->table->n_ref_count > 0
|| !m_index->table->can_be_evicted);
}
/**
Create the lock instance
@param[in, out] trx The transaction requesting the lock
@param[in, out] index Index on which record lock is required
@param[in] mode The lock mode desired
@param[in] rec_id The record id
@param[in] size Size of the lock + bitmap requested
@return a record lock instance */
lock_t*
RecLock::lock_alloc(
trx_t* trx,
dict_index_t* index,
ulint mode,
const RecID& rec_id,
ulint size)
{
ut_ad(lock_mutex_own());
lock_t* lock;
if (trx->lock.rec_cached >= trx->lock.rec_pool.size()
|| sizeof(*lock) + size > REC_LOCK_SIZE) {
ulint n_bytes = size + sizeof(*lock);
mem_heap_t* heap = trx->lock.lock_heap;
lock = reinterpret_cast<lock_t*>(mem_heap_alloc(heap, n_bytes));
} else {
lock = trx->lock.rec_pool[trx->lock.rec_cached];
++trx->lock.rec_cached;
}
lock->trx = trx;
lock->index = index;
/* Setup the lock attributes */
lock->type_mode = uint32_t(LOCK_REC | (mode & ~LOCK_TYPE_MASK));
lock_rec_t& rec_lock = lock->un_member.rec_lock;
/* Predicate lock always on INFIMUM (0) */
if (is_predicate_lock(mode)) {
rec_lock.n_bits = 8;
memset(&lock[1], 0x0, 1);
} else {
ut_ad(8 * size < UINT32_MAX);
rec_lock.n_bits = static_cast<uint32_t>(8 * size);
memset(&lock[1], 0x0, size);
}
rec_lock.space = rec_id.m_space_id;
rec_lock.page_no = rec_id.m_page_no;
/* Set the bit corresponding to rec */
lock_rec_set_nth_bit(lock, rec_id.m_heap_no);
MONITOR_INC(MONITOR_NUM_RECLOCK);
MONITOR_INC(MONITOR_RECLOCK_CREATED);
return(lock);
}
/*********************************************************************//**
Check if lock1 has higher priority than lock2.
NULL has lowest priority.
If neither of them is wait lock, the first one has higher priority.
If only one of them is a wait lock, it has lower priority.
If either is a high priority transaction, the lock has higher priority.
Otherwise, the one with an older transaction has higher priority.
@returns true if lock1 has higher priority, false otherwise. */
bool
has_higher_priority(
lock_t *lock1,
lock_t *lock2)
{
if (lock1 == NULL) {
return false;
} else if (lock2 == NULL) {
return true;
}
// Granted locks has higher priority.
if (!lock_get_wait(lock1)) {
return true;
} else if (!lock_get_wait(lock2)) {
return false;
}
if (trx_is_high_priority(lock1->trx)) {
return false;
}
return lock1->trx->start_time_micro <= lock2->trx->start_time_micro;
}
/*********************************************************************//**
Insert a lock to the hash list according to the mode (whether it is a wait
lock) and the age of the transaction the it is associated with.
If the lock is not a wait lock, insert it to the head of the hash list.
Otherwise, insert it to the middle of the wait locks according to the age of
the transaciton. */
static
dberr_t
lock_rec_insert_by_trx_age(
lock_t *in_lock) /*!< in: lock to be insert */{
ulint space;
ulint page_no;
ulint rec_fold;
lock_t* node;
lock_t* next;
hash_table_t* hash;
hash_cell_t* cell;
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
rec_fold = lock_rec_fold(space, page_no);
hash = lock_hash_get(in_lock->type_mode);
cell = hash_get_nth_cell(hash,
hash_calc_hash(rec_fold, hash));
node = (lock_t *) cell->node;
// If in_lock is not a wait lock, we insert it to the head of the list.
if (node == NULL || !lock_get_wait(in_lock) || has_higher_priority(in_lock, node)) {
cell->node = in_lock;
in_lock->hash = node;
if (lock_get_wait(in_lock)) {
lock_grant(in_lock, true);
return DB_SUCCESS_LOCKED_REC;
}
return DB_SUCCESS;
}
while (node != NULL && has_higher_priority((lock_t *) node->hash,
in_lock)) {
node = (lock_t *) node->hash;
}
next = (lock_t *) node->hash;
node->hash = in_lock;
in_lock->hash = next;
if (lock_get_wait(in_lock) && !lock_rec_has_to_wait_in_queue(in_lock)) {
lock_grant(in_lock, true);
if (cell->node != in_lock) {
// Move it to the front of the queue
node->hash = in_lock->hash;
next = (lock_t *) cell->node;
cell->node = in_lock;
in_lock->hash = next;
}
return DB_SUCCESS_LOCKED_REC;
}
return DB_SUCCESS;
}
#ifdef UNIV_DEBUG
static
bool
lock_queue_validate(
const lock_t *in_lock) /*!< in: lock whose hash list is to be validated */
{
ulint space;
ulint page_no;
ulint rec_fold;
hash_table_t* hash;
hash_cell_t* cell;
lock_t* next;
bool wait_lock = false;
if (in_lock == NULL) {
return true;
}
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
rec_fold = lock_rec_fold(space, page_no);
hash = lock_hash_get(in_lock->type_mode);
cell = hash_get_nth_cell(hash,
hash_calc_hash(rec_fold, hash));
next = (lock_t *) cell->node;
while (next != NULL) {
// If this is a granted lock, check that there's no wait lock before it.
if (!lock_get_wait(next)) {
ut_ad(!wait_lock);
} else {
wait_lock = true;
}
next = next->hash;
}
return true;
}
#endif /* UNIV_DEBUG */
static
void
lock_rec_insert_to_head(
lock_t *in_lock, /*!< in: lock to be insert */
ulint rec_fold) /*!< in: rec_fold of the page */
{
hash_table_t* hash;
hash_cell_t* cell;
lock_t* node;
if (in_lock == NULL) {
return;
}
hash = lock_hash_get(in_lock->type_mode);
cell = hash_get_nth_cell(hash,
hash_calc_hash(rec_fold, hash));
node = (lock_t *) cell->node;
if (node != in_lock) {
cell->node = in_lock;
in_lock->hash = node;
}
}
/**
Add the lock to the record lock hash and the transaction's lock list
@param[in,out] lock Newly created record lock to add to the rec hash
@param[in] add_to_hash If the lock should be added to the hash table */
void
RecLock::lock_add(lock_t* lock, bool add_to_hash)
{
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(lock->trx));
bool wait_lock = m_mode & LOCK_WAIT;
if (add_to_hash) {
ulint key = m_rec_id.fold();
hash_table_t *lock_hash = lock_hash_get(m_mode);
++lock->index->table->n_rec_locks;
if (innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_VATS
&& !thd_is_replication_slave_thread(lock->trx->mysql_thd)) {
if (wait_lock) {
HASH_INSERT(lock_t, hash, lock_hash, key, lock);
} else {
lock_rec_insert_to_head(lock, m_rec_id.fold());
}
} else {
HASH_INSERT(lock_t, hash, lock_hash, key, lock);
}
}
if (wait_lock) {
lock_set_lock_and_trx_wait(lock, lock->trx);
}
UT_LIST_ADD_LAST(lock->trx->lock.trx_locks, lock);
}
/**
Create a new lock.
@param[in,out] trx Transaction requesting the lock
@param[in] owns_trx_mutex true if caller owns the trx_t::mutex
@param[in] add_to_hash add the lock to hash table
@param[in] prdt Predicate lock (optional)
@return a new lock instance */
lock_t*
RecLock::create(trx_t* trx, bool owns_trx_mutex, bool add_to_hash, const lock_prdt_t* prdt)
{
return create(NULL, trx, owns_trx_mutex, add_to_hash, prdt);
}
lock_t*
RecLock::create(
lock_t* const c_lock,
trx_t* trx,
bool owns_trx_mutex,
bool add_to_hash,
const lock_prdt_t* prdt)
{
ut_ad(lock_mutex_own());
ut_ad(owns_trx_mutex == trx_mutex_own(trx));
/* Create the explicit lock instance and initialise it. */
lock_t* lock = lock_alloc(trx, m_index, m_mode, m_rec_id, m_size);
if (prdt != NULL && (m_mode & LOCK_PREDICATE)) {
lock_prdt_set_prdt(lock, prdt);
}
#ifdef WITH_WSREP
if (c_lock &&
wsrep_on(trx->mysql_thd) &&
wsrep_thd_is_BF(trx->mysql_thd, FALSE)) {
lock_t *hash = (lock_t *)c_lock->hash;
lock_t *prev = NULL;
while (hash &&
wsrep_thd_is_BF(((lock_t *)hash)->trx->mysql_thd, TRUE) &&
wsrep_trx_order_before(
((lock_t *)hash)->trx->mysql_thd,
trx->mysql_thd)) {
prev = hash;
hash = (lock_t *)hash->hash;
}
lock->hash = hash;
if (prev) {
prev->hash = lock;
} else {
c_lock->hash = lock;
}
/*
* delayed conflict resolution '...kill_one_trx' was not called,
* if victim was waiting for some other lock
*/
trx_mutex_enter(c_lock->trx);
if (c_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
c_lock->trx->lock.was_chosen_as_deadlock_victim = TRUE;
if (wsrep_debug) {
wsrep_print_wait_locks(c_lock);
}
trx->lock.que_state = TRX_QUE_LOCK_WAIT;
lock_set_lock_and_trx_wait(lock, trx);
UT_LIST_ADD_LAST(trx->lock.trx_locks, lock);
ut_ad(m_thr != NULL);
trx->lock.wait_thr = m_thr;
m_thr->state = QUE_THR_LOCK_WAIT;
/* have to release trx mutex for the duration of
victim lock release. This will eventually call
lock_grant, which wants to grant trx mutex again
*/
if (owns_trx_mutex) {
trx_mutex_exit(trx);
}
lock_cancel_waiting_and_release(
c_lock->trx->lock.wait_lock);
if (owns_trx_mutex) {
trx_mutex_enter(trx);
}
/* trx might not wait for c_lock, but some other lock
does not matter if wait_lock was released above
*/
if (c_lock->trx->lock.wait_lock == c_lock) {
if (wsrep_debug) {
ib::info() <<
"victim trx waits for some other lock than c_lock";
}
lock_reset_lock_and_trx_wait(lock);
}
trx_mutex_exit(c_lock->trx);
if (wsrep_debug) {
ib::info() << "WSREP: c_lock canceled " << c_lock->trx->id;
ib::info() << " SQL1: "
<< wsrep_thd_query(c_lock->trx->mysql_thd);
ib::info() << " SQL2: "
<< wsrep_thd_query(trx->mysql_thd);
}
++lock->index->table->n_rec_locks;
/* have to bail out here to avoid lock_set_lock... */
return(lock);
}
trx_mutex_exit(c_lock->trx);
/* we don't want to add to hash anymore, but need other updates from lock_add */
++lock->index->table->n_rec_locks;
lock_add(lock, false);
} else {
#endif /* WITH_WSREP */
/* Ensure that another transaction doesn't access the trx
lock state and lock data structures while we are adding the
lock and changing the transaction state to LOCK_WAIT */
if (!owns_trx_mutex) {
trx_mutex_enter(trx);
}
lock_add(lock, add_to_hash);
if (!owns_trx_mutex) {
trx_mutex_exit(trx);
}
#ifdef WITH_WSREP
}
#endif /* WITH_WSREP */
return(lock);
}
/**
Check the outcome of the deadlock check
@param[in,out] victim_trx Transaction selected for rollback
@param[in,out] lock Lock being requested
@return DB_LOCK_WAIT, DB_DEADLOCK or DB_SUCCESS_LOCKED_REC */
dberr_t
RecLock::check_deadlock_result(const trx_t* victim_trx, lock_t* lock)
{
ut_ad(lock_mutex_own());
ut_ad(m_trx == lock->trx);
ut_ad(trx_mutex_own(m_trx));
if (victim_trx != NULL) {
ut_ad(victim_trx == m_trx);
lock_reset_lock_and_trx_wait(lock);
lock_rec_reset_nth_bit(lock, m_rec_id.m_heap_no);
return(DB_DEADLOCK);
} else if (m_trx->lock.wait_lock == NULL) {
/* If there was a deadlock but we chose another
transaction as a victim, it is possible that we
already have the lock now granted! */
return(DB_SUCCESS_LOCKED_REC);
}
return(DB_LOCK_WAIT);
}
/**
Check and resolve any deadlocks
@param[in, out] lock The lock being acquired
@return DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED, or
DB_SUCCESS_LOCKED_REC; DB_SUCCESS_LOCKED_REC means that
there was a deadlock, but another transaction was chosen
as a victim, and we got the lock immediately: no need to
wait then */
dberr_t
RecLock::deadlock_check(lock_t* lock)
{
ut_ad(lock_mutex_own());
ut_ad(lock->trx == m_trx);
ut_ad(trx_mutex_own(m_trx));
const trx_t* victim_trx =
DeadlockChecker::check_and_resolve(lock, m_trx);
/* Check the outcome of the deadlock test. It is possible that
the transaction that blocked our lock was rolled back and we
were granted our lock. */
dberr_t err = check_deadlock_result(victim_trx, lock);
if (err == DB_LOCK_WAIT) {
set_wait_state(lock);
MONITOR_INC(MONITOR_LOCKREC_WAIT);
}
return(err);
}
/**
Collect the transactions that will need to be rolled back asynchronously
@param[in, out] trx Transaction to be rolled back */
void
RecLock::mark_trx_for_rollback(trx_t* trx)
{
trx->abort = true;
ut_ad(!trx->read_only);
ut_ad(trx_mutex_own(m_trx));
ut_ad(!(trx->in_innodb & TRX_FORCE_ROLLBACK));
ut_ad(!(trx->in_innodb & TRX_FORCE_ROLLBACK_ASYNC));
ut_ad(!(trx->in_innodb & TRX_FORCE_ROLLBACK_DISABLE));
/* Note that we will attempt an async rollback. The _ASYNC
flag will be cleared if the transaction is rolled back
synchronously before we get a chance to do it. */
trx->in_innodb |= TRX_FORCE_ROLLBACK | TRX_FORCE_ROLLBACK_ASYNC;
ut_a(!trx->killed_by);
my_atomic_storelong(&trx->killed_by, (long) os_thread_get_curr_id());
m_trx->hit_list.push_back(hit_list_t::value_type(trx));
#ifdef UNIV_DEBUG
THD* thd = trx->mysql_thd;
if (thd != NULL) {
char buffer[1024];
ib::info() << "Blocking transaction: ID: " << trx->id << " - "
<< " Blocked transaction ID: "<< m_trx->id << " - "
<< thd_get_error_context_description(thd, buffer, sizeof(buffer),
512);
}
#endif /* UNIV_DEBUG */
}
/**
Setup the requesting transaction state for lock grant
@param[in,out] lock Lock for which to change state */
void
RecLock::set_wait_state(lock_t* lock)
{
ut_ad(lock_mutex_own());
ut_ad(m_trx == lock->trx);
ut_ad(trx_mutex_own(m_trx));
ut_ad(lock_get_wait(lock));
m_trx->lock.wait_started = ut_time();
m_trx->lock.que_state = TRX_QUE_LOCK_WAIT;
m_trx->lock.was_chosen_as_deadlock_victim = false;
bool stopped = que_thr_stop(m_thr);
ut_a(stopped);
}
/**
Enqueue a lock wait for normal transaction. If it is a high priority transaction
then jump the record lock wait queue and if the transaction at the head of the
queue is itself waiting roll it back, also do a deadlock check and resolve.
@param[in, out] wait_for The lock that the joining transaction is
waiting for
@param[in] prdt Predicate [optional]
@return DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED, or
DB_SUCCESS_LOCKED_REC; DB_SUCCESS_LOCKED_REC means that
there was a deadlock, but another transaction was chosen
as a victim, and we got the lock immediately: no need to
wait then */
dberr_t
RecLock::add_to_waitq(const lock_t* wait_for, const lock_prdt_t* prdt)
{
ut_ad(lock_mutex_own());
ut_ad(m_trx == thr_get_trx(m_thr));
ut_ad(trx_mutex_own(m_trx));
DEBUG_SYNC_C("rec_lock_add_to_waitq");
m_mode |= LOCK_WAIT;
/* Do the preliminary checks, and set query thread state */
prepare();
bool high_priority = trx_is_high_priority(m_trx);
/* Don't queue the lock to hash table, if high priority transaction. */
lock_t* lock = create(m_trx, true, !high_priority, prdt);
/* Attempt to jump over the low priority waiting locks. */
if (high_priority && jump_queue(lock, wait_for)) {
/* Lock is granted */
return(DB_SUCCESS);
}
ut_ad(lock_get_wait(lock));
dberr_t err = deadlock_check(lock);
ut_ad(trx_mutex_own(m_trx));
// Move it only when it does not cause a deadlock.
if (err != DB_DEADLOCK
&& innodb_lock_schedule_algorithm
== INNODB_LOCK_SCHEDULE_ALGORITHM_VATS
&& !thd_is_replication_slave_thread(lock->trx->mysql_thd)
&& !trx_is_high_priority(lock->trx)) {
HASH_DELETE(lock_t, hash, lock_hash_get(lock->type_mode),
m_rec_id.fold(), lock);
dberr_t res = lock_rec_insert_by_trx_age(lock);
if (res != DB_SUCCESS) {
return res;
}
}
return(err);
}
/*********************************************************************//**
Adds a record lock request in the record queue. The request is normally
added as the last in the queue, but if there are no waiting lock requests
on the record, and the request to be added is not a waiting request, we
can reuse a suitable record lock object already existing on the same page,
just setting the appropriate bit in its bitmap. This is a low-level function
which does NOT check for deadlocks or lock compatibility!
@return lock where the bit was set */
static
void
lock_rec_add_to_queue(
/*==================*/
ulint type_mode,/*!< in: lock mode, wait, gap
etc. flags; type is ignored
and replaced by LOCK_REC */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no,/*!< in: heap number of the record */
dict_index_t* index, /*!< in: index of record */
trx_t* trx, /*!< in/out: transaction */
bool caller_owns_trx_mutex)
/*!< in: TRUE if caller owns the
transaction mutex */
{
#ifdef UNIV_DEBUG
ut_ad(lock_mutex_own());
ut_ad(caller_owns_trx_mutex == trx_mutex_own(trx));
ut_ad(dict_index_is_clust(index)
|| dict_index_get_online_status(index) != ONLINE_INDEX_CREATION);
switch (type_mode & LOCK_MODE_MASK) {
case LOCK_X:
case LOCK_S:
break;
default:
ut_error;
}
if (!(type_mode & (LOCK_WAIT | LOCK_GAP))) {
lock_mode mode = (type_mode & LOCK_MODE_MASK) == LOCK_S
? LOCK_X
: LOCK_S;
const lock_t* other_lock
= lock_rec_other_has_expl_req(
mode, block, false, heap_no, trx);
#ifdef WITH_WSREP
//ut_a(!other_lock || (wsrep_thd_is_BF(trx->mysql_thd, FALSE) &&
// wsrep_thd_is_BF(other_lock->trx->mysql_thd, TRUE)));
if (other_lock &&
wsrep_on(trx->mysql_thd) &&
!wsrep_thd_is_BF(trx->mysql_thd, FALSE) &&
!wsrep_thd_is_BF(other_lock->trx->mysql_thd, TRUE)) {
ib::info() << "WSREP BF lock conflict for my lock:\n BF:" <<
((wsrep_thd_is_BF(trx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
wsrep_thd_exec_mode(trx->mysql_thd) << " conflict: " <<
wsrep_thd_conflict_state(trx->mysql_thd, false) << " seqno: " <<
wsrep_thd_trx_seqno(trx->mysql_thd) << " SQL: " <<
wsrep_thd_query(trx->mysql_thd);
trx_t* otrx = other_lock->trx;
ib::info() << "WSREP other lock:\n BF:" <<
((wsrep_thd_is_BF(otrx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
wsrep_thd_exec_mode(otrx->mysql_thd) << " conflict: " <<
wsrep_thd_conflict_state(otrx->mysql_thd, false) << " seqno: " <<
wsrep_thd_trx_seqno(otrx->mysql_thd) << " SQL: " <<
wsrep_thd_query(otrx->mysql_thd);
}
#else
ut_a(!other_lock);
#endif /* WITH_WSREP */
}
#endif /* UNIV_DEBUG */
type_mode |= LOCK_REC;
/* If rec is the supremum record, then we can reset the gap bit, as
all locks on the supremum are automatically of the gap type, and we
try to avoid unnecessary memory consumption of a new record lock
struct for a gap type lock */
if (heap_no == PAGE_HEAP_NO_SUPREMUM) {
ut_ad(!(type_mode & LOCK_REC_NOT_GAP));
/* There should never be LOCK_REC_NOT_GAP on a supremum
record, but let us play safe */
type_mode &= ~(LOCK_GAP | LOCK_REC_NOT_GAP);
}
lock_t* lock;
lock_t* first_lock;
hash_table_t* hash = lock_hash_get(type_mode);
/* Look for a waiting lock request on the same record or on a gap */
for (first_lock = lock = lock_rec_get_first_on_page(hash, block);
lock != NULL;
lock = lock_rec_get_next_on_page(lock)) {
if (lock_get_wait(lock)
&& lock_rec_get_nth_bit(lock, heap_no)) {
break;
}
}
if (lock == NULL && !(type_mode & LOCK_WAIT)) {
/* Look for a similar record lock on the same page:
if one is found and there are no waiting lock requests,
we can just set the bit */
lock = lock_rec_find_similar_on_page(
type_mode, heap_no, first_lock, trx);
if (lock != NULL) {
lock_rec_set_nth_bit(lock, heap_no);
return;
}
}
RecLock rec_lock(index, block, heap_no, type_mode);
rec_lock.create(trx, caller_owns_trx_mutex, true);
}
/*********************************************************************//**
This is a fast routine for locking a record in the most common cases:
there are no explicit locks on the page, or there is just one lock, owned
by this transaction, and of the right type_mode. This is a low-level function
which does NOT look at implicit locks! Checks lock compatibility within
explicit locks. This function sets a normal next-key lock, or in the case of
a page supremum record, a gap type lock.
