mirror of
https://github.com/MariaDB/server.git
synced 2025-01-23 15:24:16 +01:00
4878 lines
136 KiB
C++
4878 lines
136 KiB
C++
/* Copyright (c) 2000, 2014, Oracle and/or its affiliates.
|
|
Copyright (c) 2009, 2016, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
|
|
/* A lexical scanner on a temporary buffer with a yacc interface */
|
|
|
|
#define MYSQL_LEX 1
|
|
#include <my_global.h>
|
|
#include "sql_priv.h"
|
|
#include "sql_class.h" // sql_lex.h: SQLCOM_END
|
|
#include "sql_lex.h"
|
|
#include "sql_parse.h" // add_to_list
|
|
#include "item_create.h"
|
|
#include <m_ctype.h>
|
|
#include <hash.h>
|
|
#include "sp_head.h"
|
|
#include "sp.h"
|
|
#include "sql_select.h"
|
|
#include "sql_cte.h"
|
|
|
|
static int lex_one_token(YYSTYPE *yylval, THD *thd);
|
|
|
|
/*
|
|
We are using pointer to this variable for distinguishing between assignment
|
|
to NEW row field (when parsing trigger definition) and structured variable.
|
|
*/
|
|
|
|
sys_var *trg_new_row_fake_var= (sys_var*) 0x01;
|
|
|
|
/**
|
|
LEX_STRING constant for null-string to be used in parser and other places.
|
|
*/
|
|
const LEX_STRING null_lex_str= {NULL, 0};
|
|
const LEX_STRING empty_lex_str= {(char *) "", 0};
|
|
/**
|
|
@note The order of the elements of this array must correspond to
|
|
the order of elements in enum_binlog_stmt_unsafe.
|
|
*/
|
|
const int
|
|
Query_tables_list::binlog_stmt_unsafe_errcode[BINLOG_STMT_UNSAFE_COUNT] =
|
|
{
|
|
ER_BINLOG_UNSAFE_LIMIT,
|
|
ER_BINLOG_UNSAFE_INSERT_DELAYED,
|
|
ER_BINLOG_UNSAFE_SYSTEM_TABLE,
|
|
ER_BINLOG_UNSAFE_AUTOINC_COLUMNS,
|
|
ER_BINLOG_UNSAFE_UDF,
|
|
ER_BINLOG_UNSAFE_SYSTEM_VARIABLE,
|
|
ER_BINLOG_UNSAFE_SYSTEM_FUNCTION,
|
|
ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS,
|
|
ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE,
|
|
ER_BINLOG_UNSAFE_MIXED_STATEMENT,
|
|
ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT,
|
|
ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE,
|
|
ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT,
|
|
ER_BINLOG_UNSAFE_REPLACE_SELECT,
|
|
ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT,
|
|
ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT,
|
|
ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC,
|
|
ER_BINLOG_UNSAFE_UPDATE_IGNORE,
|
|
ER_BINLOG_UNSAFE_INSERT_TWO_KEYS,
|
|
ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST
|
|
};
|
|
|
|
|
|
/* Longest standard keyword name */
|
|
|
|
#define TOCK_NAME_LENGTH 24
|
|
|
|
/*
|
|
The following data is based on the latin1 character set, and is only
|
|
used when comparing keywords
|
|
*/
|
|
|
|
static uchar to_upper_lex[]=
|
|
{
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
|
|
96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,123,124,125,126,127,
|
|
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,
|
|
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,
|
|
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,
|
|
192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,
|
|
208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,
|
|
192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,
|
|
208,209,210,211,212,213,214,247,216,217,218,219,220,221,222,255
|
|
};
|
|
|
|
/*
|
|
Names of the index hints (for error messages). Keep in sync with
|
|
index_hint_type
|
|
*/
|
|
|
|
const char * index_hint_type_name[] =
|
|
{
|
|
"IGNORE INDEX",
|
|
"USE INDEX",
|
|
"FORCE INDEX"
|
|
};
|
|
|
|
inline int lex_casecmp(const char *s, const char *t, uint len)
|
|
{
|
|
while (len-- != 0 &&
|
|
to_upper_lex[(uchar) *s++] == to_upper_lex[(uchar) *t++]) ;
|
|
return (int) len+1;
|
|
}
|
|
|
|
#include <lex_hash.h>
|
|
|
|
|
|
void lex_init(void)
|
|
{
|
|
uint i;
|
|
DBUG_ENTER("lex_init");
|
|
for (i=0 ; i < array_elements(symbols) ; i++)
|
|
symbols[i].length=(uchar) strlen(symbols[i].name);
|
|
for (i=0 ; i < array_elements(sql_functions) ; i++)
|
|
sql_functions[i].length=(uchar) strlen(sql_functions[i].name);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
void lex_free(void)
|
|
{ // Call this when daemon ends
|
|
DBUG_ENTER("lex_free");
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/**
|
|
Initialize lex object for use in fix_fields and parsing.
|
|
|
|
SYNOPSIS
|
|
init_lex_with_single_table()
|
|
@param thd The thread object
|
|
@param table The table object
|
|
@return Operation status
|
|
@retval TRUE An error occurred, memory allocation error
|
|
@retval FALSE Ok
|
|
|
|
DESCRIPTION
|
|
This function is used to initialize a lex object on the
|
|
stack for use by fix_fields and for parsing. In order to
|
|
work properly it also needs to initialize the
|
|
Name_resolution_context object of the lexer.
|
|
Finally it needs to set a couple of variables to ensure
|
|
proper functioning of fix_fields.
|
|
*/
|
|
|
|
int
|
|
init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex)
|
|
{
|
|
TABLE_LIST *table_list;
|
|
Table_ident *table_ident;
|
|
SELECT_LEX *select_lex= &lex->select_lex;
|
|
Name_resolution_context *context= &select_lex->context;
|
|
/*
|
|
We will call the parser to create a part_info struct based on the
|
|
partition string stored in the frm file.
|
|
We will use a local lex object for this purpose. However we also
|
|
need to set the Name_resolution_object for this lex object. We
|
|
do this by using add_table_to_list where we add the table that
|
|
we're working with to the Name_resolution_context.
|
|
*/
|
|
thd->lex= lex;
|
|
lex_start(thd);
|
|
context->init();
|
|
if ((!(table_ident= new Table_ident(thd,
|
|
table->s->table_name,
|
|
table->s->db, TRUE))) ||
|
|
(!(table_list= select_lex->add_table_to_list(thd,
|
|
table_ident,
|
|
NULL,
|
|
0))))
|
|
return TRUE;
|
|
context->resolve_in_table_list_only(table_list);
|
|
lex->use_only_table_context= TRUE;
|
|
lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_VCOL_EXPR;
|
|
select_lex->cur_pos_in_select_list= UNDEF_POS;
|
|
table->map= 1; //To ensure correct calculation of const item
|
|
table->get_fields_in_item_tree= TRUE;
|
|
table_list->table= table;
|
|
table_list->cacheable_table= false;
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
End use of local lex with single table
|
|
|
|
SYNOPSIS
|
|
end_lex_with_single_table()
|
|
@param thd The thread object
|
|
@param table The table object
|
|
@param old_lex The real lex object connected to THD
|
|
|
|
DESCRIPTION
|
|
This function restores the real lex object after calling
|
|
init_lex_with_single_table and also restores some table
|
|
variables temporarily set.
|
|
*/
|
|
|
|
void
|
|
end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex)
|
|
{
|
|
LEX *lex= thd->lex;
|
|
table->map= 0;
|
|
table->get_fields_in_item_tree= FALSE;
|
|
lex_end(lex);
|
|
thd->lex= old_lex;
|
|
}
|
|
|
|
|
|
void
|
|
st_parsing_options::reset()
|
|
{
|
|
allows_variable= TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
Perform initialization of Lex_input_stream instance.
|
|
|
|
Basically, a buffer for pre-processed query. This buffer should be large
|
|
enough to keep multi-statement query. The allocation is done once in
|
|
Lex_input_stream::init() in order to prevent memory pollution when
|
|
the server is processing large multi-statement queries.
|
|
*/
|
|
|
|
bool Lex_input_stream::init(THD *thd,
|
|
char* buff,
|
|
unsigned int length)
|
|
{
|
|
DBUG_EXECUTE_IF("bug42064_simulate_oom",
|
|
DBUG_SET("+d,simulate_out_of_memory"););
|
|
|
|
m_cpp_buf= (char*) thd->alloc(length + 1);
|
|
|
|
DBUG_EXECUTE_IF("bug42064_simulate_oom",
|
|
DBUG_SET("-d,bug42064_simulate_oom"););
|
|
|
|
if (m_cpp_buf == NULL)
|
|
return TRUE;
|
|
|
|
m_thd= thd;
|
|
reset(buff, length);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Prepare Lex_input_stream instance state for use for handling next SQL statement.
|
|
|
|
It should be called between two statements in a multi-statement query.
|
|
The operation resets the input stream to the beginning-of-parse state,
|
|
but does not reallocate m_cpp_buf.
|
|
*/
|
|
|
|
void
|
|
Lex_input_stream::reset(char *buffer, unsigned int length)
|
|
{
|
|
yylineno= 1;
|
|
yylval= NULL;
|
|
lookahead_token= -1;
|
|
lookahead_yylval= NULL;
|
|
m_ptr= buffer;
|
|
m_tok_start= NULL;
|
|
m_tok_end= NULL;
|
|
m_end_of_query= buffer + length;
|
|
m_tok_start_prev= NULL;
|
|
m_buf= buffer;
|
|
m_buf_length= length;
|
|
m_echo= TRUE;
|
|
m_cpp_tok_start= NULL;
|
|
m_cpp_tok_start_prev= NULL;
|
|
m_cpp_tok_end= NULL;
|
|
m_body_utf8= NULL;
|
|
m_cpp_utf8_processed_ptr= NULL;
|
|
next_state= MY_LEX_START;
|
|
found_semicolon= NULL;
|
|
ignore_space= MY_TEST(m_thd->variables.sql_mode & MODE_IGNORE_SPACE);
|
|
stmt_prepare_mode= FALSE;
|
|
multi_statements= TRUE;
|
|
in_comment=NO_COMMENT;
|
|
m_underscore_cs= NULL;
|
|
m_cpp_ptr= m_cpp_buf;
|
|
}
|
|
|
|
|
|
/**
|
|
The operation is called from the parser in order to
|
|
1) designate the intention to have utf8 body;
|
|
1) Indicate to the lexer that we will need a utf8 representation of this
|
|
statement;
|
|
2) Determine the beginning of the body.
|
|
|
|
@param thd Thread context.
|
|
@param begin_ptr Pointer to the start of the body in the pre-processed
|
|
buffer.
|
|
*/
|
|
|
|
void Lex_input_stream::body_utf8_start(THD *thd, const char *begin_ptr)
|
|
{
|
|
DBUG_ASSERT(begin_ptr);
|
|
DBUG_ASSERT(m_cpp_buf <= begin_ptr && begin_ptr <= m_cpp_buf + m_buf_length);
|
|
|
|
uint body_utf8_length= get_body_utf8_maximum_length(thd);
|
|
|
|
m_body_utf8= (char *) thd->alloc(body_utf8_length + 1);
|
|
m_body_utf8_ptr= m_body_utf8;
|
|
*m_body_utf8_ptr= 0;
|
|
|
|
m_cpp_utf8_processed_ptr= begin_ptr;
|
|
}
|
|
|
|
|
|
uint Lex_input_stream::get_body_utf8_maximum_length(THD *thd)
|
|
{
|
|
/*
|
|
String literals can grow during escaping:
|
|
1a. Character string '<TAB>' can grow to '\t', 3 bytes to 4 bytes growth.
|
|
1b. Character string '1000 times <TAB>' grows from
|
|
1002 to 2002 bytes (including quotes), which gives a little bit
|
|
less than 2 times growth.
|
|
"2" should be a reasonable multiplier that safely covers escaping needs.
|
|
*/
|
|
return (m_buf_length / thd->variables.character_set_client->mbminlen) *
|
|
my_charset_utf8_bin.mbmaxlen * 2/*for escaping*/;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief The operation appends unprocessed part of pre-processed buffer till
|
|
the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to end_ptr.
|
|
|
|
The idea is that some tokens in the pre-processed buffer (like character
|
|
set introducers) should be skipped.
|
|
|
|
Example:
|
|
CPP buffer: SELECT 'str1', _latin1 'str2';
|
|
m_cpp_utf8_processed_ptr -- points at the "SELECT ...";
|
|
In order to skip "_latin1", the following call should be made:
|
|
body_utf8_append(<pointer to "_latin1 ...">, <pointer to " 'str2'...">)
|
|
|
|
@param ptr Pointer in the pre-processed buffer, which specifies the
|
|
end of the chunk, which should be appended to the utf8
|
|
body.
|
|
@param end_ptr Pointer in the pre-processed buffer, to which
|
|
m_cpp_utf8_processed_ptr will be set in the end of the
|
|
operation.
|
|
*/
|
|
|
|
void Lex_input_stream::body_utf8_append(const char *ptr,
|
|
const char *end_ptr)
|
|
{
|
|
DBUG_ASSERT(m_cpp_buf <= ptr && ptr <= m_cpp_buf + m_buf_length);
|
|
DBUG_ASSERT(m_cpp_buf <= end_ptr && end_ptr <= m_cpp_buf + m_buf_length);
|
|
|
|
if (!m_body_utf8)
|
|
return;
|
|
|
|
if (m_cpp_utf8_processed_ptr >= ptr)
|
|
return;
|
|
|
|
int bytes_to_copy= ptr - m_cpp_utf8_processed_ptr;
|
|
|
|
memcpy(m_body_utf8_ptr, m_cpp_utf8_processed_ptr, bytes_to_copy);
|
|
m_body_utf8_ptr += bytes_to_copy;
|
|
*m_body_utf8_ptr= 0;
|
|
|
|
m_cpp_utf8_processed_ptr= end_ptr;
|
|
}
|
|
|
|
/**
|
|
The operation appends unprocessed part of the pre-processed buffer till
|
|
the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to ptr.
|
|
|
|
@param ptr Pointer in the pre-processed buffer, which specifies the end
|
|
of the chunk, which should be appended to the utf8 body.
|
|
*/
|
|
|
|
void Lex_input_stream::body_utf8_append(const char *ptr)
|
|
{
|
|
body_utf8_append(ptr, ptr);
|
|
}
|
|
|
|
/**
|
|
The operation converts the specified text literal to the utf8 and appends
|
|
the result to the utf8-body.
|
|
|
|
@param thd Thread context.
|
|
@param txt Text literal.
|
|
@param txt_cs Character set of the text literal.
|
|
@param end_ptr Pointer in the pre-processed buffer, to which
|
|
m_cpp_utf8_processed_ptr will be set in the end of the
|
|
operation.
|
|
*/
|
|
|
|
void Lex_input_stream::body_utf8_append_ident(THD *thd,
|
|
const LEX_STRING *txt,
|
|
const char *end_ptr)
|
|
{
|
|
if (!m_cpp_utf8_processed_ptr)
|
|
return;
|
|
|
|
LEX_STRING utf_txt;
|
|
CHARSET_INFO *txt_cs= thd->charset();
|
|
|
|
if (!my_charset_same(txt_cs, &my_charset_utf8_general_ci))
|
|
{
|
|
thd->convert_string(&utf_txt,
|
|
&my_charset_utf8_general_ci,
|
|
txt->str, (uint) txt->length,
|
|
txt_cs);
|
|
}
|
|
else
|
|
{
|
|
utf_txt.str= txt->str;
|
|
utf_txt.length= txt->length;
|
|
}
|
|
|
|
/* NOTE: utf_txt.length is in bytes, not in symbols. */
|
|
|
|
memcpy(m_body_utf8_ptr, utf_txt.str, utf_txt.length);
|
|
m_body_utf8_ptr += utf_txt.length;
|
|
*m_body_utf8_ptr= 0;
|
|
|
|
m_cpp_utf8_processed_ptr= end_ptr;
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
/**
|
|
Escape a character. Consequently puts "escape" and "wc" characters into
|
|
the destination utf8 string.
|
|
@param cs - the character set (utf8)
|
|
@param escape - the escape character (backslash, single quote, double quote)
|
|
@param wc - the character to be escaped
|
|
@param str - the destination string
|
|
@param end - the end of the destination string
|
|
@returns - a code according to the wc_mb() convension.
|
|
*/
|
|
int my_wc_mb_utf8_with_escape(CHARSET_INFO *cs, my_wc_t escape, my_wc_t wc,
|
|
uchar *str, uchar *end)
|
|
{
|
|
DBUG_ASSERT(escape > 0);
|
|
if (str + 1 >= end)
|
|
return MY_CS_TOOSMALL2; // Not enough space, need at least two bytes.
|
|
*str= escape;
|
|
int cnvres= my_charset_utf8_handler.wc_mb(cs, wc, str + 1, end);
|
|
if (cnvres > 0)
|
|
return cnvres + 1; // The character was normally put
|
|
if (cnvres == MY_CS_ILUNI)
|
|
return MY_CS_ILUNI; // Could not encode "wc" (e.g. non-BMP character)
|
|
DBUG_ASSERT(cnvres <= MY_CS_TOOSMALL);
|
|
return cnvres - 1; // Not enough space
|
|
}
|
|
|
|
|
|
/**
|
|
Optionally escape a character.
|
|
If "escape" is non-zero, then both "escape" and "wc" are put to
|
|
the destination string. Otherwise, only "wc" is put.
|
|
@param cs - the character set (utf8)
|
|
@param wc - the character to be optionally escaped
|
|
@param escape - the escape character, or 0
|
|
@param ewc - the escaped replacement of "wc" (e.g. 't' for '\t')
|
|
@param str - the destination string
|
|
@param end - the end of the destination string
|
|
@returns - a code according to the wc_mb() conversion.
|
|
*/
|
|
int my_wc_mb_utf8_opt_escape(CHARSET_INFO *cs,
|
|
my_wc_t wc, my_wc_t escape, my_wc_t ewc,
|
|
uchar *str, uchar *end)
|
|
{
|
|
return escape ? my_wc_mb_utf8_with_escape(cs, escape, ewc, str, end) :
|
|
my_charset_utf8_handler.wc_mb(cs, wc, str, end);
|
|
}
|
|
|
|
/**
|
|
Encode a character with optional backlash escaping and quote escaping.
|
|
Quote marks are escaped using another quote mark.
|
|
Additionally, if "escape" is non-zero, then special characters are
|
|
also escaped using "escape".
|
|
Otherwise (if "escape" is zero, e.g. in case of MODE_NO_BACKSLASH_ESCAPES),
|
|
then special characters are not escaped and handled as normal characters.
|
|
|
|
@param cs - the character set (utf8)
|
|
@param wc - the character to be encoded
|
|
@param str - the destination string
|
|
@param end - the end of the destination string
|
|
@param sep - the string delimiter (e.g. ' or ")
|
|
@param escape - the escape character (backslash, or 0)
|
|
@returns - a code according to the wc_mb() convension.
|
|
*/
|
|
int my_wc_mb_utf8_escape(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end,
|
|
my_wc_t sep, my_wc_t escape)
|
|
{
|
|
DBUG_ASSERT(escape == 0 || escape == '\\');
|
|
DBUG_ASSERT(sep == '"' || sep == '\'');
|
|
switch (wc) {
|
|
case 0: return my_wc_mb_utf8_opt_escape(cs, wc, escape, '0', str, end);
|
|
case '\t': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 't', str, end);
|
|
case '\r': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'r', str, end);
|
|
case '\n': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'n', str, end);
|
|
case '\032': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'Z', str, end);
|
|
case '\'':
|
|
case '\"':
|
|
if (wc == sep)
|
|
return my_wc_mb_utf8_with_escape(cs, wc, wc, str, end);
|
|
}
|
|
return my_charset_utf8_handler.wc_mb(cs, wc, str, end); // No escaping needed
|
|
}
|
|
|
|
|
|
/** wc_mb() compatible routines for all sql_mode and delimiter combinations */
|
|
int my_wc_mb_utf8_escape_single_quote_and_backslash(CHARSET_INFO *cs,
|
|
my_wc_t wc,
|
|
uchar *str, uchar *end)
|
|
{
|
|
return my_wc_mb_utf8_escape(cs, wc, str, end, '\'', '\\');
|
|
}
|
|
|
|
|
|
int my_wc_mb_utf8_escape_double_quote_and_backslash(CHARSET_INFO *cs,
|
|
my_wc_t wc,
|
|
uchar *str, uchar *end)
|
|
{
|
|
return my_wc_mb_utf8_escape(cs, wc, str, end, '"', '\\');
|
|
}
|
|
|
|
|
|
int my_wc_mb_utf8_escape_single_quote(CHARSET_INFO *cs, my_wc_t wc,
|
|
uchar *str, uchar *end)
|
|
{
|
|
return my_wc_mb_utf8_escape(cs, wc, str, end, '\'', 0);
|
|
}
|
|
|
|
|
|
int my_wc_mb_utf8_escape_double_quote(CHARSET_INFO *cs, my_wc_t wc,
|
|
uchar *str, uchar *end)
|
|
{
|
|
return my_wc_mb_utf8_escape(cs, wc, str, end, '"', 0);
|
|
}
|
|
|
|
}; // End of extern "C"
|
|
|
|
|
|
/**
|
|
Get an escaping function, depending on the current sql_mode and the
|
|
string separator.
