mariadb/storage/myisam/rt_split.c
Sergey Vojtovich e38e30d0f6 BUG#47598 - MyISAM may write uninitialized data to disk
When MyISAM writes newly created index page it may be
initialized partially. In other words some bytes of
sensible data and uninitialized tail of the page may
go into index file.

Under certain rare circumstances these hunks of memory
may contain data that would be otherwise inaccessible
to user, like passwords or data from other tables.

Fixed by initializing memory for temporary MyISAM key
buffer to '\0'.

No test case for this fix as it is heavily covered by
existing tests.
2010-03-25 15:18:14 +04:00

348 lines
8 KiB
C

/* Copyright (C) 2002-2005 MySQL AB & Alexey Botchkov
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "myisamdef.h"
#ifdef HAVE_RTREE_KEYS
#include "rt_index.h"
#include "rt_key.h"
#include "rt_mbr.h"
typedef struct
{
double square;
int n_node;
uchar *key;
double *coords;
} SplitStruct;
inline static double *reserve_coords(double **d_buffer, int n_dim)
{
double *coords = *d_buffer;
(*d_buffer) += n_dim * 2;
return coords;
}
static void mbr_join(double *a, const double *b, int n_dim)
{
double *end = a + n_dim * 2;
do
{
if (a[0] > b[0])
a[0] = b[0];
if (a[1] < b[1])
a[1] = b[1];
a += 2;
b += 2;
}while (a != end);
}
/*
Counts the square of mbr which is a join of a and b
*/
static double mbr_join_square(const double *a, const double *b, int n_dim)
{
const double *end = a + n_dim * 2;
double square = 1.0;
do
{
square *=
((a[1] < b[1]) ? b[1] : a[1]) - ((a[0] > b[0]) ? b[0] : a[0]);
a += 2;
b += 2;
}while (a != end);
return square;
}
static double count_square(const double *a, int n_dim)
{
const double *end = a + n_dim * 2;
double square = 1.0;
do
{
square *= a[1] - a[0];
a += 2;
}while (a != end);
return square;
}
inline static void copy_coords(double *dst, const double *src, int n_dim)
{
memcpy(dst, src, sizeof(double) * (n_dim * 2));
}
/*
Select two nodes to collect group upon
*/
static void pick_seeds(SplitStruct *node, int n_entries,
SplitStruct **seed_a, SplitStruct **seed_b, int n_dim)
{
SplitStruct *cur1;
SplitStruct *lim1 = node + (n_entries - 1);
SplitStruct *cur2;
SplitStruct *lim2 = node + n_entries;
double max_d = -DBL_MAX;
double d;
for (cur1 = node; cur1 < lim1; ++cur1)
{
for (cur2=cur1 + 1; cur2 < lim2; ++cur2)
{
d = mbr_join_square(cur1->coords, cur2->coords, n_dim) - cur1->square -
cur2->square;
if (d > max_d)
{
max_d = d;
*seed_a = cur1;
*seed_b = cur2;
}
}
}
}
/*
Select next node and group where to add
*/
static void pick_next(SplitStruct *node, int n_entries, double *g1, double *g2,
SplitStruct **choice, int *n_group, int n_dim)
{
SplitStruct *cur = node;
SplitStruct *end = node + n_entries;
double max_diff = -DBL_MAX;
for (; cur<end; ++cur)
{
double diff;
double abs_diff;
if (cur->n_node)
{
continue;
}
diff = mbr_join_square(g1, cur->coords, n_dim) -
mbr_join_square(g2, cur->coords, n_dim);
abs_diff = fabs(diff);
if (abs_diff > max_diff)
{
max_diff = abs_diff;
*n_group = 1 + (diff > 0);
*choice = cur;
}
}
}
/*
Mark not-in-group entries as n_group
*/
static void mark_all_entries(SplitStruct *node, int n_entries, int n_group)
{
SplitStruct *cur = node;
SplitStruct *end = node + n_entries;
for (; cur<end; ++cur)
{
if (cur->n_node)
{
continue;
}
cur->n_node = n_group;
}
}
static int split_rtree_node(SplitStruct *node, int n_entries,
int all_size, /* Total key's size */
int key_size,
int min_size, /* Minimal group size */
int size1, int size2 /* initial group sizes */,
double **d_buffer, int n_dim)
{
SplitStruct *cur;
SplitStruct *a;
SplitStruct *b;