@return whether the locking succeeded */
UNIV_INLINE
lock_rec_req_status
lock_rec_lock_fast(
/*===============*/
bool impl, /*!< in: if TRUE, no lock is set
if no wait is necessary: we
assume that the caller will
set an implicit lock */
ulint mode, /*!< in: lock mode: LOCK_X or
LOCK_S possibly ORed to either
LOCK_GAP or LOCK_REC_NOT_GAP */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no,/*!< in: heap number of record */
dict_index_t* index, /*!< in: index of record */
que_thr_t* thr) /*!< in: query thread */
{
ut_ad(lock_mutex_own());
ut_ad(!srv_read_only_mode);
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX)
|| srv_read_only_mode);
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S
|| (LOCK_MODE_MASK & mode) == LOCK_X);
ut_ad(mode - (LOCK_MODE_MASK & mode) == LOCK_GAP
|| mode - (LOCK_MODE_MASK & mode) == 0
|| mode - (LOCK_MODE_MASK & mode) == LOCK_REC_NOT_GAP);
ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index));
DBUG_EXECUTE_IF("innodb_report_deadlock", return(LOCK_REC_FAIL););
lock_t* lock = lock_rec_get_first_on_page(lock_sys->rec_hash, block);
trx_t* trx = thr_get_trx(thr);
lock_rec_req_status status = LOCK_REC_SUCCESS;
if (lock == NULL) {
if (!impl) {
RecLock rec_lock(index, block, heap_no, mode);
/* Note that we don't own the trx mutex. */
rec_lock.create(trx, false, true);
}
status = LOCK_REC_SUCCESS_CREATED;
} else {
trx_mutex_enter(trx);
if (lock_rec_get_next_on_page(lock)
|| lock->trx != trx
|| lock->type_mode != (mode | LOCK_REC)
|| lock_rec_get_n_bits(lock) <= heap_no) {
status = LOCK_REC_FAIL;
} else if (!impl) {
/* If the nth bit of the record lock is already set
then we do not set a new lock bit, otherwise we do
set */
if (!lock_rec_get_nth_bit(lock, heap_no)) {
lock_rec_set_nth_bit(lock, heap_no);
status = LOCK_REC_SUCCESS_CREATED;
}
}
trx_mutex_exit(trx);
}
return(status);
}
/*********************************************************************//**
This is the general, and slower, routine for locking a record. This is a
low-level function which does NOT look at implicit locks! Checks lock
compatibility within explicit locks. This function sets a normal next-key
lock, or in the case of a page supremum record, a gap type lock.
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, DB_DEADLOCK,
or DB_QUE_THR_SUSPENDED */
static
dberr_t
lock_rec_lock_slow(
/*===============*/
ibool impl, /*!< in: if TRUE, no lock is set
if no wait is necessary: we
assume that the caller will
set an implicit lock */
ulint mode, /*!< in: lock mode: LOCK_X or
LOCK_S possibly ORed to either
LOCK_GAP or LOCK_REC_NOT_GAP */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no,/*!< in: heap number of record */
dict_index_t* index, /*!< in: index of record */
que_thr_t* thr) /*!< in: query thread */
{
ut_ad(lock_mutex_own());
ut_ad(!srv_read_only_mode);
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S
|| (LOCK_MODE_MASK & mode) == LOCK_X);
ut_ad(mode - (LOCK_MODE_MASK & mode) == LOCK_GAP
|| mode - (LOCK_MODE_MASK & mode) == 0
|| mode - (LOCK_MODE_MASK & mode) == LOCK_REC_NOT_GAP);
ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index));
DBUG_EXECUTE_IF("innodb_report_deadlock", return(DB_DEADLOCK););
dberr_t err;
trx_t* trx = thr_get_trx(thr);
trx_mutex_enter(trx);
if (lock_rec_has_expl(mode, block, heap_no, trx)) {
/* The trx already has a strong enough lock on rec: do
nothing */
err = DB_SUCCESS;
} else {
const lock_t* wait_for = lock_rec_other_has_conflicting(
mode, block, heap_no, trx);
if (wait_for != NULL) {
/* If another transaction has a non-gap conflicting
request in the queue, as this transaction does not
have a lock strong enough already granted on the
record, we may have to wait. */
RecLock rec_lock(thr, index, block, heap_no, mode);
err = rec_lock.add_to_waitq(wait_for);
} else if (!impl) {
/* Set the requested lock on the record, note that
we already own the transaction mutex. */
lock_rec_add_to_queue(
LOCK_REC | mode, block, heap_no, index, trx,
true);
err = DB_SUCCESS_LOCKED_REC;
} else {
err = DB_SUCCESS;
}
}
trx_mutex_exit(trx);
return(err);
}
/*********************************************************************//**
Tries to lock the specified record in the mode requested. If not immediately
possible, enqueues a waiting lock request. This is a low-level function
which does NOT look at implicit locks! Checks lock compatibility within
explicit locks. This function sets a normal next-key lock, or in the case
of a page supremum record, a gap type lock.
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, DB_DEADLOCK,
or DB_QUE_THR_SUSPENDED */
static
dberr_t
lock_rec_lock(
/*==========*/
bool impl, /*!< in: if true, no lock is set
if no wait is necessary: we
assume that the caller will
set an implicit lock */
ulint mode, /*!< in: lock mode: LOCK_X or
LOCK_S possibly ORed to either
LOCK_GAP or LOCK_REC_NOT_GAP */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no,/*!< in: heap number of record */
dict_index_t* index, /*!< in: index of record */
que_thr_t* thr) /*!< in: query thread */
{
ut_ad(lock_mutex_own());
ut_ad(!srv_read_only_mode);
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S
|| (LOCK_MODE_MASK & mode) == LOCK_X);
ut_ad(mode - (LOCK_MODE_MASK & mode) == LOCK_GAP
|| mode - (LOCK_MODE_MASK & mode) == LOCK_REC_NOT_GAP
|| mode - (LOCK_MODE_MASK & mode) == 0);
ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index));
/* We try a simplified and faster subroutine for the most
common cases */
switch (lock_rec_lock_fast(impl, mode, block, heap_no, index, thr)) {
case LOCK_REC_SUCCESS:
return(DB_SUCCESS);
case LOCK_REC_SUCCESS_CREATED:
return(DB_SUCCESS_LOCKED_REC);
case LOCK_REC_FAIL:
return(lock_rec_lock_slow(impl, mode, block,
heap_no, index, thr));
}
ut_error;
return(DB_ERROR);
}
/*********************************************************************//**
Checks if a waiting record lock request still has to wait in a queue.
@return lock that is causing the wait */
static
const lock_t*
lock_rec_has_to_wait_in_queue(
/*==========================*/
const lock_t* wait_lock) /*!< in: waiting record lock */
{
const lock_t* lock;
ulint space;
ulint page_no;
ulint heap_no;
ulint bit_mask;
ulint bit_offset;
hash_table_t* hash;
ut_ad(lock_mutex_own());
ut_ad(lock_get_wait(wait_lock));
ut_ad(lock_get_type_low(wait_lock) == LOCK_REC);
space = wait_lock->un_member.rec_lock.space;
page_no = wait_lock->un_member.rec_lock.page_no;
heap_no = lock_rec_find_set_bit(wait_lock);
bit_offset = heap_no / 8;
bit_mask = static_cast<ulint>(1) << (heap_no % 8);
hash = lock_hash_get(wait_lock->type_mode);
for (lock = lock_rec_get_first_on_page_addr(hash, space, page_no);
lock != wait_lock;
lock = lock_rec_get_next_on_page_const(lock)) {
const byte* p = (const byte*) &lock[1];
if (heap_no < lock_rec_get_n_bits(lock)
&& (p[bit_offset] & bit_mask)
&& lock_has_to_wait(wait_lock, lock)) {
#ifdef WITH_WSREP
if (wsrep_thd_is_BF(wait_lock->trx->mysql_thd, FALSE) &&
wsrep_thd_is_BF(lock->trx->mysql_thd, TRUE)) {
/* don't wait for another BF lock */
continue;
}
#endif /* WITH_WSREP */
return(lock);
}
}
return(NULL);
}
/*************************************************************//**
Grants a lock to a waiting lock request and releases the waiting transaction.
The caller must hold lock_sys->mutex but not lock->trx->mutex. */
static
void
lock_grant(
/*=======*/
lock_t* lock, /*!< in/out: waiting lock request */
bool owns_trx_mutex) /*!< in: whether lock->trx->mutex is owned */
{
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(lock->trx) == owns_trx_mutex);
lock_reset_lock_and_trx_wait(lock);
if (!owns_trx_mutex) {
trx_mutex_enter(lock->trx);
}
if (lock_get_mode(lock) == LOCK_AUTO_INC) {
dict_table_t* table = lock->un_member.tab_lock.table;
if (table->autoinc_trx == lock->trx) {
ib::error() << "Transaction already had an"
<< " AUTO-INC lock!";
} else {
table->autoinc_trx = lock->trx;
ib_vector_push(lock->trx->autoinc_locks, &lock);
}
}
DBUG_PRINT("ib_lock", ("wait for trx " TRX_ID_FMT " ends",
trx_get_id_for_print(lock->trx)));
/* If we are resolving a deadlock by choosing another transaction
as a victim, then our original transaction may not be in the
TRX_QUE_LOCK_WAIT state, and there is no need to end the lock wait
for it */
if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
que_thr_t* thr;
thr = que_thr_end_lock_wait(lock->trx);
if (thr != NULL) {
lock_wait_release_thread_if_suspended(thr);
}
}
if (!owns_trx_mutex) {
trx_mutex_exit(lock->trx);
}
}
/**
Jump the queue for the record over all low priority transactions and
add the lock. If all current granted locks are compatible, grant the
lock. Otherwise, mark all granted transaction for asynchronous
rollback and add to hit list.
@param[in, out] lock Lock being requested
@param[in] conflict_lock First conflicting lock from the head
@return true if the lock is granted */
bool
RecLock::jump_queue(
lock_t* lock,
const lock_t* conflict_lock)
{
ut_ad(m_trx == lock->trx);
ut_ad(trx_mutex_own(m_trx));
ut_ad(conflict_lock->trx != m_trx);
ut_ad(trx_is_high_priority(m_trx));
ut_ad(m_rec_id.m_heap_no != ULINT32_UNDEFINED);
bool high_priority = false;
/* Find out the position to add the lock. If there are other high
priority transactions in waiting state then we should add it after
the last high priority transaction. Otherwise, we can add it after
the last granted lock jumping over the wait queue. */
bool grant_lock = lock_add_priority(lock, conflict_lock,
&high_priority);
if (grant_lock) {
ut_ad(conflict_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT);
ut_ad(conflict_lock->trx->lock.wait_lock == conflict_lock);
DBUG_LOG("trx",
"Granting High Priority Transaction "
<< lock->trx->id << " a lock jumping over"
<< " waiting Transaction " << conflict_lock->trx->id);
lock_reset_lock_and_trx_wait(lock);
return(true);
}
/* If another high priority transaction is found waiting
victim transactions are already marked for rollback. */
if (high_priority) {
return(false);
}
/* The lock is placed after the last granted lock in the queue. Check and add
low priority transactinos to hit list for ASYNC rollback. */
make_trx_hit_list(lock, conflict_lock);
return(false);
}
/** Find position in lock queue and add the high priority transaction
lock. Intention and GAP only locks can be granted even if there are
waiting locks in front of the queue. To add the High priority
transaction in a safe position we keep the following rule.
1. If the lock can be granted, add it before the first waiting lock
in the queue so that all currently waiting locks need to do conflict
check before getting granted.
2. If the lock has to wait, add it after the last granted lock or the
last waiting high priority transaction in the queue whichever is later.
This ensures that the transaction is granted only after doing conflict
check with all granted transactions.
@param[in] lock Lock being requested
@param[in] conflict_lock First conflicting lock from the head
@param[out] high_priority high priority transaction ahead in queue
@return true if the lock can be granted */
bool
RecLock::lock_add_priority(
lock_t* lock,
const lock_t* conflict_lock,
bool* high_priority)
{
ut_ad(high_priority);
*high_priority = false;
/* If the first conflicting lock is waiting for the current row,
then all other granted locks are compatible and the lock can be
directly granted if no other high priority transactions are
waiting. We need to recheck with all granted transaction as there
could be granted GAP or Intention locks down the queue. */
bool grant_lock = (conflict_lock->is_waiting());
lock_t* lock_head = NULL;
lock_t* grant_position = NULL;
lock_t* add_position = NULL;
HASH_SEARCH(hash, lock_sys->rec_hash, m_rec_id.fold(), lock_t*,
lock_head, ut_ad(lock_head->is_record_lock()), true);
ut_ad(lock_head);
for (lock_t* next = lock_head; next != NULL; next = next->hash) {
/* check only for locks on the current row */
if (!is_on_row(next)) {
continue;
}
if (next->is_waiting()) {
/* grant lock position is the granted lock just before
the first wait lock in the queue. */
if (grant_position == NULL) {
grant_position = add_position;
}
if (trx_is_high_priority(next->trx)) {
*high_priority = true;
grant_lock = false;
add_position = next;
}
} else {
add_position = next;
/* Cannot grant lock if there is any conflicting
granted lock. */
if (grant_lock && lock_has_to_wait(lock, next)) {
grant_lock = false;
}
}
}
/* If the lock is to be granted it is safe to add before the first
waiting lock in the queue. */
if (grant_lock) {
ut_ad(!lock_has_to_wait(lock, grant_position));
add_position = grant_position;
}
ut_ad(add_position != NULL);
/* Add the lock to lock hash table. */
lock->hash = add_position->hash;
add_position->hash = lock;
++lock->index->table->n_rec_locks;
return(grant_lock);
}
/** Iterate over the granted locks and prepare the hit list for ASYNC Rollback.
If the transaction is waiting for some other lock then wake up with deadlock error.
Currently we don't mark following transactions for ASYNC Rollback.
1. Read only transactions
2. Background transactions
3. Other High priority transactions
@param[in] lock Lock being requested
@param[in] conflict_lock First conflicting lock from the head */
void
RecLock::make_trx_hit_list(
lock_t* lock,
const lock_t* conflict_lock)
{
const lock_t* next;
for (next = conflict_lock; next != NULL; next = next->hash) {
/* All locks ahead in the queue are checked. */
if (next == lock) {
ut_ad(next->is_waiting());
break;
}
trx_t* trx = next->trx;
/* Check only for conflicting, granted locks on the current row.
Currently, we don't rollback read only transactions, transactions
owned by background threads. */
if (trx == lock->trx
|| !is_on_row(next)
|| next->is_waiting()
|| trx->read_only
|| trx->mysql_thd == NULL
|| !lock_has_to_wait(lock, next)) {
continue;
}
trx_mutex_enter(trx);
/* Skip high priority transactions, if already marked for abort
by some other transaction or if ASYNC rollback is disabled. A
transaction must complete kill/abort of a victim transaction once
marked and added to hit list. */
if (trx_is_high_priority(trx)
|| (trx->in_innodb & TRX_FORCE_ROLLBACK_DISABLE) != 0
|| trx->abort) {
trx_mutex_exit(trx);
continue;
}
/* If the transaction is waiting on some other resource then
wake it up with DEAD_LOCK error so that it can rollback. */
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
/* Assert that it is not waiting for current record. */
ut_ad(trx->lock.wait_lock != next);
DBUG_LOG("trx", "High Priority Transaction "
<< lock->trx->id
<< " waking up blocking transaction "
<< trx->id);
trx->lock.was_chosen_as_deadlock_victim = true;
lock_cancel_waiting_and_release(trx->lock.wait_lock);
trx_mutex_exit(trx);
continue;
}
/* Mark for ASYNC Rollback and add to hit list. */
mark_trx_for_rollback(trx);
trx_mutex_exit(trx);
}
ut_ad(next == lock);
}
/*************************************************************//**
Cancels a waiting record lock request and releases the waiting transaction
that requested it. NOTE: does NOT check if waiting lock requests behind this
one can now be granted! */
static
void
lock_rec_cancel(
/*============*/
lock_t* lock) /*!< in: waiting record lock request */
{
que_thr_t* thr;
ut_ad(lock_mutex_own());
ut_ad(lock_get_type_low(lock) == LOCK_REC);
/* Reset the bit (there can be only one set bit) in the lock bitmap */
lock_rec_reset_nth_bit(lock, lock_rec_find_set_bit(lock));
/* Reset the wait flag and the back pointer to lock in trx */
lock_reset_lock_and_trx_wait(lock);
/* The following function releases the trx from lock wait */
trx_mutex_enter(lock->trx);
thr = que_thr_end_lock_wait(lock->trx);
if (thr != NULL) {
lock_wait_release_thread_if_suspended(thr);
}
trx_mutex_exit(lock->trx);
}
static
void
lock_grant_and_move_on_page(
hash_table_t* lock_hash,
ulint space,
ulint page_no)
{
lock_t* lock;
lock_t* previous;
ulint rec_fold = lock_rec_fold(space, page_no);
previous = (lock_t *) hash_get_nth_cell(lock_hash,
hash_calc_hash(rec_fold, lock_hash))->node;
if (previous == NULL) {
return;
}
if (previous->un_member.rec_lock.space == space &&
previous->un_member.rec_lock.page_no == page_no) {
lock = previous;
}
else {
while (previous->hash &&
(previous->hash->un_member.rec_lock.space != space ||
previous->hash->un_member.rec_lock.page_no != page_no)) {
previous = previous->hash;
}
lock = previous->hash;
}
ut_ad(previous->hash == lock || previous == lock);
/* Grant locks if there are no conflicting locks ahead.
Move granted locks to the head of the list. */
for (;lock != NULL;) {
/* If the lock is a wait lock on this page, and it does not need to wait. */
if ((lock->un_member.rec_lock.space == space)
&& (lock->un_member.rec_lock.page_no == page_no)
&& lock_get_wait(lock)
&& !lock_rec_has_to_wait_in_queue(lock)) {
bool exit_trx_mutex = false;
if (lock->trx->abort_type != TRX_SERVER_ABORT) {
ut_ad(trx_mutex_own(lock->trx));
trx_mutex_exit(lock->trx);
exit_trx_mutex = true;
}
lock_grant(lock, false);
if (exit_trx_mutex) {
ut_ad(!trx_mutex_own(lock->trx));
trx_mutex_enter(lock->trx);
}
if (previous != NULL) {
/* Move the lock to the head of the list. */
HASH_GET_NEXT(hash, previous) = HASH_GET_NEXT(hash, lock);
lock_rec_insert_to_head(lock, rec_fold);
} else {
/* Already at the head of the list. */
previous = lock;
}
/* Move on to the next lock. */
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, previous));
} else {
previous = lock;
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, lock));
}
}
}
/*************************************************************//**
Removes a record lock request, waiting or granted, from the queue and
grants locks to other transactions in the queue if they now are entitled
to a lock. NOTE: all record locks contained in in_lock are removed. */
static
void
lock_rec_dequeue_from_page(
/*=======================*/
lock_t* in_lock) /*!< in: record lock object: all
record locks which are contained in
this lock object are removed;
transactions waiting behind will
get their lock requests granted,
if they are now qualified to it */
{
ulint space;
ulint page_no;
lock_t* lock;
trx_lock_t* trx_lock;
hash_table_t* lock_hash;
ut_ad(lock_mutex_own());
ut_ad(lock_get_type_low(in_lock) == LOCK_REC);
/* We may or may not be holding in_lock->trx->mutex here. */
trx_lock = &in_lock->trx->lock;
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
ut_ad(in_lock->index->table->n_rec_locks > 0);
in_lock->index->table->n_rec_locks--;
lock_hash = lock_hash_get(in_lock->type_mode);
HASH_DELETE(lock_t, hash, lock_hash,
lock_rec_fold(space, page_no), in_lock);
UT_LIST_REMOVE(trx_lock->trx_locks, in_lock);
MONITOR_INC(MONITOR_RECLOCK_REMOVED);
MONITOR_DEC(MONITOR_NUM_RECLOCK);
if (innodb_lock_schedule_algorithm
== INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS ||
thd_is_replication_slave_thread(in_lock->trx->mysql_thd)) {
/* Check if waiting locks in the queue can now be granted:
grant locks if there are no conflicting locks ahead. Stop at
the first X lock that is waiting or has been granted. */
for (lock = lock_rec_get_first_on_page_addr(lock_hash, space,
page_no);
lock != NULL;
lock = lock_rec_get_next_on_page(lock)) {
if (lock_get_wait(lock)
&& !lock_rec_has_to_wait_in_queue(lock)) {
/* Grant the lock */
ut_ad(lock->trx != in_lock->trx);
bool exit_trx_mutex = false;
if (lock->trx->abort_type != TRX_SERVER_ABORT) {
ut_ad(trx_mutex_own(lock->trx));
trx_mutex_exit(lock->trx);
exit_trx_mutex = true;
}
lock_grant(lock, false);
if (exit_trx_mutex) {
ut_ad(!trx_mutex_own(lock->trx));
trx_mutex_enter(lock->trx);
}
}
}
} else {
lock_grant_and_move_on_page(lock_hash, space, page_no);
}
}
/*************************************************************//**
Removes a record lock request, waiting or granted, from the queue. */
void
lock_rec_discard(
/*=============*/
lock_t* in_lock) /*!< in: record lock object: all
record locks which are contained
in this lock object are removed */
{
ulint space;
ulint page_no;
trx_lock_t* trx_lock;
ut_ad(lock_mutex_own());
ut_ad(lock_get_type_low(in_lock) == LOCK_REC);
trx_lock = &in_lock->trx->lock;
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
ut_ad(in_lock->index->table->n_rec_locks > 0);
in_lock->index->table->n_rec_locks--;
HASH_DELETE(lock_t, hash, lock_hash_get(in_lock->type_mode),
lock_rec_fold(space, page_no), in_lock);
UT_LIST_REMOVE(trx_lock->trx_locks, in_lock);
MONITOR_INC(MONITOR_RECLOCK_REMOVED);
MONITOR_DEC(MONITOR_NUM_RECLOCK);
}
/*************************************************************//**
Removes record lock objects set on an index page which is discarded. This
function does not move locks, or check for waiting locks, therefore the
lock bitmaps must already be reset when this function is called. */
static
void
lock_rec_free_all_from_discard_page_low(
/*====================================*/
ulint space,
ulint page_no,
hash_table_t* lock_hash)
{
lock_t* lock;
lock_t* next_lock;
lock = lock_rec_get_first_on_page_addr(lock_hash, space, page_no);
while (lock != NULL) {
ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED);
ut_ad(!lock_get_wait(lock));
next_lock = lock_rec_get_next_on_page(lock);
lock_rec_discard(lock);
lock = next_lock;
}
}
/*************************************************************//**
Removes record lock objects set on an index page which is discarded. This
function does not move locks, or check for waiting locks, therefore the
lock bitmaps must already be reset when this function is called. */
void
lock_rec_free_all_from_discard_page(
/*================================*/
const buf_block_t* block) /*!< in: page to be discarded */
{
ulint space;
ulint page_no;
ut_ad(lock_mutex_own());
space = block->page.id.space();
page_no = block->page.id.page_no();
lock_rec_free_all_from_discard_page_low(
space, page_no, lock_sys->rec_hash);
lock_rec_free_all_from_discard_page_low(
space, page_no, lock_sys->prdt_hash);
lock_rec_free_all_from_discard_page_low(
space, page_no, lock_sys->prdt_page_hash);
}
/*============= RECORD LOCK MOVING AND INHERITING ===================*/
/*************************************************************//**
Resets the lock bits for a single record. Releases transactions waiting for
lock requests here. */
static
void
lock_rec_reset_and_release_wait_low(
/*================================*/
hash_table_t* hash, /*!< in: hash table */
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no)/*!< in: heap number of record */
{
lock_t* lock;
ut_ad(lock_mutex_own());
for (lock = lock_rec_get_first(hash, block, heap_no);
lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) {
if (lock_get_wait(lock)) {
lock_rec_cancel(lock);
} else {
lock_rec_reset_nth_bit(lock, heap_no);
}
}
}
/*************************************************************//**
Resets the lock bits for a single record. Releases transactions waiting for
lock requests here. */
static
void
lock_rec_reset_and_release_wait(
/*============================*/
const buf_block_t* block, /*!< in: buffer block containing
the record */
ulint heap_no)/*!< in: heap number of record */
{
lock_rec_reset_and_release_wait_low(
lock_sys->rec_hash, block, heap_no);
lock_rec_reset_and_release_wait_low(
lock_sys->prdt_hash, block, PAGE_HEAP_NO_INFIMUM);
lock_rec_reset_and_release_wait_low(
lock_sys->prdt_page_hash, block, PAGE_HEAP_NO_INFIMUM);
}
/*************************************************************//**
Makes a record to inherit the locks (except LOCK_INSERT_INTENTION type)
of another record as gap type locks, but does not reset the lock bits of
the other record. Also waiting lock requests on rec are inherited as
GRANTED gap locks. */
static
void
lock_rec_inherit_to_gap(
/*====================*/
const buf_block_t* heir_block, /*!< in: block containing the
record which inherits */
const buf_block_t* block, /*!< in: block containing the
record from which inherited;
does NOT reset the locks on
this record */
ulint heir_heap_no, /*!< in: heap_no of the
inheriting record */
ulint heap_no) /*!< in: heap_no of the
donating record */
{
lock_t* lock;
ut_ad(lock_mutex_own());
/* If srv_locks_unsafe_for_binlog is TRUE or session is using
READ COMMITTED isolation level, we do not want locks set
by an UPDATE or a DELETE to be inherited as gap type locks. But we
DO want S-locks/X-locks(taken for replace) set by a consistency
constraint to be inherited also then. */
for (lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) {
if (!lock_rec_get_insert_intention(lock)
&& !((srv_locks_unsafe_for_binlog
|| lock->trx->isolation_level
<= TRX_ISO_READ_COMMITTED)
&& lock_get_mode(lock) ==
(lock->trx->duplicates ? LOCK_S : LOCK_X))) {
lock_rec_add_to_queue(
LOCK_REC | LOCK_GAP | lock_get_mode(lock),
heir_block, heir_heap_no, lock->index,
lock->trx, FALSE);
}
}
}
/*************************************************************//**
Makes a record to inherit the gap locks (except LOCK_INSERT_INTENTION type)
of another record as gap type locks, but does not reset the lock bits of the
other record. Also waiting lock requests are inherited as GRANTED gap locks. */
static
void
lock_rec_inherit_to_gap_if_gap_lock(
/*================================*/
const buf_block_t* block, /*!< in: buffer block */
ulint heir_heap_no, /*!< in: heap_no of
record which inherits */
ulint heap_no) /*!< in: heap_no of record
from which inherited;
does NOT reset the locks
on this record */
{
lock_t* lock;
lock_mutex_enter();
for (lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) {
if (!lock_rec_get_insert_intention(lock)
&& (heap_no == PAGE_HEAP_NO_SUPREMUM
|| !lock_rec_get_rec_not_gap(lock))) {
lock_rec_add_to_queue(
LOCK_REC | LOCK_GAP | lock_get_mode(lock),
block, heir_heap_no, lock->index,
lock->trx, FALSE);
}
}
lock_mutex_exit();
}
/*************************************************************//**
Moves the locks of a record to another record and resets the lock bits of
the donating record. */
static
void
lock_rec_move_low(
/*==============*/
hash_table_t* lock_hash, /*!< in: hash table to use */
const buf_block_t* receiver, /*!< in: buffer block containing
the receiving record */
const buf_block_t* donator, /*!< in: buffer block containing
the donating record */
ulint receiver_heap_no,/*!< in: heap_no of the record
which gets the locks; there
must be no lock requests
on it! */
ulint donator_heap_no)/*!< in: heap_no of the record
which gives the locks */
{
lock_t* lock;
ut_ad(lock_mutex_own());
/* If the lock is predicate lock, it resides on INFIMUM record */
ut_ad(lock_rec_get_first(
lock_hash, receiver, receiver_heap_no) == NULL
|| lock_hash == lock_sys->prdt_hash
|| lock_hash == lock_sys->prdt_page_hash);
for (lock = lock_rec_get_first(lock_hash,
donator, donator_heap_no);
lock != NULL;
lock = lock_rec_get_next(donator_heap_no, lock)) {
const ulint type_mode = lock->type_mode;
lock_rec_reset_nth_bit(lock, donator_heap_no);
if (type_mode & LOCK_WAIT) {
lock_reset_lock_and_trx_wait(lock);
}
/* Note that we FIRST reset the bit, and then set the lock:
the function works also if donator == receiver */
lock_rec_add_to_queue(
type_mode, receiver, receiver_heap_no,
lock->index, lock->trx, FALSE);
}
ut_ad(lock_rec_get_first(lock_sys->rec_hash,
donator, donator_heap_no) == NULL);
}
/** Move all the granted locks to the front of the given lock list.