|
|
*/
|
|
my_charset_conv_wc_mb
|
|
Lex_input_stream::get_escape_func(THD *thd, my_wc_t sep) const
|
|
{
|
|
return thd->backslash_escapes() ?
|
|
(sep == '"' ? my_wc_mb_utf8_escape_double_quote_and_backslash:
|
|
my_wc_mb_utf8_escape_single_quote_and_backslash) :
|
|
(sep == '"' ? my_wc_mb_utf8_escape_double_quote:
|
|
my_wc_mb_utf8_escape_single_quote);
|
|
}
|
|
|
|
|
|
/**
|
|
Append a text literal to the end of m_body_utf8.
|
|
The string is escaped according to the current sql_mode and the
|
|
string delimiter (e.g. ' or ").
|
|
|
|
@param thd - current THD
|
|
@param txt - the string to be appended to m_body_utf8.
|
|
Note, the string must be already unescaped.
|
|
@param cs - the character set of the string
|
|
@param end_ptr - m_cpp_utf8_processed_ptr will be set to this value
|
|
(see body_utf8_append_ident for details)
|
|
@param sep - the string delimiter (single or double quote)
|
|
*/
|
|
void Lex_input_stream::body_utf8_append_escape(THD *thd,
|
|
const LEX_STRING *txt,
|
|
CHARSET_INFO *cs,
|
|
const char *end_ptr,
|
|
my_wc_t sep)
|
|
{
|
|
DBUG_ASSERT(sep == '\'' || sep == '"');
|
|
if (!m_cpp_utf8_processed_ptr)
|
|
return;
|
|
uint errors;
|
|
/**
|
|
We previously alloced m_body_utf8 to be able to store the query with all
|
|
strings properly escaped. See get_body_utf8_maximum_length().
|
|
So here we have guaranteedly enough space to append any string literal
|
|
with escaping. Passing txt->length*2 as "available space" is always safe.
|
|
For better safety purposes we could calculate get_body_utf8_maximum_length()
|
|
every time we append a string, but this would affect performance negatively,
|
|
so let's check that we don't get beyond the allocated buffer in
|
|
debug build only.
|
|
*/
|
|
DBUG_ASSERT(m_body_utf8 + get_body_utf8_maximum_length(thd) >=
|
|
m_body_utf8_ptr + txt->length * 2);
|
|
uint32 cnv_length= my_convert_using_func(m_body_utf8_ptr, txt->length * 2,
|
|
&my_charset_utf8_general_ci,
|
|
get_escape_func(thd, sep),
|
|
txt->str, txt->length,
|
|
cs, cs->cset->mb_wc,
|
|
&errors);
|
|
m_body_utf8_ptr+= cnv_length;
|
|
*m_body_utf8_ptr= 0;
|
|
m_cpp_utf8_processed_ptr= end_ptr;
|
|
}
|
|
|
|
|
|
void Lex_input_stream::add_digest_token(uint token, LEX_YYSTYPE yylval)
|
|
{
|
|
if (m_digest != NULL)
|
|
{
|
|
m_digest= digest_add_token(m_digest, token, yylval);
|
|
}
|
|
}
|
|
|
|
void Lex_input_stream::reduce_digest_token(uint token_left, uint token_right)
|
|
{
|
|
if (m_digest != NULL)
|
|
{
|
|
m_digest= digest_reduce_token(m_digest, token_left, token_right);
|
|
}
|
|
}
|
|
|
|
/*
|
|
This is called before every query that is to be parsed.
|
|
Because of this, it's critical to not do too much things here.
|
|
(We already do too much here)
|
|
*/
|
|
|
|
void lex_start(THD *thd)
|
|
{
|
|
LEX *lex= thd->lex;
|
|
DBUG_ENTER("lex_start");
|
|
|
|
lex->thd= lex->unit.thd= thd;
|
|
|
|
DBUG_ASSERT(!lex->explain);
|
|
|
|
lex->context_stack.empty();
|
|
lex->unit.init_query();
|
|
lex->unit.init_select();
|
|
/* 'parent_lex' is used in init_query() so it must be before it. */
|
|
lex->select_lex.parent_lex= lex;
|
|
lex->select_lex.init_query();
|
|
lex->curr_with_clause= 0;
|
|
lex->with_clauses_list= 0;
|
|
lex->with_clauses_list_last_next= &lex->with_clauses_list;
|
|
lex->value_list.empty();
|
|
lex->update_list.empty();
|
|
lex->set_var_list.empty();
|
|
lex->param_list.empty();
|
|
lex->view_list.empty();
|
|
lex->with_column_list.empty();
|
|
lex->with_persistent_for_clause= FALSE;
|
|
lex->column_list= NULL;
|
|
lex->index_list= NULL;
|
|
lex->prepared_stmt_params.empty();
|
|
lex->auxiliary_table_list.empty();
|
|
lex->unit.next= lex->unit.master=
|
|
lex->unit.link_next= lex->unit.return_to= 0;
|
|
lex->unit.prev= lex->unit.link_prev= 0;
|
|
lex->unit.slave= lex->current_select=
|
|
lex->all_selects_list= &lex->select_lex;
|
|
lex->select_lex.master= &lex->unit;
|
|
lex->select_lex.prev= &lex->unit.slave;
|
|
lex->select_lex.link_next= lex->select_lex.slave= lex->select_lex.next= 0;
|
|
lex->select_lex.link_prev= (st_select_lex_node**)&(lex->all_selects_list);
|
|
lex->select_lex.options= 0;
|
|
lex->select_lex.sql_cache= SELECT_LEX::SQL_CACHE_UNSPECIFIED;
|
|
lex->select_lex.init_order();
|
|
lex->select_lex.group_list.empty();
|
|
if (lex->select_lex.group_list_ptrs)
|
|
lex->select_lex.group_list_ptrs->clear();
|
|
lex->describe= 0;
|
|
lex->analyze_stmt= 0;
|
|
lex->explain_json= false;
|
|
lex->subqueries= FALSE;
|
|
lex->context_analysis_only= 0;
|
|
lex->derived_tables= 0;
|
|
lex->safe_to_cache_query= 1;
|
|
lex->parsing_options.reset();
|
|
lex->empty_field_list_on_rset= 0;
|
|
lex->select_lex.select_number= 1;
|
|
lex->part_info= 0;
|
|
lex->select_lex.in_sum_expr=0;
|
|
lex->select_lex.ftfunc_list_alloc.empty();
|
|
lex->select_lex.ftfunc_list= &lex->select_lex.ftfunc_list_alloc;
|
|
lex->select_lex.group_list.empty();
|
|
lex->select_lex.order_list.empty();
|
|
lex->select_lex.gorder_list.empty();
|
|
lex->m_sql_cmd= NULL;
|
|
lex->duplicates= DUP_ERROR;
|
|
lex->ignore= 0;
|
|
lex->spname= NULL;
|
|
lex->spcont= NULL;
|
|
lex->proc_list.first= 0;
|
|
lex->escape_used= FALSE;
|
|
lex->query_tables= 0;
|
|
lex->reset_query_tables_list(FALSE);
|
|
lex->expr_allows_subselect= TRUE;
|
|
lex->use_only_table_context= FALSE;
|
|
lex->parse_vcol_expr= FALSE;
|
|
lex->check_exists= FALSE;
|
|
lex->create_info.lex_start();
|
|
lex->verbose= 0;
|
|
|
|
lex->name= null_lex_str;
|
|
lex->event_parse_data= NULL;
|
|
lex->profile_options= PROFILE_NONE;
|
|
lex->nest_level=0 ;
|
|
lex->select_lex.nest_level_base= &lex->unit;
|
|
lex->allow_sum_func= 0;
|
|
lex->in_sum_func= NULL;
|
|
|
|
lex->used_tables= 0;
|
|
lex->only_view= FALSE;
|
|
lex->reset_slave_info.all= false;
|
|
lex->limit_rows_examined= 0;
|
|
lex->limit_rows_examined_cnt= ULONGLONG_MAX;
|
|
lex->var_list.empty();
|
|
lex->stmt_var_list.empty();
|
|
lex->proc_list.elements=0;
|
|
|
|
lex->save_group_list.empty();
|
|
lex->save_order_list.empty();
|
|
lex->win_ref= NULL;
|
|
lex->win_frame= NULL;
|
|
lex->frame_top_bound= NULL;
|
|
lex->frame_bottom_bound= NULL;
|
|
lex->win_spec= NULL;
|
|
|
|
lex->is_lex_started= TRUE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void lex_end(LEX *lex)
|
|
{
|
|
DBUG_ENTER("lex_end");
|
|
DBUG_PRINT("enter", ("lex: 0x%lx", (long) lex));
|
|
|
|
lex_end_stage1(lex);
|
|
lex_end_stage2(lex);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void lex_end_stage1(LEX *lex)
|
|
{
|
|
DBUG_ENTER("lex_end_stage1");
|
|
|
|
/* release used plugins */
|
|
if (lex->plugins.elements) /* No function call and no mutex if no plugins. */
|
|
{
|
|
plugin_unlock_list(0, (plugin_ref*)lex->plugins.buffer,
|
|
lex->plugins.elements);
|
|
}
|
|
reset_dynamic(&lex->plugins);
|
|
|
|
if (lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE)
|
|
{
|
|
/*
|
|
Don't delete lex->sphead, it'll be needed for EXECUTE.
|
|
Note that of all statements that populate lex->sphead
|
|
only SQLCOM_COMPOUND can be PREPAREd
|
|
*/
|
|
DBUG_ASSERT(lex->sphead == 0 || lex->sql_command == SQLCOM_COMPOUND);
|
|
}
|
|
else
|
|
{
|
|
delete lex->sphead;
|
|
lex->sphead= NULL;
|
|
}
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
MASTER INFO parameters (or state) is normally cleared towards the end
|
|
of a statement. But in case of PS, the state needs to be preserved during
|
|
its lifetime and should only be cleared on PS close or deallocation.
|
|
*/
|
|
void lex_end_stage2(LEX *lex)
|
|
{
|
|
DBUG_ENTER("lex_end_stage2");
|
|
|
|
/* Reset LEX_MASTER_INFO */
|
|
lex->mi.reset(lex->sql_command == SQLCOM_CHANGE_MASTER);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
Yacc_state::~Yacc_state()
|
|
{
|
|
if (yacc_yyss)
|
|
{
|
|
my_free(yacc_yyss);
|
|
my_free(yacc_yyvs);
|
|
}
|
|
}
|
|
|
|
static int find_keyword(Lex_input_stream *lip, uint len, bool function)
|
|
{
|
|
const char *tok= lip->get_tok_start();
|
|
|
|
SYMBOL *symbol= get_hash_symbol(tok, len, function);
|
|
if (symbol)
|
|
{
|
|
lip->yylval->symbol.symbol=symbol;
|
|
lip->yylval->symbol.str= (char*) tok;
|
|
lip->yylval->symbol.length=len;
|
|
|
|
if ((symbol->tok == NOT_SYM) &&
|
|
(lip->m_thd->variables.sql_mode & MODE_HIGH_NOT_PRECEDENCE))
|
|
return NOT2_SYM;
|
|
if ((symbol->tok == OR_OR_SYM) &&
|
|
!(lip->m_thd->variables.sql_mode & MODE_PIPES_AS_CONCAT))
|
|
return OR2_SYM;
|
|
|
|
return symbol->tok;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Check if name is a keyword
|
|
|
|
SYNOPSIS
|
|
is_keyword()
|
|
name checked name (must not be empty)
|
|
len length of checked name
|
|
|
|
RETURN VALUES
|
|
0 name is a keyword
|
|
1 name isn't a keyword
|
|
*/
|
|
|
|
bool is_keyword(const char *name, uint len)
|
|
{
|
|
DBUG_ASSERT(len != 0);
|
|
return get_hash_symbol(name,len,0)!=0;
|
|
}
|
|
|
|
/**
|
|
Check if name is a sql function
|
|
|
|
@param name checked name
|
|
|
|
@return is this a native function or not
|
|
@retval 0 name is a function
|
|
@retval 1 name isn't a function
|
|
*/
|
|
|
|
bool is_lex_native_function(const LEX_STRING *name)
|
|
{
|
|
DBUG_ASSERT(name != NULL);
|
|
return (get_hash_symbol(name->str, (uint) name->length, 1) != 0);
|
|
}
|
|
|
|
/* make a copy of token before ptr and set yytoklen */
|
|
|
|
static LEX_STRING get_token(Lex_input_stream *lip, uint skip, uint length)
|
|
{
|
|
LEX_STRING tmp;
|
|
lip->yyUnget(); // ptr points now after last token char
|
|
tmp.length= length;
|
|
tmp.str= lip->m_thd->strmake(lip->get_tok_start() + skip, tmp.length);
|
|
|
|
lip->m_cpp_text_start= lip->get_cpp_tok_start() + skip;
|
|
lip->m_cpp_text_end= lip->m_cpp_text_start + tmp.length;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
todo:
|
|
There are no dangerous charsets in mysql for function
|
|
get_quoted_token yet. But it should be fixed in the
|
|
future to operate multichar strings (like ucs2)
|
|
*/
|
|
|
|
static LEX_STRING get_quoted_token(Lex_input_stream *lip,
|
|
uint skip,
|
|
uint length, char quote)
|
|
{
|
|
LEX_STRING tmp;
|
|
const char *from, *end;
|
|
char *to;
|
|
lip->yyUnget(); // ptr points now after last token char
|
|
tmp.length= length;
|
|
tmp.str=(char*) lip->m_thd->alloc(tmp.length+1);
|
|
from= lip->get_tok_start() + skip;
|
|
to= tmp.str;
|
|
end= to+length;
|
|
|
|
lip->m_cpp_text_start= lip->get_cpp_tok_start() + skip;
|
|
lip->m_cpp_text_end= lip->m_cpp_text_start + length;
|
|
|
|
for ( ; to != end; )
|
|
{
|
|
if ((*to++= *from++) == quote)
|
|
{
|
|
from++; // Skip double quotes
|
|
lip->m_cpp_text_start++;
|
|
}
|
|
}
|
|
*to= 0; // End null for safety
|
|
return tmp;
|
|
}
|
|
|
|
|
|
static size_t
|
|
my_unescape(CHARSET_INFO *cs, char *to, const char *str, const char *end,
|
|
int sep, bool backslash_escapes)
|
|
{
|
|
char *start= to;
|
|
for ( ; str != end ; str++)
|
|
{
|
|
#ifdef USE_MB
|
|
int l;
|
|
if (use_mb(cs) && (l= my_ismbchar(cs, str, end)))
|
|
{
|
|
while (l--)
|
|
*to++ = *str++;
|
|
str--;
|
|
continue;
|
|
}
|
|
#endif
|
|
if (backslash_escapes && *str == '\\' && str + 1 != end)
|
|
{
|
|
switch(*++str) {
|
|
case 'n':
|
|
*to++='\n';
|
|
break;
|
|
case 't':
|
|
*to++= '\t';
|
|
break;
|
|
case 'r':
|
|
*to++ = '\r';
|
|
break;
|
|
case 'b':
|
|
*to++ = '\b';
|
|
break;
|
|
case '0':
|
|
*to++= 0; // Ascii null
|
|
break;
|
|
case 'Z': // ^Z must be escaped on Win32
|
|
*to++='\032';
|
|
break;
|
|
case '_':
|
|
case '%':
|
|
*to++= '\\'; // remember prefix for wildcard
|
|
/* Fall through */
|
|
default:
|
|
*to++= *str;
|
|
break;
|
|
}
|
|
}
|
|
else if (*str == sep)
|
|
*to++= *str++; // Two ' or "
|
|
else
|
|
*to++ = *str;
|
|
}
|
|
*to= 0;
|
|
return to - start;
|
|
}
|
|
|
|
|
|
size_t
|
|
Lex_input_stream::unescape(CHARSET_INFO *cs, char *to,
|
|
const char *str, const char *end,
|
|
int sep)
|
|
{
|
|
return my_unescape(cs, to, str, end, sep, m_thd->backslash_escapes());
|
|
}
|
|
|
|
|
|
/*
|
|
Return an unescaped text literal without quotes
|
|
Fix sometimes to do only one scan of the string
|
|
*/
|
|
|
|
bool Lex_input_stream::get_text(LEX_STRING *dst, uint sep,
|
|
int pre_skip, int post_skip)
|
|
{
|
|
reg1 uchar c;
|
|
uint found_escape=0;
|
|
CHARSET_INFO *cs= m_thd->charset();
|
|
|
|
tok_bitmap= 0;
|
|
while (! eof())
|
|
{
|
|
c= yyGet();
|
|
tok_bitmap|= c;
|
|
#ifdef USE_MB
|
|
{
|
|
int l;
|
|
if (use_mb(cs) &&
|
|
(l = my_ismbchar(cs,
|
|
get_ptr() -1,
|
|
get_end_of_query()))) {
|
|
skip_binary(l-1);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
if (c == '\\' &&
|
|
!(m_thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES))
|
|
{ // Escaped character
|
|
found_escape=1;
|
|
if (eof())
|
|
return true;
|
|
yySkip();
|
|
}
|
|
else if (c == sep)
|
|
{
|
|
if (c == yyGet()) // Check if two separators in a row
|
|
{
|
|
found_escape=1; // duplicate. Remember for delete
|
|
continue;
|
|
}
|
|
else
|
|
yyUnget();
|
|
|
|
/* Found end. Unescape and return string */
|
|
const char *str, *end;
|
|
|
|
str= get_tok_start();
|
|
end= get_ptr();
|
|
/* Extract the text from the token */
|
|
str += pre_skip;
|
|
end -= post_skip;
|
|
DBUG_ASSERT(end >= str);
|
|
|
|
if (!(dst->str= (char*) m_thd->alloc((uint) (end - str) + 1)))
|
|
{
|
|
dst->str= (char*) ""; // Sql_alloc has set error flag
|
|
dst->length= 0;
|
|
return true;
|
|
}
|
|
|
|
m_cpp_text_start= get_cpp_tok_start() + pre_skip;
|
|
m_cpp_text_end= get_cpp_ptr() - post_skip;
|
|
|
|
if (!found_escape)
|
|
{
|
|
memcpy(dst->str, str, dst->length= (end - str));
|
|
dst->str[dst->length]= 0;
|
|
}
|
|
else
|
|
{
|
|
dst->length= unescape(cs, dst->str, str, end, sep);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return true; // unexpected end of query
|
|
}
|
|
|
|
|
|
/*
|
|
** Calc type of integer; long integer, longlong integer or real.
|
|
** Returns smallest type that match the string.
|
|
** When using unsigned long long values the result is converted to a real
|
|
** because else they will be unexpected sign changes because all calculation
|
|
** is done with longlong or double.
|
|
*/
|
|
|
|
static const char *long_str="2147483647";
|
|
static const uint long_len=10;
|
|
static const char *signed_long_str="-2147483648";
|
|
static const char *longlong_str="9223372036854775807";
|
|
static const uint longlong_len=19;
|
|
static const char *signed_longlong_str="-9223372036854775808";
|
|
static const uint signed_longlong_len=19;
|
|
static const char *unsigned_longlong_str="18446744073709551615";
|
|
static const uint unsigned_longlong_len=20;
|
|
|
|
static inline uint int_token(const char *str,uint length)
|
|
{
|
|
if (length < long_len) // quick normal case
|
|
return NUM;
|
|
bool neg=0;
|
|
|
|
if (*str == '+') // Remove sign and pre-zeros
|
|
{
|
|
str++; length--;
|
|
}
|
|
else if (*str == '-')
|
|
{
|
|
str++; length--;
|
|
neg=1;
|
|
}
|
|
while (*str == '0' && length)
|
|
{
|
|
str++; length --;
|
|
}
|
|
if (length < long_len)
|
|
return NUM;
|
|
|
|
uint smaller,bigger;
|
|
const char *cmp;
|
|
if (neg)
|
|
{
|
|
if (length == long_len)
|
|
{
|
|
cmp= signed_long_str+1;
|
|
smaller=NUM; // If <= signed_long_str
|
|
bigger=LONG_NUM; // If >= signed_long_str
|
|
}
|
|
else if (length < signed_longlong_len)
|
|
return LONG_NUM;
|
|
else if (length > signed_longlong_len)
|
|
return DECIMAL_NUM;
|
|
else
|
|
{
|
|
cmp=signed_longlong_str+1;
|
|
smaller=LONG_NUM; // If <= signed_longlong_str
|
|
bigger=DECIMAL_NUM;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (length == long_len)
|
|
{
|
|
cmp= long_str;
|
|
smaller=NUM;
|
|
bigger=LONG_NUM;
|
|
}
|
|
else if (length < longlong_len)
|
|
return LONG_NUM;
|
|
else if (length > longlong_len)
|
|
{
|
|
if (length > unsigned_longlong_len)
|
|
return DECIMAL_NUM;
|
|
cmp=unsigned_longlong_str;
|
|
smaller=ULONGLONG_NUM;
|
|
bigger=DECIMAL_NUM;
|
|
}
|
|
else
|
|
{
|
|
cmp=longlong_str;
|
|
smaller=LONG_NUM;
|
|
bigger= ULONGLONG_NUM;
|
|
}
|
|
}
|
|
while (*cmp && *cmp++ == *str++) ;
|
|
return ((uchar) str[-1] <= (uchar) cmp[-1]) ? smaller : bigger;
|
|
}
|
|
|
|
|
|
/**
|
|
Given a stream that is advanced to the first contained character in
|
|
an open comment, consume the comment. Optionally, if we are allowed,
|
|
recurse so that we understand comments within this current comment.