double *g1 = reserve_coords(d_buffer, n_dim);
double *g2 = reserve_coords(d_buffer, n_dim);
SplitStruct *next;
int next_node;
int i;
SplitStruct *end = node + n_entries;
LINT_INIT(a);
LINT_INIT(b);
LINT_INIT(next);
LINT_INIT(next_node);
if (all_size < min_size * 2)
{
return 1;
}
cur = node;
for (; cur<end; ++cur)
{
cur->square = count_square(cur->coords, n_dim);
cur->n_node = 0;
}
pick_seeds(node, n_entries, &a, &b, n_dim);
a->n_node = 1;
b->n_node = 2;
copy_coords(g1, a->coords, n_dim);
size1 += key_size;
copy_coords(g2, b->coords, n_dim);
size2 += key_size;
for (i=n_entries - 2; i>0; --i)
{
if (all_size - (size2 + key_size) < min_size) /* Can't write into group 2 */
{
mark_all_entries(node, n_entries, 1);
break;
}
if (all_size - (size1 + key_size) < min_size) /* Can't write into group 1 */
{
mark_all_entries(node, n_entries, 2);
break;
}
pick_next(node, n_entries, g1, g2, &next, &next_node, n_dim);
if (next_node == 1)
{
size1 += key_size;
mbr_join(g1, next->coords, n_dim);
}
else
{
size2 += key_size;
mbr_join(g2, next->coords, n_dim);
}
next->n_node = next_node;
}
return 0;
}
int rtree_split_page(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *page, uchar *key,
uint key_length, my_off_t *new_page_offs)
{
int n1, n2; /* Number of items in groups */
SplitStruct *task;
SplitStruct *cur;
SplitStruct *stop;
double *coord_buf;
double *next_coord;
double *old_coord;
int n_dim;
uchar *source_cur, *cur1, *cur2;
uchar *new_page= info->buff;
int err_code= 0;
uint nod_flag= mi_test_if_nod(page);
uint full_length= key_length + (nod_flag ? nod_flag :
info->s->base.rec_reflength);
int max_keys= (mi_getint(page)-2) / (full_length);
DBUG_ENTER("rtree_split_page");
DBUG_PRINT("rtree", ("splitting block"));
n_dim = keyinfo->keysegs / 2;
if (!(coord_buf= (double*) my_alloca(n_dim * 2 * sizeof(double) *
(max_keys + 1 + 4) +
sizeof(SplitStruct) * (max_keys + 1))))
DBUG_RETURN(-1); /* purecov: inspected */
task= (SplitStruct *)(coord_buf + n_dim * 2 * (max_keys + 1 + 4));
next_coord = coord_buf;
stop = task + max_keys;
source_cur = rt_PAGE_FIRST_KEY(page, nod_flag);
for (cur = task; cur < stop; ++cur, source_cur = rt_PAGE_NEXT_KEY(source_cur,
key_length, nod_flag))
{
cur->coords = reserve_coords(&next_coord, n_dim);
cur->key = source_cur;
rtree_d_mbr(keyinfo->seg, source_cur, key_length, cur->coords);
}
cur->coords = reserve_coords(&next_coord, n_dim);
rtree_d_mbr(keyinfo->seg, key, key_length, cur->coords);
cur->key = key;
old_coord = next_coord;
if (split_rtree_node(task, max_keys + 1,
mi_getint(page) + full_length + 2, full_length,
rt_PAGE_MIN_SIZE(keyinfo->block_length),
2, 2, &next_coord, n_dim))
{
err_code = 1;
goto split_err;
}
info->buff_used= 1;
stop = task + (max_keys + 1);
cur1 = rt_PAGE_FIRST_KEY(page, nod_flag);
cur2 = rt_PAGE_FIRST_KEY(new_page, nod_flag);
n1= n2 = 0;
for (cur = task; cur < stop; ++cur)
{
uchar *to;
if (cur->n_node == 1)
{
to = cur1;
cur1 = rt_PAGE_NEXT_KEY(cur1, key_length, nod_flag);
++n1;
}
else
{
to = cur2;
cur2 = rt_PAGE_NEXT_KEY(cur2, key_length, nod_flag);
++n2;
}
if (to != cur->key)
memcpy(to - nod_flag, cur->key - nod_flag, full_length);
}
mi_putint(page, 2 + n1 * full_length, nod_flag);
mi_putint(new_page, 2 + n2 * full_length, nod_flag);
if ((*new_page_offs= _mi_new(info, keyinfo, DFLT_INIT_HITS)) ==
HA_OFFSET_ERROR)
err_code= -1;
else
err_code= _mi_write_keypage(info, keyinfo, *new_page_offs,
DFLT_INIT_HITS, new_page);
DBUG_PRINT("rtree", ("split new block: %lu", (ulong) *new_page_offs));
split_err:
my_afree((uchar*) coord_buf);
DBUG_RETURN(err_code);
}
#endif /*HAVE_RTREE_KEYS*/