All the waiting locks will be at the end of the list.
@param[in,out] lock_list the given lock list. */
static
void
lock_move_granted_locks_to_front(
UT_LIST_BASE_NODE_T(lock_t)& lock_list)
{
lock_t* lock;
bool seen_waiting_lock = false;
for (lock = UT_LIST_GET_FIRST(lock_list); lock;
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
if (!seen_waiting_lock) {
if (lock->is_waiting()) {
seen_waiting_lock = true;
}
continue;
}
ut_ad(seen_waiting_lock);
if (!lock->is_waiting()) {
lock_t* prev = UT_LIST_GET_PREV(trx_locks, lock);
ut_a(prev);
UT_LIST_MOVE_TO_FRONT(lock_list, lock);
lock = prev;
}
}
}
/*************************************************************//**
Moves the locks of a record to another record and resets the lock bits of
the donating record. */
UNIV_INLINE
void
lock_rec_move(
/*==========*/
const buf_block_t* receiver, /*!< in: buffer block containing
the receiving record */
const buf_block_t* donator, /*!< in: buffer block containing
the donating record */
ulint receiver_heap_no,/*!< in: heap_no of the record
which gets the locks; there
must be no lock requests
on it! */
ulint donator_heap_no)/*!< in: heap_no of the record
which gives the locks */
{
lock_rec_move_low(lock_sys->rec_hash, receiver, donator,
receiver_heap_no, donator_heap_no);
}
/*************************************************************//**
Updates the lock table when we have reorganized a page. NOTE: we copy
also the locks set on the infimum of the page; the infimum may carry
locks if an update of a record is occurring on the page, and its locks
were temporarily stored on the infimum. */
void
lock_move_reorganize_page(
/*======================*/
const buf_block_t* block, /*!< in: old index page, now
reorganized */
const buf_block_t* oblock) /*!< in: copy of the old, not
reorganized page */
{
lock_t* lock;
UT_LIST_BASE_NODE_T(lock_t) old_locks;
mem_heap_t* heap = NULL;
ulint comp;
lock_mutex_enter();
/* FIXME: This needs to deal with predicate lock too */
lock = lock_rec_get_first_on_page(lock_sys->rec_hash, block);
if (lock == NULL) {
lock_mutex_exit();
return;
}
heap = mem_heap_create(256);
/* Copy first all the locks on the page to heap and reset the
bitmaps in the original locks; chain the copies of the locks
using the trx_locks field in them. */
UT_LIST_INIT(old_locks, &lock_t::trx_locks);
do {
/* Make a copy of the lock */
lock_t* old_lock = lock_rec_copy(lock, heap);
UT_LIST_ADD_LAST(old_locks, old_lock);
/* Reset bitmap of lock */
lock_rec_bitmap_reset(lock);
if (lock_get_wait(lock)) {
lock_reset_lock_and_trx_wait(lock);
}
lock = lock_rec_get_next_on_page(lock);
} while (lock != NULL);
comp = page_is_comp(block->frame);
ut_ad(comp == page_is_comp(oblock->frame));
lock_move_granted_locks_to_front(old_locks);
DBUG_EXECUTE_IF("do_lock_reverse_page_reorganize",
UT_LIST_REVERSE(old_locks););
for (lock = UT_LIST_GET_FIRST(old_locks); lock;
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
/* NOTE: we copy also the locks set on the infimum and
supremum of the page; the infimum may carry locks if an
update of a record is occurring on the page, and its locks
were temporarily stored on the infimum */
const rec_t* rec1 = page_get_infimum_rec(
buf_block_get_frame(block));
const rec_t* rec2 = page_get_infimum_rec(
buf_block_get_frame(oblock));
/* Set locks according to old locks */
for (;;) {
ulint old_heap_no;
ulint new_heap_no;
if (comp) {
old_heap_no = rec_get_heap_no_new(rec2);
new_heap_no = rec_get_heap_no_new(rec1);
rec1 = page_rec_get_next_low(rec1, TRUE);
rec2 = page_rec_get_next_low(rec2, TRUE);
} else {
old_heap_no = rec_get_heap_no_old(rec2);
new_heap_no = rec_get_heap_no_old(rec1);
ut_ad(!memcmp(rec1, rec2,
rec_get_data_size_old(rec2)));
rec1 = page_rec_get_next_low(rec1, FALSE);
rec2 = page_rec_get_next_low(rec2, FALSE);
}
/* Clear the bit in old_lock. */
if (old_heap_no < lock->un_member.rec_lock.n_bits
&& lock_rec_reset_nth_bit(lock, old_heap_no)) {
/* NOTE that the old lock bitmap could be too
small for the new heap number! */
lock_rec_add_to_queue(
lock->type_mode, block, new_heap_no,
lock->index, lock->trx, FALSE);
}
if (new_heap_no == PAGE_HEAP_NO_SUPREMUM) {
ut_ad(old_heap_no == PAGE_HEAP_NO_SUPREMUM);
break;
}
}
ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED);
}
lock_mutex_exit();
mem_heap_free(heap);
#ifdef UNIV_DEBUG_LOCK_VALIDATE
ut_ad(lock_rec_validate_page(block));
#endif
}
/*************************************************************//**
Moves the explicit locks on user records to another page if a record
list end is moved to another page. */
void
lock_move_rec_list_end(
/*===================*/
const buf_block_t* new_block, /*!< in: index page to move to */
const buf_block_t* block, /*!< in: index page */
const rec_t* rec) /*!< in: record on page: this
is the first record moved */
{
lock_t* lock;
const ulint comp = page_rec_is_comp(rec);
ut_ad(buf_block_get_frame(block) == page_align(rec));
ut_ad(comp == page_is_comp(buf_block_get_frame(new_block)));
lock_mutex_enter();
/* Note: when we move locks from record to record, waiting locks
and possible granted gap type locks behind them are enqueued in
the original order, because new elements are inserted to a hash
table to the end of the hash chain, and lock_rec_add_to_queue
does not reuse locks if there are waiters in the queue. */
for (lock = lock_rec_get_first_on_page(lock_sys->rec_hash, block); lock;
lock = lock_rec_get_next_on_page(lock)) {
const rec_t* rec1 = rec;
const rec_t* rec2;
const ulint type_mode = lock->type_mode;
if (comp) {
if (page_offset(rec1) == PAGE_NEW_INFIMUM) {
rec1 = page_rec_get_next_low(rec1, TRUE);
}
rec2 = page_rec_get_next_low(
buf_block_get_frame(new_block)
+ PAGE_NEW_INFIMUM, TRUE);
} else {
if (page_offset(rec1) == PAGE_OLD_INFIMUM) {
rec1 = page_rec_get_next_low(rec1, FALSE);
}
rec2 = page_rec_get_next_low(
buf_block_get_frame(new_block)
+ PAGE_OLD_INFIMUM, FALSE);
}
/* Copy lock requests on user records to new page and
reset the lock bits on the old */
for (;;) {
ulint rec1_heap_no;
ulint rec2_heap_no;
if (comp) {
rec1_heap_no = rec_get_heap_no_new(rec1);
if (rec1_heap_no == PAGE_HEAP_NO_SUPREMUM) {
break;
}
rec2_heap_no = rec_get_heap_no_new(rec2);
rec1 = page_rec_get_next_low(rec1, TRUE);
rec2 = page_rec_get_next_low(rec2, TRUE);
} else {
rec1_heap_no = rec_get_heap_no_old(rec1);
if (rec1_heap_no == PAGE_HEAP_NO_SUPREMUM) {
break;
}
rec2_heap_no = rec_get_heap_no_old(rec2);
ut_ad(!memcmp(rec1, rec2,
rec_get_data_size_old(rec2)));
rec1 = page_rec_get_next_low(rec1, FALSE);
rec2 = page_rec_get_next_low(rec2, FALSE);
}
if (rec1_heap_no < lock->un_member.rec_lock.n_bits
&& lock_rec_reset_nth_bit(lock, rec1_heap_no)) {
if (type_mode & LOCK_WAIT) {
lock_reset_lock_and_trx_wait(lock);
}
lock_rec_add_to_queue(
type_mode, new_block, rec2_heap_no,
lock->index, lock->trx, FALSE);
}
}
}
lock_mutex_exit();
#ifdef UNIV_DEBUG_LOCK_VALIDATE
ut_ad(lock_rec_validate_page(block));
ut_ad(lock_rec_validate_page(new_block));
#endif
}
/*************************************************************//**
Moves the explicit locks on user records to another page if a record
list start is moved to another page. */
void
lock_move_rec_list_start(
/*=====================*/
const buf_block_t* new_block, /*!< in: index page to
move to */
const buf_block_t* block, /*!< in: index page */
const rec_t* rec, /*!< in: record on page:
this is the first
record NOT copied */
const rec_t* old_end) /*!< in: old
previous-to-last
record on new_page
before the records
were copied */
{
lock_t* lock;
const ulint comp = page_rec_is_comp(rec);
ut_ad(block->frame == page_align(rec));
ut_ad(new_block->frame == page_align(old_end));
ut_ad(comp == page_rec_is_comp(old_end));
lock_mutex_enter();
for (lock = lock_rec_get_first_on_page(lock_sys->rec_hash, block); lock;
lock = lock_rec_get_next_on_page(lock)) {
const rec_t* rec1;
const rec_t* rec2;
const ulint type_mode = lock->type_mode;
if (comp) {
rec1 = page_rec_get_next_low(
buf_block_get_frame(block)
+ PAGE_NEW_INFIMUM, TRUE);
rec2 = page_rec_get_next_low(old_end, TRUE);
} else {
rec1 = page_rec_get_next_low(
buf_block_get_frame(block)
+ PAGE_OLD_INFIMUM, FALSE);
rec2 = page_rec_get_next_low(old_end, FALSE);
}
/* Copy lock requests on user records to new page and
reset the lock bits on the old */
while (rec1 != rec) {
ulint rec1_heap_no;
ulint rec2_heap_no;
if (comp) {
rec1_heap_no = rec_get_heap_no_new(rec1);
rec2_heap_no = rec_get_heap_no_new(rec2);
rec1 = page_rec_get_next_low(rec1, TRUE);
rec2 = page_rec_get_next_low(rec2, TRUE);
} else {
rec1_heap_no = rec_get_heap_no_old(rec1);
rec2_heap_no = rec_get_heap_no_old(rec2);
ut_ad(!memcmp(rec1, rec2,
rec_get_data_size_old(rec2)));
rec1 = page_rec_get_next_low(rec1, FALSE);
rec2 = page_rec_get_next_low(rec2, FALSE);
}
if (rec1_heap_no < lock->un_member.rec_lock.n_bits
&& lock_rec_reset_nth_bit(lock, rec1_heap_no)) {
if (type_mode & LOCK_WAIT) {
lock_reset_lock_and_trx_wait(lock);
}
lock_rec_add_to_queue(
type_mode, new_block, rec2_heap_no,
lock->index, lock->trx, FALSE);
}
}
#ifdef UNIV_DEBUG
if (page_rec_is_supremum(rec)) {
ulint i;
for (i = PAGE_HEAP_NO_USER_LOW;
i < lock_rec_get_n_bits(lock); i++) {
if (lock_rec_get_nth_bit(lock, i)) {
ib::fatal()
<< "lock_move_rec_list_start():"
<< i << " not moved in "
<< (void*) lock;
}
}
}
#endif /* UNIV_DEBUG */
}
lock_mutex_exit();
#ifdef UNIV_DEBUG_LOCK_VALIDATE
ut_ad(lock_rec_validate_page(block));
#endif
}
/*************************************************************//**
Moves the explicit locks on user records to another page if a record
list start is moved to another page. */
void
lock_rtr_move_rec_list(
/*===================*/
const buf_block_t* new_block, /*!< in: index page to
move to */
const buf_block_t* block, /*!< in: index page */
rtr_rec_move_t* rec_move, /*!< in: recording records
moved */
ulint num_move) /*!< in: num of rec to move */
{
lock_t* lock;
ulint comp;
if (!num_move) {
return;
}
comp = page_rec_is_comp(rec_move[0].old_rec);
ut_ad(block->frame == page_align(rec_move[0].old_rec));
ut_ad(new_block->frame == page_align(rec_move[0].new_rec));
ut_ad(comp == page_rec_is_comp(rec_move[0].new_rec));
lock_mutex_enter();
for (lock = lock_rec_get_first_on_page(lock_sys->rec_hash, block); lock;
lock = lock_rec_get_next_on_page(lock)) {
ulint moved = 0;
const rec_t* rec1;
const rec_t* rec2;
const ulint type_mode = lock->type_mode;
/* Copy lock requests on user records to new page and
reset the lock bits on the old */
while (moved < num_move) {
ulint rec1_heap_no;
ulint rec2_heap_no;
rec1 = rec_move[moved].old_rec;
rec2 = rec_move[moved].new_rec;
if (comp) {
rec1_heap_no = rec_get_heap_no_new(rec1);
rec2_heap_no = rec_get_heap_no_new(rec2);
} else {
rec1_heap_no = rec_get_heap_no_old(rec1);
rec2_heap_no = rec_get_heap_no_old(rec2);
ut_ad(!memcmp(rec1, rec2,
rec_get_data_size_old(rec2)));
}
if (rec1_heap_no < lock->un_member.rec_lock.n_bits
&& lock_rec_reset_nth_bit(lock, rec1_heap_no)) {
if (type_mode & LOCK_WAIT) {
lock_reset_lock_and_trx_wait(lock);
}
lock_rec_add_to_queue(
type_mode, new_block, rec2_heap_no,
lock->index, lock->trx, FALSE);
rec_move[moved].moved = true;
}
moved++;
}
}
lock_mutex_exit();
#ifdef UNIV_DEBUG_LOCK_VALIDATE
ut_ad(lock_rec_validate_page(block));
#endif
}
/*************************************************************//**
Updates the lock table when a page is split to the right. */
void
lock_update_split_right(
/*====================*/
const buf_block_t* right_block, /*!< in: right page */
const buf_block_t* left_block) /*!< in: left page */
{
ulint heap_no = lock_get_min_heap_no(right_block);
lock_mutex_enter();
/* Move the locks on the supremum of the left page to the supremum
of the right page */
lock_rec_move(right_block, left_block,
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
/* Inherit the locks to the supremum of left page from the successor
of the infimum on right page */
lock_rec_inherit_to_gap(left_block, right_block,
PAGE_HEAP_NO_SUPREMUM, heap_no);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when a page is merged to the right. */
void
lock_update_merge_right(
/*====================*/
const buf_block_t* right_block, /*!< in: right page to
which merged */
const rec_t* orig_succ, /*!< in: original
successor of infimum
on the right page
before merge */
const buf_block_t* left_block) /*!< in: merged index
page which will be
discarded */
{
lock_mutex_enter();
/* Inherit the locks from the supremum of the left page to the
original successor of infimum on the right page, to which the left
page was merged */
lock_rec_inherit_to_gap(right_block, left_block,
page_rec_get_heap_no(orig_succ),
PAGE_HEAP_NO_SUPREMUM);
/* Reset the locks on the supremum of the left page, releasing
waiting transactions */
lock_rec_reset_and_release_wait_low(
lock_sys->rec_hash, left_block, PAGE_HEAP_NO_SUPREMUM);
#ifdef UNIV_DEBUG
/* there should exist no page lock on the left page,
otherwise, it will be blocked from merge */
ulint space = left_block->page.id.space();
ulint page_no = left_block->page.id.page_no();
ut_ad(lock_rec_get_first_on_page_addr(
lock_sys->prdt_page_hash, space, page_no) == NULL);
#endif /* UNIV_DEBUG */
lock_rec_free_all_from_discard_page(left_block);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when the root page is copied to another in
btr_root_raise_and_insert. Note that we leave lock structs on the
root page, even though they do not make sense on other than leaf
pages: the reason is that in a pessimistic update the infimum record
of the root page will act as a dummy carrier of the locks of the record
to be updated. */
void
lock_update_root_raise(
/*===================*/
const buf_block_t* block, /*!< in: index page to which copied */
const buf_block_t* root) /*!< in: root page */
{
lock_mutex_enter();
/* Move the locks on the supremum of the root to the supremum
of block */
lock_rec_move(block, root,
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when a page is copied to another and the original page
is removed from the chain of leaf pages, except if page is the root! */
void
lock_update_copy_and_discard(
/*=========================*/
const buf_block_t* new_block, /*!< in: index page to
which copied */
const buf_block_t* block) /*!< in: index page;
NOT the root! */
{
lock_mutex_enter();
/* Move the locks on the supremum of the old page to the supremum
of new_page */
lock_rec_move(new_block, block,
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
lock_rec_free_all_from_discard_page(block);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when a page is split to the left. */
void
lock_update_split_left(
/*===================*/
const buf_block_t* right_block, /*!< in: right page */
const buf_block_t* left_block) /*!< in: left page */
{
ulint heap_no = lock_get_min_heap_no(right_block);
lock_mutex_enter();
/* Inherit the locks to the supremum of the left page from the
successor of the infimum on the right page */
lock_rec_inherit_to_gap(left_block, right_block,
PAGE_HEAP_NO_SUPREMUM, heap_no);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when a page is merged to the left. */
void
lock_update_merge_left(
/*===================*/
const buf_block_t* left_block, /*!< in: left page to
which merged */
const rec_t* orig_pred, /*!< in: original predecessor
of supremum on the left page
before merge */
const buf_block_t* right_block) /*!< in: merged index page
which will be discarded */
{
const rec_t* left_next_rec;
ut_ad(left_block->frame == page_align(orig_pred));
lock_mutex_enter();
left_next_rec = page_rec_get_next_const(orig_pred);
if (!page_rec_is_supremum(left_next_rec)) {
/* Inherit the locks on the supremum of the left page to the
first record which was moved from the right page */
lock_rec_inherit_to_gap(left_block, left_block,
page_rec_get_heap_no(left_next_rec),
PAGE_HEAP_NO_SUPREMUM);
/* Reset the locks on the supremum of the left page,
releasing waiting transactions */
lock_rec_reset_and_release_wait_low(
lock_sys->rec_hash, left_block, PAGE_HEAP_NO_SUPREMUM);
}
/* Move the locks from the supremum of right page to the supremum
of the left page */
lock_rec_move(left_block, right_block,
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
#ifdef UNIV_DEBUG
/* there should exist no page lock on the right page,
otherwise, it will be blocked from merge */
ulint space = right_block->page.id.space();
ulint page_no = right_block->page.id.page_no();
lock_t* lock_test = lock_rec_get_first_on_page_addr(
lock_sys->prdt_page_hash, space, page_no);
ut_ad(!lock_test);
#endif /* UNIV_DEBUG */
lock_rec_free_all_from_discard_page(right_block);
lock_mutex_exit();
}
/*************************************************************//**
Resets the original locks on heir and replaces them with gap type locks
inherited from rec. */
void
lock_rec_reset_and_inherit_gap_locks(
/*=================================*/
const buf_block_t* heir_block, /*!< in: block containing the
record which inherits */
const buf_block_t* block, /*!< in: block containing the
record from which inherited;
does NOT reset the locks on
this record */
ulint heir_heap_no, /*!< in: heap_no of the
inheriting record */
ulint heap_no) /*!< in: heap_no of the
donating record */
{
lock_mutex_enter();
lock_rec_reset_and_release_wait(heir_block, heir_heap_no);
lock_rec_inherit_to_gap(heir_block, block, heir_heap_no, heap_no);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when a page is discarded. */
void
lock_update_discard(
/*================*/
const buf_block_t* heir_block, /*!< in: index page
which will inherit the locks */
ulint heir_heap_no, /*!< in: heap_no of the record
which will inherit the locks */
const buf_block_t* block) /*!< in: index page
which will be discarded */
{
const rec_t* rec;
ulint heap_no;
const page_t* page = block->frame;
lock_mutex_enter();
if (!lock_rec_get_first_on_page(lock_sys->rec_hash, block)
&& (!lock_rec_get_first_on_page(lock_sys->prdt_hash, block))) {
/* No locks exist on page, nothing to do */
lock_mutex_exit();
return;
}
/* Inherit all the locks on the page to the record and reset all
the locks on the page */
if (page_is_comp(page)) {
rec = page + PAGE_NEW_INFIMUM;
do {
heap_no = rec_get_heap_no_new(rec);
lock_rec_inherit_to_gap(heir_block, block,
heir_heap_no, heap_no);
lock_rec_reset_and_release_wait(block, heap_no);
rec = page + rec_get_next_offs(rec, TRUE);
} while (heap_no != PAGE_HEAP_NO_SUPREMUM);
} else {
rec = page + PAGE_OLD_INFIMUM;
do {
heap_no = rec_get_heap_no_old(rec);
lock_rec_inherit_to_gap(heir_block, block,
heir_heap_no, heap_no);
lock_rec_reset_and_release_wait(block, heap_no);
rec = page + rec_get_next_offs(rec, FALSE);
} while (heap_no != PAGE_HEAP_NO_SUPREMUM);
}
lock_rec_free_all_from_discard_page(block);
lock_mutex_exit();
}
/*************************************************************//**
Updates the lock table when a new user record is inserted. */
void
lock_update_insert(
/*===============*/
const buf_block_t* block, /*!< in: buffer block containing rec */
const rec_t* rec) /*!< in: the inserted record */
{
ulint receiver_heap_no;
ulint donator_heap_no;
ut_ad(block->frame == page_align(rec));
/* Inherit the gap-locking locks for rec, in gap mode, from the next
record */
if (page_rec_is_comp(rec)) {
receiver_heap_no = rec_get_heap_no_new(rec);
donator_heap_no = rec_get_heap_no_new(
page_rec_get_next_low(rec, TRUE));
} else {
receiver_heap_no = rec_get_heap_no_old(rec);
donator_heap_no = rec_get_heap_no_old(
page_rec_get_next_low(rec, FALSE));
}
lock_rec_inherit_to_gap_if_gap_lock(
block, receiver_heap_no, donator_heap_no);
}
/*************************************************************//**
Updates the lock table when a record is removed. */
void
lock_update_delete(
/*===============*/
const buf_block_t* block, /*!< in: buffer block containing rec */
const rec_t* rec) /*!< in: the record to be removed */
{
const page_t* page = block->frame;
ulint heap_no;
ulint next_heap_no;
ut_ad(page == page_align(rec));
if (page_is_comp(page)) {
heap_no = rec_get_heap_no_new(rec);
next_heap_no = rec_get_heap_no_new(page
+ rec_get_next_offs(rec,
TRUE));
} else {
heap_no = rec_get_heap_no_old(rec);
next_heap_no = rec_get_heap_no_old(page
+ rec_get_next_offs(rec,
FALSE));
}
lock_mutex_enter();
/* Let the next record inherit the locks from rec, in gap mode */
lock_rec_inherit_to_gap(block, block, next_heap_no, heap_no);
/* Reset the lock bits on rec and release waiting transactions */
lock_rec_reset_and_release_wait(block, heap_no);
lock_mutex_exit();
}
/*********************************************************************//**
Stores on the page infimum record the explicit locks of another record.