|
|
|
|
At this level, we do not support version-condition comments. We might
|
|
have been called with having just passed one in the stream, though. In
|
|
that case, we probably want to tolerate mundane comments inside. Thus,
|
|
the case for recursion.
|
|
|
|
@retval Whether EOF reached before comment is closed.
|
|
*/
|
|
bool consume_comment(Lex_input_stream *lip, int remaining_recursions_permitted)
|
|
{
|
|
reg1 uchar c;
|
|
while (! lip->eof())
|
|
{
|
|
c= lip->yyGet();
|
|
|
|
if (remaining_recursions_permitted > 0)
|
|
{
|
|
if ((c == '/') && (lip->yyPeek() == '*'))
|
|
{
|
|
lip->yySkip(); /* Eat asterisk */
|
|
consume_comment(lip, remaining_recursions_permitted-1);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (c == '*')
|
|
{
|
|
if (lip->yyPeek() == '/')
|
|
{
|
|
lip->yySkip(); /* Eat slash */
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
if (c == '\n')
|
|
lip->yylineno++;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
MYSQLlex remember the following states from the following MYSQLlex()
|
|
|
|
@param yylval [out] semantic value of the token being parsed (yylval)
|
|
@param thd THD
|
|
|
|
- MY_LEX_EOQ Found end of query
|
|
- MY_LEX_OPERATOR_OR_IDENT Last state was an ident, text or number
|
|
(which can't be followed by a signed number)
|
|
*/
|
|
|
|
int MYSQLlex(YYSTYPE *yylval, THD *thd)
|
|
{
|
|
Lex_input_stream *lip= & thd->m_parser_state->m_lip;
|
|
int token;
|
|
|
|
if (lip->lookahead_token >= 0)
|
|
{
|
|
/*
|
|
The next token was already parsed in advance,
|
|
return it.
|
|
*/
|
|
token= lip->lookahead_token;
|
|
lip->lookahead_token= -1;
|
|
*yylval= *(lip->lookahead_yylval);
|
|
lip->lookahead_yylval= NULL;
|
|
return token;
|
|
}
|
|
|
|
token= lex_one_token(yylval, thd);
|
|
lip->add_digest_token(token, yylval);
|
|
|
|
switch(token) {
|
|
case WITH:
|
|
/*
|
|
Parsing 'WITH' 'ROLLUP' or 'WITH' 'CUBE' requires 2 look ups,
|
|
which makes the grammar LALR(2).
|
|
Replace by a single 'WITH_ROLLUP' or 'WITH_CUBE' token,
|
|
to transform the grammar into a LALR(1) grammar,
|
|
which sql_yacc.yy can process.
|
|
*/
|
|
token= lex_one_token(yylval, thd);
|
|
lip->add_digest_token(token, yylval);
|
|
switch(token) {
|
|
case CUBE_SYM:
|
|
return WITH_CUBE_SYM;
|
|
case ROLLUP_SYM:
|
|
return WITH_ROLLUP_SYM;
|
|
default:
|
|
/*
|
|
Save the token following 'WITH'
|
|
*/
|
|
lip->lookahead_yylval= lip->yylval;
|
|
lip->yylval= NULL;
|
|
lip->lookahead_token= token;
|
|
return WITH;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return token;
|
|
}
|
|
|
|
static int lex_one_token(YYSTYPE *yylval, THD *thd)
|
|
{
|
|
reg1 uchar UNINIT_VAR(c);
|
|
bool comment_closed;
|
|
int tokval, result_state;
|
|
uint length;
|
|
enum my_lex_states state;
|
|
Lex_input_stream *lip= & thd->m_parser_state->m_lip;
|
|
LEX *lex= thd->lex;
|
|
CHARSET_INFO *const cs= thd->charset();
|
|
const uchar *const state_map= cs->state_map;
|
|
const uchar *const ident_map= cs->ident_map;
|
|
|
|
lip->yylval=yylval; // The global state
|
|
|
|
lip->start_token();
|
|
state=lip->next_state;
|
|
lip->next_state=MY_LEX_OPERATOR_OR_IDENT;
|
|
for (;;)
|
|
{
|
|
switch (state) {
|
|
case MY_LEX_OPERATOR_OR_IDENT: // Next is operator or keyword
|
|
case MY_LEX_START: // Start of token
|
|
// Skip starting whitespace
|
|
while(state_map[c= lip->yyPeek()] == MY_LEX_SKIP)
|
|
{
|
|
if (c == '\n')
|
|
lip->yylineno++;
|
|
|
|
lip->yySkip();
|
|
}
|
|
|
|
/* Start of real token */
|
|
lip->restart_token();
|
|
c= lip->yyGet();
|
|
state= (enum my_lex_states) state_map[c];
|
|
break;
|
|
case MY_LEX_ESCAPE:
|
|
if (lip->yyGet() == 'N')
|
|
{ // Allow \N as shortcut for NULL
|
|
yylval->lex_str.str=(char*) "\\N";
|
|
yylval->lex_str.length=2;
|
|
return NULL_SYM;
|
|
}
|
|
/* Fall through */
|
|
case MY_LEX_CHAR: // Unknown or single char token
|
|
case MY_LEX_SKIP: // This should not happen
|
|
if (c != ')')
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
return((int) c);
|
|
|
|
case MY_LEX_MINUS_OR_COMMENT:
|
|
if (lip->yyPeek() == '-' &&
|
|
(my_isspace(cs,lip->yyPeekn(1)) ||
|
|
my_iscntrl(cs,lip->yyPeekn(1))))
|
|
{
|
|
state=MY_LEX_COMMENT;
|
|
break;
|
|
}
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
return((int) c);
|
|
|
|
case MY_LEX_PLACEHOLDER:
|
|
/*
|
|
Check for a placeholder: it should not precede a possible identifier
|
|
because of binlogging: when a placeholder is replaced with
|
|
its value in a query for the binlog, the query must stay
|
|
grammatically correct.
|
|
*/
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
if (lip->stmt_prepare_mode && !ident_map[(uchar) lip->yyPeek()])
|
|
return(PARAM_MARKER);
|
|
return((int) c);
|
|
|
|
case MY_LEX_COMMA:
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
/*
|
|
Warning:
|
|
This is a work around, to make the "remember_name" rule in
|
|
sql/sql_yacc.yy work properly.
|
|
The problem is that, when parsing "select expr1, expr2",
|
|
the code generated by bison executes the *pre* action
|
|
remember_name (see select_item) *before* actually parsing the
|
|
first token of expr2.
|
|
*/
|
|
lip->restart_token();
|
|
return((int) c);
|
|
|
|
case MY_LEX_IDENT_OR_NCHAR:
|
|
{
|
|
uint sep;
|
|
if (lip->yyPeek() != '\'')
|
|
{
|
|
state= MY_LEX_IDENT;
|
|
break;
|
|
}
|
|
/* Found N'string' */
|
|
lip->yySkip(); // Skip '
|
|
if (lip->get_text(&yylval->lex_str, (sep= lip->yyGetLast()), 2, 1))
|
|
{
|
|
state= MY_LEX_CHAR; // Read char by char
|
|
break;
|
|
}
|
|
|
|
lip->body_utf8_append(lip->m_cpp_text_start);
|
|
lip->body_utf8_append_escape(thd, &yylval->lex_str,
|
|
national_charset_info,
|
|
lip->m_cpp_text_end, sep);
|
|
|
|
lex->text_string_is_7bit= (lip->tok_bitmap & 0x80) ? 0 : 1;
|
|
return(NCHAR_STRING);
|
|
}
|
|
case MY_LEX_IDENT_OR_HEX:
|
|
if (lip->yyPeek() == '\'')
|
|
{ // Found x'hex-number'
|
|
state= MY_LEX_HEX_NUMBER;
|
|
break;
|
|
}
|
|
case MY_LEX_IDENT_OR_BIN:
|
|
if (lip->yyPeek() == '\'')
|
|
{ // Found b'bin-number'
|
|
state= MY_LEX_BIN_NUMBER;
|
|
break;
|
|
}
|
|
case MY_LEX_IDENT:
|
|
const char *start;
|
|
#if defined(USE_MB) && defined(USE_MB_IDENT)
|
|
if (use_mb(cs))
|
|
{
|
|
result_state= IDENT_QUOTED;
|
|
int char_length= my_charlen(cs, lip->get_ptr() - 1,
|
|
lip->get_end_of_query());
|
|
if (char_length <= 0)
|
|
{
|
|
state= MY_LEX_CHAR;
|
|
continue;
|
|
}
|
|
lip->skip_binary(char_length - 1);
|
|
|
|
while (ident_map[c=lip->yyGet()])
|
|
{
|
|
char_length= my_charlen(cs, lip->get_ptr() - 1,
|
|
lip->get_end_of_query());
|
|
if (char_length <= 0)
|
|
break;
|
|
lip->skip_binary(char_length - 1);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (result_state= c;
|
|
ident_map[(uchar) (c= lip->yyGet())];
|
|
result_state|= c)
|
|
;
|
|
/* If there were non-ASCII characters, mark that we must convert */
|
|
result_state= result_state & 0x80 ? IDENT_QUOTED : IDENT;
|
|
}
|
|
length= lip->yyLength();
|
|
start= lip->get_ptr();
|
|
if (lip->ignore_space)
|
|
{
|
|
/*
|
|
If we find a space then this can't be an identifier. We notice this
|
|
below by checking start != lex->ptr.
|
|
*/
|
|
for (; state_map[(uchar) c] == MY_LEX_SKIP ; c= lip->yyGet())
|
|
;
|
|
}
|
|
if (start == lip->get_ptr() && c == '.' &&
|
|
ident_map[(uchar) lip->yyPeek()])
|
|
lip->next_state=MY_LEX_IDENT_SEP;
|
|
else
|
|
{ // '(' must follow directly if function
|
|
lip->yyUnget();
|
|
if ((tokval = find_keyword(lip, length, c == '(')))
|
|
{
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
return(tokval); // Was keyword
|
|
}
|
|
lip->yySkip(); // next state does a unget
|
|
}
|
|
yylval->lex_str=get_token(lip, 0, length);
|
|
|
|
/*
|
|
Note: "SELECT _bla AS 'alias'"
|
|
_bla should be considered as a IDENT if charset haven't been found.
|
|
So we don't use MYF(MY_WME) with get_charset_by_csname to avoid
|
|
producing an error.
|
|
*/
|
|
|
|
if (yylval->lex_str.str[0] == '_')
|
|
{
|
|
CHARSET_INFO *cs= get_charset_by_csname(yylval->lex_str.str + 1,
|
|
MY_CS_PRIMARY, MYF(0));
|
|
if (cs)
|
|
{
|
|
yylval->charset= cs;
|
|
lip->m_underscore_cs= cs;
|
|
|
|
lip->body_utf8_append(lip->m_cpp_text_start,
|
|
lip->get_cpp_tok_start() + length);
|
|
return(UNDERSCORE_CHARSET);
|
|
}
|
|
}
|
|
|
|
lip->body_utf8_append(lip->m_cpp_text_start);
|
|
|
|
lip->body_utf8_append_ident(thd, &yylval->lex_str, lip->m_cpp_text_end);
|
|
|
|
return(result_state); // IDENT or IDENT_QUOTED
|
|
|
|
case MY_LEX_IDENT_SEP: // Found ident and now '.'
|
|
yylval->lex_str.str= (char*) lip->get_ptr();
|
|
yylval->lex_str.length= 1;
|
|
c= lip->yyGet(); // should be '.'
|
|
lip->next_state= MY_LEX_IDENT_START; // Next is ident (not keyword)
|
|
if (!ident_map[(uchar) lip->yyPeek()]) // Probably ` or "
|
|
lip->next_state= MY_LEX_START;
|
|
return((int) c);
|
|
|
|
case MY_LEX_NUMBER_IDENT: // number or ident which num-start
|
|
if (lip->yyGetLast() == '0')
|
|
{
|
|
c= lip->yyGet();
|
|
if (c == 'x')
|
|
{
|
|
while (my_isxdigit(cs,(c = lip->yyGet()))) ;
|
|
if ((lip->yyLength() >= 3) && !ident_map[c])
|
|
{
|
|
/* skip '0x' */
|
|
yylval->lex_str=get_token(lip, 2, lip->yyLength()-2);
|
|
return (HEX_NUM);
|
|
}
|
|
lip->yyUnget();
|
|
state= MY_LEX_IDENT_START;
|
|
break;
|
|
}
|
|
else if (c == 'b')
|
|
{
|
|
while ((c= lip->yyGet()) == '0' || c == '1')
|
|
;
|
|
if ((lip->yyLength() >= 3) && !ident_map[c])
|
|
{
|
|
/* Skip '0b' */
|
|
yylval->lex_str= get_token(lip, 2, lip->yyLength()-2);
|
|
return (BIN_NUM);
|
|
}
|
|
lip->yyUnget();
|
|
state= MY_LEX_IDENT_START;
|
|
break;
|
|
}
|
|
lip->yyUnget();
|
|
}
|
|
|
|
while (my_isdigit(cs, (c = lip->yyGet()))) ;
|
|
if (!ident_map[c])
|
|
{ // Can't be identifier
|
|
state=MY_LEX_INT_OR_REAL;
|
|
break;
|
|
}
|
|
if (c == 'e' || c == 'E')
|
|
{
|
|
// The following test is written this way to allow numbers of type 1e1
|
|
if (my_isdigit(cs,lip->yyPeek()) ||
|
|
(c=(lip->yyGet())) == '+' || c == '-')
|
|
{ // Allow 1E+10
|
|
if (my_isdigit(cs,lip->yyPeek())) // Number must have digit after sign
|
|
{
|
|
lip->yySkip();
|
|
while (my_isdigit(cs,lip->yyGet())) ;
|
|
yylval->lex_str=get_token(lip, 0, lip->yyLength());
|
|
return(FLOAT_NUM);
|
|
}
|
|
}
|
|
lip->yyUnget();
|
|
}
|
|
// fall through
|
|
case MY_LEX_IDENT_START: // We come here after '.'
|
|
result_state= IDENT;
|
|
#if defined(USE_MB) && defined(USE_MB_IDENT)
|
|
if (use_mb(cs))
|
|
{
|
|
result_state= IDENT_QUOTED;
|
|
while (ident_map[c=lip->yyGet()])
|
|
{
|
|
int char_length= my_charlen(cs, lip->get_ptr() - 1,
|
|
lip->get_end_of_query());
|
|
if (char_length <= 0)
|
|
break;
|
|
lip->skip_binary(char_length - 1);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (result_state=0; ident_map[c= lip->yyGet()]; result_state|= c)
|
|
;
|
|
/* If there were non-ASCII characters, mark that we must convert */
|
|
result_state= result_state & 0x80 ? IDENT_QUOTED : IDENT;
|
|
}
|
|
if (c == '.' && ident_map[(uchar) lip->yyPeek()])
|
|
lip->next_state=MY_LEX_IDENT_SEP;// Next is '.'
|
|
|
|
yylval->lex_str= get_token(lip, 0, lip->yyLength());
|
|
|
|
lip->body_utf8_append(lip->m_cpp_text_start);
|
|
|
|
lip->body_utf8_append_ident(thd, &yylval->lex_str, lip->m_cpp_text_end);
|
|
|
|
return(result_state);
|
|
|
|
case MY_LEX_USER_VARIABLE_DELIMITER: // Found quote char
|
|
{
|
|
uint double_quotes= 0;
|
|
char quote_char= c; // Used char
|
|
while ((c=lip->yyGet()))
|
|
{
|
|
int var_length= my_charlen(cs, lip->get_ptr() - 1,
|
|
lip->get_end_of_query());
|
|
if (var_length == 1)
|
|
{
|
|
if (c == quote_char)
|
|
{
|
|
if (lip->yyPeek() != quote_char)
|
|
break;
|
|
c=lip->yyGet();
|
|
double_quotes++;
|
|
continue;
|
|
}
|
|
}
|
|
#ifdef USE_MB
|
|
else if (var_length > 1)
|
|
{
|
|
lip->skip_binary(var_length - 1);
|
|
}
|
|
#endif
|
|
}
|
|
if (double_quotes)
|
|
yylval->lex_str=get_quoted_token(lip, 1,
|
|
lip->yyLength() - double_quotes -1,
|
|
quote_char);
|
|
else
|
|
yylval->lex_str=get_token(lip, 1, lip->yyLength() -1);
|
|
if (c == quote_char)
|
|
lip->yySkip(); // Skip end `
|
|
lip->next_state= MY_LEX_START;
|
|
|
|
lip->body_utf8_append(lip->m_cpp_text_start);
|
|
|
|
lip->body_utf8_append_ident(thd, &yylval->lex_str, lip->m_cpp_text_end);
|
|
|
|
return(IDENT_QUOTED);
|
|
}
|
|
case MY_LEX_INT_OR_REAL: // Complete int or incomplete real
|
|
if (c != '.')
|
|
{ // Found complete integer number.