This function is used to store the lock state of a record when it is
updated and the size of the record changes in the update. The record
is moved in such an update, perhaps to another page. The infimum record
acts as a dummy carrier record, taking care of lock releases while the
actual record is being moved. */
void
lock_rec_store_on_page_infimum(
/*===========================*/
const buf_block_t* block, /*!< in: buffer block containing rec */
const rec_t* rec) /*!< in: record whose lock state
is stored on the infimum
record of the same page; lock
bits are reset on the
record */
{
ulint heap_no = page_rec_get_heap_no(rec);
ut_ad(block->frame == page_align(rec));
lock_mutex_enter();
lock_rec_move(block, block, PAGE_HEAP_NO_INFIMUM, heap_no);
lock_mutex_exit();
}
/*********************************************************************//**
Restores the state of explicit lock requests on a single record, where the
state was stored on the infimum of the page. */
void
lock_rec_restore_from_page_infimum(
/*===============================*/
const buf_block_t* block, /*!< in: buffer block containing rec */
const rec_t* rec, /*!< in: record whose lock state
is restored */
const buf_block_t* donator)/*!< in: page (rec is not
necessarily on this page)
whose infimum stored the lock
state; lock bits are reset on
the infimum */
{
ulint heap_no = page_rec_get_heap_no(rec);
lock_mutex_enter();
lock_rec_move(block, donator, heap_no, PAGE_HEAP_NO_INFIMUM);
lock_mutex_exit();
}
/*========================= TABLE LOCKS ==============================*/
/** Functor for accessing the embedded node within a table lock. */
struct TableLockGetNode {
ut_list_node<lock_t>& operator() (lock_t& elem)
{
return(elem.un_member.tab_lock.locks);
}
};
/*********************************************************************//**
Creates a table lock object and adds it as the last in the lock queue
of the table. Does NOT check for deadlocks or lock compatibility.
@return own: new lock object */
UNIV_INLINE
lock_t*
lock_table_create(
/*==============*/
lock_t* c_lock, /*!< in: conflicting lock or NULL */
dict_table_t* table, /*!< in/out: database table
in dictionary cache */
ulint type_mode,/*!< in: lock mode possibly ORed with
LOCK_WAIT */
trx_t* trx) /*!< in: trx */
{
lock_t* lock;
ut_ad(table && trx);
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(trx));
check_trx_state(trx);
if ((type_mode & LOCK_MODE_MASK) == LOCK_AUTO_INC) {
++table->n_waiting_or_granted_auto_inc_locks;
}
/* For AUTOINC locking we reuse the lock instance only if
there is no wait involved else we allocate the waiting lock
from the transaction lock heap. */
if (type_mode == LOCK_AUTO_INC) {
lock = table->autoinc_lock;
table->autoinc_trx = trx;
ib_vector_push(trx->autoinc_locks, &lock);
} else if (trx->lock.table_cached < trx->lock.table_pool.size()) {
lock = trx->lock.table_pool[trx->lock.table_cached++];
} else {
lock = static_cast<lock_t*>(
mem_heap_alloc(trx->lock.lock_heap, sizeof(*lock)));
}
lock->type_mode = ib_uint32_t(type_mode | LOCK_TABLE);
lock->trx = trx;
lock->un_member.tab_lock.table = table;
ut_ad(table->n_ref_count > 0 || !table->can_be_evicted);
UT_LIST_ADD_LAST(trx->lock.trx_locks, lock);
#ifdef WITH_WSREP
if (c_lock && wsrep_thd_is_BF(trx->mysql_thd, FALSE)) {
ut_list_insert(table->locks, c_lock, lock, TableLockGetNode());
if (wsrep_debug) {
ib::info() << "table lock BF conflict for " <<
c_lock->trx->id;
ib::info() << " SQL: "
<< wsrep_thd_query(c_lock->trx->mysql_thd);
}
} else {
ut_list_append(table->locks, lock, TableLockGetNode());
}
if (c_lock) {
ut_ad(!trx_mutex_own(c_lock->trx));
trx_mutex_enter(c_lock->trx);
}
if (c_lock && c_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
c_lock->trx->lock.was_chosen_as_deadlock_victim = TRUE;
if (wsrep_debug) {
wsrep_print_wait_locks(c_lock);
}
/* have to release trx mutex for the duration of
victim lock release. This will eventually call
lock_grant, which wants to grant trx mutex again
*/
/* caller has trx_mutex, have to release for lock cancel */
trx_mutex_exit(trx);
lock_cancel_waiting_and_release(c_lock->trx->lock.wait_lock);
trx_mutex_enter(trx);
/* trx might not wait for c_lock, but some other lock
does not matter if wait_lock was released above
*/
if (c_lock->trx->lock.wait_lock == c_lock) {
lock_reset_lock_and_trx_wait(lock);
}
if (wsrep_debug) {
ib::info() << "WSREP: c_lock canceled " << c_lock->trx->id;
ib::info() << " SQL: "
<< wsrep_thd_query(c_lock->trx->mysql_thd);
}
}
if (c_lock) {
trx_mutex_exit(c_lock->trx);
}
#else
ut_list_append(table->locks, lock, TableLockGetNode());
#endif /* WITH_WSREP */
if (type_mode & LOCK_WAIT) {
lock_set_lock_and_trx_wait(lock, trx);
}
lock->trx->lock.table_locks.push_back(lock);
MONITOR_INC(MONITOR_TABLELOCK_CREATED);
MONITOR_INC(MONITOR_NUM_TABLELOCK);
return(lock);
}
UNIV_INLINE
lock_t*
lock_table_create(
/*==============*/
dict_table_t* table, /*!< in/out: database table
in dictionary cache */
ulint type_mode,/*!< in: lock mode possibly ORed with
LOCK_WAIT */
trx_t* trx) /*!< in: trx */
{
return (lock_table_create(NULL, table, type_mode, trx));
}
/*************************************************************//**
Pops autoinc lock requests from the transaction's autoinc_locks. We
handle the case where there are gaps in the array and they need to
be popped off the stack. */
UNIV_INLINE
void
lock_table_pop_autoinc_locks(
/*=========================*/
trx_t* trx) /*!< in/out: transaction that owns the AUTOINC locks */
{
ut_ad(lock_mutex_own());
ut_ad(!ib_vector_is_empty(trx->autoinc_locks));
/* Skip any gaps, gaps are NULL lock entries in the
trx->autoinc_locks vector. */
do {
ib_vector_pop(trx->autoinc_locks);
if (ib_vector_is_empty(trx->autoinc_locks)) {
return;
}
} while (*(lock_t**) ib_vector_get_last(trx->autoinc_locks) == NULL);
}
/*************************************************************//**
Removes an autoinc lock request from the transaction's autoinc_locks. */
UNIV_INLINE
void
lock_table_remove_autoinc_lock(
/*===========================*/
lock_t* lock, /*!< in: table lock */
trx_t* trx) /*!< in/out: transaction that owns the lock */
{
lock_t* autoinc_lock;
lint i = ib_vector_size(trx->autoinc_locks) - 1;
ut_ad(lock_mutex_own());
ut_ad(lock_get_mode(lock) == LOCK_AUTO_INC);
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
ut_ad(!ib_vector_is_empty(trx->autoinc_locks));
/* With stored functions and procedures the user may drop
a table within the same "statement". This special case has
to be handled by deleting only those AUTOINC locks that were
held by the table being dropped. */
autoinc_lock = *static_cast<lock_t**>(
ib_vector_get(trx->autoinc_locks, i));
/* This is the default fast case. */
if (autoinc_lock == lock) {
lock_table_pop_autoinc_locks(trx);
} else {
/* The last element should never be NULL */
ut_a(autoinc_lock != NULL);
/* Handle freeing the locks from within the stack. */
while (--i >= 0) {
autoinc_lock = *static_cast<lock_t**>(
ib_vector_get(trx->autoinc_locks, i));
if (autoinc_lock == lock) {
void* null_var = NULL;
ib_vector_set(trx->autoinc_locks, i, &null_var);
return;
}
}
/* Must find the autoinc lock. */
ut_error;
}
}
/*************************************************************//**
Removes a table lock request from the queue and the trx list of locks;
this is a low-level function which does NOT check if waiting requests
can now be granted. */
UNIV_INLINE
void
lock_table_remove_low(
/*==================*/
lock_t* lock) /*!< in/out: table lock */
{
trx_t* trx;
dict_table_t* table;
ut_ad(lock_mutex_own());
trx = lock->trx;
table = lock->un_member.tab_lock.table;
/* Remove the table from the transaction's AUTOINC vector, if
the lock that is being released is an AUTOINC lock. */
if (lock_get_mode(lock) == LOCK_AUTO_INC) {
/* The table's AUTOINC lock can get transferred to
another transaction before we get here. */
if (table->autoinc_trx == trx) {
table->autoinc_trx = NULL;
}
/* The locks must be freed in the reverse order from
the one in which they were acquired. This is to avoid
traversing the AUTOINC lock vector unnecessarily.
We only store locks that were granted in the
trx->autoinc_locks vector (see lock_table_create()
and lock_grant()). Therefore it can be empty and we
need to check for that. */
if (!lock_get_wait(lock)
&& !ib_vector_is_empty(trx->autoinc_locks)) {
lock_table_remove_autoinc_lock(lock, trx);
}
ut_a(table->n_waiting_or_granted_auto_inc_locks > 0);
table->n_waiting_or_granted_auto_inc_locks--;
}
UT_LIST_REMOVE(trx->lock.trx_locks, lock);
ut_list_remove(table->locks, lock, TableLockGetNode());
MONITOR_INC(MONITOR_TABLELOCK_REMOVED);
MONITOR_DEC(MONITOR_NUM_TABLELOCK);
}
/*********************************************************************//**
Enqueues a waiting request for a table lock which cannot be granted
immediately. Checks for deadlocks.
@return DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED, or
DB_SUCCESS; DB_SUCCESS means that there was a deadlock, but another
transaction was chosen as a victim, and we got the lock immediately:
no need to wait then */
static
dberr_t
lock_table_enqueue_waiting(
/*=======================*/
lock_t* c_lock, /*!< in: conflicting lock or NULL */
ulint mode, /*!< in: lock mode this transaction is
requesting */
dict_table_t* table, /*!< in/out: table */
que_thr_t* thr) /*!< in: query thread */
{
trx_t* trx;
lock_t* lock;
ut_ad(lock_mutex_own());
ut_ad(!srv_read_only_mode);
trx = thr_get_trx(thr);
ut_ad(trx_mutex_own(trx));
/* Test if there already is some other reason to suspend thread:
we do not enqueue a lock request if the query thread should be
stopped anyway */
if (que_thr_stop(thr)) {
ut_error;
return(DB_QUE_THR_SUSPENDED);
}
switch (trx_get_dict_operation(trx)) {
case TRX_DICT_OP_NONE:
break;
case TRX_DICT_OP_TABLE:
case TRX_DICT_OP_INDEX:
ib::error() << "A table lock wait happens in a dictionary"
" operation. Table " << table->name
<< ". " << BUG_REPORT_MSG;
ut_ad(0);
}
#ifdef WITH_WSREP
if (trx->lock.was_chosen_as_deadlock_victim) {
return(DB_DEADLOCK);
}
#endif /* WITH_WSREP */
/* Enqueue the lock request that will wait to be granted */
lock = lock_table_create(c_lock, table, mode | LOCK_WAIT, trx);
const trx_t* victim_trx =
DeadlockChecker::check_and_resolve(lock, trx);
if (victim_trx != 0) {
ut_ad(victim_trx == trx);
/* The order here is important, we don't want to
lose the state of the lock before calling remove. */
lock_table_remove_low(lock);
lock_reset_lock_and_trx_wait(lock);
return(DB_DEADLOCK);
} else if (trx->lock.wait_lock == NULL) {
/* Deadlock resolution chose another transaction as a victim,
and we accidentally got our lock granted! */
return(DB_SUCCESS);
}
trx->lock.que_state = TRX_QUE_LOCK_WAIT;
trx->lock.wait_started = ut_time();
trx->lock.was_chosen_as_deadlock_victim = false;
ut_a(que_thr_stop(thr));
MONITOR_INC(MONITOR_TABLELOCK_WAIT);
return(DB_LOCK_WAIT);
}
/*********************************************************************//**
Checks if other transactions have an incompatible mode lock request in
the lock queue.
@return lock or NULL */
UNIV_INLINE
const lock_t*
lock_table_other_has_incompatible(
/*==============================*/
const trx_t* trx, /*!< in: transaction, or NULL if all
transactions should be included */
ulint wait, /*!< in: LOCK_WAIT if also
waiting locks are taken into
account, or 0 if not */
const dict_table_t* table, /*!< in: table */
lock_mode mode) /*!< in: lock mode */
{
const lock_t* lock;
ut_ad(lock_mutex_own());
for (lock = UT_LIST_GET_LAST(table->locks);
lock != NULL;
lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock)) {
if (lock->trx != trx
&& !lock_mode_compatible(lock_get_mode(lock), mode)
&& (wait || !lock_get_wait(lock))) {
#ifdef WITH_WSREP
if (wsrep_on(lock->trx->mysql_thd)) {
if (wsrep_debug) {
ib::info() << "WSREP: table lock abort for table:"
<< table->name.m_name;
ib::info() << " SQL: "
<< wsrep_thd_query(lock->trx->mysql_thd);
}
trx_mutex_enter(lock->trx);
wsrep_kill_victim((trx_t *)trx, (lock_t *)lock);
trx_mutex_exit(lock->trx);
}
#endif /* WITH_WSREP */
return(lock);
}
}
return(NULL);
}
/*********************************************************************//**
Locks the specified database table in the mode given. If the lock cannot
be granted immediately, the query thread is put to wait.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
dberr_t
lock_table(
/*=======*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing */
dict_table_t* table, /*!< in/out: database table
in dictionary cache */
lock_mode mode, /*!< in: lock mode */
que_thr_t* thr) /*!< in: query thread */
{
trx_t* trx;
dberr_t err;
const lock_t* wait_for;
ut_ad(table && thr);
/* Given limited visibility of temp-table we can avoid
locking overhead */
if ((flags & BTR_NO_LOCKING_FLAG)
|| srv_read_only_mode
|| dict_table_is_temporary(table)) {
return(DB_SUCCESS);
}
ut_a(flags == 0);
trx = thr_get_trx(thr);
/* Look for equal or stronger locks the same trx already
has on the table. No need to acquire the lock mutex here
because only this transacton can add/access table locks
to/from trx_t::table_locks. */
if (lock_table_has(trx, table, mode)) {
return(DB_SUCCESS);
}
/* Read only transactions can write to temp tables, we don't want
to promote them to RW transactions. Their updates cannot be visible
to other transactions. Therefore we can keep them out
of the read views. */
if ((mode == LOCK_IX || mode == LOCK_X)
&& !trx->read_only
&& trx->rsegs.m_redo.rseg == 0) {
trx_set_rw_mode(trx);
}
lock_mutex_enter();
DBUG_EXECUTE_IF("fatal-semaphore-timeout",
{ os_thread_sleep(3600000000LL); });
/* We have to check if the new lock is compatible with any locks
other transactions have in the table lock queue. */
wait_for = lock_table_other_has_incompatible(
trx, LOCK_WAIT, table, mode);
trx_mutex_enter(trx);
/* Another trx has a request on the table in an incompatible
mode: this trx may have to wait */
if (wait_for != NULL) {
err = lock_table_enqueue_waiting((lock_t*)wait_for, mode | flags, table, thr);
} else {
lock_table_create(table, mode | flags, trx);
ut_a(!flags || mode == LOCK_S || mode == LOCK_X);
err = DB_SUCCESS;
}
lock_mutex_exit();
trx_mutex_exit(trx);
return(err);
}
/*********************************************************************//**
Creates a table IX lock object for a resurrected transaction. */
void
lock_table_ix_resurrect(
/*====================*/
dict_table_t* table, /*!< in/out: table */
trx_t* trx) /*!< in/out: transaction */
{
ut_ad(trx->is_recovered);
if (lock_table_has(trx, table, LOCK_IX)) {
return;
}
lock_mutex_enter();
/* We have to check if the new lock is compatible with any locks
other transactions have in the table lock queue. */
ut_ad(!lock_table_other_has_incompatible(
trx, LOCK_WAIT, table, LOCK_IX));
trx_mutex_enter(trx);
lock_table_create(table, LOCK_IX, trx);
lock_mutex_exit();
trx_mutex_exit(trx);
}
/*********************************************************************//**
Checks if a waiting table lock request still has to wait in a queue.
@return TRUE if still has to wait */
static
bool
lock_table_has_to_wait_in_queue(
/*============================*/
const lock_t* wait_lock) /*!< in: waiting table lock */
{
const dict_table_t* table;
const lock_t* lock;
ut_ad(lock_mutex_own());
ut_ad(lock_get_wait(wait_lock));
table = wait_lock->un_member.tab_lock.table;
for (lock = UT_LIST_GET_FIRST(table->locks);
lock != wait_lock;
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) {
if (lock_has_to_wait(wait_lock, lock)) {
return(true);
}
}
return(false);
}
/*************************************************************//**
Removes a table lock request, waiting or granted, from the queue and grants
locks to other transactions in the queue, if they now are entitled to a
lock. */
static
void
lock_table_dequeue(
/*===============*/
lock_t* in_lock)/*!< in/out: table lock object; transactions waiting
behind will get their lock requests granted, if
they are now qualified to it */
{
ut_ad(lock_mutex_own());
ut_a(lock_get_type_low(in_lock) == LOCK_TABLE);
lock_t* lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, in_lock);
lock_table_remove_low(in_lock);
/* Check if waiting locks in the queue can now be granted: grant
locks if there are no conflicting locks ahead. */
for (/* No op */;
lock != NULL;
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) {
if (lock_get_wait(lock)
&& !lock_table_has_to_wait_in_queue(lock)) {
/* Grant the lock */
ut_ad(in_lock->trx != lock->trx);
lock_grant(lock, false);
}
}
}
/** Sets a lock on a table based on the given mode.
@param[in] table table to lock
@param[in,out] trx transaction
@param[in] mode LOCK_X or LOCK_S
@return error code or DB_SUCCESS. */
dberr_t
lock_table_for_trx(
dict_table_t* table,
trx_t* trx,
enum lock_mode mode)
{
mem_heap_t* heap;
que_thr_t* thr;
dberr_t err;
sel_node_t* node;
heap = mem_heap_create(512);
node = sel_node_create(heap);
thr = pars_complete_graph_for_exec(node, trx, heap, NULL);
thr->graph->state = QUE_FORK_ACTIVE;
/* We use the select query graph as the dummy graph needed
in the lock module call */
thr = static_cast<que_thr_t*>(
que_fork_get_first_thr(
static_cast<que_fork_t*>(que_node_get_parent(thr))));
que_thr_move_to_run_state_for_mysql(thr, trx);
run_again:
thr->run_node = thr;
thr->prev_node = thr->common.parent;
err = lock_table(0, table, mode, thr);
trx->error_state = err;
if (UNIV_LIKELY(err == DB_SUCCESS)) {
que_thr_stop_for_mysql_no_error(thr, trx);
} else {
que_thr_stop_for_mysql(thr);
if (err != DB_QUE_THR_SUSPENDED) {
bool was_lock_wait;
was_lock_wait = row_mysql_handle_errors(
&err, trx, thr, NULL);
if (was_lock_wait) {
goto run_again;
}
} else {
que_thr_t* run_thr;
que_node_t* parent;
parent = que_node_get_parent(thr);
run_thr = que_fork_start_command(
static_cast<que_fork_t*>(parent));
ut_a(run_thr == thr);
/* There was a lock wait but the thread was not
in a ready to run or running state. */
trx->error_state = DB_LOCK_WAIT;
goto run_again;
}
}
que_graph_free(thr->graph);
trx->op_info = "";
return(err);
}
/*=========================== LOCK RELEASE ==============================*/
static
void
lock_grant_and_move_on_rec(
hash_table_t* lock_hash,
lock_t* first_lock,
ulint heap_no)
{
lock_t* lock;
lock_t* previous;
ulint space;
ulint page_no;
ulint rec_fold;
space = first_lock->un_member.rec_lock.space;
page_no = first_lock->un_member.rec_lock.page_no;
rec_fold = lock_rec_fold(space, page_no);
previous = (lock_t *) hash_get_nth_cell(lock_hash,
hash_calc_hash(rec_fold, lock_hash))->node;
if (previous == NULL) {
return;
}
if (previous == first_lock) {
lock = previous;
} else {
while (previous->hash &&
previous->hash != first_lock) {
previous = previous->hash;
}
lock = previous->hash;
}
/* Grant locks if there are no conflicting locks ahead.