|
|
yylval->lex_str=get_token(lip, 0, lip->yyLength());
|
|
return int_token(yylval->lex_str.str, (uint) yylval->lex_str.length);
|
|
}
|
|
// fall through
|
|
case MY_LEX_REAL: // Incomplete real number
|
|
while (my_isdigit(cs,c = lip->yyGet())) ;
|
|
|
|
if (c == 'e' || c == 'E')
|
|
{
|
|
c = lip->yyGet();
|
|
if (c == '-' || c == '+')
|
|
c = lip->yyGet(); // Skip sign
|
|
if (!my_isdigit(cs,c))
|
|
{ // No digit after sign
|
|
state= MY_LEX_CHAR;
|
|
break;
|
|
}
|
|
while (my_isdigit(cs,lip->yyGet())) ;
|
|
yylval->lex_str=get_token(lip, 0, lip->yyLength());
|
|
return(FLOAT_NUM);
|
|
}
|
|
yylval->lex_str=get_token(lip, 0, lip->yyLength());
|
|
return(DECIMAL_NUM);
|
|
|
|
case MY_LEX_HEX_NUMBER: // Found x'hexstring'
|
|
lip->yySkip(); // Accept opening '
|
|
while (my_isxdigit(cs, (c= lip->yyGet()))) ;
|
|
if (c != '\'')
|
|
return(ABORT_SYM); // Illegal hex constant
|
|
lip->yySkip(); // Accept closing '
|
|
length= lip->yyLength(); // Length of hexnum+3
|
|
if ((length % 2) == 0)
|
|
return(ABORT_SYM); // odd number of hex digits
|
|
yylval->lex_str=get_token(lip,
|
|
2, // skip x'
|
|
length-3); // don't count x' and last '
|
|
return HEX_STRING;
|
|
|
|
case MY_LEX_BIN_NUMBER: // Found b'bin-string'
|
|
lip->yySkip(); // Accept opening '
|
|
while ((c= lip->yyGet()) == '0' || c == '1')
|
|
;
|
|
if (c != '\'')
|
|
return(ABORT_SYM); // Illegal hex constant
|
|
lip->yySkip(); // Accept closing '
|
|
length= lip->yyLength(); // Length of bin-num + 3
|
|
yylval->lex_str= get_token(lip,
|
|
2, // skip b'
|
|
length-3); // don't count b' and last '
|
|
return (BIN_NUM);
|
|
|
|
case MY_LEX_CMP_OP: // Incomplete comparison operator
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
if (state_map[(uchar) lip->yyPeek()] == MY_LEX_CMP_OP ||
|
|
state_map[(uchar) lip->yyPeek()] == MY_LEX_LONG_CMP_OP)
|
|
{
|
|
lip->yySkip();
|
|
if ((tokval= find_keyword(lip, 2, 0)))
|
|
return(tokval);
|
|
lip->yyUnget();
|
|
}
|
|
return(c);
|
|
|
|
case MY_LEX_LONG_CMP_OP: // Incomplete comparison operator
|
|
lip->next_state= MY_LEX_START;
|
|
if (state_map[(uchar) lip->yyPeek()] == MY_LEX_CMP_OP ||
|
|
state_map[(uchar) lip->yyPeek()] == MY_LEX_LONG_CMP_OP)
|
|
{
|
|
lip->yySkip();
|
|
if (state_map[(uchar) lip->yyPeek()] == MY_LEX_CMP_OP)
|
|
{
|
|
lip->yySkip();
|
|
if ((tokval= find_keyword(lip, 3, 0)))
|
|
return(tokval);
|
|
lip->yyUnget();
|
|
}
|
|
if ((tokval= find_keyword(lip, 2, 0)))
|
|
return(tokval);
|
|
lip->yyUnget();
|
|
}
|
|
return(c);
|
|
|
|
case MY_LEX_BOOL:
|
|
if (c != lip->yyPeek())
|
|
{
|
|
state=MY_LEX_CHAR;
|
|
break;
|
|
}
|
|
lip->yySkip();
|
|
tokval = find_keyword(lip,2,0); // Is a bool operator
|
|
lip->next_state= MY_LEX_START; // Allow signed numbers
|
|
return(tokval);
|
|
|
|
case MY_LEX_STRING_OR_DELIMITER:
|
|
if (thd->variables.sql_mode & MODE_ANSI_QUOTES)
|
|
{
|
|
state= MY_LEX_USER_VARIABLE_DELIMITER;
|
|
break;
|
|
}
|
|
/* " used for strings */
|
|
case MY_LEX_STRING: // Incomplete text string
|
|
{
|
|
uint sep;
|
|
if (lip->get_text(&yylval->lex_str, (sep= lip->yyGetLast()), 1, 1))
|
|
{
|
|
state= MY_LEX_CHAR; // Read char by char
|
|
break;
|
|
}
|
|
CHARSET_INFO *strcs= lip->m_underscore_cs ? lip->m_underscore_cs : cs;
|
|
lip->body_utf8_append(lip->m_cpp_text_start);
|
|
|
|
lip->body_utf8_append_escape(thd, &yylval->lex_str, strcs,
|
|
lip->m_cpp_text_end, sep);
|
|
lip->m_underscore_cs= NULL;
|
|
|
|
lex->text_string_is_7bit= (lip->tok_bitmap & 0x80) ? 0 : 1;
|
|
return(TEXT_STRING);
|
|
}
|
|
case MY_LEX_COMMENT: // Comment
|
|
lex->select_lex.options|= OPTION_FOUND_COMMENT;
|
|
while ((c = lip->yyGet()) != '\n' && c) ;
|
|
lip->yyUnget(); // Safety against eof
|
|
state = MY_LEX_START; // Try again
|
|
break;
|
|
case MY_LEX_LONG_COMMENT: /* Long C comment? */
|
|
if (lip->yyPeek() != '*')
|
|
{
|
|
state=MY_LEX_CHAR; // Probable division
|
|
break;
|
|
}
|
|
lex->select_lex.options|= OPTION_FOUND_COMMENT;
|
|
/* Reject '/' '*', since we might need to turn off the echo */
|
|
lip->yyUnget();
|
|
|
|
lip->save_in_comment_state();
|
|
|
|
if (lip->yyPeekn(2) == '!' ||
|
|
(lip->yyPeekn(2) == 'M' && lip->yyPeekn(3) == '!'))
|
|
{
|
|
bool maria_comment_syntax= lip->yyPeekn(2) == 'M';
|
|
lip->in_comment= DISCARD_COMMENT;
|
|
/* Accept '/' '*' '!', but do not keep this marker. */
|
|
lip->set_echo(FALSE);
|
|
lip->yySkipn(maria_comment_syntax ? 4 : 3);
|
|
|
|
/*
|
|
The special comment format is very strict:
|
|
'/' '*' '!', followed by an optional 'M' and exactly
|
|
1-2 digits (major), 2 digits (minor), then 2 digits (dot).
|
|
32302 -> 3.23.02
|
|
50032 -> 5.0.32
|
|
50114 -> 5.1.14
|
|
100000 -> 10.0.0
|
|
*/
|
|
if ( my_isdigit(cs, lip->yyPeekn(0))
|
|
&& my_isdigit(cs, lip->yyPeekn(1))
|
|
&& my_isdigit(cs, lip->yyPeekn(2))
|
|
&& my_isdigit(cs, lip->yyPeekn(3))
|
|
&& my_isdigit(cs, lip->yyPeekn(4))
|
|
)
|
|
{
|
|
ulong version;
|
|
uint length= 5;
|
|
char *end_ptr= (char*) lip->get_ptr()+length;
|
|
int error;
|
|
if (my_isdigit(cs, lip->yyPeekn(5)))
|
|
{
|
|
end_ptr++; // 6 digit number
|
|
length++;
|
|
}
|
|
|
|
version= (ulong) my_strtoll10(lip->get_ptr(), &end_ptr, &error);
|
|
|
|
/*
|
|
MySQL-5.7 has new features and might have new SQL syntax that
|
|
MariaDB-10.0 does not understand. Ignore all versioned comments
|
|
with MySQL versions in the range 50700-999999, but
|
|
do not ignore MariaDB specific comments for the same versions.
|
|
*/
|
|
if (version <= MYSQL_VERSION_ID &&
|
|
(version < 50700 || version > 99999 || maria_comment_syntax))
|
|
{
|
|
/* Accept 'M' 'm' 'm' 'd' 'd' */
|
|
lip->yySkipn(length);
|
|
/* Expand the content of the special comment as real code */
|
|
lip->set_echo(TRUE);
|
|
state=MY_LEX_START;
|
|
break; /* Do not treat contents as a comment. */
|
|
}
|
|
else
|
|
{
|
|
#ifdef WITH_WSREP
|
|
if (WSREP(thd) && version == 99997 && thd->wsrep_exec_mode == LOCAL_STATE)
|
|
{
|
|
WSREP_DEBUG("consistency check: %s", thd->query());
|
|
thd->wsrep_consistency_check= CONSISTENCY_CHECK_DECLARED;
|
|
lip->yySkipn(5);
|
|
lip->set_echo(TRUE);
|
|
state=MY_LEX_START;
|
|
break; /* Do not treat contents as a comment. */
|
|
}
|
|
#endif /* WITH_WSREP */
|
|
/*
|
|
Patch and skip the conditional comment to avoid it
|
|
being propagated infinitely (eg. to a slave).
|
|
*/
|
|
char *pcom= lip->yyUnput(' ');
|
|
comment_closed= ! consume_comment(lip, 1);
|
|
if (! comment_closed)
|
|
{
|
|
*pcom= '!';
|
|
}
|
|
/* version allowed to have one level of comment inside. */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Not a version comment. */
|
|
state=MY_LEX_START;
|
|
lip->set_echo(TRUE);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
lip->in_comment= PRESERVE_COMMENT;
|
|
lip->yySkip(); // Accept /
|
|
lip->yySkip(); // Accept *
|
|
comment_closed= ! consume_comment(lip, 0);
|
|
/* regular comments can have zero comments inside. */
|
|
}
|
|
/*
|
|
Discard:
|
|
- regular '/' '*' comments,
|
|
- special comments '/' '*' '!' for a future version,
|
|
by scanning until we find a closing '*' '/' marker.
|
|
|
|
Nesting regular comments isn't allowed. The first
|
|
'*' '/' returns the parser to the previous state.
|
|
|
|
/#!VERSI oned containing /# regular #/ is allowed #/
|
|
|
|
Inside one versioned comment, another versioned comment
|
|
is treated as a regular discardable comment. It gets
|
|
no special parsing.
|
|
*/
|
|
|
|
/* Unbalanced comments with a missing '*' '/' are a syntax error */
|
|
if (! comment_closed)
|
|
return (ABORT_SYM);
|
|
state = MY_LEX_START; // Try again
|
|
lip->restore_in_comment_state();
|
|
break;
|
|
case MY_LEX_END_LONG_COMMENT:
|
|
if ((lip->in_comment != NO_COMMENT) && lip->yyPeek() == '/')
|
|
{
|
|
/* Reject '*' '/' */
|
|
lip->yyUnget();
|
|
/* Accept '*' '/', with the proper echo */
|
|
lip->set_echo(lip->in_comment == PRESERVE_COMMENT);
|
|
lip->yySkipn(2);
|
|
/* And start recording the tokens again */
|
|
lip->set_echo(TRUE);
|
|
lip->in_comment=NO_COMMENT;
|
|
state=MY_LEX_START;
|
|
}
|
|
else
|
|
state=MY_LEX_CHAR; // Return '*'
|
|
break;
|
|
case MY_LEX_SET_VAR: // Check if ':='
|
|
if (lip->yyPeek() != '=')
|
|
{
|
|
state=MY_LEX_CHAR; // Return ':'
|
|
break;
|
|
}
|
|
lip->yySkip();
|
|
return (SET_VAR);
|
|
case MY_LEX_SEMICOLON: // optional line terminator
|
|
state= MY_LEX_CHAR; // Return ';'
|
|
break;
|
|
case MY_LEX_EOL:
|
|
if (lip->eof())
|
|
{
|
|
lip->yyUnget(); // Reject the last '\0'
|
|
lip->set_echo(FALSE);
|
|
lip->yySkip();
|
|
lip->set_echo(TRUE);
|
|
/* Unbalanced comments with a missing '*' '/' are a syntax error */
|
|
if (lip->in_comment != NO_COMMENT)
|
|
return (ABORT_SYM);
|
|
lip->next_state=MY_LEX_END; // Mark for next loop
|
|
return(END_OF_INPUT);
|
|
}
|
|
state=MY_LEX_CHAR;
|
|
break;
|
|
case MY_LEX_END:
|
|
lip->next_state=MY_LEX_END;
|
|
return(0); // We found end of input last time
|
|
|
|
/* Actually real shouldn't start with . but allow them anyhow */
|
|
case MY_LEX_REAL_OR_POINT:
|
|
if (my_isdigit(cs,lip->yyPeek()))
|
|
state = MY_LEX_REAL; // Real
|
|
else
|
|
{
|
|
state= MY_LEX_IDENT_SEP; // return '.'
|
|
lip->yyUnget(); // Put back '.'
|
|
}
|
|
break;
|
|
case MY_LEX_USER_END: // end '@' of user@hostname
|
|
switch (state_map[(uchar) lip->yyPeek()]) {
|
|
case MY_LEX_STRING:
|
|
case MY_LEX_USER_VARIABLE_DELIMITER:
|
|
case MY_LEX_STRING_OR_DELIMITER:
|
|
break;
|
|
case MY_LEX_USER_END:
|
|
lip->next_state=MY_LEX_SYSTEM_VAR;
|
|
break;
|
|
default:
|
|
lip->next_state=MY_LEX_HOSTNAME;
|
|
break;
|
|
}
|
|
yylval->lex_str.str=(char*) lip->get_ptr();
|
|
yylval->lex_str.length=1;
|
|
return((int) '@');
|
|
case MY_LEX_HOSTNAME: // end '@' of user@hostname
|
|
for (c=lip->yyGet() ;
|
|
my_isalnum(cs,c) || c == '.' || c == '_' || c == '$';
|
|
c= lip->yyGet()) ;
|
|
yylval->lex_str=get_token(lip, 0, lip->yyLength());
|
|
return(LEX_HOSTNAME);
|
|
case MY_LEX_SYSTEM_VAR:
|
|
yylval->lex_str.str=(char*) lip->get_ptr();
|
|
yylval->lex_str.length=1;
|
|
lip->yySkip(); // Skip '@'
|
|
lip->next_state= (state_map[(uchar) lip->yyPeek()] ==
|
|
MY_LEX_USER_VARIABLE_DELIMITER ?
|
|
MY_LEX_OPERATOR_OR_IDENT :
|
|
MY_LEX_IDENT_OR_KEYWORD);
|
|
return((int) '@');
|
|
case MY_LEX_IDENT_OR_KEYWORD:
|
|
/*
|
|
We come here when we have found two '@' in a row.
|
|
We should now be able to handle:
|
|
[(global | local | session) .]variable_name
|
|
*/
|
|
|
|
for (result_state= 0; ident_map[c= lip->yyGet()]; result_state|= c)
|
|
;
|
|
/* If there were non-ASCII characters, mark that we must convert */
|
|
result_state= result_state & 0x80 ? IDENT_QUOTED : IDENT;
|
|
|
|
if (c == '.')
|
|
lip->next_state=MY_LEX_IDENT_SEP;
|
|
length= lip->yyLength();
|
|
if (length == 0)
|
|
return(ABORT_SYM); // Names must be nonempty.
|
|
if ((tokval= find_keyword(lip, length,0)))
|
|
{
|
|
lip->yyUnget(); // Put back 'c'
|
|
return(tokval); // Was keyword
|
|
}
|
|
yylval->lex_str=get_token(lip, 0, length);
|
|
|
|
lip->body_utf8_append(lip->m_cpp_text_start);
|
|
|
|
lip->body_utf8_append_ident(thd, &yylval->lex_str, lip->m_cpp_text_end);
|
|
|
|
return(result_state);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void trim_whitespace(CHARSET_INFO *cs, LEX_STRING *str)
|
|
{
|
|
/*
|
|
TODO:
|
|
This code assumes that there are no multi-bytes characters
|
|
that can be considered white-space.
|
|
*/
|
|
|
|
while ((str->length > 0) && (my_isspace(cs, str->str[0])))
|
|
{
|
|
str->length --;
|
|
str->str ++;
|
|
}
|
|
|
|
/*
|
|
FIXME:
|
|
Also, parsing backward is not safe with multi bytes characters
|
|
*/
|
|
while ((str->length > 0) && (my_isspace(cs, str->str[str->length-1])))
|
|
{
|
|
str->length --;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
st_select_lex structures initialisations
|
|
*/
|
|
|
|
void st_select_lex_node::init_query()
|
|
{
|
|
options= 0;
|
|
sql_cache= SQL_CACHE_UNSPECIFIED;
|
|
linkage= UNSPECIFIED_TYPE;
|
|
no_table_names_allowed= 0;
|
|
uncacheable= 0;
|
|
}
|
|
|
|
void st_select_lex_node::init_select()
|
|
{
|
|
}
|
|
|
|
void st_select_lex_unit::init_query()
|
|
{
|
|
st_select_lex_node::init_query();
|
|
linkage= GLOBAL_OPTIONS_TYPE;
|
|
select_limit_cnt= HA_POS_ERROR;
|
|
offset_limit_cnt= 0;
|
|
union_distinct= 0;
|
|
prepared= optimized= executed= 0;
|
|
item= 0;
|
|
union_result= 0;
|
|
table= 0;
|
|
fake_select_lex= 0;
|
|
saved_fake_select_lex= 0;
|
|
cleaned= 0;
|
|
item_list.empty();
|
|
describe= 0;
|
|
found_rows_for_union= 0;
|
|
insert_table_with_stored_vcol= 0;
|
|
derived= 0;
|
|
is_view= false;
|
|
with_clause= 0;
|
|
with_element= 0;
|
|
columns_are_renamed= false;
|
|
}
|
|
|
|
void st_select_lex::init_query()
|
|
{
|
|
st_select_lex_node::init_query();
|
|
table_list.empty();
|
|
top_join_list.empty();
|
|
join_list= &top_join_list;
|
|
embedding= 0;
|
|
leaf_tables_prep.empty();
|
|
leaf_tables.empty();
|
|
item_list.empty();
|
|
join= 0;
|
|
having= prep_having= where= prep_where= 0;
|
|
olap= UNSPECIFIED_OLAP_TYPE;
|
|
having_fix_field= 0;
|
|
context.select_lex= this;
|
|
context.init();
|
|
/*
|
|
Add the name resolution context of the current (sub)query to the
|
|
stack of contexts for the whole query.
|
|
TODO:
|
|
push_context may return an error if there is no memory for a new
|
|
element in the stack, however this method has no return value,
|
|
thus push_context should be moved to a place where query
|
|
initialization is checked for failure.
|
|
*/
|
|
parent_lex->push_context(&context, parent_lex->thd->mem_root);
|
|
cond_count= between_count= with_wild= 0;
|
|
max_equal_elems= 0;
|
|
ref_pointer_array.reset();
|
|
select_n_where_fields= 0;
|
|
select_n_reserved= 0;
|
|
select_n_having_items= 0;
|
|
n_sum_items= 0;
|
|
n_child_sum_items= 0;
|
|
subquery_in_having= explicit_limit= 0;
|
|
is_item_list_lookup= 0;
|
|
first_execution= 1;
|
|
first_natural_join_processing= 1;
|
|
first_cond_optimization= 1;
|
|
parsing_place= NO_MATTER;
|
|
exclude_from_table_unique_test= no_wrap_view_item= FALSE;
|
|
nest_level= 0;
|
|
link_next= 0;
|
|
prep_leaf_list_state= UNINIT;
|
|
have_merged_subqueries= FALSE;
|
|
bzero((char*) expr_cache_may_be_used, sizeof(expr_cache_may_be_used));
|
|
select_list_tables= 0;
|
|
m_non_agg_field_used= false;
|
|
m_agg_func_used= false;
|
|
window_specs.empty();
|
|
window_funcs.empty();
|
|
}
|
|
|
|
void st_select_lex::init_select()
|
|
{
|
|
st_select_lex_node::init_select();
|
|
sj_nests.empty();
|
|
sj_subselects.empty();
|
|
group_list.empty();
|
|
if (group_list_ptrs)
|
|
group_list_ptrs->clear();
|
|
type= db= 0;
|
|
having= 0;
|
|
table_join_options= 0;
|
|
in_sum_expr= with_wild= 0;
|
|
options= 0;
|
|
sql_cache= SQL_CACHE_UNSPECIFIED;
|
|
interval_list.empty();
|
|
ftfunc_list_alloc.empty();
|
|
inner_sum_func_list= 0;
|
|
ftfunc_list= &ftfunc_list_alloc;
|
|
linkage= UNSPECIFIED_TYPE;
|
|
order_list.elements= 0;
|
|
order_list.first= 0;
|
|
order_list.next= &order_list.first;
|
|
/* Set limit and offset to default values */
|
|
select_limit= 0; /* denotes the default limit = HA_POS_ERROR */
|
|
offset_limit= 0; /* denotes the default offset = 0 */
|
|
with_sum_func= 0;
|
|
is_correlated= 0;
|
|
cur_pos_in_select_list= UNDEF_POS;
|
|
cond_value= having_value= Item::COND_UNDEF;
|
|
inner_refs_list.empty();
|
|
insert_tables= 0;
|
|
merged_into= 0;
|
|
m_non_agg_field_used= false;
|
|
m_agg_func_used= false;
|
|
name_visibility_map= 0;
|
|
join= 0;
|
|
}
|
|
|
|
/*
|
|
st_select_lex structures linking
|
|
*/
|
|
|
|
/* include on level down */
|
|
void st_select_lex_node::include_down(st_select_lex_node *upper)
|
|
{
|
|
if ((next= upper->slave))
|
|
next->prev= &next;
|
|
prev= &upper->slave;
|
|
upper->slave= this;
|
|
master= upper;
|
|
slave= 0;
|
|
}
|
|
|
|
|
|
void st_select_lex_node::add_slave(st_select_lex_node *slave_arg)
|
|
{
|
|
for (; slave; slave= slave->next)
|
|
if (slave == slave_arg)
|
|
return;
|
|
|
|
if (slave)
|
|
{
|
|
st_select_lex_node *slave_arg_slave= slave_arg->slave;
|
|
/* Insert in the front of list of slaves if any. */
|
|
slave_arg->include_neighbour(slave);
|
|
/* include_neighbour() sets slave_arg->slave=0, restore it. */
|
|
slave_arg->slave= slave_arg_slave;
|
|
/* Count on include_neighbour() setting the master. */
|
|
DBUG_ASSERT(slave_arg->master == this);
|
|
}
|
|
else
|
|
{
|
|
slave= slave_arg;
|
|
slave_arg->master= this;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
include on level down (but do not link)
|
|
|
|
SYNOPSYS
|
|
st_select_lex_node::include_standalone()
|
|
upper - reference on node underr which this node should be included
|
|
ref - references on reference on this node
|
|
*/
|
|
void st_select_lex_node::include_standalone(st_select_lex_node *upper,
|
|
st_select_lex_node **ref)
|
|
{
|
|
next= 0;
|
|
prev= ref;
|
|
master= upper;
|
|
slave= 0;
|
|
}
|
|
|
|
/* include neighbour (on same level) */
|
|
void st_select_lex_node::include_neighbour(st_select_lex_node *before)
|
|
{
|
|
if ((next= before->next))
|
|
next->prev= &next;
|
|
prev= &before->next;
|
|
before->next= this;
|
|
master= before->master;
|
|
slave= 0;
|
|
}
|
|
|
|
/* including in global SELECT_LEX list */
|
|
void st_select_lex_node::include_global(st_select_lex_node **plink)
|
|
{
|
|
if ((link_next= *plink))
|
|
link_next->link_prev= &link_next;
|
|
link_prev= plink;
|
|
*plink= this;
|
|
}
|
|
|
|
//excluding from global list (internal function)
|
|
void st_select_lex_node::fast_exclude()
|
|
{
|
|
if (link_prev)
|
|
{
|
|
if ((*link_prev= link_next))
|
|
link_next->link_prev= link_prev;
|
|
}
|
|
// Remove slave structure
|
|
for (; slave; slave= slave->next)
|
|
slave->fast_exclude();
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Insert a new chain of nodes into another chain before a particular link
|
|
|
|
@param in/out
|
|
ptr_pos_to_insert the address of the chain pointer pointing to the link
|
|
before which the subchain has to be inserted
|
|
@param
|
|
end_chain_node the last link of the subchain to be inserted
|
|
|
|
@details
|
|
The method inserts the chain of nodes starting from this node and ending
|
|
with the node nd_chain_node into another chain of nodes before the node
|
|
pointed to by *ptr_pos_to_insert.
|
|
It is assumed that ptr_pos_to_insert belongs to the chain where we insert.
|
|
So it must be updated.
|
|
|
|
@retval
|
|
The method returns the pointer to the first link of the inserted chain
|
|
*/
|
|
|
|
st_select_lex_node *st_select_lex_node:: insert_chain_before(
|
|
st_select_lex_node **ptr_pos_to_insert,
|
|
st_select_lex_node *end_chain_node)
|
|
{
|
|
end_chain_node->link_next= *ptr_pos_to_insert;
|
|
(*ptr_pos_to_insert)->link_prev= &end_chain_node->link_next;
|
|
this->link_prev= ptr_pos_to_insert;
|
|
return this;
|
|
}
|
|
|
|
/*
|
|
Exclude a node from the tree lex structure, but leave it in the global
|
|
list of nodes.
|
|
*/
|
|
|
|
void st_select_lex_node::exclude_from_tree()
|
|
{
|
|
if ((*prev= next))
|
|
next->prev= prev;
|
|
}
|
|
|
|
|
|
/*
|
|
Exclude select_lex structure (except first (first select can't be
|
|
deleted, because it is most upper select))
|
|
*/
|
|
void st_select_lex_node::exclude()
|
|
{
|
|
/* exclude from global list */
|
|
fast_exclude();
|
|
/* exclude from other structures */
|
|
exclude_from_tree();
|
|
/*
|
|
We do not need following statements, because prev pointer of first
|
|
list element point to master->slave
|
|
if (master->slave == this)
|
|
master->slave= next;
|
|
*/
|
|
}
|
|
|
|
|
|
/*
|
|
Exclude level of current unit from tree of SELECTs
|
|
|
|
SYNOPSYS
|
|
st_select_lex_unit::exclude_level()
|
|
|
|
NOTE: units which belong to current will be brought up on level of
|
|
currernt unit
|
|
*/
|
|
void st_select_lex_unit::exclude_level()
|
|
{
|
|
SELECT_LEX_UNIT *units= 0, **units_last= &units;
|
|
for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
|
{
|
|
// unlink current level from global SELECTs list
|
|
if (sl->link_prev && (*sl->link_prev= sl->link_next))
|
|
sl->link_next->link_prev= sl->link_prev;
|
|
|
|
// bring up underlay levels
|
|
SELECT_LEX_UNIT **last= 0;
|
|
for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit())
|
|
{
|
|
u->master= master;
|
|
last= (SELECT_LEX_UNIT**)&(u->next);
|
|
}
|
|
if (last)
|
|
{
|
|
(*units_last)= sl->first_inner_unit();
|
|
units_last= last;
|
|
}
|
|
}
|
|
if (units)
|
|
{
|
|
// include brought up levels in place of current
|
|
(*prev)= units;
|
|
(*units_last)= (SELECT_LEX_UNIT*)next;
|
|
if (next)
|
|
next->prev= (SELECT_LEX_NODE**)units_last;
|
|
units->prev= prev;
|
|
}
|
|
else
|
|
{
|
|
// exclude currect unit from list of nodes
|
|
(*prev)= next;
|
|
if (next)
|
|
next->prev= prev;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Exclude subtree of current unit from tree of SELECTs
|
|
|
|
SYNOPSYS
|
|
st_select_lex_unit::exclude_tree()
|
|
*/
|
|
void st_select_lex_unit::exclude_tree()
|
|
{
|
|
for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
|
{
|
|
// unlink current level from global SELECTs list
|
|
if (sl->link_prev && (*sl->link_prev= sl->link_next))
|
|
sl->link_next->link_prev= sl->link_prev;
|
|
|
|
// unlink underlay levels
|
|
for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit())
|
|
{
|
|
u->exclude_level();
|
|
}
|
|
}
|
|
// exclude currect unit from list of nodes
|
|
(*prev)= next;
|
|
if (next)
|
|
next->prev= prev;
|
|
}
|
|
|
|
|
|
/*
|
|
st_select_lex_node::mark_as_dependent mark all st_select_lex struct from
|
|
this to 'last' as dependent
|
|
|
|
SYNOPSIS
|
|
last - pointer to last st_select_lex struct, before which all
|
|
st_select_lex have to be marked as dependent
|
|
|
|
NOTE
|
|
'last' should be reachable from this st_select_lex_node
|
|
*/
|
|
|
|
bool st_select_lex::mark_as_dependent(THD *thd, st_select_lex *last,
|
|
Item *dependency)
|
|
{
|
|
|
|
DBUG_ASSERT(this != last);
|
|
|
|
/*
|
|
Mark all selects from resolved to 1 before select where was
|
|
found table as depended (of select where was found table)
|
|
*/
|
|
SELECT_LEX *s= this;
|
|
do
|
|
{
|
|
if (!(s->uncacheable & UNCACHEABLE_DEPENDENT_GENERATED))
|
|
{
|
|
// Select is dependent of outer select
|
|
s->uncacheable= (s->uncacheable & ~UNCACHEABLE_UNITED) |
|
|
UNCACHEABLE_DEPENDENT_GENERATED;
|
|
SELECT_LEX_UNIT *munit= s->master_unit();
|
|
munit->uncacheable= (munit->uncacheable & ~UNCACHEABLE_UNITED) |
|
|
UNCACHEABLE_DEPENDENT_GENERATED;
|
|
for (SELECT_LEX *sl= munit->first_select(); sl ; sl= sl->next_select())
|
|
{
|
|
if (sl != s &&
|
|
!(sl->uncacheable & (UNCACHEABLE_DEPENDENT_GENERATED |
|
|
UNCACHEABLE_UNITED)))
|
|
sl->uncacheable|= UNCACHEABLE_UNITED;
|
|
}
|
|
}
|
|
|
|
Item_subselect *subquery_expr= s->master_unit()->item;
|
|
if (subquery_expr && subquery_expr->mark_as_dependent(thd, last,
|
|
dependency))
|
|
return TRUE;
|
|
} while ((s= s->outer_select()) != last && s != 0);
|
|
is_correlated= TRUE;
|
|
this->master_unit()->item->is_correlated= TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
bool st_select_lex_node::set_braces(bool value) { return 1; }
|
|
bool st_select_lex_node::inc_in_sum_expr() { return 1; }
|
|
uint st_select_lex_node::get_in_sum_expr() { return 0; }
|
|
TABLE_LIST* st_select_lex_node::get_table_list() { return 0; }
|
|
List<Item>* st_select_lex_node::get_item_list() { return 0; }
|
|
TABLE_LIST *st_select_lex_node::add_table_to_list(THD *thd, Table_ident *table,
|
|
LEX_STRING *alias,
|
|
ulong table_join_options,
|
|
thr_lock_type flags,
|
|
enum_mdl_type mdl_type,
|
|
List<Index_hint> *hints,
|
|
List<String> *partition_names,
|
|
LEX_STRING *option)
|
|
{
|
|
return 0;
|
|
}
|
|
ulong st_select_lex_node::get_table_join_options()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
prohibit using LIMIT clause
|
|
*/
|
|
bool st_select_lex::test_limit()
|
|
{
|
|
if (select_limit != 0)
|
|
{
|
|
my_error(ER_NOT_SUPPORTED_YET, MYF(0),
|
|
"LIMIT & IN/ALL/ANY/SOME subquery");
|
|
return(1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
|
|
|
|
st_select_lex* st_select_lex_unit::outer_select()
|
|
{
|
|
return (st_select_lex*) master;
|
|
}
|
|
|
|
|
|
ha_rows st_select_lex::get_offset()
|
|
{
|
|
ulonglong val= 0;
|
|
|
|
if (offset_limit)
|
|
{
|
|
// see comment for st_select_lex::get_limit()
|
|
bool fix_fields_successful= true;
|
|
if (!offset_limit->fixed)
|
|
{
|
|
fix_fields_successful= !offset_limit->fix_fields(master_unit()->thd,
|
|
NULL);
|
|
|
|
DBUG_ASSERT(fix_fields_successful);
|
|
}
|
|
val= fix_fields_successful ? offset_limit->val_uint() : HA_POS_ERROR;
|
|
}
|
|
|
|
return (ha_rows)val;
|
|
}
|
|
|
|
|
|
ha_rows st_select_lex::get_limit()
|
|
{
|
|
ulonglong val= HA_POS_ERROR;
|
|
|
|
if (select_limit)
|
|
{
|
|
/*
|
|
fix_fields() has not been called for select_limit. That's due to the
|
|
historical reasons -- this item could be only of type Item_int, and
|
|
Item_int does not require fix_fields(). Thus, fix_fields() was never
|
|
called for select_limit.
|
|
|
|
Some time ago, Item_splocal was also allowed for LIMIT / OFFSET clauses.
|
|
However, the fix_fields() behavior was not updated, which led to a crash
|
|
in some cases.
|
|
|
|
There is no single place where to call fix_fields() for LIMIT / OFFSET
|
|
items during the fix-fields-phase. Thus, for the sake of readability,
|
|
it was decided to do it here, on the evaluation phase (which is a
|
|
violation of design, but we chose the lesser of two evils).
|
|
|
|
We can call fix_fields() here, because select_limit can be of two
|
|
types only: Item_int and Item_splocal. Item_int::fix_fields() is trivial,
|
|
and Item_splocal::fix_fields() (or rather Item_sp_variable::fix_fields())
|
|
has the following properties:
|
|
1) it does not affect other items;
|
|
2) it does not fail.
|
|
|
|
Nevertheless DBUG_ASSERT was added to catch future changes in
|
|
fix_fields() implementation. Also added runtime check against a result
|
|
of fix_fields() in order to handle error condition in non-debug build.
|
|
*/
|
|
bool fix_fields_successful= true;
|
|
if (!select_limit->fixed)
|
|
{
|
|
fix_fields_successful= !select_limit->fix_fields(master_unit()->thd,
|
|
NULL);
|
|
|
|
DBUG_ASSERT(fix_fields_successful);
|
|
}
|
|
val= fix_fields_successful ? select_limit->val_uint() : HA_POS_ERROR;
|
|
}
|
|
|
|
return (ha_rows)val;
|
|
}
|
|
|
|
|
|
bool st_select_lex::add_order_to_list(THD *thd, Item *item, bool asc)
|
|
{
|
|
return add_to_list(thd, order_list, item, asc);
|
|
}
|
|
|
|
|
|
bool st_select_lex::add_gorder_to_list(THD *thd, Item *item, bool asc)
|
|
{
|
|
return add_to_list(thd, gorder_list, item, asc);
|
|
}
|
|
|
|
|
|
bool st_select_lex::add_item_to_list(THD *thd, Item *item)
|
|
{
|
|
DBUG_ENTER("st_select_lex::add_item_to_list");
|
|
DBUG_PRINT("info", ("Item: 0x%lx", (long) item));
|
|
DBUG_RETURN(item_list.push_back(item, thd->mem_root));
|
|
}
|
|
|
|
|
|
bool st_select_lex::add_group_to_list(THD *thd, Item *item, bool asc)
|
|
{
|
|
return add_to_list(thd, group_list, item, asc);
|
|
}
|
|
|
|
|
|
bool st_select_lex::add_ftfunc_to_list(THD *thd, Item_func_match *func)
|
|
{
|
|
return !func || ftfunc_list->push_back(func, thd->mem_root); // end of memory?
|
|
}
|
|
|
|
|
|
st_select_lex* st_select_lex::outer_select()
|
|
{
|
|
return (st_select_lex*) master->get_master();
|
|
}
|
|
|
|
|
|
bool st_select_lex::set_braces(bool value)
|
|
{
|
|
braces= value;
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool st_select_lex::inc_in_sum_expr()
|
|
{
|
|
in_sum_expr++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
uint st_select_lex::get_in_sum_expr()
|
|
{
|
|
return in_sum_expr;
|
|
}
|
|
|
|
|
|
TABLE_LIST* st_select_lex::get_table_list()
|
|
{
|
|
return table_list.first;
|
|
}
|
|
|
|
List<Item>* st_select_lex::get_item_list()
|
|
{
|
|
return &item_list;
|
|
}
|
|
|
|
ulong st_select_lex::get_table_join_options()
|
|
{
|
|
return table_join_options;
|
|
}
|
|
|
|
|
|
bool st_select_lex::setup_ref_array(THD *thd, uint order_group_num)
|
|
{
|
|
// find_order_in_list() may need some extra space, so multiply by two.
|
|
order_group_num*= 2;
|
|
|
|
/*
|
|
We have to create array in prepared statement memory if it is a
|
|
prepared statement
|
|
*/
|
|
Query_arena *arena= thd->stmt_arena;
|
|
const uint n_elems= (n_sum_items +
|
|
n_child_sum_items +
|
|
item_list.elements +
|
|
select_n_reserved +
|
|
select_n_having_items +
|
|
select_n_where_fields +
|
|
order_group_num) * 5;
|
|
if (!ref_pointer_array.is_null())
|
|
{
|
|
/*
|
|
We need to take 'n_sum_items' into account when allocating the array,
|
|
and this may actually increase during the optimization phase due to
|
|
MIN/MAX rewrite in Item_in_subselect::single_value_transformer.
|
|
In the usual case we can reuse the array from the prepare phase.
|
|
If we need a bigger array, we must allocate a new one.
|
|
*/
|
|
if (ref_pointer_array.size() == n_elems)
|
|
return false;
|
|
|
|
/*
|
|
We need to take 'n_sum_items' into account when allocating the array,
|
|
and this may actually increase during the optimization phase due to
|
|
MIN/MAX rewrite in Item_in_subselect::single_value_transformer.
|
|
In the usual case we can reuse the array from the prepare phase.
|
|
If we need a bigger array, we must allocate a new one.
|
|
*/
|
|
if (ref_pointer_array.size() == n_elems)
|
|
return false;
|
|
}
|
|
Item **array= static_cast<Item**>(arena->alloc(sizeof(Item*) * n_elems));
|
|
if (array != NULL)
|
|
ref_pointer_array= Ref_ptr_array(array, n_elems);
|
|
|
|
return array == NULL;
|
|
}
|
|
|
|
|
|
void st_select_lex_unit::print(String *str, enum_query_type query_type)
|
|
{
|
|
bool union_all= !union_distinct;
|
|
if (with_clause)
|
|
with_clause->print(str, query_type);
|
|
for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
|
{
|
|
if (sl != first_select())
|
|
{
|
|
str->append(STRING_WITH_LEN(" union "));
|
|
if (union_all)
|
|
str->append(STRING_WITH_LEN("all "));
|
|
else if (union_distinct == sl)
|
|
union_all= TRUE;
|
|
}
|
|
if (sl->braces)
|
|
str->append('(');
|
|
sl->print(thd, str, query_type);
|
|
if (sl->braces)
|
|
str->append(')');
|
|
}
|
|
if (fake_select_lex)
|
|
{
|
|
if (fake_select_lex->order_list.elements)
|
|
{
|
|
str->append(STRING_WITH_LEN(" order by "));
|
|
fake_select_lex->print_order(str,
|
|
fake_select_lex->order_list.first,
|
|
query_type);
|
|
}
|
|
fake_select_lex->print_limit(thd, str, query_type);
|
|
}
|
|
else if (saved_fake_select_lex)
|
|
saved_fake_select_lex->print_limit(thd, str, query_type);
|
|
}
|
|
|
|
|
|
void st_select_lex::print_order(String *str,
|
|
ORDER *order,
|
|
enum_query_type query_type)
|
|
{
|
|
for (; order; order= order->next)
|
|
{
|
|
if (order->counter_used)
|
|
{
|
|
char buffer[20];
|
|
size_t length= my_snprintf(buffer, 20, "%d", order->counter);
|
|
str->append(buffer, (uint) length);
|
|
}
|
|
else
|
|
{
|
|
/* replace numeric reference with equivalent for ORDER constant */
|
|
if (order->item[0]->type() == Item::INT_ITEM &&
|
|
order->item[0]->basic_const_item())
|
|
{
|
|
/* make it expression instead of integer constant */
|
|
str->append(STRING_WITH_LEN("''"));
|
|
}
|
|
else
|
|
(*order->item)->print(str, query_type);
|
|
}
|
|
if (order->direction == ORDER::ORDER_DESC)
|
|
str->append(STRING_WITH_LEN(" desc"));
|
|
if (order->next)
|
|
str->append(',');
|
|
}
|
|
}
|
|
|
|
|
|
void st_select_lex::print_limit(THD *thd,
|
|
String *str,
|
|
enum_query_type query_type)
|
|
{
|
|
SELECT_LEX_UNIT *unit= master_unit();
|
|
Item_subselect *item= unit->item;
|
|
|
|
if (item && unit->global_parameters() == this)
|
|
{
|
|
Item_subselect::subs_type subs_type= item->substype();
|
|
if (subs_type == Item_subselect::EXISTS_SUBS ||
|
|
subs_type == Item_subselect::IN_SUBS ||
|
|
subs_type == Item_subselect::ALL_SUBS)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
if (explicit_limit)
|
|
{
|
|
str->append(STRING_WITH_LEN(" limit "));
|
|
if (offset_limit)
|
|
{
|
|
offset_limit->print(str, query_type);
|
|
str->append(',');
|
|
}
|
|
select_limit->print(str, query_type);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
@brief Restore the LEX and THD in case of a parse error.
|
|
|
|
This is a clean up call that is invoked by the Bison generated
|
|
parser before returning an error from MYSQLparse. If your
|
|
semantic actions manipulate with the global thread state (which
|
|
is a very bad practice and should not normally be employed) and
|
|
need a clean-up in case of error, and you can not use %destructor
|
|
rule in the grammar file itself, this function should be used
|
|
to implement the clean up.
|
|
*/
|
|
|
|
void LEX::cleanup_lex_after_parse_error(THD *thd)
|
|
{
|
|
/*
|
|
Delete sphead for the side effect of restoring of the original
|
|
LEX state, thd->lex, thd->mem_root and thd->free_list if they
|
|
were replaced when parsing stored procedure statements. We
|
|
will never use sphead object after a parse error, so it's okay
|
|
to delete it only for the sake of the side effect.
|
|
TODO: make this functionality explicit in sp_head class.
|
|
Sic: we must nullify the member of the main lex, not the
|
|
current one that will be thrown away
|
|
*/
|
|
if (thd->lex->sphead)
|
|
{
|
|
thd->lex->sphead->restore_thd_mem_root(thd);
|
|
delete thd->lex->sphead;
|
|
thd->lex->sphead= NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Initialize (or reset) Query_tables_list object.
|
|
|
|
SYNOPSIS
|
|
reset_query_tables_list()
|
|
init TRUE - we should perform full initialization of object with
|
|
allocating needed memory
|
|
FALSE - object is already initialized so we should only reset
|
|
its state so it can be used for parsing/processing
|
|
of new statement
|
|
|
|
DESCRIPTION
|
|
This method initializes Query_tables_list so it can be used as part
|
|
of LEX object for parsing/processing of statement. One can also use
|
|
this method to reset state of already initialized Query_tables_list
|
|
so it can be used for processing of new statement.