Move granted locks to the head of the list. */
for (;lock != NULL;) {
/* If the lock is a wait lock on this page, and it does not need to wait. */
if (lock->un_member.rec_lock.space == space
&& lock->un_member.rec_lock.page_no == page_no
&& lock_rec_get_nth_bit(lock, heap_no)
&& lock_get_wait(lock)
&& !lock_rec_has_to_wait_in_queue(lock)) {
lock_grant(lock, false);
if (previous != NULL) {
/* Move the lock to the head of the list. */
HASH_GET_NEXT(hash, previous) = HASH_GET_NEXT(hash, lock);
lock_rec_insert_to_head(lock, rec_fold);
} else {
/* Already at the head of the list. */
previous = lock;
}
/* Move on to the next lock. */
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, previous));
} else {
previous = lock;
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, lock));
}
}
}
/*************************************************************//**
Removes a granted record lock of a transaction from the queue and grants
locks to other transactions waiting in the queue if they now are entitled
to a lock. */
void
lock_rec_unlock(
/*============*/
trx_t* trx, /*!< in/out: transaction that has
set a record lock */
const buf_block_t* block, /*!< in: buffer block containing rec */
const rec_t* rec, /*!< in: record */
lock_mode lock_mode)/*!< in: LOCK_S or LOCK_X */
{
lock_t* first_lock;
lock_t* lock;
ulint heap_no;
ut_ad(trx);
ut_ad(rec);
ut_ad(block->frame == page_align(rec));
ut_ad(!trx->lock.wait_lock);
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
heap_no = page_rec_get_heap_no(rec);
lock_mutex_enter();
trx_mutex_enter(trx);
first_lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
/* Find the last lock with the same lock_mode and transaction
on the record. */
for (lock = first_lock; lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) {
if (lock->trx == trx && lock_get_mode(lock) == lock_mode) {
goto released;
}
}
lock_mutex_exit();
trx_mutex_exit(trx);
{
ib::error err;
err << "Unlock row could not find a " << lock_mode
<< " mode lock on the record. Current statement: ";
size_t stmt_len;
if (const char* stmt = innobase_get_stmt_unsafe(
trx->mysql_thd, &stmt_len)) {
err.write(stmt, stmt_len);
}
}
return;
released:
ut_a(!lock_get_wait(lock));
lock_rec_reset_nth_bit(lock, heap_no);
if (innodb_lock_schedule_algorithm
== INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS ||
thd_is_replication_slave_thread(lock->trx->mysql_thd)) {
/* Check if we can now grant waiting lock requests */
for (lock = first_lock; lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) {
if (lock_get_wait(lock)
&& !lock_rec_has_to_wait_in_queue(lock)) {
/* Grant the lock */
ut_ad(trx != lock->trx);
lock_grant(lock, false);
}
}
} else {
lock_grant_and_move_on_rec(lock_sys->rec_hash, first_lock, heap_no);
}
lock_mutex_exit();
trx_mutex_exit(trx);
}
#ifdef UNIV_DEBUG
/*********************************************************************//**
Check if a transaction that has X or IX locks has set the dict_op
code correctly. */
static
void
lock_check_dict_lock(
/*==================*/
const lock_t* lock) /*!< in: lock to check */
{
if (lock_get_type_low(lock) == LOCK_REC) {
/* Check if the transcation locked a record
in a system table in X mode. It should have set
the dict_op code correctly if it did. */
if (lock->index->table->id < DICT_HDR_FIRST_ID
&& lock_get_mode(lock) == LOCK_X) {
ut_ad(lock_get_mode(lock) != LOCK_IX);
ut_ad(lock->trx->dict_operation != TRX_DICT_OP_NONE);
}
} else {
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
const dict_table_t* table;
table = lock->un_member.tab_lock.table;
/* Check if the transcation locked a system table
in IX mode. It should have set the dict_op code
correctly if it did. */
if (table->id < DICT_HDR_FIRST_ID
&& (lock_get_mode(lock) == LOCK_X
|| lock_get_mode(lock) == LOCK_IX)) {
ut_ad(lock->trx->dict_operation != TRX_DICT_OP_NONE);
}
}
}
#endif /* UNIV_DEBUG */
/*********************************************************************//**
Releases transaction locks, and releases possible other transactions waiting
because of these locks. */
static
void
lock_release(
/*=========*/
trx_t* trx) /*!< in/out: transaction */
{
lock_t* lock;
ulint count = 0;
trx_id_t max_trx_id = trx_sys_get_max_trx_id();
ut_ad(lock_mutex_own());
ut_ad(!trx_mutex_own(trx));
for (lock = UT_LIST_GET_LAST(trx->lock.trx_locks);
lock != NULL;
lock = UT_LIST_GET_LAST(trx->lock.trx_locks)) {
ut_d(lock_check_dict_lock(lock));
if (lock_get_type_low(lock) == LOCK_REC) {
lock_rec_dequeue_from_page(lock);
} else {
dict_table_t* table;
table = lock->un_member.tab_lock.table;
if (lock_get_mode(lock) != LOCK_IS
&& trx->undo_no != 0) {
/* The trx may have modified the table. We
block the use of the MySQL query cache for
all currently active transactions. */
table->query_cache_inv_id = max_trx_id;
}
lock_table_dequeue(lock);
}
if (count == LOCK_RELEASE_INTERVAL) {
/* Release the mutex for a while, so that we
do not monopolize it */
lock_mutex_exit();
lock_mutex_enter();
count = 0;
}
++count;
}
}
/* True if a lock mode is S or X */
#define IS_LOCK_S_OR_X(lock) \
(lock_get_mode(lock) == LOCK_S \
|| lock_get_mode(lock) == LOCK_X)
/*********************************************************************//**
Removes table locks of the transaction on a table to be dropped. */
static
void
lock_trx_table_locks_remove(
/*========================*/
const lock_t* lock_to_remove) /*!< in: lock to remove */
{
trx_t* trx = lock_to_remove->trx;
ut_ad(lock_mutex_own());
/* It is safe to read this because we are holding the lock mutex */
if (!trx->lock.cancel) {
trx_mutex_enter(trx);
} else {
ut_ad(trx_mutex_own(trx));
}
typedef lock_pool_t::reverse_iterator iterator;
iterator end = trx->lock.table_locks.rend();
for (iterator it = trx->lock.table_locks.rbegin(); it != end; ++it) {
const lock_t* lock = *it;
if (lock == NULL) {
continue;
}
ut_a(trx == lock->trx);
ut_a(lock_get_type_low(lock) & LOCK_TABLE);
ut_a(lock->un_member.tab_lock.table != NULL);
if (lock == lock_to_remove) {
*it = NULL;
if (!trx->lock.cancel) {
trx_mutex_exit(trx);
}
return;
}
}
if (!trx->lock.cancel) {
trx_mutex_exit(trx);
}
/* Lock must exist in the vector. */
ut_error;
}
/*********************************************************************//**
Removes locks of a transaction on a table to be dropped.
If remove_also_table_sx_locks is TRUE then table-level S and X locks are
also removed in addition to other table-level and record-level locks.
No lock that is going to be removed is allowed to be a wait lock. */
static
void
lock_remove_all_on_table_for_trx(
/*=============================*/
dict_table_t* table, /*!< in: table to be dropped */
trx_t* trx, /*!< in: a transaction */
ibool remove_also_table_sx_locks)/*!< in: also removes
table S and X locks */
{
lock_t* lock;
lock_t* prev_lock;
ut_ad(lock_mutex_own());
for (lock = UT_LIST_GET_LAST(trx->lock.trx_locks);
lock != NULL;
lock = prev_lock) {
prev_lock = UT_LIST_GET_PREV(trx_locks, lock);
if (lock_get_type_low(lock) == LOCK_REC
&& lock->index->table == table) {
ut_a(!lock_get_wait(lock));
lock_rec_discard(lock);
} else if (lock_get_type_low(lock) & LOCK_TABLE
&& lock->un_member.tab_lock.table == table
&& (remove_also_table_sx_locks
|| !IS_LOCK_S_OR_X(lock))) {
ut_a(!lock_get_wait(lock));
lock_trx_table_locks_remove(lock);
lock_table_remove_low(lock);
}
}
}
/*******************************************************************//**
Remove any explicit record locks held by recovering transactions on
the table.
@return number of recovered transactions examined */
static
ulint
lock_remove_recovered_trx_record_locks(
/*===================================*/
dict_table_t* table) /*!< in: check if there are any locks
held on records in this table or on the
table itself */
{
ut_a(table != NULL);
ut_ad(lock_mutex_own());
ulint n_recovered_trx = 0;
mutex_enter(&trx_sys->mutex);
for (trx_t* trx = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
assert_trx_in_rw_list(trx);
if (!trx->is_recovered) {
continue;
}
/* Because we are holding the lock_sys->mutex,
implicit locks cannot be converted to explicit ones
while we are scanning the explicit locks. */
lock_t* next_lock;
for (lock_t* lock = UT_LIST_GET_FIRST(trx->lock.trx_locks);
lock != NULL;
lock = next_lock) {
ut_a(lock->trx == trx);
/* Recovered transactions can't wait on a lock. */
ut_a(!lock_get_wait(lock));
next_lock = UT_LIST_GET_NEXT(trx_locks, lock);
switch (lock_get_type_low(lock)) {
default:
ut_error;
case LOCK_TABLE:
if (lock->un_member.tab_lock.table == table) {
lock_trx_table_locks_remove(lock);
lock_table_remove_low(lock);
}
break;
case LOCK_REC:
if (lock->index->table == table) {
lock_rec_discard(lock);
}
}
}
++n_recovered_trx;
}
mutex_exit(&trx_sys->mutex);
return(n_recovered_trx);
}
/*********************************************************************//**
Removes locks on a table to be dropped or truncated.
If remove_also_table_sx_locks is TRUE then table-level S and X locks are
also removed in addition to other table-level and record-level locks.
No lock, that is going to be removed, is allowed to be a wait lock. */
void
lock_remove_all_on_table(
/*=====================*/
dict_table_t* table, /*!< in: table to be dropped
or truncated */
ibool remove_also_table_sx_locks)/*!< in: also removes
table S and X locks */
{
lock_t* lock;
lock_mutex_enter();
for (lock = UT_LIST_GET_FIRST(table->locks);
lock != NULL;
/* No op */) {
lock_t* prev_lock;
prev_lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock);
/* If we should remove all locks (remove_also_table_sx_locks
is TRUE), or if the lock is not table-level S or X lock,
then check we are not going to remove a wait lock. */
if (remove_also_table_sx_locks
|| !(lock_get_type(lock) == LOCK_TABLE
&& IS_LOCK_S_OR_X(lock))) {
ut_a(!lock_get_wait(lock));
}
lock_remove_all_on_table_for_trx(
table, lock->trx, remove_also_table_sx_locks);
if (prev_lock == NULL) {
if (lock == UT_LIST_GET_FIRST(table->locks)) {
/* lock was not removed, pick its successor */
lock = UT_LIST_GET_NEXT(
un_member.tab_lock.locks, lock);
} else {
/* lock was removed, pick the first one */
lock = UT_LIST_GET_FIRST(table->locks);
}
} else if (UT_LIST_GET_NEXT(un_member.tab_lock.locks,
prev_lock) != lock) {
/* If lock was removed by
lock_remove_all_on_table_for_trx() then pick the
successor of prev_lock ... */
lock = UT_LIST_GET_NEXT(
un_member.tab_lock.locks, prev_lock);
} else {
/* ... otherwise pick the successor of lock. */
lock = UT_LIST_GET_NEXT(
un_member.tab_lock.locks, lock);
}
}
/* Note: Recovered transactions don't have table level IX or IS locks
but can have implicit record locks that have been converted to explicit
record locks. Such record locks cannot be freed by traversing the
transaction lock list in dict_table_t (as above). */
if (!lock_sys->rollback_complete
&& lock_remove_recovered_trx_record_locks(table) == 0) {
lock_sys->rollback_complete = TRUE;
}
lock_mutex_exit();
}
/*===================== VALIDATION AND DEBUGGING ====================*/
/** Print info of a table lock.
@param[in,out] file output stream
@param[in] lock table lock */
static
void
lock_table_print(FILE* file, const lock_t* lock)
{
ut_ad(lock_mutex_own());
ut_a(lock_get_type_low(lock) == LOCK_TABLE);
fputs("TABLE LOCK table ", file);
ut_print_name(file, lock->trx,
lock->un_member.tab_lock.table->name.m_name);
fprintf(file, " trx id " TRX_ID_FMT, trx_get_id_for_print(lock->trx));
if (lock_get_mode(lock) == LOCK_S) {
fputs(" lock mode S", file);
} else if (lock_get_mode(lock) == LOCK_X) {
ut_ad(lock->trx->id != 0);
fputs(" lock mode X", file);
} else if (lock_get_mode(lock) == LOCK_IS) {
fputs(" lock mode IS", file);
} else if (lock_get_mode(lock) == LOCK_IX) {
ut_ad(lock->trx->id != 0);
fputs(" lock mode IX", file);
} else if (lock_get_mode(lock) == LOCK_AUTO_INC) {
fputs(" lock mode AUTO-INC", file);
} else {
fprintf(file, " unknown lock mode %lu",
(ulong) lock_get_mode(lock));
}
if (lock_get_wait(lock)) {
fputs(" waiting", file);
}
putc('\n', file);
}
/** Print info of a record lock.
@param[in,out] file output stream
@param[in] lock record lock */
static
void
lock_rec_print(FILE* file, const lock_t* lock)
{
ulint space;
ulint page_no;
mtr_t mtr;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
ut_ad(lock_mutex_own());
ut_a(lock_get_type_low(lock) == LOCK_REC);
space = lock->un_member.rec_lock.space;
page_no = lock->un_member.rec_lock.page_no;
fprintf(file, "RECORD LOCKS space id %lu page no %lu n bits %lu "
"index %s of table ",
(ulong) space, (ulong) page_no,
(ulong) lock_rec_get_n_bits(lock),
lock->index->name());
ut_print_name(file, lock->trx, lock->index->table_name);
fprintf(file, " trx id " TRX_ID_FMT, trx_get_id_for_print(lock->trx));
if (lock_get_mode(lock) == LOCK_S) {
fputs(" lock mode S", file);
} else if (lock_get_mode(lock) == LOCK_X) {
fputs(" lock_mode X", file);
} else {
ut_error;
}
if (lock_rec_get_gap(lock)) {
fputs(" locks gap before rec", file);
}
if (lock_rec_get_rec_not_gap(lock)) {
fputs(" locks rec but not gap", file);
}
if (lock_rec_get_insert_intention(lock)) {
fputs(" insert intention", file);
}
if (lock_get_wait(lock)) {
fputs(" waiting", file);
}
mtr_start(&mtr);
putc('\n', file);
const buf_block_t* block;
block = buf_page_try_get(page_id_t(space, page_no), &mtr);
for (ulint i = 0; i < lock_rec_get_n_bits(lock); ++i) {
if (!lock_rec_get_nth_bit(lock, i)) {
continue;
}
fprintf(file, "Record lock, heap no %lu", (ulong) i);
if (block) {
const rec_t* rec;
rec = page_find_rec_with_heap_no(
buf_block_get_frame(block), i);
offsets = rec_get_offsets(
rec, lock->index, offsets,
ULINT_UNDEFINED, &heap);
putc(' ', file);
rec_print_new(file, rec, offsets);
}
putc('\n', file);
}
mtr_commit(&mtr);
if (heap) {
mem_heap_free(heap);
}
}
#ifdef UNIV_DEBUG
/* Print the number of lock structs from lock_print_info_summary() only
in non-production builds for performance reasons, see
http://bugs.mysql.com/36942 */
#define PRINT_NUM_OF_LOCK_STRUCTS
#endif /* UNIV_DEBUG */
#ifdef PRINT_NUM_OF_LOCK_STRUCTS
/*********************************************************************//**
Calculates the number of record lock structs in the record lock hash table.
@return number of record locks */
static
ulint
lock_get_n_rec_locks(void)
/*======================*/
{
ulint n_locks = 0;
ulint i;
ut_ad(lock_mutex_own());
for (i = 0; i < hash_get_n_cells(lock_sys->rec_hash); i++) {
const lock_t* lock;
for (lock = static_cast<const lock_t*>(
HASH_GET_FIRST(lock_sys->rec_hash, i));
lock != 0;
lock = static_cast<const lock_t*>(
HASH_GET_NEXT(hash, lock))) {
n_locks++;
}
}
return(n_locks);
}
#endif /* PRINT_NUM_OF_LOCK_STRUCTS */
/*********************************************************************//**
Prints info of locks for all transactions.
@return FALSE if not able to obtain lock mutex
and exits without printing info */
ibool
lock_print_info_summary(
/*====================*/
FILE* file, /*!< in: file where to print */
ibool nowait) /*!< in: whether to wait for the lock mutex */
{
/* if nowait is FALSE, wait on the lock mutex,
otherwise return immediately if fail to obtain the
mutex. */
if (!nowait) {
lock_mutex_enter();
} else if (lock_mutex_enter_nowait()) {
fputs("FAIL TO OBTAIN LOCK MUTEX,"
" SKIP LOCK INFO PRINTING\n", file);
return(FALSE);
}
if (lock_deadlock_found) {
fputs("------------------------\n"
"LATEST DETECTED DEADLOCK\n"
"------------------------\n", file);
if (!srv_read_only_mode) {
ut_copy_file(file, lock_latest_err_file);
}
}
fputs("------------\n"
"TRANSACTIONS\n"
"------------\n", file);
fprintf(file, "Trx id counter " TRX_ID_FMT "\n",
trx_sys_get_max_trx_id());
fprintf(file,
"Purge done for trx's n:o < " TRX_ID_FMT
" undo n:o < " TRX_ID_FMT " state: ",
purge_sys->iter.trx_no,
purge_sys->iter.undo_no);
/* Note: We are reading the state without the latch. One because it
will violate the latching order and two because we are merely querying
the state of the variable for display. */
switch (purge_sys->state){
case PURGE_STATE_INIT:
/* Should never be in this state while the system is running. */
ut_error;
case PURGE_STATE_EXIT:
fprintf(file, "exited");
break;
case PURGE_STATE_DISABLED:
fprintf(file, "disabled");
break;
case PURGE_STATE_RUN:
fprintf(file, "running");
/* Check if it is waiting for more data to arrive. */
if (!purge_sys->running) {
fprintf(file, " but idle");
}
break;
case PURGE_STATE_STOP:
fprintf(file, "stopped");
break;
}
fprintf(file, "\n");
fprintf(file,
"History list length %lu\n",
(ulong) trx_sys->rseg_history_len);
#ifdef PRINT_NUM_OF_LOCK_STRUCTS
fprintf(file,
"Total number of lock structs in row lock hash table %lu\n",
(ulong) lock_get_n_rec_locks());
#endif /* PRINT_NUM_OF_LOCK_STRUCTS */
return(TRUE);
}
/** Functor to print not-started transaction from the mysql_trx_list. */
struct PrintNotStarted {
PrintNotStarted(FILE* file) : m_file(file) { }
void operator()(const trx_t* trx)
{
ut_ad(trx->in_mysql_trx_list);
ut_ad(mutex_own(&trx_sys->mutex));
/* See state transitions and locking rules in trx0trx.h */
if (trx_state_eq(trx, TRX_STATE_NOT_STARTED)) {
fputs("---", m_file);
trx_print_latched(m_file, trx, 600);
}
}
FILE* m_file;
};
/** Iterate over a transaction's locks. Keeping track of the
iterator using an ordinal value. */
class TrxLockIterator {
public:
TrxLockIterator() { rewind(); }
/** Get the m_index(th) lock of a transaction.
@return current lock or 0 */
const lock_t* current(const trx_t* trx) const
{
lock_t* lock;
ulint i = 0;
for (lock = UT_LIST_GET_FIRST(trx->lock.trx_locks);
lock != NULL && i < m_index;
lock = UT_LIST_GET_NEXT(trx_locks, lock), ++i) {
/* No op */
}
return(lock);
}
/** Set the ordinal value to 0 */
void rewind()
{
m_index = 0;
}
/** Increment the ordinal value.
@retun the current index value */
ulint next()
{
return(++m_index);
}
private:
/** Current iterator position */
ulint m_index;
};
/** This iterates over both the RW and RO trx_sys lists. We need to keep
track where the iterator was up to and we do that using an ordinal value. */
class TrxListIterator {
public:
TrxListIterator() : m_index()
{
/* We iterate over the RW trx list first. */
m_trx_list = &trx_sys->rw_trx_list;
}
/** Get the current transaction whose ordinality is m_index.
@return current transaction or 0 */
const trx_t* current()
{
return(reposition());
}
/** Advance the transaction current ordinal value and reset the
transaction lock ordinal value */
void next()
{
++m_index;
m_lock_iter.rewind();
}
TrxLockIterator& lock_iter()
{
return(m_lock_iter);
}
private:
/** Reposition the "cursor" on the current transaction. If it
is the first time then the "cursor" will be positioned on the
first transaction.
@return transaction instance or 0 */
const trx_t* reposition() const
{
ulint i;
trx_t* trx;
/* Make the transaction at the ordinal value of m_index
the current transaction. ie. reposition/restore */
for (i = 0, trx = UT_LIST_GET_FIRST(*m_trx_list);
trx != NULL && (i < m_index);
trx = UT_LIST_GET_NEXT(trx_list, trx), ++i) {
check_trx_state(trx);
}
return(trx);
}
/** Ordinal value of the transaction in the current transaction list */
ulint m_index;
/** Current transaction list */
trx_ut_list_t* m_trx_list;
/** For iterating over a transaction's locks */
TrxLockIterator m_lock_iter;
};
/** Prints transaction lock wait and MVCC state.
@param[in,out] file file where to print
@param[in] trx transaction */
void
lock_trx_print_wait_and_mvcc_state(
FILE* file,
const trx_t* trx)
{
fprintf(file, "---");
trx_print_latched(file, trx, 600);
const ReadView* read_view = trx_get_read_view(trx);
if (read_view != NULL) {
read_view->print_limits(file);
}
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
fprintf(file,
"------- TRX HAS BEEN WAITING %lu SEC"
" FOR THIS LOCK TO BE GRANTED:\n",
(ulong) difftime(ut_time(), trx->lock.wait_started));
if (lock_get_type_low(trx->lock.wait_lock) == LOCK_REC) {
lock_rec_print(file, trx->lock.wait_lock);
} else {
lock_table_print(file, trx->lock.wait_lock);
}
fprintf(file, "------------------\n");
}
}
/*********************************************************************//**
Prints info of locks for a transaction. This function will release the
lock mutex and the trx_sys_t::mutex if the page was read from disk.