|
|
*/
|
|
|
|
void Query_tables_list::reset_query_tables_list(bool init)
|
|
{
|
|
sql_command= SQLCOM_END;
|
|
if (!init && query_tables)
|
|
{
|
|
TABLE_LIST *table= query_tables;
|
|
for (;;)
|
|
{
|
|
delete table->view;
|
|
if (query_tables_last == &table->next_global ||
|
|
!(table= table->next_global))
|
|
break;
|
|
}
|
|
}
|
|
query_tables= 0;
|
|
query_tables_last= &query_tables;
|
|
query_tables_own_last= 0;
|
|
if (init)
|
|
{
|
|
/*
|
|
We delay real initialization of hash (and therefore related
|
|
memory allocation) until first insertion into this hash.
|
|
*/
|
|
my_hash_clear(&sroutines);
|
|
}
|
|
else if (sroutines.records)
|
|
{
|
|
/* Non-zero sroutines.records means that hash was initialized. */
|
|
my_hash_reset(&sroutines);
|
|
}
|
|
sroutines_list.empty();
|
|
sroutines_list_own_last= sroutines_list.next;
|
|
sroutines_list_own_elements= 0;
|
|
binlog_stmt_flags= 0;
|
|
stmt_accessed_table_flag= 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Destroy Query_tables_list object with freeing all resources used by it.
|
|
|
|
SYNOPSIS
|
|
destroy_query_tables_list()
|
|
*/
|
|
|
|
void Query_tables_list::destroy_query_tables_list()
|
|
{
|
|
my_hash_free(&sroutines);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize LEX object.
|
|
|
|
SYNOPSIS
|
|
LEX::LEX()
|
|
|
|
NOTE
|
|
LEX object initialized with this constructor can be used as part of
|
|
THD object for which one can safely call open_tables(), lock_tables()
|
|
and close_thread_tables() functions. But it is not yet ready for
|
|
statement parsing. On should use lex_start() function to prepare LEX
|
|
for this.
|
|
*/
|
|
|
|
LEX::LEX()
|
|
: explain(NULL),
|
|
result(0), arena_for_set_stmt(0), mem_root_for_set_stmt(0),
|
|
option_type(OPT_DEFAULT), context_analysis_only(0), sphead(0),
|
|
is_lex_started(0), limit_rows_examined_cnt(ULONGLONG_MAX)
|
|
{
|
|
|
|
init_dynamic_array2(&plugins, sizeof(plugin_ref), plugins_static_buffer,
|
|
INITIAL_LEX_PLUGIN_LIST_SIZE,
|
|
INITIAL_LEX_PLUGIN_LIST_SIZE, 0);
|
|
reset_query_tables_list(TRUE);
|
|
mi.init();
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether the merging algorithm can be used on this VIEW
|
|
|
|
SYNOPSIS
|
|
LEX::can_be_merged()
|
|
|
|
DESCRIPTION
|
|
We can apply merge algorithm if it is single SELECT view with
|
|
subqueries only in WHERE clause (we do not count SELECTs of underlying
|
|
views, and second level subqueries) and we have not grpouping, ordering,
|
|
HAVING clause, aggregate functions, DISTINCT clause, LIMIT clause and
|
|
several underlying tables.
|
|
|
|
RETURN
|
|
FALSE - only temporary table algorithm can be used
|
|
TRUE - merge algorithm can be used
|
|
*/
|
|
|
|
bool LEX::can_be_merged()
|
|
{
|
|
// TODO: do not forget implement case when select_lex.table_list.elements==0
|
|
|
|
/* find non VIEW subqueries/unions */
|
|
bool selects_allow_merge= (select_lex.next_select() == 0 &&
|
|
!(select_lex.uncacheable &
|
|
UNCACHEABLE_RAND));
|
|
if (selects_allow_merge)
|
|
{
|
|
for (SELECT_LEX_UNIT *tmp_unit= select_lex.first_inner_unit();
|
|
tmp_unit;
|
|
tmp_unit= tmp_unit->next_unit())
|
|
{
|
|
if (tmp_unit->first_select()->parent_lex == this &&
|
|
(tmp_unit->item != 0 &&
|
|
(tmp_unit->item->place() != IN_WHERE &&
|
|
tmp_unit->item->place() != IN_ON &&
|
|
tmp_unit->item->place() != SELECT_LIST)))
|
|
{
|
|
selects_allow_merge= 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (selects_allow_merge &&
|
|
select_lex.group_list.elements == 0 &&
|
|
select_lex.having == 0 &&
|
|
select_lex.with_sum_func == 0 &&
|
|
select_lex.table_list.elements >= 1 &&
|
|
!(select_lex.options & SELECT_DISTINCT) &&
|
|
select_lex.select_limit == 0);
|
|
}
|
|
|
|
|
|
/*
|
|
check if command can use VIEW with MERGE algorithm (for top VIEWs)
|
|
|
|
SYNOPSIS
|
|
LEX::can_use_merged()
|
|
|
|
DESCRIPTION
|
|
Only listed here commands can use merge algorithm in top level
|
|
SELECT_LEX (for subqueries will be used merge algorithm if
|
|
LEX::can_not_use_merged() is not TRUE).
|
|
|
|
RETURN
|
|
FALSE - command can't use merged VIEWs
|
|
TRUE - VIEWs with MERGE algorithms can be used
|
|
*/
|
|
|
|
bool LEX::can_use_merged()
|
|
{
|
|
switch (sql_command)
|
|
{
|
|
case SQLCOM_SELECT:
|
|
case SQLCOM_CREATE_TABLE:
|
|
case SQLCOM_UPDATE:
|
|
case SQLCOM_UPDATE_MULTI:
|
|
case SQLCOM_DELETE:
|
|
case SQLCOM_DELETE_MULTI:
|
|
case SQLCOM_INSERT:
|
|
case SQLCOM_INSERT_SELECT:
|
|
case SQLCOM_REPLACE:
|
|
case SQLCOM_REPLACE_SELECT:
|
|
case SQLCOM_LOAD:
|
|
return TRUE;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Check if command can't use merged views in any part of command
|
|
|
|
SYNOPSIS
|
|
LEX::can_not_use_merged()
|
|
|
|
DESCRIPTION
|
|
Temporary table algorithm will be used on all SELECT levels for queries
|
|
listed here (see also LEX::can_use_merged()).
|
|
|
|
RETURN
|
|
FALSE - command can't use merged VIEWs
|
|
TRUE - VIEWs with MERGE algorithms can be used
|
|
*/
|
|
|
|
bool LEX::can_not_use_merged()
|
|
{
|
|
switch (sql_command)
|
|
{
|
|
case SQLCOM_CREATE_VIEW:
|
|
case SQLCOM_SHOW_CREATE:
|
|
/*
|
|
SQLCOM_SHOW_FIELDS is necessary to make
|
|
information schema tables working correctly with views.
|
|
see get_schema_tables_result function
|
|
*/
|
|
case SQLCOM_SHOW_FIELDS:
|
|
return TRUE;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Detect that we need only table structure of derived table/view
|
|
|
|
SYNOPSIS
|
|
only_view_structure()
|
|
|
|
RETURN
|
|
TRUE yes, we need only structure
|
|
FALSE no, we need data
|
|
*/
|
|
|
|
bool LEX::only_view_structure()
|
|
{
|
|
switch (sql_command) {
|
|
case SQLCOM_SHOW_CREATE:
|
|
case SQLCOM_SHOW_TABLES:
|
|
case SQLCOM_SHOW_FIELDS:
|
|
case SQLCOM_REVOKE_ALL:
|
|
case SQLCOM_REVOKE:
|
|
case SQLCOM_GRANT:
|
|
case SQLCOM_CREATE_VIEW:
|
|
return TRUE;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Should Items_ident be printed correctly
|
|
|
|
SYNOPSIS
|
|
need_correct_ident()
|
|
|
|
RETURN
|
|
TRUE yes, we need only structure
|
|
FALSE no, we need data
|
|
*/
|
|
|
|
|
|
bool LEX::need_correct_ident()
|
|
{
|
|
switch(sql_command)
|
|
{
|
|
case SQLCOM_SHOW_CREATE:
|
|
case SQLCOM_SHOW_TABLES:
|
|
case SQLCOM_CREATE_VIEW:
|
|
return TRUE;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Get effective type of CHECK OPTION for given view
|
|
|
|
SYNOPSIS
|
|
get_effective_with_check()
|
|
view given view
|
|
|
|
NOTE
|
|
It have not sense to set CHECK OPTION for SELECT satement or subqueries,
|
|
so we do not.
|
|
|
|
RETURN
|
|
VIEW_CHECK_NONE no need CHECK OPTION
|
|
VIEW_CHECK_LOCAL CHECK OPTION LOCAL
|
|
VIEW_CHECK_CASCADED CHECK OPTION CASCADED
|
|
*/
|
|
|
|
uint8 LEX::get_effective_with_check(TABLE_LIST *view)
|
|
{
|
|
if (view->select_lex->master_unit() == &unit &&
|
|
which_check_option_applicable())
|
|
return (uint8)view->with_check;
|
|
return VIEW_CHECK_NONE;
|
|
}
|
|
|
|
|
|
/**
|
|
This method should be called only during parsing.
|
|
It is aware of compound statements (stored routine bodies)
|
|
and will initialize the destination with the default
|
|
database of the stored routine, rather than the default
|
|
database of the connection it is parsed in.
|
|
E.g. if one has no current database selected, or current database
|
|
set to 'bar' and then issues:
|
|
|
|
CREATE PROCEDURE foo.p1() BEGIN SELECT * FROM t1 END//
|
|
|
|
t1 is meant to refer to foo.t1, not to bar.t1.
|
|
|
|
This method is needed to support this rule.
|
|
|
|
@return TRUE in case of error (parsing should be aborted, FALSE in
|
|
case of success
|
|
*/
|
|
|
|
bool
|
|
LEX::copy_db_to(char **p_db, size_t *p_db_length) const
|
|
{
|
|
if (sphead && sphead->m_name.str)
|
|
{
|
|
DBUG_ASSERT(sphead->m_db.str && sphead->m_db.length);
|
|
/*
|
|
It is safe to assign the string by-pointer, both sphead and
|
|
its statements reside in the same memory root.
|
|
*/
|
|
*p_db= sphead->m_db.str;
|
|
if (p_db_length)
|
|
*p_db_length= sphead->m_db.length;
|
|
return FALSE;
|
|
}
|
|
return thd->copy_db_to(p_db, p_db_length);
|
|
}
|
|
|
|
/**
|
|
Initialize offset and limit counters.
|
|
|
|
@param sl SELECT_LEX to get offset and limit from.
|
|
*/
|
|
|
|
void st_select_lex_unit::set_limit(st_select_lex *sl)
|
|
{
|
|
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
|
|
|
|
offset_limit_cnt= sl->get_offset();
|
|
select_limit_cnt= sl->get_limit();
|
|
if (select_limit_cnt + offset_limit_cnt >= select_limit_cnt)
|
|
select_limit_cnt+= offset_limit_cnt;
|
|
else
|
|
select_limit_cnt= HA_POS_ERROR;
|
|
}
|
|
|
|
|
|
/**
|
|
Decide if a temporary table is needed for the UNION.
|
|
|
|
@retval true A temporary table is needed.
|
|
@retval false A temporary table is not needed.
|
|
*/
|
|
|
|
bool st_select_lex_unit::union_needs_tmp_table()
|
|
{
|
|
return union_distinct != NULL ||
|
|
global_parameters()->order_list.elements != 0 ||
|
|
thd->lex->sql_command == SQLCOM_INSERT_SELECT ||
|
|
thd->lex->sql_command == SQLCOM_REPLACE_SELECT;
|
|
}
|
|
|
|
/**
|
|
@brief Set the initial purpose of this TABLE_LIST object in the list of used
|
|
tables.
|
|
|
|
We need to track this information on table-by-table basis, since when this
|
|
table becomes an element of the pre-locked list, it's impossible to identify
|
|
which SQL sub-statement it has been originally used in.
|
|
|
|
E.g.:
|
|
|
|
User request: SELECT * FROM t1 WHERE f1();
|
|
FUNCTION f1(): DELETE FROM t2; RETURN 1;
|
|
BEFORE DELETE trigger on t2: INSERT INTO t3 VALUES (old.a);
|
|
|
|
For this user request, the pre-locked list will contain t1, t2, t3
|
|
table elements, each needed for different DML.
|
|
|
|
The trigger event map is updated to reflect INSERT, UPDATE, DELETE,
|
|
REPLACE, LOAD DATA, CREATE TABLE .. SELECT, CREATE TABLE ..
|
|
REPLACE SELECT statements, and additionally ON DUPLICATE KEY UPDATE
|
|
clause.
|
|
*/
|
|
|
|
void LEX::set_trg_event_type_for_tables()
|
|
{
|
|
uint8 new_trg_event_map= 0;
|
|
DBUG_ENTER("LEX::set_trg_event_type_for_tables");
|
|
|
|
/*
|
|
Some auxiliary operations
|
|
(e.g. GRANT processing) create TABLE_LIST instances outside
|
|
the parser. Additionally, some commands (e.g. OPTIMIZE) change
|
|
the lock type for a table only after parsing is done. Luckily,
|
|
these do not fire triggers and do not need to pre-load them.
|
|
For these TABLE_LISTs set_trg_event_type is never called, and
|
|
trg_event_map is always empty. That means that the pre-locking
|
|
algorithm will ignore triggers defined on these tables, if
|
|
any, and the execution will either fail with an assert in
|
|
sql_trigger.cc or with an error that a used table was not
|
|
pre-locked, in case of a production build.
|
|
|
|
TODO: this usage pattern creates unnecessary module dependencies
|
|
and should be rewritten to go through the parser.
|
|
Table list instances created outside the parser in most cases
|
|
refer to mysql.* system tables. It is not allowed to have
|
|
a trigger on a system table, but keeping track of
|
|
initialization provides extra safety in case this limitation
|
|
is circumvented.
|
|
*/
|
|
|
|
switch (sql_command) {
|
|
case SQLCOM_LOCK_TABLES:
|
|
/*
|
|
On a LOCK TABLE, all triggers must be pre-loaded for this TABLE_LIST
|
|
when opening an associated TABLE.
|
|
*/
|
|
new_trg_event_map= static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_INSERT)) |
|
|
static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_UPDATE)) |
|
|
static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_DELETE));
|
|
break;
|
|
/*
|
|
Basic INSERT. If there is an additional ON DUPLIATE KEY UPDATE
|
|
clause, it will be handled later in this method.
|
|
*/
|
|
case SQLCOM_INSERT: /* fall through */
|
|
case SQLCOM_INSERT_SELECT:
|
|
/*
|
|
LOAD DATA ... INFILE is expected to fire BEFORE/AFTER INSERT
|
|
triggers.
|
|
If the statement also has REPLACE clause, it will be
|
|
handled later in this method.
|
|
*/
|
|
case SQLCOM_LOAD: /* fall through */
|
|
/*
|
|
REPLACE is semantically equivalent to INSERT. In case
|
|
of a primary or unique key conflict, it deletes the old
|
|
record and inserts a new one. So we also may need to
|
|
fire ON DELETE triggers. This functionality is handled
|
|
later in this method.
|
|
*/
|
|
case SQLCOM_REPLACE: /* fall through */
|
|
case SQLCOM_REPLACE_SELECT:
|
|
/*
|
|
CREATE TABLE ... SELECT defaults to INSERT if the table or
|
|
view already exists. REPLACE option of CREATE TABLE ...
|
|
REPLACE SELECT is handled later in this method.
|
|
*/
|
|
case SQLCOM_CREATE_TABLE:
|
|
new_trg_event_map|= static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_INSERT));
|
|
break;
|
|
/* Basic update and multi-update */
|
|
case SQLCOM_UPDATE: /* fall through */
|
|
case SQLCOM_UPDATE_MULTI:
|
|
new_trg_event_map|= static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_UPDATE));
|
|
break;
|
|
/* Basic delete and multi-delete */
|
|
case SQLCOM_DELETE: /* fall through */
|
|
case SQLCOM_DELETE_MULTI:
|
|
new_trg_event_map|= static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_DELETE));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (duplicates) {
|
|
case DUP_UPDATE:
|
|
new_trg_event_map|= static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_UPDATE));
|
|
break;
|
|
case DUP_REPLACE:
|
|
new_trg_event_map|= static_cast<uint8>
|
|
(1 << static_cast<int>(TRG_EVENT_DELETE));
|
|
break;
|
|
case DUP_ERROR:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
|
|
/*
|
|
Do not iterate over sub-selects, only the tables in the outermost
|
|
SELECT_LEX can be modified, if any.
|
|
*/
|
|
TABLE_LIST *tables= select_lex.get_table_list();
|
|
|
|
while (tables)
|
|
{
|
|
/*
|
|
This is a fast check to filter out statements that do
|
|
not change data, or tables on the right side, in case of
|
|
INSERT .. SELECT, CREATE TABLE .. SELECT and so on.
|
|
Here we also filter out OPTIMIZE statement and non-updateable
|
|
views, for which lock_type is TL_UNLOCK or TL_READ after
|
|
parsing.
|
|
*/
|
|
if (static_cast<int>(tables->lock_type) >=
|
|
static_cast<int>(TL_WRITE_ALLOW_WRITE))
|
|
tables->trg_event_map= new_trg_event_map;
|
|
tables= tables->next_local;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Unlink the first table from the global table list and the first table from
|
|
outer select (lex->select_lex) local list
|
|
|
|
SYNOPSIS
|
|
unlink_first_table()
|
|
link_to_local Set to 1 if caller should link this table to local list
|
|
|
|
NOTES
|
|
We assume that first tables in both lists is the same table or the local
|
|
list is empty.
|
|
|
|
RETURN
|
|
0 If 'query_tables' == 0
|
|
unlinked table
|
|
In this case link_to_local is set.
|
|
|
|
*/
|
|
TABLE_LIST *LEX::unlink_first_table(bool *link_to_local)
|
|
{
|
|
TABLE_LIST *first;
|
|
if ((first= query_tables))
|
|
{
|
|
/*
|
|
Exclude from global table list
|
|
*/
|
|
if ((query_tables= query_tables->next_global))
|
|
query_tables->prev_global= &query_tables;
|
|
else
|
|
query_tables_last= &query_tables;
|
|
first->next_global= 0;
|
|
|
|
/*
|
|
and from local list if it is not empty
|
|
*/
|
|
if ((*link_to_local= MY_TEST(select_lex.table_list.first)))
|
|
{
|
|
select_lex.context.table_list=
|
|
select_lex.context.first_name_resolution_table= first->next_local;
|
|
select_lex.table_list.first= first->next_local;
|
|
select_lex.table_list.elements--; //safety
|
|
first->next_local= 0;
|
|
/*
|
|
Ensure that the global list has the same first table as the local
|
|
list.
|
|
*/
|
|
first_lists_tables_same();
|
|
}
|
|
}
|
|
return first;
|
|
}
|
|
|
|
|
|
/*
|
|
Bring first local table of first most outer select to first place in global
|
|
table list
|
|
|
|
SYNOPSYS
|
|
LEX::first_lists_tables_same()
|
|
|
|
NOTES
|
|
In many cases (for example, usual INSERT/DELETE/...) the first table of
|
|
main SELECT_LEX have special meaning => check that it is the first table
|
|
in global list and re-link to be first in the global list if it is
|
|
necessary. We need such re-linking only for queries with sub-queries in
|
|
the select list, as only in this case tables of sub-queries will go to
|
|
the global list first.