@return true if page was read from the tablespace */
static
bool
lock_rec_fetch_page(
/*================*/
const lock_t* lock) /*!< in: record lock */
{
ut_ad(lock_get_type_low(lock) == LOCK_REC);
ulint space_id = lock->un_member.rec_lock.space;
fil_space_t* space;
bool found;
const page_size_t& page_size = fil_space_get_page_size(space_id,
&found);
ulint page_no = lock->un_member.rec_lock.page_no;
/* Check if the .ibd file exists. */
if (found) {
mtr_t mtr;
lock_mutex_exit();
mutex_exit(&trx_sys->mutex);
DEBUG_SYNC_C("innodb_monitor_before_lock_page_read");
/* Check if the space is exists or not. only
when the space is valid, try to get the page. */
space = fil_space_acquire(space_id);
if (space) {
dberr_t err = DB_SUCCESS;
mtr_start(&mtr);
buf_page_get_gen(
page_id_t(space_id, page_no), page_size,
RW_NO_LATCH, NULL,
BUF_GET_POSSIBLY_FREED,
__FILE__, __LINE__, &mtr, &err);
mtr_commit(&mtr);
fil_space_release(space);
}
lock_mutex_enter();
mutex_enter(&trx_sys->mutex);
return(true);
}
return(false);
}
/*********************************************************************//**
Prints info of locks for a transaction.
@return true if all printed, false if latches were released. */
static
bool
lock_trx_print_locks(
/*=================*/
FILE* file, /*!< in/out: File to write */
const trx_t* trx, /*!< in: current transaction */
TrxLockIterator&iter, /*!< in: transaction lock iterator */
bool load_block) /*!< in: if true then read block
from disk */
{
const lock_t* lock;
/* Iterate over the transaction's locks. */
while ((lock = iter.current(trx)) != 0) {
if (lock_get_type_low(lock) == LOCK_REC) {
if (load_block) {
/* Note: lock_rec_fetch_page() will
release both the lock mutex and the
trx_sys_t::mutex if it does a read
from disk. */
if (lock_rec_fetch_page(lock)) {
/* We need to resync the
current transaction. */
return(false);
}
/* It is a single table tablespace
and the .ibd file is missing
(TRUNCATE TABLE probably stole the
locks): just print the lock without
attempting to load the page in the
buffer pool. */
fprintf(file,
"RECORD LOCKS on non-existing"
" space %u\n",
lock->un_member.rec_lock.space);
}
/* Print all the record locks on the page from
the record lock bitmap */
lock_rec_print(file, lock);
load_block = true;
} else {
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
lock_table_print(file, lock);
}
if (iter.next() >= 10) {
fprintf(file,
"10 LOCKS PRINTED FOR THIS TRX:"
" SUPPRESSING FURTHER PRINTS\n");
break;
}
}
return(true);
}
/*********************************************************************//**
Prints info of locks for each transaction. This function assumes that the
caller holds the lock mutex and more importantly it will release the lock
mutex on behalf of the caller. (This should be fixed in the future). */
void
lock_print_info_all_transactions(
/*=============================*/
FILE* file) /*!< in/out: file where to print */
{
ut_ad(lock_mutex_own());
fprintf(file, "LIST OF TRANSACTIONS FOR EACH SESSION:\n");
mutex_enter(&trx_sys->mutex);
/* First print info on non-active transactions */
/* NOTE: information of auto-commit non-locking read-only
transactions will be omitted here. The information will be
available from INFORMATION_SCHEMA.INNODB_TRX. */
PrintNotStarted print_not_started(file);
ut_list_map(trx_sys->mysql_trx_list, print_not_started);
const trx_t* trx;
TrxListIterator trx_iter;
const trx_t* prev_trx = 0;
/* Control whether a block should be fetched from the buffer pool. */
bool load_block = true;
bool monitor = srv_print_innodb_lock_monitor;
while ((trx = trx_iter.current()) != 0) {
check_trx_state(trx);
if (trx != prev_trx) {
lock_trx_print_wait_and_mvcc_state(file, trx);
prev_trx = trx;
/* The transaction that read in the page is no
longer the one that read the page in. We need to
force a page read. */
load_block = true;
}
/* If we need to print the locked record contents then we
need to fetch the containing block from the buffer pool. */
if (monitor) {
/* Print the locks owned by the current transaction. */
TrxLockIterator& lock_iter = trx_iter.lock_iter();
if (!lock_trx_print_locks(
file, trx, lock_iter, load_block)) {
/* Resync trx_iter, the trx_sys->mutex and
the lock mutex were released. A page was
successfully read in. We need to print its
contents on the next call to
lock_trx_print_locks(). On the next call to
lock_trx_print_locks() we should simply print
the contents of the page just read in.*/
load_block = false;
continue;
}
}
load_block = true;
/* All record lock details were printed without fetching
a page from disk, or we didn't need to print the detail. */
trx_iter.next();
}
lock_mutex_exit();
mutex_exit(&trx_sys->mutex);
ut_ad(lock_validate());
}
#ifdef UNIV_DEBUG
/*********************************************************************//**
Find the the lock in the trx_t::trx_lock_t::table_locks vector.
@return true if found */
static
bool
lock_trx_table_locks_find(
/*======================*/
trx_t* trx, /*!< in: trx to validate */
const lock_t* find_lock) /*!< in: lock to find */
{
bool found = false;
trx_mutex_enter(trx);
typedef lock_pool_t::const_reverse_iterator iterator;
iterator end = trx->lock.table_locks.rend();
for (iterator it = trx->lock.table_locks.rbegin(); it != end; ++it) {
const lock_t* lock = *it;
if (lock == NULL) {
continue;
} else if (lock == find_lock) {
/* Can't be duplicates. */
ut_a(!found);
found = true;
}
ut_a(trx == lock->trx);
ut_a(lock_get_type_low(lock) & LOCK_TABLE);
ut_a(lock->un_member.tab_lock.table != NULL);
}
trx_mutex_exit(trx);
return(found);
}
/*********************************************************************//**
Validates the lock queue on a table.
@return TRUE if ok */
static
ibool
lock_table_queue_validate(
/*======================*/
const dict_table_t* table) /*!< in: table */
{
const lock_t* lock;
ut_ad(lock_mutex_own());
ut_ad(trx_sys_mutex_own());
for (lock = UT_LIST_GET_FIRST(table->locks);
lock != NULL;
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) {
/* lock->trx->state cannot change from or to NOT_STARTED
while we are holding the trx_sys->mutex. It may change
from ACTIVE to PREPARED, but it may not change to
COMMITTED, because we are holding the lock_sys->mutex. */
ut_ad(trx_assert_started(lock->trx));
if (!lock_get_wait(lock)) {
ut_a(!lock_table_other_has_incompatible(
lock->trx, 0, table,
lock_get_mode(lock)));
} else {
ut_a(lock_table_has_to_wait_in_queue(lock));
}
ut_a(lock_trx_table_locks_find(lock->trx, lock));
}
return(TRUE);
}
/*********************************************************************//**
Validates the lock queue on a single record.
@return TRUE if ok */
static
ibool
lock_rec_queue_validate(
/*====================*/
ibool locked_lock_trx_sys,
/*!< in: if the caller holds
both the lock mutex and
trx_sys_t->lock. */
const buf_block_t* block, /*!< in: buffer block containing rec */
const rec_t* rec, /*!< in: record to look at */
const dict_index_t* index, /*!< in: index, or NULL if not known */
const ulint* offsets)/*!< in: rec_get_offsets(rec, index) */
{
const trx_t* impl_trx;
const lock_t* lock;
ulint heap_no;
ut_a(rec);
ut_a(block->frame == page_align(rec));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(!page_rec_is_comp(rec) == !rec_offs_comp(offsets));
ut_ad(lock_mutex_own() == locked_lock_trx_sys);
ut_ad(!index || dict_index_is_clust(index)
|| !dict_index_is_online_ddl(index));
heap_no = page_rec_get_heap_no(rec);
if (!locked_lock_trx_sys) {
lock_mutex_enter();
mutex_enter(&trx_sys->mutex);
}
if (!page_rec_is_user_rec(rec)) {
for (lock = lock_rec_get_first(lock_sys->rec_hash,
block, heap_no);
lock != NULL;
lock = lock_rec_get_next_const(heap_no, lock)) {
ut_ad(!trx_is_ac_nl_ro(lock->trx));
if (lock_get_wait(lock)) {
ut_a(lock_rec_has_to_wait_in_queue(lock));
}
if (index != NULL) {
ut_a(lock->index == index);
}
}
goto func_exit;
}
if (index == NULL) {
/* Nothing we can do */
} else if (dict_index_is_clust(index)) {
trx_id_t trx_id;
/* Unlike the non-debug code, this invariant can only succeed
if the check and assertion are covered by the lock mutex. */
trx_id = lock_clust_rec_some_has_impl(rec, index, offsets);
impl_trx = trx_rw_is_active_low(trx_id, NULL);
ut_ad(lock_mutex_own());
/* impl_trx cannot be committed until lock_mutex_exit()
because lock_trx_release_locks() acquires lock_sys->mutex */
if (impl_trx != NULL) {
const lock_t* other_lock
= lock_rec_other_has_expl_req(
LOCK_S, block, true, heap_no,
impl_trx);
/* The impl_trx is holding an implicit lock on the
given record 'rec'. So there cannot be another
explicit granted lock. Also, there can be another
explicit waiting lock only if the impl_trx has an
explicit granted lock. */
if (other_lock != NULL) {
#ifdef WITH_WSREP
if (wsrep_on(other_lock->trx->mysql_thd) && !lock_get_wait(other_lock) ) {
ib::info() << "WSREP impl BF lock conflict for my impl lock:\n BF:" <<
((wsrep_thd_is_BF(impl_trx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
wsrep_thd_exec_mode(impl_trx->mysql_thd) << " conflict: " <<
wsrep_thd_conflict_state(impl_trx->mysql_thd, false) << " seqno: " <<
wsrep_thd_trx_seqno(impl_trx->mysql_thd) << " SQL: " <<
wsrep_thd_query(impl_trx->mysql_thd);
trx_t* otrx = other_lock->trx;
ib::info() << "WSREP other lock:\n BF:" <<
((wsrep_thd_is_BF(otrx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
wsrep_thd_exec_mode(otrx->mysql_thd) << " conflict: " <<
wsrep_thd_conflict_state(otrx->mysql_thd, false) << " seqno: " <<
wsrep_thd_trx_seqno(otrx->mysql_thd) << " SQL: " <<
wsrep_thd_query(otrx->mysql_thd);
}
if (wsrep_on(other_lock->trx->mysql_thd) && !lock_rec_has_expl(
LOCK_X | LOCK_REC_NOT_GAP,
block, heap_no, impl_trx)) {
ib::info() << "WSREP impl BF lock conflict";
}
#else /* !WITH_WSREP */
ut_a(lock_get_wait(other_lock));
ut_a(lock_rec_has_expl(
LOCK_X | LOCK_REC_NOT_GAP,
block, heap_no, impl_trx));
#endif /* WITH_WSREP */
}
}
}
for (lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
lock != NULL;
lock = lock_rec_get_next_const(heap_no, lock)) {
ut_ad(!trx_is_ac_nl_ro(lock->trx));
if (index) {
ut_a(lock->index == index);
}
if (!lock_rec_get_gap(lock) && !lock_get_wait(lock)) {
lock_mode mode;
if (lock_get_mode(lock) == LOCK_S) {
mode = LOCK_X;
} else {
mode = LOCK_S;
}
const lock_t* other_lock
= lock_rec_other_has_expl_req(
mode, block, false, heap_no,
lock->trx);
#ifdef WITH_WSREP
ut_a(!other_lock
|| wsrep_thd_is_BF(lock->trx->mysql_thd, FALSE)
|| wsrep_thd_is_BF(other_lock->trx->mysql_thd, FALSE));
#else
ut_a(!other_lock);
#endif /* WITH_WSREP */
} else if (lock_get_wait(lock) && !lock_rec_get_gap(lock)) {
ut_a(lock_rec_has_to_wait_in_queue(lock));
}
}
ut_ad(innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS ||
lock_queue_validate(lock));
func_exit:
if (!locked_lock_trx_sys) {
lock_mutex_exit();
mutex_exit(&trx_sys->mutex);
}
return(TRUE);
}
/*********************************************************************//**
Validates the record lock queues on a page.
@return TRUE if ok */
static
ibool
lock_rec_validate_page(
/*===================*/
const buf_block_t* block) /*!< in: buffer block */
{
const lock_t* lock;
const rec_t* rec;
ulint nth_lock = 0;
ulint nth_bit = 0;
ulint i;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
ut_ad(!lock_mutex_own());
lock_mutex_enter();
mutex_enter(&trx_sys->mutex);
loop:
lock = lock_rec_get_first_on_page_addr(
lock_sys->rec_hash,
block->page.id.space(), block->page.id.page_no());
if (!lock) {
goto function_exit;
}
ut_ad(!block->page.file_page_was_freed);
for (i = 0; i < nth_lock; i++) {
lock = lock_rec_get_next_on_page_const(lock);
if (!lock) {
goto function_exit;
}
}
ut_ad(!trx_is_ac_nl_ro(lock->trx));
# ifdef UNIV_DEBUG
/* Only validate the record queues when this thread is not
holding a space->latch. Deadlocks are possible due to
latching order violation when UNIV_DEBUG is defined while
UNIV_DEBUG is not. */
if (!sync_check_find(SYNC_FSP))
# endif /* UNIV_DEBUG */
for (i = nth_bit; i < lock_rec_get_n_bits(lock); i++) {
if (i == 1 || lock_rec_get_nth_bit(lock, i)) {
rec = page_find_rec_with_heap_no(block->frame, i);
ut_a(rec);
offsets = rec_get_offsets(rec, lock->index, offsets,
ULINT_UNDEFINED, &heap);
/* If this thread is holding the file space
latch (fil_space_t::latch), the following
check WILL break the latching order and may
cause a deadlock of threads. */
lock_rec_queue_validate(
TRUE, block, rec, lock->index, offsets);
nth_bit = i + 1;
goto loop;
}
}
nth_bit = 0;
nth_lock++;
goto loop;
function_exit:
lock_mutex_exit();
mutex_exit(&trx_sys->mutex);
if (heap != NULL) {
mem_heap_free(heap);
}
return(TRUE);
}
/*********************************************************************//**
Validates the table locks.
@return TRUE if ok */
static
ibool
lock_validate_table_locks(
/*======================*/
const trx_ut_list_t* trx_list) /*!< in: trx list */
{
const trx_t* trx;
ut_ad(lock_mutex_own());
ut_ad(trx_sys_mutex_own());
ut_ad(trx_list == &trx_sys->rw_trx_list);
for (trx = UT_LIST_GET_FIRST(*trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
const lock_t* lock;
check_trx_state(trx);
for (lock = UT_LIST_GET_FIRST(trx->lock.trx_locks);
lock != NULL;
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
if (lock_get_type_low(lock) & LOCK_TABLE) {
lock_table_queue_validate(
lock->un_member.tab_lock.table);
}
}
}
return(TRUE);
}
/*********************************************************************//**
Validate record locks up to a limit.
@return lock at limit or NULL if no more locks in the hash bucket */
static MY_ATTRIBUTE((warn_unused_result))
const lock_t*
lock_rec_validate(
/*==============*/
ulint start, /*!< in: lock_sys->rec_hash
bucket */
ib_uint64_t* limit) /*!< in/out: upper limit of
(space, page_no) */
{
ut_ad(lock_mutex_own());
ut_ad(trx_sys_mutex_own());
for (const lock_t* lock = static_cast<const lock_t*>(
HASH_GET_FIRST(lock_sys->rec_hash, start));
lock != NULL;
lock = static_cast<const lock_t*>(HASH_GET_NEXT(hash, lock))) {
ib_uint64_t current;
ut_ad(!trx_is_ac_nl_ro(lock->trx));
ut_ad(lock_get_type(lock) == LOCK_REC);
current = ut_ull_create(
lock->un_member.rec_lock.space,
lock->un_member.rec_lock.page_no);
if (current > *limit) {
*limit = current + 1;
return(lock);
}
}
return(0);
}
/*********************************************************************//**
Validate a record lock's block */
static
void
lock_rec_block_validate(
/*====================*/
ulint space_id,
ulint page_no)
{
/* The lock and the block that it is referring to may be freed at
this point. We pass BUF_GET_POSSIBLY_FREED to skip a debug check.
If the lock exists in lock_rec_validate_page() we assert
!block->page.file_page_was_freed. */
buf_block_t* block;
mtr_t mtr;
/* Make sure that the tablespace is not deleted while we are
trying to access the page. */
if (fil_space_t* space = fil_space_acquire(space_id)) {
dberr_t err = DB_SUCCESS;
mtr_start(&mtr);
block = buf_page_get_gen(
page_id_t(space_id, page_no),
page_size_t(space->flags),
RW_X_LATCH, NULL,
BUF_GET_POSSIBLY_FREED,
__FILE__, __LINE__, &mtr, &err);
if (err != DB_SUCCESS) {
ib::error() << "Lock rec block validate failed for tablespace "
<< space->name
<< " space_id " << space_id
<< " page_no " << page_no << " err " << err;
}
if (block) {
buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK);
ut_ad(lock_rec_validate_page(block));
}
mtr_commit(&mtr);
fil_space_release(space);
}
}
/*********************************************************************//**
Validates the lock system.
@return TRUE if ok */
static
bool
lock_validate()
/*===========*/
{
typedef std::pair<ulint, ulint> page_addr_t;
typedef std::set<
page_addr_t,
std::less<page_addr_t>,
ut_allocator<page_addr_t> > page_addr_set;
page_addr_set pages;
lock_mutex_enter();
mutex_enter(&trx_sys->mutex);
ut_a(lock_validate_table_locks(&trx_sys->rw_trx_list));
/* Iterate over all the record locks and validate the locks. We
don't want to hog the lock_sys_t::mutex and the trx_sys_t::mutex.
Release both mutexes during the validation check. */
for (ulint i = 0; i < hash_get_n_cells(lock_sys->rec_hash); i++) {
const lock_t* lock;
ib_uint64_t limit = 0;
while ((lock = lock_rec_validate(i, &limit)) != 0) {
ulint space = lock->un_member.rec_lock.space;
ulint page_no = lock->un_member.rec_lock.page_no;
pages.insert(std::make_pair(space, page_no));
}
}
mutex_exit(&trx_sys->mutex);
lock_mutex_exit();
for (page_addr_set::const_iterator it = pages.begin();
it != pages.end();
++it) {
lock_rec_block_validate((*it).first, (*it).second);
}
return(true);
}
#endif /* UNIV_DEBUG */
/*============ RECORD LOCK CHECKS FOR ROW OPERATIONS ====================*/
/*********************************************************************//**
Checks if locks of other transactions prevent an immediate insert of
a record. If they do, first tests if the query thread should anyway
be suspended for some reason; if not, then puts the transaction and
the query thread to the lock wait state and inserts a waiting request
for a gap x-lock to the lock queue.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
dberr_t
lock_rec_insert_check_and_lock(
/*===========================*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is
set, does nothing */
const rec_t* rec, /*!< in: record after which to insert */
buf_block_t* block, /*!< in/out: buffer block of rec */
dict_index_t* index, /*!< in: index */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr, /*!< in/out: mini-transaction */
ibool* inherit)/*!< out: set to TRUE if the new
inserted record maybe should inherit
LOCK_GAP type locks from the successor
record */
{
ut_ad(block->frame == page_align(rec));
ut_ad(!dict_index_is_online_ddl(index)
|| dict_index_is_clust(index)
|| (flags & BTR_CREATE_FLAG));
ut_ad(mtr->is_named_space(index->space));
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_ad(!dict_table_is_temporary(index->table));
dberr_t err;
lock_t* lock;
ibool inherit_in = *inherit;
trx_t* trx = thr_get_trx(thr);
const rec_t* next_rec = page_rec_get_next_const(rec);
ulint heap_no = page_rec_get_heap_no(next_rec);
lock_mutex_enter();
/* Because this code is invoked for a running transaction by
the thread that is serving the transaction, it is not necessary
to hold trx->mutex here. */
/* When inserting a record into an index, the table must be at
least IX-locked. When we are building an index, we would pass
BTR_NO_LOCKING_FLAG and skip the locking altogether. */
ut_ad(lock_table_has(trx, index->table, LOCK_IX));
lock = lock_rec_get_first(lock_sys->rec_hash, block, heap_no);
if (lock == NULL) {
/* We optimize CPU time usage in the simplest case */
lock_mutex_exit();
if (inherit_in && !dict_index_is_clust(index)) {
/* Update the page max trx id field */
page_update_max_trx_id(block,
buf_block_get_page_zip(block),
trx->id, mtr);
}
*inherit = FALSE;
return(DB_SUCCESS);
}
/* Spatial index does not use GAP lock protection. It uses
"predicate lock" to protect the "range" */
if (dict_index_is_spatial(index)) {
return(DB_SUCCESS);
}
*inherit = TRUE;
/* If another transaction has an explicit lock request which locks
the gap, waiting or granted, on the successor, the insert has to wait.
An exception is the case where the lock by the another transaction
is a gap type lock which it placed to wait for its turn to insert. We
do not consider that kind of a lock conflicting with our insert. This
eliminates an unnecessary deadlock which resulted when 2 transactions
had to wait for their insert. Both had waiting gap type lock requests
on the successor, which produced an unnecessary deadlock. */
const ulint type_mode = LOCK_X | LOCK_GAP | LOCK_INSERT_INTENTION;
const lock_t* wait_for = lock_rec_other_has_conflicting(
type_mode, block, heap_no, trx);
if (wait_for != NULL) {
RecLock rec_lock(thr, index, block, heap_no, type_mode);
trx_mutex_enter(trx);
err = rec_lock.add_to_waitq(wait_for);
trx_mutex_exit(trx);
} else {
err = DB_SUCCESS;
}
lock_mutex_exit();
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
/* fall through */
case DB_SUCCESS:
if (!inherit_in || dict_index_is_clust(index)) {
break;
}
/* Update the page max trx id field */
page_update_max_trx_id(
block, buf_block_get_page_zip(block), trx->id, mtr);
default:
/* We only care about the two return values. */
break;
}
#ifdef UNIV_DEBUG
{
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
const ulint* offsets;
rec_offs_init(offsets_);
offsets = rec_get_offsets(next_rec, index, offsets_,
ULINT_UNDEFINED, &heap);
ut_ad(lock_rec_queue_validate(
FALSE, block, next_rec, index, offsets));
if (heap != NULL) {
mem_heap_free(heap);
}
}
#endif /* UNIV_DEBUG */
return(err);
}
/*********************************************************************//**
Creates an explicit record lock for a running transaction that currently only
has an implicit lock on the record. The transaction instance must have a
reference count > 0 so that it can't be committed and freed before this
function has completed. */
static
void
lock_rec_convert_impl_to_expl_for_trx(
/*==================================*/
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: user record on page */
dict_index_t* index, /*!< in: index of record */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
trx_t* trx, /*!< in/out: active transaction */
ulint heap_no)/*!< in: rec heap number to lock */
{
ut_ad(trx_is_referenced(trx));
DEBUG_SYNC_C("before_lock_rec_convert_impl_to_expl_for_trx");
lock_mutex_enter();
ut_ad(!trx_state_eq(trx, TRX_STATE_NOT_STARTED));
if (!trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY)
&& !lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP,
block, heap_no, trx)) {
ulint type_mode;
type_mode = (LOCK_REC | LOCK_X | LOCK_REC_NOT_GAP);
lock_rec_add_to_queue(
type_mode, block, heap_no, index, trx, FALSE);
}
lock_mutex_exit();
trx_release_reference(trx);
DEBUG_SYNC_C("after_lock_rec_convert_impl_to_expl_for_trx");
}
/*********************************************************************//**
If a transaction has an implicit x-lock on a record, but no explicit x-lock
set on the record, sets one for it. */
static
void
lock_rec_convert_impl_to_expl(
/*==========================*/
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: user record on page */
dict_index_t* index, /*!< in: index of record */
const ulint* offsets)/*!< in: rec_get_offsets(rec, index) */
{
trx_t* trx;
ut_ad(!lock_mutex_own());
ut_ad(page_rec_is_user_rec(rec));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(!page_rec_is_comp(rec) == !rec_offs_comp(offsets));
if (dict_index_is_clust(index)) {
trx_id_t trx_id;
trx_id = lock_clust_rec_some_has_impl(rec, index, offsets);
trx = trx_rw_is_active(trx_id, NULL, true);
} else {
ut_ad(!dict_index_is_online_ddl(index));
trx = lock_sec_rec_some_has_impl(rec, index, offsets);
ut_ad(!trx || !lock_rec_other_trx_holds_expl(
LOCK_S | LOCK_REC_NOT_GAP, trx, rec, block));
}
if (trx != 0) {
ulint heap_no = page_rec_get_heap_no(rec);
ut_ad(trx_is_referenced(trx));
/* If the transaction is still active and has no
explicit x-lock set on the record, set one for it.
trx cannot be committed until the ref count is zero. */
lock_rec_convert_impl_to_expl_for_trx(
block, rec, index, offsets, trx, heap_no);
}
}
/*********************************************************************//**
Checks if locks of other transactions prevent an immediate modify (update,
delete mark, or delete unmark) of a clustered index record. If they do,
first tests if the query thread should anyway be suspended for some
reason; if not, then puts the transaction and the query thread to the
lock wait state and inserts a waiting request for a record x-lock to the
lock queue.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
dberr_t
lock_clust_rec_modify_check_and_lock(
/*=================================*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
bit is set, does nothing */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: record which should be
modified */
dict_index_t* index, /*!< in: clustered index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ulint heap_no;
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(dict_index_is_clust(index));
ut_ad(block->frame == page_align(rec));
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_ad(!dict_table_is_temporary(index->table));
heap_no = rec_offs_comp(offsets)
? rec_get_heap_no_new(rec)
: rec_get_heap_no_old(rec);
/* If a transaction has no explicit x-lock set on the record, set one
for it */
lock_rec_convert_impl_to_expl(block, rec, index, offsets);
lock_mutex_enter();
ut_ad(lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP,
block, heap_no, index, thr);
MONITOR_INC(MONITOR_NUM_RECLOCK_REQ);
lock_mutex_exit();
ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets));
if (err == DB_SUCCESS_LOCKED_REC) {
err = DB_SUCCESS;
}
return(err);
}
/*********************************************************************//**
Checks if locks of other transactions prevent an immediate modify (delete
mark or delete unmark) of a secondary index record.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
dberr_t
lock_sec_rec_modify_check_and_lock(
/*===============================*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
bit is set, does nothing */
buf_block_t* block, /*!< in/out: buffer block of rec */
const rec_t* rec, /*!< in: record which should be
modified; NOTE: as this is a secondary
index, we always have to modify the
clustered index record first: see the
comment below */
dict_index_t* index, /*!< in: secondary index */
que_thr_t* thr, /*!< in: query thread
(can be NULL if BTR_NO_LOCKING_FLAG) */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
dberr_t err;
ulint heap_no;
ut_ad(!dict_index_is_clust(index));
ut_ad(!dict_index_is_online_ddl(index) || (flags & BTR_CREATE_FLAG));
ut_ad(block->frame == page_align(rec));
ut_ad(mtr->is_named_space(index->space));
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_ad(!dict_table_is_temporary(index->table));
heap_no = page_rec_get_heap_no(rec);
/* Another transaction cannot have an implicit lock on the record,
because when we come here, we already have modified the clustered
index record, and this would not have been possible if another active
transaction had modified this secondary index record. */
lock_mutex_enter();
ut_ad(lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP,
block, heap_no, index, thr);
MONITOR_INC(MONITOR_NUM_RECLOCK_REQ);
lock_mutex_exit();
#ifdef UNIV_DEBUG
{
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
const ulint* offsets;
rec_offs_init(offsets_);
offsets = rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &heap);
ut_ad(lock_rec_queue_validate(
FALSE, block, rec, index, offsets));
if (heap != NULL) {
mem_heap_free(heap);
}
}
#endif /* UNIV_DEBUG */
if (err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC) {
/* Update the page max trx id field */
/* It might not be necessary to do this if
err == DB_SUCCESS (no new lock created),
but it should not cost too much performance. */
page_update_max_trx_id(block,
buf_block_get_page_zip(block),
thr_get_trx(thr)->id, mtr);
err = DB_SUCCESS;
}
return(err);
}
/*********************************************************************//**
Like lock_clust_rec_read_check_and_lock(), but reads a
secondary index record.
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, DB_DEADLOCK,
or DB_QUE_THR_SUSPENDED */
dberr_t
lock_sec_rec_read_check_and_lock(
/*=============================*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
bit is set, does nothing */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: user record or page
supremum record which should
be read or passed over by a
read cursor */
dict_index_t* index, /*!< in: secondary index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
lock_mode mode, /*!< in: mode of the lock which
the read cursor should set on
records: LOCK_S or LOCK_X; the
latter is possible in
SELECT FOR UPDATE */
ulint gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ulint heap_no;
ut_ad(!dict_index_is_clust(index));
ut_ad(!dict_index_is_online_ddl(index));
ut_ad(block->frame == page_align(rec));
ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(mode == LOCK_X || mode == LOCK_S);
if ((flags & BTR_NO_LOCKING_FLAG)
|| srv_read_only_mode
|| dict_table_is_temporary(index->table)) {
return(DB_SUCCESS);
}
heap_no = page_rec_get_heap_no(rec);
/* Some transaction may have an implicit x-lock on the record only
if the max trx id for the page >= min trx id for the trx list or a
database recovery is running. */
if ((page_get_max_trx_id(block->frame) >= trx_rw_min_trx_id()
|| recv_recovery_is_on())
&& !page_rec_is_supremum(rec)) {
lock_rec_convert_impl_to_expl(block, rec, index, offsets);
}
lock_mutex_enter();
ut_ad(mode != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad(mode != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
err = lock_rec_lock(FALSE, mode | gap_mode,
block, heap_no, index, thr);
MONITOR_INC(MONITOR_NUM_RECLOCK_REQ);
lock_mutex_exit();
ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets));
return(err);
}
/*********************************************************************//**
Checks if locks of other transactions prevent an immediate read, or passing
over by a read cursor, of a clustered index record. If they do, first tests
if the query thread should anyway be suspended for some reason; if not, then
puts the transaction and the query thread to the lock wait state and inserts a
waiting request for a record lock to the lock queue. Sets the requested mode
lock on the record.
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, DB_DEADLOCK,
or DB_QUE_THR_SUSPENDED */
dberr_t
lock_clust_rec_read_check_and_lock(
/*===============================*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
bit is set, does nothing */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: user record or page
supremum record which should
be read or passed over by a
read cursor */
dict_index_t* index, /*!< in: clustered index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
lock_mode mode, /*!< in: mode of the lock which
the read cursor should set on
records: LOCK_S or LOCK_X; the
latter is possible in
SELECT FOR UPDATE */
ulint gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ulint heap_no;
ut_ad(dict_index_is_clust(index));
ut_ad(block->frame == page_align(rec));
ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec));
ut_ad(gap_mode == LOCK_ORDINARY || gap_mode == LOCK_GAP
|| gap_mode == LOCK_REC_NOT_GAP);
ut_ad(rec_offs_validate(rec, index, offsets));
if ((flags & BTR_NO_LOCKING_FLAG)
|| srv_read_only_mode
|| dict_table_is_temporary(index->table)) {
return(DB_SUCCESS);
}
heap_no = page_rec_get_heap_no(rec);
if (heap_no != PAGE_HEAP_NO_SUPREMUM) {
lock_rec_convert_impl_to_expl(block, rec, index, offsets);
}
lock_mutex_enter();
ut_ad(mode != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad(mode != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
err = lock_rec_lock(FALSE, mode | gap_mode, block, heap_no, index, thr);
MONITOR_INC(MONITOR_NUM_RECLOCK_REQ);
lock_mutex_exit();
ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets));
DEBUG_SYNC_C("after_lock_clust_rec_read_check_and_lock");
return(err);
}
/*********************************************************************//**
Checks if locks of other transactions prevent an immediate read, or passing
over by a read cursor, of a clustered index record. If they do, first tests
if the query thread should anyway be suspended for some reason; if not, then
puts the transaction and the query thread to the lock wait state and inserts a
waiting request for a record lock to the lock queue. Sets the requested mode
lock on the record. This is an alternative version of
lock_clust_rec_read_check_and_lock() that does not require the parameter
"offsets".
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
dberr_t
lock_clust_rec_read_check_and_lock_alt(
/*===================================*/
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
bit is set, does nothing */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: user record or page
supremum record which should
be read or passed over by a
read cursor */
dict_index_t* index, /*!< in: clustered index */
lock_mode mode, /*!< in: mode of the lock which
the read cursor should set on
records: LOCK_S or LOCK_X; the
latter is possible in
SELECT FOR UPDATE */
ulint gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP */
que_thr_t* thr) /*!< in: query thread */
{
mem_heap_t* tmp_heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
dberr_t err;
rec_offs_init(offsets_);
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &tmp_heap);
err = lock_clust_rec_read_check_and_lock(flags, block, rec, index,
offsets, mode, gap_mode, thr);
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
if (err == DB_SUCCESS_LOCKED_REC) {
err = DB_SUCCESS;
}
return(err);
}
/*******************************************************************//**
Release the last lock from the transaction's autoinc locks. */
UNIV_INLINE
void
lock_release_autoinc_last_lock(
/*===========================*/
ib_vector_t* autoinc_locks) /*!< in/out: vector of AUTOINC locks */
{
ulint last;
lock_t* lock;
ut_ad(lock_mutex_own());
ut_a(!ib_vector_is_empty(autoinc_locks));
/* The lock to be release must be the last lock acquired. */
last = ib_vector_size(autoinc_locks) - 1;
lock = *static_cast<lock_t**>(ib_vector_get(autoinc_locks, last));
/* Should have only AUTOINC locks in the vector. */
ut_a(lock_get_mode(lock) == LOCK_AUTO_INC);
ut_a(lock_get_type(lock) == LOCK_TABLE);
ut_a(lock->un_member.tab_lock.table != NULL);
/* This will remove the lock from the trx autoinc_locks too. */
lock_table_dequeue(lock);
/* Remove from the table vector too. */
lock_trx_table_locks_remove(lock);
}
/*******************************************************************//**
Check if a transaction holds any autoinc locks.
@return TRUE if the transaction holds any AUTOINC locks. */
static
ibool
lock_trx_holds_autoinc_locks(
/*=========================*/
const trx_t* trx) /*!< in: transaction */
{
ut_a(trx->autoinc_locks != NULL);
return(!ib_vector_is_empty(trx->autoinc_locks));
}
/*******************************************************************//**
Release all the transaction's autoinc locks. */
static
void
lock_release_autoinc_locks(
/*=======================*/
trx_t* trx) /*!< in/out: transaction */
{
ut_ad(lock_mutex_own());
/* If this is invoked for a running transaction by the thread
that is serving the transaction, then it is not necessary to
hold trx->mutex here. */
ut_a(trx->autoinc_locks != NULL);
/* We release the locks in the reverse order. This is to
avoid searching the vector for the element to delete at
the lower level. See (lock_table_remove_low()) for details. */
while (!ib_vector_is_empty(trx->autoinc_locks)) {
/* lock_table_remove_low() will also remove the lock from
the transaction's autoinc_locks vector. */
lock_release_autoinc_last_lock(trx->autoinc_locks);
}
/* Should release all locks. */
ut_a(ib_vector_is_empty(trx->autoinc_locks));
}
/*******************************************************************//**
Gets the type of a lock. Non-inline version for using outside of the
lock module.
@return LOCK_TABLE or LOCK_REC */
ulint
lock_get_type(
/*==========*/
const lock_t* lock) /*!< in: lock */
{
return(lock_get_type_low(lock));
}
/*******************************************************************//**
Gets the id of the transaction owning a lock.
@return transaction id */
trx_id_t
lock_get_trx_id(
/*============*/
const lock_t* lock) /*!< in: lock */
{
return(trx_get_id_for_print(lock->trx));
}
/*******************************************************************//**
Gets the mode of a lock in a human readable string.
The string should not be free()'d or modified.
@return lock mode */
const char*
lock_get_mode_str(
/*==============*/
const lock_t* lock) /*!< in: lock */
{
ibool is_gap_lock;
is_gap_lock = lock_get_type_low(lock) == LOCK_REC
&& lock_rec_get_gap(lock);
switch (lock_get_mode(lock)) {
case LOCK_S:
if (is_gap_lock) {
return("S,GAP");
} else {
return("S");
}
case LOCK_X:
if (is_gap_lock) {
return("X,GAP");
} else {
return("X");
}
case LOCK_IS:
if (is_gap_lock) {
return("IS,GAP");
} else {
return("IS");
}
case LOCK_IX:
if (is_gap_lock) {
return("IX,GAP");
} else {
return("IX");
}
case LOCK_AUTO_INC:
return("AUTO_INC");
default:
return("UNKNOWN");
}
}
/*******************************************************************//**
Gets the type of a lock in a human readable string.
The string should not be free()'d or modified.
@return lock type */
const char*
lock_get_type_str(
/*==============*/
const lock_t* lock) /*!< in: lock */
{
switch (lock_get_type_low(lock)) {
case LOCK_REC:
return("RECORD");
case LOCK_TABLE:
return("TABLE");
default:
return("UNKNOWN");
}
}
/*******************************************************************//**
Gets the table on which the lock is.
@return table */
UNIV_INLINE
dict_table_t*
lock_get_table(
/*===========*/
const lock_t* lock) /*!< in: lock */
{
switch (lock_get_type_low(lock)) {
case LOCK_REC:
ut_ad(dict_index_is_clust(lock->index)
|| !dict_index_is_online_ddl(lock->index));
return(lock->index->table);
case LOCK_TABLE:
return(lock->un_member.tab_lock.table);
default:
ut_error;
return(NULL);
}
}
/*******************************************************************//**
Gets the id of the table on which the lock is.
@return id of the table */
table_id_t
lock_get_table_id(
/*==============*/
const lock_t* lock) /*!< in: lock */
{
dict_table_t* table;
table = lock_get_table(lock);
return(table->id);
}
/** Determine which table a lock is associated with.
@param[in] lock the lock
@return name of the table */
const table_name_t&
lock_get_table_name(
const lock_t* lock)
{
return(lock_get_table(lock)->name);
}
/*******************************************************************//**
For a record lock, gets the index on which the lock is.
@return index */
const dict_index_t*
lock_rec_get_index(
/*===============*/
const lock_t* lock) /*!< in: lock */
{
ut_a(lock_get_type_low(lock) == LOCK_REC);
ut_ad(dict_index_is_clust(lock->index)
|| !dict_index_is_online_ddl(lock->index));
return(lock->index);
}
/*******************************************************************//**
For a record lock, gets the name of the index on which the lock is.
The string should not be free()'d or modified.
@return name of the index */
const char*
lock_rec_get_index_name(
/*====================*/
const lock_t* lock) /*!< in: lock */
{
ut_a(lock_get_type_low(lock) == LOCK_REC);
ut_ad(dict_index_is_clust(lock->index)
|| !dict_index_is_online_ddl(lock->index));
return(lock->index->name);
}
/*******************************************************************//**
For a record lock, gets the tablespace number on which the lock is.
@return tablespace number */
ulint
lock_rec_get_space_id(
/*==================*/
const lock_t* lock) /*!< in: lock */
{
ut_a(lock_get_type_low(lock) == LOCK_REC);
return(lock->un_member.rec_lock.space);
}
/*******************************************************************//**
For a record lock, gets the page number on which the lock is.
@return page number */
ulint
lock_rec_get_page_no(
/*=================*/
const lock_t* lock) /*!< in: lock */
{
ut_a(lock_get_type_low(lock) == LOCK_REC);
return(lock->un_member.rec_lock.page_no);
}
/*********************************************************************//**
Cancels a waiting lock request and releases possible other transactions
waiting behind it. */
void
lock_cancel_waiting_and_release(
/*============================*/
lock_t* lock) /*!< in/out: waiting lock request */
{
que_thr_t* thr;
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(lock->trx));
lock->trx->lock.cancel = true;
if (lock_get_type_low(lock) == LOCK_REC) {
lock_rec_dequeue_from_page(lock);
} else {
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
if (lock->trx->autoinc_locks != NULL) {
/* Release the transaction's AUTOINC locks. */
lock_release_autoinc_locks(lock->trx);
}
lock_table_dequeue(lock);
}
/* Reset the wait flag and the back pointer to lock in trx. */
lock_reset_lock_and_trx_wait(lock);
/* The following function releases the trx from lock wait. */
thr = que_thr_end_lock_wait(lock->trx);
if (thr != NULL) {
lock_wait_release_thread_if_suspended(thr);
}
lock->trx->lock.cancel = false;
}
/*********************************************************************//**
Unlocks AUTO_INC type locks that were possibly reserved by a trx. This
function should be called at the the end of an SQL statement, by the
connection thread that owns the transaction (trx->mysql_thd). */
void
lock_unlock_table_autoinc(
/*======================*/
trx_t* trx) /*!< in/out: transaction */
{
ut_ad(!lock_mutex_own());
ut_ad(!trx_mutex_own(trx));
ut_ad(!trx->lock.wait_lock);
/* This can be invoked on NOT_STARTED, ACTIVE, PREPARED,
but not COMMITTED transactions. */
ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED)
|| trx_state_eq(trx, TRX_STATE_FORCED_ROLLBACK)
|| !trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY));
/* This function is invoked for a running transaction by the
thread that is serving the transaction. Therefore it is not
necessary to hold trx->mutex here. */
if (lock_trx_holds_autoinc_locks(trx)) {
lock_mutex_enter();
lock_release_autoinc_locks(trx);
lock_mutex_exit();
}
}
/*********************************************************************//**
Releases a transaction's locks, and releases possible other transactions
waiting because of these locks. Change the state of the transaction to
TRX_STATE_COMMITTED_IN_MEMORY. */
void
lock_trx_release_locks(
/*===================*/
trx_t* trx) /*!< in/out: transaction */
{
check_trx_state(trx);
if (trx_state_eq(trx, TRX_STATE_PREPARED)) {
mutex_enter(&trx_sys->mutex);
ut_a(trx_sys->n_prepared_trx > 0);
--trx_sys->n_prepared_trx;
if (trx->is_recovered) {
ut_a(trx_sys->n_prepared_recovered_trx > 0);
trx_sys->n_prepared_recovered_trx--;
}
mutex_exit(&trx_sys->mutex);
} else {
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
}
bool release_lock;
release_lock = (UT_LIST_GET_LEN(trx->lock.trx_locks) > 0);
/* Don't take lock_sys mutex if trx didn't acquire any lock. */
if (release_lock) {
/* The transition of trx->state to TRX_STATE_COMMITTED_IN_MEMORY
is protected by both the lock_sys->mutex and the trx->mutex. */
lock_mutex_enter();
}
trx_mutex_enter(trx);
/* The following assignment makes the transaction committed in memory
and makes its changes to data visible to other transactions.
NOTE that there is a small discrepancy from the strict formal
visibility rules here: a human user of the database can see
modifications made by another transaction T even before the necessary
log segment has been flushed to the disk. If the database happens to
crash before the flush, the user has seen modifications from T which
will never be a committed transaction. However, any transaction T2
which sees the modifications of the committing transaction T, and
which also itself makes modifications to the database, will get an lsn
larger than the committing transaction T. In the case where the log
flush fails, and T never gets committed, also T2 will never get
committed. */
/*--------------------------------------*/
trx->state = TRX_STATE_COMMITTED_IN_MEMORY;
/*--------------------------------------*/
if (trx_is_referenced(trx)) {
ut_a(release_lock);
lock_mutex_exit();
while (trx_is_referenced(trx)) {
trx_mutex_exit(trx);
DEBUG_SYNC_C("waiting_trx_is_not_referenced");
/** Doing an implicit to explicit conversion
should not be expensive. */
ut_delay(ut_rnd_interval(0, srv_spin_wait_delay));
trx_mutex_enter(trx);
}
trx_mutex_exit(trx);
lock_mutex_enter();
trx_mutex_enter(trx);
}
ut_ad(!trx_is_referenced(trx));
/* If the background thread trx_rollback_or_clean_recovered()
is still active then there is a chance that the rollback
thread may see this trx as COMMITTED_IN_MEMORY and goes ahead
to clean it up calling trx_cleanup_at_db_startup(). This can
happen in the case we are committing a trx here that is left
in PREPARED state during the crash. Note that commit of the
rollback of a PREPARED trx happens in the recovery thread
while the rollback of other transactions happen in the
background thread. To avoid this race we unconditionally unset
the is_recovered flag. */
trx->is_recovered = false;
trx_mutex_exit(trx);
if (release_lock) {
lock_release(trx);
lock_mutex_exit();
}
trx->lock.n_rec_locks = 0;
/* We don't remove the locks one by one from the vector for
efficiency reasons. We simply reset it because we would have
released all the locks anyway. */
trx->lock.table_locks.clear();
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
ut_a(ib_vector_is_empty(trx->autoinc_locks));
ut_a(trx->lock.table_locks.empty());
mem_heap_empty(trx->lock.lock_heap);
}
/*********************************************************************//**
Check whether the transaction has already been rolled back because it
was selected as a deadlock victim, or if it has to wait then cancel
the wait lock.