|
|
*/
|
|
|
|
void LEX::first_lists_tables_same()
|
|
{
|
|
TABLE_LIST *first_table= select_lex.table_list.first;
|
|
if (query_tables != first_table && first_table != 0)
|
|
{
|
|
TABLE_LIST *next;
|
|
if (query_tables_last == &first_table->next_global)
|
|
query_tables_last= first_table->prev_global;
|
|
|
|
if ((next= *first_table->prev_global= first_table->next_global))
|
|
next->prev_global= first_table->prev_global;
|
|
/* include in new place */
|
|
first_table->next_global= query_tables;
|
|
/*
|
|
We are sure that query_tables is not 0, because first_table was not
|
|
first table in the global list => we can use
|
|
query_tables->prev_global without check of query_tables
|
|
*/
|
|
query_tables->prev_global= &first_table->next_global;
|
|
first_table->prev_global= &query_tables;
|
|
query_tables= first_table;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Link table back that was unlinked with unlink_first_table()
|
|
|
|
SYNOPSIS
|
|
link_first_table_back()
|
|
link_to_local do we need link this table to local
|
|
|
|
RETURN
|
|
global list
|
|
*/
|
|
|
|
void LEX::link_first_table_back(TABLE_LIST *first,
|
|
bool link_to_local)
|
|
{
|
|
if (first)
|
|
{
|
|
if ((first->next_global= query_tables))
|
|
query_tables->prev_global= &first->next_global;
|
|
else
|
|
query_tables_last= &first->next_global;
|
|
query_tables= first;
|
|
|
|
if (link_to_local)
|
|
{
|
|
first->next_local= select_lex.table_list.first;
|
|
select_lex.context.table_list= first;
|
|
select_lex.table_list.first= first;
|
|
select_lex.table_list.elements++; //safety
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
cleanup lex for case when we open table by table for processing
|
|
|
|
SYNOPSIS
|
|
LEX::cleanup_after_one_table_open()
|
|
|
|
NOTE
|
|
This method is mostly responsible for cleaning up of selects lists and
|
|
derived tables state. To rollback changes in Query_tables_list one has
|
|
to call Query_tables_list::reset_query_tables_list(FALSE).
|
|
*/
|
|
|
|
void LEX::cleanup_after_one_table_open()
|
|
{
|
|
/*
|
|
thd->lex->derived_tables & additional units may be set if we open
|
|
a view. It is necessary to clear thd->lex->derived_tables flag
|
|
to prevent processing of derived tables during next open_and_lock_tables
|
|
if next table is a real table and cleanup & remove underlying units
|
|
NOTE: all units will be connected to thd->lex->select_lex, because we
|
|
have not UNION on most upper level.
|
|
*/
|
|
if (all_selects_list != &select_lex)
|
|
{
|
|
derived_tables= 0;
|
|
select_lex.exclude_from_table_unique_test= false;
|
|
/* cleunup underlying units (units of VIEW) */
|
|
for (SELECT_LEX_UNIT *un= select_lex.first_inner_unit();
|
|
un;
|
|
un= un->next_unit())
|
|
un->cleanup();
|
|
/* reduce all selects list to default state */
|
|
all_selects_list= &select_lex;
|
|
/* remove underlying units (units of VIEW) subtree */
|
|
select_lex.cut_subtree();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Save current state of Query_tables_list for this LEX, and prepare it
|
|
for processing of new statemnt.
|
|
|
|
SYNOPSIS
|
|
reset_n_backup_query_tables_list()
|
|
backup Pointer to Query_tables_list instance to be used for backup
|
|
*/
|
|
|
|
void LEX::reset_n_backup_query_tables_list(Query_tables_list *backup)
|
|
{
|
|
backup->set_query_tables_list(this);
|
|
/*
|
|
We have to perform full initialization here since otherwise we
|
|
will damage backed up state.
|
|
*/
|
|
this->reset_query_tables_list(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Restore state of Query_tables_list for this LEX from backup.
|
|
|
|
SYNOPSIS
|
|
restore_backup_query_tables_list()
|
|
backup Pointer to Query_tables_list instance used for backup
|
|
*/
|
|
|
|
void LEX::restore_backup_query_tables_list(Query_tables_list *backup)
|
|
{
|
|
this->destroy_query_tables_list();
|
|
this->set_query_tables_list(backup);
|
|
}
|
|
|
|
|
|
/*
|
|
Checks for usage of routines and/or tables in a parsed statement
|
|
|
|
SYNOPSIS
|
|
LEX:table_or_sp_used()
|
|
|
|
RETURN
|
|
FALSE No routines and tables used
|
|
TRUE Either or both routines and tables are used.
|
|
*/
|
|
|
|
bool LEX::table_or_sp_used()
|
|
{
|
|
DBUG_ENTER("table_or_sp_used");
|
|
|
|
if (sroutines.records || query_tables)
|
|
DBUG_RETURN(TRUE);
|
|
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Do end-of-prepare fixup for list of tables and their merge-VIEWed tables
|
|
|
|
SYNOPSIS
|
|
fix_prepare_info_in_table_list()
|
|
thd Thread handle
|
|
tbl List of tables to process
|
|
|
|
DESCRIPTION
|
|
Perform end-end-of prepare fixup for list of tables, if any of the tables
|
|
is a merge-algorithm VIEW, recursively fix up its underlying tables as
|
|
well.
|
|
|
|
*/
|
|
|
|
static void fix_prepare_info_in_table_list(THD *thd, TABLE_LIST *tbl)
|
|
{
|
|
for (; tbl; tbl= tbl->next_local)
|
|
{
|
|
if (tbl->on_expr && !tbl->prep_on_expr)
|
|
{
|
|
thd->check_and_register_item_tree(&tbl->prep_on_expr, &tbl->on_expr);
|
|
tbl->on_expr= tbl->on_expr->copy_andor_structure(thd);
|
|
}
|
|
if (tbl->is_view_or_derived() && tbl->is_merged_derived())
|
|
{
|
|
SELECT_LEX *sel= tbl->get_single_select();
|
|
fix_prepare_info_in_table_list(thd, sel->get_table_list());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Save WHERE/HAVING/ON clauses and replace them with disposable copies
|
|
|
|
SYNOPSIS
|
|
st_select_lex::fix_prepare_information
|
|
thd thread handler
|
|
conds in/out pointer to WHERE condition to be met at execution
|
|
having_conds in/out pointer to HAVING condition to be met at execution
|
|
|
|
DESCRIPTION
|
|
The passed WHERE and HAVING are to be saved for the future executions.
|
|
This function saves it, and returns a copy which can be thrashed during
|
|
this execution of the statement. By saving/thrashing here we mean only
|
|
We also save the chain of ORDER::next in group_list, in case
|
|
the list is modified by remove_const().
|
|
AND/OR trees.
|
|
The function also calls fix_prepare_info_in_table_list that saves all
|
|
ON expressions.
|
|
*/
|
|
|
|
void st_select_lex::fix_prepare_information(THD *thd, Item **conds,
|
|
Item **having_conds)
|
|
{
|
|
DBUG_ENTER("st_select_lex::fix_prepare_information");
|
|
if (!thd->stmt_arena->is_conventional() && first_execution)
|
|
{
|
|
first_execution= 0;
|
|
if (group_list.first)
|
|
{
|
|
if (!group_list_ptrs)
|
|
{
|
|
void *mem= thd->stmt_arena->alloc(sizeof(Group_list_ptrs));
|
|
group_list_ptrs= new (mem) Group_list_ptrs(thd->stmt_arena->mem_root);
|
|
}
|
|
group_list_ptrs->reserve(group_list.elements);
|
|
for (ORDER *order= group_list.first; order; order= order->next)
|
|
{
|
|
group_list_ptrs->push_back(order);
|
|
}
|
|
}
|
|
if (*conds)
|
|
{
|
|
thd->check_and_register_item_tree(&prep_where, conds);
|
|
*conds= where= prep_where->copy_andor_structure(thd);
|
|
}
|
|
if (*having_conds)
|
|
{
|
|
thd->check_and_register_item_tree(&prep_having, having_conds);
|
|
*having_conds= having= prep_having->copy_andor_structure(thd);
|
|
}
|
|
fix_prepare_info_in_table_list(thd, table_list.first);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
There are st_select_lex::add_table_to_list &
|
|
st_select_lex::set_lock_for_tables are in sql_parse.cc
|
|
|
|
st_select_lex::print is in sql_select.cc
|
|
|
|
st_select_lex_unit::prepare, st_select_lex_unit::exec,
|
|
st_select_lex_unit::cleanup, st_select_lex_unit::reinit_exec_mechanism,
|
|
st_select_lex_unit::change_result
|
|
are in sql_union.cc
|
|
*/
|
|
|
|
/*
|
|
Sets the kind of hints to be added by the calls to add_index_hint().
|
|
|
|
SYNOPSIS
|
|
set_index_hint_type()
|
|
type_arg The kind of hints to be added from now on.
|
|
clause The clause to use for hints to be added from now on.
|
|
|
|
DESCRIPTION
|
|
Used in filling up the tagged hints list.
|
|
This list is filled by first setting the kind of the hint as a
|
|
context variable and then adding hints of the current kind.
|
|
Then the context variable index_hint_type can be reset to the
|
|
next hint type.
|
|
*/
|
|
void st_select_lex::set_index_hint_type(enum index_hint_type type_arg,
|
|
index_clause_map clause)
|
|
{
|
|
current_index_hint_type= type_arg;
|
|
current_index_hint_clause= clause;
|
|
}
|
|
|
|
|
|
/*
|
|
Makes an array to store index usage hints (ADD/FORCE/IGNORE INDEX).
|
|
|
|
SYNOPSIS
|
|
alloc_index_hints()
|
|
thd current thread.
|
|
*/
|
|
|
|
void st_select_lex::alloc_index_hints (THD *thd)
|
|
{
|
|
index_hints= new (thd->mem_root) List<Index_hint>();
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
adds an element to the array storing index usage hints
|
|
(ADD/FORCE/IGNORE INDEX).
|
|
|
|
SYNOPSIS
|
|
add_index_hint()
|
|
thd current thread.
|
|
str name of the index.
|
|
length number of characters in str.
|
|
|
|
RETURN VALUE
|
|
0 on success, non-zero otherwise
|
|
*/
|
|
bool st_select_lex::add_index_hint (THD *thd, char *str, uint length)
|
|
{
|
|
return index_hints->push_front(new (thd->mem_root)
|
|
Index_hint(current_index_hint_type,
|
|
current_index_hint_clause,
|
|
str, length), thd->mem_root);
|
|
}
|
|
|
|
|
|
/**
|
|
Optimize all subqueries that have not been flattened into semi-joins.
|
|
|
|
@details
|
|
This functionality is a method of SELECT_LEX instead of JOIN because
|
|
SQL statements as DELETE/UPDATE do not have a corresponding JOIN object.
|
|
|
|
@see JOIN::optimize_unflattened_subqueries
|
|
|
|
@param const_only Restrict subquery optimization to constant subqueries
|
|
|
|
@return Operation status
|
|
@retval FALSE success.
|
|
@retval TRUE error occurred.
|
|
*/
|
|
|
|
bool st_select_lex::optimize_unflattened_subqueries(bool const_only)
|
|
{
|
|
for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit())
|
|
{
|
|
Item_subselect *subquery_predicate= un->item;
|
|
|
|
if (subquery_predicate)
|
|
{
|
|
if (subquery_predicate->substype() == Item_subselect::IN_SUBS)
|
|
{
|
|
Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate;
|
|
if (in_subs->is_jtbm_merged)
|
|
continue;
|
|
}
|
|
|
|
if (const_only && !subquery_predicate->const_item())
|
|
{
|
|
/* Skip non-constant subqueries if the caller asked so. */
|
|
continue;
|
|
}
|
|
|
|
bool empty_union_result= true;
|
|
bool is_correlated_unit= false;
|
|
bool first= true;
|
|
bool union_plan_saved= false;
|
|
/*
|
|
If the subquery is a UNION, optimize all the subqueries in the UNION. If
|
|
there is no UNION, then the loop will execute once for the subquery.
|
|
*/
|
|
for (SELECT_LEX *sl= un->first_select(); sl; sl= sl->next_select())
|
|
{
|
|
JOIN *inner_join= sl->join;
|
|
if (first)
|
|
first= false;
|
|
else
|
|
{
|
|
if (!union_plan_saved)
|
|
{
|
|
union_plan_saved= true;
|
|
if (un->save_union_explain(un->thd->lex->explain))
|
|
return true; /* Failure */
|
|
}
|
|
}
|
|
if (!inner_join)
|
|
continue;
|
|
SELECT_LEX *save_select= un->thd->lex->current_select;
|
|
ulonglong save_options;
|
|
int res;
|
|
/* We need only 1 row to determine existence */
|
|
un->set_limit(un->global_parameters());
|
|
un->thd->lex->current_select= sl;
|
|
save_options= inner_join->select_options;
|
|
if (options & SELECT_DESCRIBE)
|
|
{
|
|
/* Optimize the subquery in the context of EXPLAIN. */
|
|
sl->set_explain_type(FALSE);
|
|
sl->options|= SELECT_DESCRIBE;
|
|
inner_join->select_options|= SELECT_DESCRIBE;
|
|
}
|
|
res= inner_join->optimize();
|
|
sl->update_correlated_cache();
|
|
is_correlated_unit|= sl->is_correlated;
|
|
inner_join->select_options= save_options;
|
|
un->thd->lex->current_select= save_select;
|
|
|
|
Explain_query *eq;
|
|
if ((eq= inner_join->thd->lex->explain))
|
|
{
|
|
Explain_select *expl_sel;
|
|
if ((expl_sel= eq->get_select(inner_join->select_lex->select_number)))
|
|
{
|
|
sl->set_explain_type(TRUE);
|
|
expl_sel->select_type= sl->type;
|
|
}
|
|
}
|
|
|
|
if (empty_union_result)
|
|
{
|
|
/*
|
|
If at least one subquery in a union is non-empty, the UNION result
|
|
is non-empty. If there is no UNION, the only subquery is non-empy.
|
|
*/
|
|
empty_union_result= inner_join->empty_result();
|
|
}
|
|
if (res)
|
|
return TRUE;
|
|
}
|
|
if (empty_union_result)
|
|
subquery_predicate->no_rows_in_result();
|
|
if (!is_correlated_unit)
|
|
un->uncacheable&= ~UNCACHEABLE_DEPENDENT;
|
|
subquery_predicate->is_correlated= is_correlated_unit;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
@brief Process all derived tables/views of the SELECT.
|
|
|
|
@param lex LEX of this thread
|
|
@param phase phases to run derived tables/views through
|
|
|
|
@details
|
|
This function runs specified 'phases' on all tables from the
|
|
table_list of this select.
|
|
|
|
@return FALSE ok.
|
|
@return TRUE an error occur.
|
|
*/
|
|
|
|
bool st_select_lex::handle_derived(LEX *lex, uint phases)
|
|
{
|
|
for (TABLE_LIST *cursor= (TABLE_LIST*) table_list.first;
|
|
cursor;
|
|
cursor= cursor->next_local)
|
|
{
|
|
if (cursor->is_view_or_derived() && cursor->handle_derived(lex, phases))
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Returns first unoccupied table map and table number
|
|
|
|
@param map [out] return found map
|
|
@param tablenr [out] return found tablenr
|
|
|
|
@details
|
|
Returns first unoccupied table map and table number in this select.
|
|
Map and table are returned in *'map' and *'tablenr' accordingly.
|
|
|
|
@retrun TRUE no free table map/table number
|
|
@return FALSE found free table map/table number
|
|
*/
|
|
|
|
bool st_select_lex::get_free_table_map(table_map *map, uint *tablenr)
|
|
{
|
|
*map= 0;
|
|
*tablenr= 0;
|
|
TABLE_LIST *tl;
|
|
List_iterator<TABLE_LIST> ti(leaf_tables);
|
|
while ((tl= ti++))
|
|
{
|
|
if (tl->table->map > *map)
|
|
*map= tl->table->map;
|
|
if (tl->table->tablenr > *tablenr)
|
|
*tablenr= tl->table->tablenr;
|
|
}
|
|
(*map)<<= 1;
|
|
(*tablenr)++;
|
|
if (*tablenr >= MAX_TABLES)
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Append given table to the leaf_tables list.
|
|
|
|
@param link Offset to which list in table structure to use
|
|
@param table Table to append
|
|
|
|
@details
|
|
Append given 'table' to the leaf_tables list using the 'link' offset.
|
|
If the 'table' is linked with other tables through next_leaf/next_local
|
|
chains then whole list will be appended.
|
|
*/
|
|
|
|
void st_select_lex::append_table_to_list(TABLE_LIST *TABLE_LIST::*link,
|
|
TABLE_LIST *table)
|
|
{
|
|
TABLE_LIST *tl;
|
|
for (tl= leaf_tables.head(); tl->*link; tl= tl->*link) ;
|
|
tl->*link= table;
|
|
}
|
|
|
|
|
|
/*
|
|
@brief
|
|
Replace given table from the leaf_tables list for a list of tables
|
|
|
|
@param table Table to replace
|
|
@param list List to substititute the table for
|
|
|
|
@details
|
|
Replace 'table' from the leaf_tables list for a list of tables 'tbl_list'.
|
|
*/
|
|
|
|
void st_select_lex::replace_leaf_table(TABLE_LIST *table, List<TABLE_LIST> &tbl_list)
|
|
{
|
|
TABLE_LIST *tl;
|
|
List_iterator<TABLE_LIST> ti(leaf_tables);
|
|
while ((tl= ti++))
|
|
{
|
|
if (tl == table)
|
|
{
|
|
ti.replace(tbl_list);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Assigns new table maps to tables in the leaf_tables list
|
|
|
|
@param derived Derived table to take initial table map from
|
|
@param map table map to begin with
|
|
@param tablenr table number to begin with
|
|
@param parent_lex new parent select_lex
|
|
|
|
@details
|
|
Assign new table maps/table numbers to all tables in the leaf_tables list.
|
|
'map'/'tablenr' are used for the first table and shifted to left/
|
|
increased for each consequent table in the leaf_tables list.
|
|
If the 'derived' table is given then it's table map/number is used for the
|
|
first table in the list and 'map'/'tablenr' are used for the second and
|
|
all consequent tables.
|
|
The 'parent_lex' is set as the new parent select_lex for all tables in the
|
|
list.
|
|
*/
|
|
|
|
void st_select_lex::remap_tables(TABLE_LIST *derived, table_map map,
|
|
uint tablenr, SELECT_LEX *parent_lex)
|
|
{
|
|
bool first_table= TRUE;
|
|
TABLE_LIST *tl;
|
|
table_map first_map;
|
|
uint first_tablenr;
|
|
|
|
if (derived && derived->table)
|
|
{
|
|
first_map= derived->table->map;
|
|
first_tablenr= derived->table->tablenr;
|
|
}
|
|
else
|
|
{
|
|
first_map= map;
|
|
map<<= 1;
|
|
first_tablenr= tablenr++;
|
|
}
|
|
/*
|
|
Assign table bit/table number.
|
|
To the first table of the subselect the table bit/tablenr of the
|
|
derived table is assigned. The rest of tables are getting bits
|
|
sequentially, starting from the provided table map/tablenr.
|
|
*/
|
|
List_iterator<TABLE_LIST> ti(leaf_tables);
|
|
while ((tl= ti++))
|
|
{
|
|
if (first_table)
|
|
{
|
|
first_table= FALSE;
|
|
tl->table->set_table_map(first_map, first_tablenr);
|
|
}
|
|
else
|
|
{
|
|
tl->table->set_table_map(map, tablenr);
|
|
tablenr++;
|
|
map<<= 1;
|
|
}
|
|
SELECT_LEX *old_sl= tl->select_lex;
|
|
tl->select_lex= parent_lex;
|
|
for(TABLE_LIST *emb= tl->embedding;
|
|
emb && emb->select_lex == old_sl;
|
|
emb= emb->embedding)
|
|
emb->select_lex= parent_lex;
|
|
}
|
|
}
|
|
|
|
/**
|
|
@brief
|
|
Merge a subquery into this select.
|
|
|
|
@param derived derived table of the subquery to be merged
|
|
@param subq_select select_lex of the subquery
|
|
@param map table map for assigning to merged tables from subquery
|
|
@param table_no table number for assigning to merged tables from subquery
|
|
|
|
@details
|
|
This function merges a subquery into its parent select. In short the
|
|
merge operation appends the subquery FROM table list to the parent's
|
|
FROM table list. In more details:
|
|
.) the top_join_list of the subquery is wrapped into a join_nest
|
|
and attached to 'derived'
|
|
.) subquery's leaf_tables list is merged with the leaf_tables
|
|
list of this select_lex
|
|
.) the table maps and table numbers of the tables merged from
|
|
the subquery are adjusted to reflect their new binding to
|
|
this select
|
|
|
|
@return TRUE an error occur
|
|
@return FALSE ok
|
|
*/
|
|
|
|
bool SELECT_LEX::merge_subquery(THD *thd, TABLE_LIST *derived,
|
|
SELECT_LEX *subq_select,
|
|
uint table_no, table_map map)
|
|
{
|
|
derived->wrap_into_nested_join(subq_select->top_join_list);
|
|
|
|
ftfunc_list->append(subq_select->ftfunc_list);
|
|
if (join ||
|
|
thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
|
|
thd->lex->sql_command == SQLCOM_DELETE_MULTI)
|
|
{
|
|
List_iterator_fast<Item_in_subselect> li(subq_select->sj_subselects);
|
|
Item_in_subselect *in_subq;
|
|
while ((in_subq= li++))
|
|
{
|
|
sj_subselects.push_back(in_subq, thd->mem_root);
|
|
if (in_subq->emb_on_expr_nest == NO_JOIN_NEST)
|
|
in_subq->emb_on_expr_nest= derived;
|
|
}
|
|
}
|
|
|
|
/* Walk through child's tables and adjust table map, tablenr,
|
|
* parent_lex */
|
|
subq_select->remap_tables(derived, map, table_no, this);
|
|
subq_select->merged_into= this;
|
|
|
|
replace_leaf_table(derived, subq_select->leaf_tables);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Mark tables from the leaf_tables list as belong to a derived table.