@return DB_DEADLOCK, DB_LOCK_WAIT or DB_SUCCESS */
dberr_t
lock_trx_handle_wait(
/*=================*/
trx_t* trx, /*!< in/out: trx lock state */
bool lock_mutex_taken,
bool trx_mutex_taken)
{
dberr_t err=DB_SUCCESS;
bool take_lock_mutex = false;
bool take_trx_mutex = false;
if (!lock_mutex_taken) {
ut_ad(!lock_mutex_own());
lock_mutex_enter();
take_lock_mutex = true;
}
if (!trx_mutex_taken) {
ut_ad(!trx_mutex_own(trx));
trx_mutex_enter(trx);
take_trx_mutex = true;
}
if (trx->lock.was_chosen_as_deadlock_victim) {
err = DB_DEADLOCK;
} else if (trx->lock.wait_lock != NULL) {
bool take_wait_trx_mutex = false;
trx_t* wait_trx = trx->lock.wait_lock->trx;
/* We take trx mutex for waiting trx if we have not yet
already taken it or we know that waiting trx and parameter
trx are not same and we are not already holding trx mutex. */
if ((wait_trx && wait_trx == trx && !take_trx_mutex && !trx_mutex_taken) ||
(wait_trx && wait_trx != trx && wait_trx->abort_type == TRX_SERVER_ABORT)) {
ut_ad(!trx_mutex_own(wait_trx));
trx_mutex_enter(wait_trx);
take_wait_trx_mutex = true;
}
ut_ad(trx_mutex_own(wait_trx));
lock_cancel_waiting_and_release(trx->lock.wait_lock);
if (wait_trx && take_wait_trx_mutex) {
ut_ad(trx_mutex_own(wait_trx));
trx_mutex_exit(wait_trx);
}
err = DB_LOCK_WAIT;
} else {
/* The lock was probably granted before we got here. */
err = DB_SUCCESS;
}
if (take_lock_mutex) {
ut_ad(lock_mutex_own());
lock_mutex_exit();
}
if (take_trx_mutex) {
ut_ad(trx_mutex_own(trx));
trx_mutex_exit(trx);
}
ut_ad(err == DB_SUCCESS || err == DB_LOCK_WAIT
|| err == DB_DEADLOCK);
return(err);
}
/*********************************************************************//**
Get the number of locks on a table.
@return number of locks */
ulint
lock_table_get_n_locks(
/*===================*/
const dict_table_t* table) /*!< in: table */
{
ulint n_table_locks;
lock_mutex_enter();
n_table_locks = UT_LIST_GET_LEN(table->locks);
lock_mutex_exit();
return(n_table_locks);
}
#ifdef UNIV_DEBUG
/*******************************************************************//**
Do an exhaustive check for any locks (table or rec) against the table.
@return lock if found */
static
const lock_t*
lock_table_locks_lookup(
/*====================*/
const dict_table_t* table, /*!< in: check if there are
any locks held on records in
this table or on the table
itself */
const trx_ut_list_t* trx_list) /*!< in: trx list to check */
{
trx_t* trx;
ut_a(table != NULL);
ut_ad(lock_mutex_own());
ut_ad(trx_sys_mutex_own());
for (trx = UT_LIST_GET_FIRST(*trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
const lock_t* lock;
check_trx_state(trx);
for (lock = UT_LIST_GET_FIRST(trx->lock.trx_locks);
lock != NULL;
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
ut_a(lock->trx == trx);
if (lock_get_type_low(lock) == LOCK_REC) {
ut_ad(!dict_index_is_online_ddl(lock->index)
|| dict_index_is_clust(lock->index));
if (lock->index->table == table) {
return(lock);
}
} else if (lock->un_member.tab_lock.table == table) {
return(lock);
}
}
}
return(NULL);
}
#endif /* UNIV_DEBUG */
/*******************************************************************//**
Check if there are any locks (table or rec) against table.
@return true if table has either table or record locks. */
bool
lock_table_has_locks(
/*=================*/
const dict_table_t* table) /*!< in: check if there are any locks
held on records in this table or on the
table itself */
{
ibool has_locks;
lock_mutex_enter();
has_locks = UT_LIST_GET_LEN(table->locks) > 0 || table->n_rec_locks > 0;
#ifdef UNIV_DEBUG
if (!has_locks) {
mutex_enter(&trx_sys->mutex);
ut_ad(!lock_table_locks_lookup(table, &trx_sys->rw_trx_list));
mutex_exit(&trx_sys->mutex);
}
#endif /* UNIV_DEBUG */
lock_mutex_exit();
return(has_locks);
}
/*******************************************************************//**
Initialise the table lock list. */
void
lock_table_lock_list_init(
/*======================*/
table_lock_list_t* lock_list) /*!< List to initialise */
{
UT_LIST_INIT(*lock_list, &lock_table_t::locks);
}
/*******************************************************************//**
Initialise the trx lock list. */
void
lock_trx_lock_list_init(
/*====================*/
trx_lock_list_t* lock_list) /*!< List to initialise */
{
UT_LIST_INIT(*lock_list, &lock_t::trx_locks);
}
/*******************************************************************//**
Set the lock system timeout event. */
void
lock_set_timeout_event()
/*====================*/
{
os_event_set(lock_sys->timeout_event);
}
#ifdef UNIV_DEBUG
/*******************************************************************//**
Check if the transaction holds any locks on the sys tables
or its records.
@return the strongest lock found on any sys table or 0 for none */
const lock_t*
lock_trx_has_sys_table_locks(
/*=========================*/
const trx_t* trx) /*!< in: transaction to check */
{
const lock_t* strongest_lock = 0;
lock_mode strongest = LOCK_NONE;
lock_mutex_enter();
typedef lock_pool_t::const_reverse_iterator iterator;
iterator end = trx->lock.table_locks.rend();
iterator it = trx->lock.table_locks.rbegin();
/* Find a valid mode. Note: ib_vector_size() can be 0. */
for (/* No op */; it != end; ++it) {
const lock_t* lock = *it;
if (lock != NULL
&& dict_is_sys_table(lock->un_member.tab_lock.table->id)) {
strongest = lock_get_mode(lock);
ut_ad(strongest != LOCK_NONE);
strongest_lock = lock;
break;
}
}
if (strongest == LOCK_NONE) {
lock_mutex_exit();
return(NULL);
}
for (/* No op */; it != end; ++it) {
const lock_t* lock = *it;
if (lock == NULL) {
continue;
}
ut_ad(trx == lock->trx);
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
ut_ad(lock->un_member.tab_lock.table != NULL);
lock_mode mode = lock_get_mode(lock);
if (dict_is_sys_table(lock->un_member.tab_lock.table->id)
&& lock_mode_stronger_or_eq(mode, strongest)) {
strongest = mode;
strongest_lock = lock;
}
}
lock_mutex_exit();
return(strongest_lock);
}
/*******************************************************************//**
Check if the transaction holds an exclusive lock on a record.
@return whether the locks are held */
bool
lock_trx_has_rec_x_lock(
/*====================*/
const trx_t* trx, /*!< in: transaction to check */
const dict_table_t* table, /*!< in: table to check */
const buf_block_t* block, /*!< in: buffer block of the record */
ulint heap_no)/*!< in: record heap number */
{
ut_ad(heap_no > PAGE_HEAP_NO_SUPREMUM);
lock_mutex_enter();
ut_a(lock_table_has(trx, table, LOCK_IX)
|| dict_table_is_temporary(table));
ut_a(lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP,
block, heap_no, trx)
|| dict_table_is_temporary(table));
lock_mutex_exit();
return(true);
}
#endif /* UNIV_DEBUG */
/** rewind(3) the file used for storing the latest detected deadlock and
print a heading message to stderr if printing of all deadlocks to stderr
is enabled. */
void
DeadlockChecker::start_print()
{
ut_ad(lock_mutex_own());
rewind(lock_latest_err_file);
ut_print_timestamp(lock_latest_err_file);
if (srv_print_all_deadlocks) {
ib::info() << "Transactions deadlock detected, dumping"
<< " detailed information.";
}
}
/** Print a message to the deadlock file and possibly to stderr.
@param msg message to print */
void
DeadlockChecker::print(const char* msg)
{
fputs(msg, lock_latest_err_file);
if (srv_print_all_deadlocks) {
ib::info() << msg;
}
}
/** Print transaction data to the deadlock file and possibly to stderr.
@param trx transaction
@param max_query_len max query length to print */
void
DeadlockChecker::print(const trx_t* trx, ulint max_query_len)
{
ut_ad(lock_mutex_own());
ulint n_rec_locks = lock_number_of_rows_locked(&trx->lock);
ulint n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks);
ulint heap_size = mem_heap_get_size(trx->lock.lock_heap);
mutex_enter(&trx_sys->mutex);
trx_print_low(lock_latest_err_file, trx, max_query_len,
n_rec_locks, n_trx_locks, heap_size);
if (srv_print_all_deadlocks) {
trx_print_low(stderr, trx, max_query_len,
n_rec_locks, n_trx_locks, heap_size);
}
mutex_exit(&trx_sys->mutex);
}
/** Print lock data to the deadlock file and possibly to stderr.
@param lock record or table type lock */
void
DeadlockChecker::print(const lock_t* lock)
{
ut_ad(lock_mutex_own());
if (lock_get_type_low(lock) == LOCK_REC) {
lock_rec_print(lock_latest_err_file, lock);
if (srv_print_all_deadlocks) {
lock_rec_print(stderr, lock);
}
} else {
lock_table_print(lock_latest_err_file, lock);
if (srv_print_all_deadlocks) {
lock_table_print(stderr, lock);
}
}
}
/** Get the next lock in the queue that is owned by a transaction whose
sub-tree has not already been searched.
Note: "next" here means PREV for table locks.
@param lock Lock in queue
@param heap_no heap_no if lock is a record lock else ULINT_UNDEFINED
@return next lock or NULL if at end of queue */
const lock_t*
DeadlockChecker::get_next_lock(const lock_t* lock, ulint heap_no) const
{
ut_ad(lock_mutex_own());
do {
if (lock_get_type_low(lock) == LOCK_REC) {
ut_ad(heap_no != ULINT_UNDEFINED);
lock = lock_rec_get_next_const(heap_no, lock);
} else {
ut_ad(heap_no == ULINT_UNDEFINED);
ut_ad(lock_get_type_low(lock) == LOCK_TABLE);
lock = UT_LIST_GET_NEXT(
un_member.tab_lock.locks, lock);
}
} while (lock != NULL && is_visited(lock));
ut_ad(lock == NULL
|| lock_get_type_low(lock) == lock_get_type_low(m_wait_lock));
return(lock);
}
/** Get the first lock to search. The search starts from the current
wait_lock. What we are really interested in is an edge from the
current wait_lock's owning transaction to another transaction that has
a lock ahead in the queue. We skip locks where the owning transaction's
sub-tree has already been searched.
Note: The record locks are traversed from the oldest lock to the
latest. For table locks we go from latest to oldest.
For record locks, we first position the "iterator" on the first lock on
the page and then reposition on the actual heap_no. This is required
due to the way the record lock has is implemented.
@param[out] heap_no if rec lock, else ULINT_UNDEFINED.
@return first lock or NULL */
const lock_t*
DeadlockChecker::get_first_lock(ulint* heap_no) const
{
ut_ad(lock_mutex_own());
const lock_t* lock = m_wait_lock;
if (lock_get_type_low(lock) == LOCK_REC) {
hash_table_t* lock_hash;
lock_hash = lock->type_mode & LOCK_PREDICATE
? lock_sys->prdt_hash
: lock_sys->rec_hash;
/* We are only interested in records that match the heap_no. */
*heap_no = lock_rec_find_set_bit(lock);
ut_ad(*heap_no <= 0xffff);
ut_ad(*heap_no != ULINT_UNDEFINED);
/* Find the locks on the page. */
lock = lock_rec_get_first_on_page_addr(
lock_hash,
lock->un_member.rec_lock.space,
lock->un_member.rec_lock.page_no);
/* Position on the first lock on the physical record.*/
if (!lock_rec_get_nth_bit(lock, *heap_no)) {
lock = lock_rec_get_next_const(*heap_no, lock);
}
ut_a(!lock_get_wait(lock));
} else {
/* Table locks don't care about the heap_no. */
*heap_no = ULINT_UNDEFINED;
ut_ad(lock_get_type_low(lock) == LOCK_TABLE);
dict_table_t* table = lock->un_member.tab_lock.table;
lock = UT_LIST_GET_FIRST(table->locks);
}
/* Must find at least two locks, otherwise there cannot be a
waiting lock, secondly the first lock cannot be the wait_lock. */
ut_a(lock != NULL);
ut_a(lock != m_wait_lock ||
(innodb_lock_schedule_algorithm
== INNODB_LOCK_SCHEDULE_ALGORITHM_VATS
&& !thd_is_replication_slave_thread(lock->trx->mysql_thd)));
/* Check that the lock type doesn't change. */
ut_ad(lock_get_type_low(lock) == lock_get_type_low(m_wait_lock));
return(lock);
}
/** Notify that a deadlock has been detected and print the conflicting
transaction info.
@param lock lock causing deadlock */
void
DeadlockChecker::notify(const lock_t* lock) const
{
ut_ad(lock_mutex_own());
start_print();
print("\n*** (1) TRANSACTION:\n");
print(m_wait_lock->trx, 3000);
print("*** (1) WAITING FOR THIS LOCK TO BE GRANTED:\n");
print(m_wait_lock);
print("*** (2) TRANSACTION:\n");
print(lock->trx, 3000);
print("*** (2) HOLDS THE LOCK(S):\n");
print(lock);
/* It is possible that the joining transaction was granted its
lock when we rolled back some other waiting transaction. */
if (m_start->lock.wait_lock != 0) {
print("*** (2) WAITING FOR THIS LOCK TO BE GRANTED:\n");
print(m_start->lock.wait_lock);
}
DBUG_PRINT("ib_lock", ("deadlock detected"));
}
/** Select the victim transaction that should be rolledback.
@return victim transaction */
const trx_t*
DeadlockChecker::select_victim() const
{
ut_ad(lock_mutex_own());
ut_ad(m_start->lock.wait_lock != 0);
ut_ad(m_wait_lock->trx != m_start);
if (thd_trx_priority(m_start->mysql_thd) > 0
|| thd_trx_priority(m_wait_lock->trx->mysql_thd) > 0) {
const trx_t* victim;
victim = trx_arbitrate(m_start, m_wait_lock->trx);
if (victim != NULL) {
return(victim);
}
}
if (trx_weight_ge(m_wait_lock->trx, m_start)) {
/* The joining transaction is 'smaller',
choose it as the victim and roll it back. */
#ifdef WITH_WSREP
if (wsrep_thd_is_BF(m_start->mysql_thd, TRUE)) {
return(m_wait_lock->trx);
} else {
#endif /* WITH_WSREP */
return(m_start);
#ifdef WITH_WSREP
}
#endif
}
#ifdef WITH_WSREP
if (wsrep_thd_is_BF(m_wait_lock->trx->mysql_thd, TRUE)) {
return(m_start);
} else {
#endif /* WITH_WSREP */
return(m_wait_lock->trx);
#ifdef WITH_WSREP
}
#endif
}
/** Looks iteratively for a deadlock. Note: the joining transaction may
have been granted its lock by the deadlock checks.
@return 0 if no deadlock else the victim transaction instance.*/
const trx_t*
DeadlockChecker::search()
{
ut_ad(lock_mutex_own());
ut_ad(!trx_mutex_own(m_start));
ut_ad(m_start != NULL);
ut_ad(m_wait_lock != NULL);
check_trx_state(m_wait_lock->trx);
ut_ad(m_mark_start <= s_lock_mark_counter);
/* Look at the locks ahead of wait_lock in the lock queue. */
ulint heap_no;
const lock_t* lock = get_first_lock(&heap_no);
for (;;) {
/* We should never visit the same sub-tree more than once. */
ut_ad(lock == NULL || !is_visited(lock));
while (m_n_elems > 0 && lock == NULL) {
/* Restore previous search state. */
pop(lock, heap_no);
lock = get_next_lock(lock, heap_no);
}
if (lock == NULL) {
break;
} else if (lock == m_wait_lock) {
/* We can mark this subtree as searched */
ut_ad(lock->trx->lock.deadlock_mark <= m_mark_start);
lock->trx->lock.deadlock_mark = ++s_lock_mark_counter;
/* We are not prepared for an overflow. This 64-bit
counter should never wrap around. At 10^9 increments
per second, it would take 10^3 years of uptime. */
ut_ad(s_lock_mark_counter > 0);
/* Backtrack */
lock = NULL;
} else if (!lock_has_to_wait(m_wait_lock, lock)) {
/* No conflict, next lock */
lock = get_next_lock(lock, heap_no);
} else if (lock->trx == m_start) {
/* Found a cycle. */
notify(lock);
return(select_victim());
} else if (is_too_deep()) {
/* Search too deep to continue. */
m_too_deep = true;
return(m_start);
} else {
/* We do not need to report autoinc locks to the upper
layer. These locks are released before commit, so they
can not cause deadlocks with binlog-fixed commit
order. */
if (m_report_waiters &&
(lock_get_type_low(lock) != LOCK_TABLE ||
lock_get_mode(lock) != LOCK_AUTO_INC)) {
thd_rpl_deadlock_check(m_start->mysql_thd,
lock->trx->mysql_thd);
}
if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
/* Another trx ahead has requested a lock in an
incompatible mode, and is itself waiting for a lock. */
++m_cost;
if (!push(lock, heap_no)) {
m_too_deep = true;
return(m_start);
}
m_wait_lock = lock->trx->lock.wait_lock;
lock = get_first_lock(&heap_no);
if (is_visited(lock)) {
lock = get_next_lock(lock, heap_no);
}
} else {
lock = get_next_lock(lock, heap_no);
}
}
}
ut_a(lock == NULL && m_n_elems == 0);
/* No deadlock found. */
return(0);
}
/** Print info about transaction that was rolled back.
@param trx transaction rolled back
@param lock lock trx wants */
void
DeadlockChecker::rollback_print(const trx_t* trx, const lock_t* lock)
{
ut_ad(lock_mutex_own());
/* If the lock search exceeds the max step
or the max depth, the current trx will be
the victim. Print its information. */
start_print();
print("TOO DEEP OR LONG SEARCH IN THE LOCK TABLE"
" WAITS-FOR GRAPH, WE WILL ROLL BACK"
" FOLLOWING TRANSACTION \n\n"
"*** TRANSACTION:\n");
print(trx, 3000);
print("*** WAITING FOR THIS LOCK TO BE GRANTED:\n");
print(lock);
}
/** Rollback transaction selected as the victim. */
void
DeadlockChecker::trx_rollback()
{
ut_ad(lock_mutex_own());
trx_t* trx = m_wait_lock->trx;
print("*** WE ROLL BACK TRANSACTION (1)\n");
trx_mutex_enter(trx);
trx->lock.was_chosen_as_deadlock_victim = true;
lock_cancel_waiting_and_release(trx->lock.wait_lock);
trx_mutex_exit(trx);
}
/** Checks if a joining lock request results in a deadlock. If a deadlock is
found this function will resolve the deadlock by choosing a victim transaction
and rolling it back. It will attempt to resolve all deadlocks. The returned
transaction id will be the joining transaction instance or NULL if some other
transaction was chosen as a victim and rolled back or no deadlock found.
@param[in] lock lock the transaction is requesting
@param[in,out] trx transaction requesting the lock
@return transaction instanace chosen as victim or 0 */
const trx_t*
DeadlockChecker::check_and_resolve(const lock_t* lock, trx_t* trx)
{
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(trx));
check_trx_state(trx);
ut_ad(!srv_read_only_mode);
/* If transaction is marked for ASYNC rollback then we should
not allow it to wait for another lock causing possible deadlock.
We return current transaction as deadlock victim here. */
if (trx->in_innodb & TRX_FORCE_ROLLBACK_ASYNC) {
return(trx);
} else if (!innobase_deadlock_detect) {
return(NULL);
}
/* Release the mutex to obey the latching order.
This is safe, because DeadlockChecker::check_and_resolve()
is invoked when a lock wait is enqueued for the currently
running transaction. Because m_trx is a running transaction
(it is not currently suspended because of a lock wait),
its state can only be changed by this thread, which is
currently associated with the transaction. */
trx_mutex_exit(trx);
const trx_t* victim_trx;
THD* start_mysql_thd;
bool report_waits = false;
start_mysql_thd = trx->mysql_thd;
if (start_mysql_thd && thd_need_wait_reports(start_mysql_thd))
report_waits = true;
/* Try and resolve as many deadlocks as possible. */
do {
DeadlockChecker checker(trx, lock, s_lock_mark_counter, report_waits);
victim_trx = checker.search();
/* Search too deep, we rollback the joining transaction only
if it is possible to rollback. Otherwise we rollback the
transaction that is holding the lock that the joining
transaction wants. */
if (checker.is_too_deep()) {
ut_ad(trx == checker.m_start);
ut_ad(trx == victim_trx);
#ifdef WITH_WSREP
if (!wsrep_thd_is_BF(victim_trx->mysql_thd, TRUE))
{
#endif /* WITH_WSREP */
rollback_print(victim_trx, lock);
#ifdef WITH_WSREP
} else {
/* BF processor */;
}
#endif /* WITH_WSREP */
MONITOR_INC(MONITOR_DEADLOCK);
break;
} else if (victim_trx != NULL && victim_trx != trx) {
ut_ad(victim_trx == checker.m_wait_lock->trx);
checker.trx_rollback();
lock_deadlock_found = true;
MONITOR_INC(MONITOR_DEADLOCK);
}
} while (victim_trx != NULL && victim_trx != trx);
/* If the joining transaction was selected as the victim. */
if (victim_trx != NULL) {
print("*** WE ROLL BACK TRANSACTION (2)\n");
lock_deadlock_found = true;
}
trx_mutex_enter(trx);
return(victim_trx);
}
/**
Allocate cached locks for the transaction.
@param trx allocate cached record locks for this transaction */
void
lock_trx_alloc_locks(trx_t* trx)
{
ulint sz = REC_LOCK_SIZE * REC_LOCK_CACHE;
byte* ptr = reinterpret_cast<byte*>(ut_malloc_nokey(sz));
/* We allocate one big chunk and then distribute it among
the rest of the elements. The allocated chunk pointer is always
at index 0. */
for (ulint i = 0; i < REC_LOCK_CACHE; ++i, ptr += REC_LOCK_SIZE) {
trx->lock.rec_pool.push_back(
reinterpret_cast<ib_lock_t*>(ptr));
}
sz = TABLE_LOCK_SIZE * TABLE_LOCK_CACHE;
ptr = reinterpret_cast<byte*>(ut_malloc_nokey(sz));
for (ulint i = 0; i < TABLE_LOCK_CACHE; ++i, ptr += TABLE_LOCK_SIZE) {
trx->lock.table_pool.push_back(
reinterpret_cast<ib_lock_t*>(ptr));
}
}
/*************************************************************//**
Updates the lock table when a page is split and merged to
two pages. */
UNIV_INTERN
void
lock_update_split_and_merge(
const buf_block_t* left_block, /*!< in: left page to which merged */
const rec_t* orig_pred, /*!< in: original predecessor of
supremum on the left page before merge*/
const buf_block_t* right_block) /*!< in: right page from which merged */
{
const rec_t* left_next_rec;
ut_a(left_block && right_block);
ut_a(orig_pred);
lock_mutex_enter();
left_next_rec = page_rec_get_next_const(orig_pred);
/* Inherit the locks on the supremum of the left page to the
first record which was moved from the right page */
lock_rec_inherit_to_gap(
left_block, left_block,
page_rec_get_heap_no(left_next_rec),
PAGE_HEAP_NO_SUPREMUM);
/* Reset the locks on the supremum of the left page,
releasing waiting transactions */
lock_rec_reset_and_release_wait(left_block,
PAGE_HEAP_NO_SUPREMUM);
/* Inherit the locks to the supremum of the left page from the
successor of the infimum on the right page */
lock_rec_inherit_to_gap(left_block, right_block,
PAGE_HEAP_NO_SUPREMUM,
lock_get_min_heap_no(right_block));
lock_mutex_exit();
}