|
|
|
|
@param derived tables will be marked as belonging to this derived
|
|
|
|
@details
|
|
Run through the leaf_list and mark all tables as belonging to the 'derived'.
|
|
*/
|
|
|
|
void SELECT_LEX::mark_as_belong_to_derived(TABLE_LIST *derived)
|
|
{
|
|
/* Mark tables as belonging to this DT */
|
|
TABLE_LIST *tl;
|
|
List_iterator<TABLE_LIST> ti(leaf_tables);
|
|
while ((tl= ti++))
|
|
tl->belong_to_derived= derived;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Update used_tables cache for this select
|
|
|
|
@details
|
|
This function updates used_tables cache of ON expressions of all tables
|
|
in the leaf_tables list and of the conds expression (if any).
|
|
*/
|
|
|
|
void SELECT_LEX::update_used_tables()
|
|
{
|
|
TABLE_LIST *tl;
|
|
List_iterator<TABLE_LIST> ti(leaf_tables);
|
|
|
|
while ((tl= ti++))
|
|
{
|
|
if (tl->table && !tl->is_view_or_derived())
|
|
{
|
|
TABLE_LIST *embedding= tl->embedding;
|
|
for (embedding= tl->embedding; embedding; embedding=embedding->embedding)
|
|
{
|
|
if (embedding->is_view_or_derived())
|
|
{
|
|
DBUG_ASSERT(embedding->is_merged_derived());
|
|
TABLE *tab= tl->table;
|
|
tab->covering_keys= tab->s->keys_for_keyread;
|
|
tab->covering_keys.intersect(tab->keys_in_use_for_query);
|
|
tab->merge_keys.clear_all();
|
|
bitmap_clear_all(tab->read_set);
|
|
if (tab->vcol_set)
|
|
bitmap_clear_all(tab->vcol_set);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ti.rewind();
|
|
while ((tl= ti++))
|
|
{
|
|
TABLE_LIST *embedding= tl;
|
|
do
|
|
{
|
|
bool maybe_null;
|
|
if ((maybe_null= MY_TEST(embedding->outer_join)))
|
|
{
|
|
tl->table->maybe_null= maybe_null;
|
|
break;
|
|
}
|
|
}
|
|
while ((embedding= embedding->embedding));
|
|
if (tl->on_expr)
|
|
{
|
|
tl->on_expr->update_used_tables();
|
|
tl->on_expr->walk(&Item::eval_not_null_tables, 0, NULL);
|
|
}
|
|
/*
|
|
- There is no need to check sj_on_expr, because merged semi-joins inject
|
|
sj_on_expr into the parent's WHERE clase.
|
|
- For non-merged semi-joins (aka JTBMs), we need to check their
|
|
left_expr. There is no need to check the rest of the subselect, we know
|
|
it is uncorrelated and so cannot refer to any tables in this select.
|
|
*/
|
|
if (tl->jtbm_subselect)
|
|
{
|
|
Item *left_expr= tl->jtbm_subselect->left_expr;
|
|
left_expr->walk(&Item::update_table_bitmaps_processor, FALSE, NULL);
|
|
}
|
|
|
|
embedding= tl->embedding;
|
|
while (embedding)
|
|
{
|
|
if (embedding->on_expr &&
|
|
embedding->nested_join->join_list.head() == tl)
|
|
{
|
|
embedding->on_expr->update_used_tables();
|
|
embedding->on_expr->walk(&Item::eval_not_null_tables, 0, NULL);
|
|
}
|
|
tl= embedding;
|
|
embedding= tl->embedding;
|
|
}
|
|
}
|
|
|
|
if (join->conds)
|
|
{
|
|
join->conds->update_used_tables();
|
|
join->conds->walk(&Item::eval_not_null_tables, 0, NULL);
|
|
}
|
|
if (join->having)
|
|
{
|
|
join->having->update_used_tables();
|
|
}
|
|
|
|
Item *item;
|
|
List_iterator_fast<Item> it(join->fields_list);
|
|
select_list_tables= 0;
|
|
while ((item= it++))
|
|
{
|
|
item->update_used_tables();
|
|
select_list_tables|= item->used_tables();
|
|
}
|
|
Item_outer_ref *ref;
|
|
List_iterator_fast<Item_outer_ref> ref_it(inner_refs_list);
|
|
while ((ref= ref_it++))
|
|
{
|
|
item= ref->outer_ref;
|
|
item->update_used_tables();
|
|
}
|
|
for (ORDER *order= group_list.first; order; order= order->next)
|
|
(*order->item)->update_used_tables();
|
|
if (!master_unit()->is_union() || master_unit()->global_parameters() != this)
|
|
{
|
|
for (ORDER *order= order_list.first; order; order= order->next)
|
|
(*order->item)->update_used_tables();
|
|
}
|
|
join->result->update_used_tables();
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Update is_correlated cache for this select
|
|
|
|
@details
|
|
*/
|
|
|
|
void st_select_lex::update_correlated_cache()
|
|
{
|
|
TABLE_LIST *tl;
|
|
List_iterator<TABLE_LIST> ti(leaf_tables);
|
|
|
|
is_correlated= false;
|
|
|
|
while ((tl= ti++))
|
|
{
|
|
if (tl->on_expr)
|
|
is_correlated|= MY_TEST(tl->on_expr->used_tables() & OUTER_REF_TABLE_BIT);
|
|
for (TABLE_LIST *embedding= tl->embedding ; embedding ;
|
|
embedding= embedding->embedding)
|
|
{
|
|
if (embedding->on_expr)
|
|
is_correlated|= MY_TEST(embedding->on_expr->used_tables() &
|
|
OUTER_REF_TABLE_BIT);
|
|
}
|
|
}
|
|
|
|
if (join->conds)
|
|
is_correlated|= MY_TEST(join->conds->used_tables() & OUTER_REF_TABLE_BIT);
|
|
|
|
is_correlated|= join->having_is_correlated;
|
|
|
|
if (join->having)
|
|
is_correlated|= MY_TEST(join->having->used_tables() & OUTER_REF_TABLE_BIT);
|
|
|
|
if (join->tmp_having)
|
|
is_correlated|= MY_TEST(join->tmp_having->used_tables() &
|
|
OUTER_REF_TABLE_BIT);
|
|
|
|
Item *item;
|
|
List_iterator_fast<Item> it(join->fields_list);
|
|
while ((item= it++))
|
|
is_correlated|= MY_TEST(item->used_tables() & OUTER_REF_TABLE_BIT);
|
|
|
|
for (ORDER *order= group_list.first; order; order= order->next)
|
|
is_correlated|= MY_TEST((*order->item)->used_tables() &
|
|
OUTER_REF_TABLE_BIT);
|
|
|
|
if (!master_unit()->is_union())
|
|
{
|
|
for (ORDER *order= order_list.first; order; order= order->next)
|
|
is_correlated|= MY_TEST((*order->item)->used_tables() &
|
|
OUTER_REF_TABLE_BIT);
|
|
}
|
|
|
|
if (!is_correlated)
|
|
uncacheable&= ~UNCACHEABLE_DEPENDENT;
|
|
}
|
|
|
|
|
|
/**
|
|
Set the EXPLAIN type for this subquery.
|
|
|
|
@param on_the_fly TRUE<=> We're running a SHOW EXPLAIN command, so we must
|
|
not change any variables
|
|
*/
|
|
|
|
void st_select_lex::set_explain_type(bool on_the_fly)
|
|
{
|
|
bool is_primary= FALSE;
|
|
if (next_select())
|
|
is_primary= TRUE;
|
|
|
|
if (!is_primary && first_inner_unit())
|
|
{
|
|
/*
|
|
If there is at least one materialized derived|view then it's a PRIMARY select.
|
|
Otherwise, all derived tables/views were merged and this select is a SIMPLE one.
|
|
*/
|
|
for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit())
|
|
{
|
|
if ((!un->derived || un->derived->is_materialized_derived()))
|
|
{
|
|
is_primary= TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (on_the_fly && !is_primary && have_merged_subqueries)
|
|
is_primary= TRUE;
|
|
|
|
SELECT_LEX *first= master_unit()->first_select();
|
|
/* drop UNCACHEABLE_EXPLAIN, because it is for internal usage only */
|
|
uint8 is_uncacheable= (uncacheable & ~UNCACHEABLE_EXPLAIN);
|
|
|
|
bool using_materialization= FALSE;
|
|
Item_subselect *parent_item;
|
|
if ((parent_item= master_unit()->item) &&
|
|
parent_item->substype() == Item_subselect::IN_SUBS)
|
|
{
|
|
Item_in_subselect *in_subs= (Item_in_subselect*)parent_item;
|
|
/*
|
|
Surprisingly, in_subs->is_set_strategy() can return FALSE here,
|
|
even for the last invocation of this function for the select.
|
|
*/
|
|
if (in_subs->test_strategy(SUBS_MATERIALIZATION))
|
|
using_materialization= TRUE;
|
|
}
|
|
|
|
if (&master_unit()->thd->lex->select_lex == this)
|
|
{
|
|
type= is_primary ? "PRIMARY" : "SIMPLE";
|
|
}
|
|
else
|
|
{
|
|
if (this == first)
|
|
{
|
|
/* If we're a direct child of a UNION, we're the first sibling there */
|
|
if (linkage == DERIVED_TABLE_TYPE)
|
|
type= "DERIVED";
|
|
else if (using_materialization)
|
|
type= "MATERIALIZED";
|
|
else
|
|
{
|
|
if (is_uncacheable & UNCACHEABLE_DEPENDENT)
|
|
type= "DEPENDENT SUBQUERY";
|
|
else
|
|
{
|
|
type= is_uncacheable? "UNCACHEABLE SUBQUERY" :
|
|
"SUBQUERY";
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* This a non-first sibling in UNION */
|
|
if (is_uncacheable & UNCACHEABLE_DEPENDENT)
|
|
type= "DEPENDENT UNION";
|
|
else if (using_materialization)
|
|
type= "MATERIALIZED UNION";
|
|
else
|
|
{
|
|
type= is_uncacheable ? "UNCACHEABLE UNION": "UNION";
|
|
if (this == master_unit()->fake_select_lex)
|
|
type= "UNION RESULT";
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!on_the_fly)
|
|
options|= SELECT_DESCRIBE;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Increase estimated number of records for a derived table/view
|
|
|
|
@param records number of records to increase estimate by
|
|
|
|
@details
|
|
This function increases estimated number of records by the 'records'
|
|
for the derived table to which this select belongs to.
|
|
*/
|
|
|
|
void SELECT_LEX::increase_derived_records(ha_rows records)
|
|
{
|
|
SELECT_LEX_UNIT *unit= master_unit();
|
|
DBUG_ASSERT(unit->derived);
|
|
|
|
select_union *result= (select_union*)unit->result;
|
|
result->records+= records;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Mark select's derived table as a const one.
|
|
|
|
@param empty Whether select has an empty result set
|
|
|
|
@details
|
|
Mark derived table/view of this select as a constant one (to
|
|
materialize it at the optimization phase) unless this select belongs to a
|
|
union. Estimated number of rows is incremented if this select has non empty
|
|
result set.
|
|
*/
|
|
|
|
void SELECT_LEX::mark_const_derived(bool empty)
|
|
{
|
|
TABLE_LIST *derived= master_unit()->derived;
|
|
/* join == NULL in DELETE ... RETURNING */
|
|
if (!(join && join->thd->lex->describe) && derived)
|
|
{
|
|
if (!empty)
|
|
increase_derived_records(1);
|
|
if (!master_unit()->is_union() && !derived->is_merged_derived())
|
|
derived->fill_me= TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
bool st_select_lex::save_leaf_tables(THD *thd)
|
|
{
|
|
Query_arena *arena, backup;
|
|
arena= thd->activate_stmt_arena_if_needed(&backup);
|
|
|
|
List_iterator_fast<TABLE_LIST> li(leaf_tables);
|
|
TABLE_LIST *table;
|
|
while ((table= li++))
|
|
{
|
|
if (leaf_tables_exec.push_back(table, thd->mem_root))
|
|
return 1;
|
|
table->tablenr_exec= table->get_tablenr();
|
|
table->map_exec= table->get_map();
|
|
if (join && (join->select_options & SELECT_DESCRIBE))
|
|
table->maybe_null_exec= 0;
|
|
else
|
|
table->maybe_null_exec= table->table? table->table->maybe_null: 0;
|
|
}
|
|
if (arena)
|
|
thd->restore_active_arena(arena, &backup);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool LEX::save_prep_leaf_tables()
|
|
{
|
|
if (!thd->save_prep_leaf_list)
|
|
return FALSE;
|
|
|
|
Query_arena *arena= thd->stmt_arena, backup;
|
|
arena= thd->activate_stmt_arena_if_needed(&backup);
|
|
//It is used for DETETE/UPDATE so top level has only one SELECT
|
|
DBUG_ASSERT(select_lex.next_select() == NULL);
|
|
bool res= select_lex.save_prep_leaf_tables(thd);
|
|
|
|
if (arena)
|
|
thd->restore_active_arena(arena, &backup);
|
|
|
|
if (res)
|
|
return TRUE;
|
|
|
|
thd->save_prep_leaf_list= FALSE;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool st_select_lex::save_prep_leaf_tables(THD *thd)
|
|
{
|
|
List_iterator_fast<TABLE_LIST> li(leaf_tables);
|
|
TABLE_LIST *table;
|
|
|
|
/*
|
|
Check that the SELECT_LEX was really prepared and so tables are setup.
|
|
|
|
It can be subquery in SET clause of UPDATE which was not prepared yet, so
|
|
its tables are not yet setup and ready for storing.
|
|
*/
|
|
if (prep_leaf_list_state != READY)
|
|
return FALSE;
|
|
|
|
while ((table= li++))
|
|
{
|
|
if (leaf_tables_prep.push_back(table))
|
|
return TRUE;
|
|
}
|
|
prep_leaf_list_state= SAVED;
|
|
for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit())
|
|
{
|
|
for (SELECT_LEX *sl= u->first_select(); sl; sl= sl->next_select())
|
|
{
|
|
if (sl->save_prep_leaf_tables(thd))
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Return true if this select_lex has been converted into a semi-join nest
|
|
within 'ancestor'.
|
|
|
|
We need a loop to check this because there could be several nested
|
|
subselects, like
|
|
|
|
SELECT ... FROM grand_parent
|
|
WHERE expr1 IN (SELECT ... FROM parent
|
|
WHERE expr2 IN ( SELECT ... FROM child)
|
|
|
|
which were converted into:
|
|
|
|
SELECT ...
|
|
FROM grand_parent SEMI_JOIN (parent JOIN child)
|
|
WHERE
|
|
expr1 AND expr2
|
|
|
|
In this case, both parent and child selects were merged into the parent.
|
|
*/
|
|
|
|
bool st_select_lex::is_merged_child_of(st_select_lex *ancestor)
|
|
{
|
|
bool all_merged= TRUE;
|
|
for (SELECT_LEX *sl= this; sl && sl!=ancestor;
|
|
sl=sl->outer_select())
|
|
{
|
|
Item *subs= sl->master_unit()->item;
|
|
if (subs && subs->type() == Item::SUBSELECT_ITEM &&
|
|
((Item_subselect*)subs)->substype() == Item_subselect::IN_SUBS &&
|
|
((Item_in_subselect*)subs)->test_strategy(SUBS_SEMI_JOIN))
|
|
{
|
|
continue;
|
|
}
|
|
all_merged= FALSE;
|
|
break;
|
|
}
|
|
return all_merged;
|
|
}
|
|
|
|
/*
|
|
This is used by SHOW EXPLAIN. It assuses query plan has been already
|
|
collected into QPF structures and we only need to print it out.
|
|
*/
|
|
|
|
int LEX::print_explain(select_result_sink *output, uint8 explain_flags,
|
|
bool is_analyze, bool *printed_anything)
|
|
{
|
|
int res;
|
|
if (explain && explain->have_query_plan())
|
|
{
|
|
res= explain->print_explain(output, explain_flags, is_analyze);
|
|
*printed_anything= true;
|
|
}
|
|
else
|
|
{
|
|
res= 0;
|
|
*printed_anything= false;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/**
|
|
Allocates and set arena for SET STATEMENT old values.
|
|
|
|
@param backup where to save backup of arena.
|
|
|
|
@retval 1 Error
|
|
@retval 0 OK
|
|
*/
|
|
|
|
bool LEX::set_arena_for_set_stmt(Query_arena *backup)
|
|
{
|
|
DBUG_ENTER("LEX::set_arena_for_set_stmt");
|
|
DBUG_ASSERT(arena_for_set_stmt== 0);
|
|
if (!mem_root_for_set_stmt)
|
|
{
|
|
mem_root_for_set_stmt= new MEM_ROOT();
|
|
if (!(mem_root_for_set_stmt))
|
|
DBUG_RETURN(1);
|
|
init_sql_alloc(mem_root_for_set_stmt, ALLOC_ROOT_SET, ALLOC_ROOT_SET,
|
|
MYF(MY_THREAD_SPECIFIC));
|
|
}
|
|
if (!(arena_for_set_stmt= new(mem_root_for_set_stmt)
|
|
Query_arena_memroot(mem_root_for_set_stmt,
|
|
Query_arena::STMT_INITIALIZED)))
|
|
DBUG_RETURN(1);
|
|
DBUG_PRINT("info", ("mem_root: 0x%lx arena: 0x%lx",
|
|
(ulong) mem_root_for_set_stmt,
|
|
(ulong) arena_for_set_stmt));
|
|
thd->set_n_backup_active_arena(arena_for_set_stmt, backup);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
void LEX::reset_arena_for_set_stmt(Query_arena *backup)
|
|
{
|
|
DBUG_ENTER("LEX::reset_arena_for_set_stmt");
|
|
DBUG_ASSERT(arena_for_set_stmt);
|
|
thd->restore_active_arena(arena_for_set_stmt, backup);
|
|
DBUG_PRINT("info", ("mem_root: 0x%lx arena: 0x%lx",
|
|
(ulong) arena_for_set_stmt->mem_root,
|
|
(ulong) arena_for_set_stmt));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
void LEX::free_arena_for_set_stmt()
|
|
{
|
|
DBUG_ENTER("LEX::free_arena_for_set_stmt");
|
|
if (!arena_for_set_stmt)
|
|
return;
|
|
DBUG_PRINT("info", ("mem_root: 0x%lx arena: 0x%lx",
|
|
(ulong) arena_for_set_stmt->mem_root,
|
|
(ulong) arena_for_set_stmt));
|
|
arena_for_set_stmt->free_items();
|
|
delete(arena_for_set_stmt);
|
|
free_root(mem_root_for_set_stmt, MYF(MY_KEEP_PREALLOC));
|
|
arena_for_set_stmt= 0;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void LEX::restore_set_statement_var()
|
|
{
|
|
DBUG_ENTER("LEX::restore_set_statement_var");
|
|
if (!old_var_list.is_empty())
|
|
{
|
|
DBUG_PRINT("info", ("vars: %d", old_var_list.elements));
|
|
sql_set_variables(thd, &old_var_list, false);
|
|
old_var_list.empty();
|
|
free_arena_for_set_stmt();
|
|
}
|
|
DBUG_ASSERT(!is_arena_for_set_stmt());
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
Save explain structures of a UNION. The only variable member is whether the
|
|
union has "Using filesort".
|
|
|
|
There is also save_union_explain_part2() function, which is called before we read
|
|
UNION's output.
|
|
|
|
The reason for it is examples like this:
|
|
|
|
SELECT col1 FROM t1 UNION SELECT col2 FROM t2 ORDER BY (select ... from t3 ...)
|
|
|
|
Here, the (select ... from t3 ...) subquery must be a child of UNION's
|
|
st_select_lex. However, it is not connected as child until a very late
|
|
stage in execution.
|
|
*/
|
|
|
|
int st_select_lex_unit::save_union_explain(Explain_query *output)
|
|
{
|
|
SELECT_LEX *first= first_select();
|
|
|
|
if (output->get_union(first->select_number))
|
|
return 0; /* Already added */
|
|
|
|
Explain_union *eu=
|
|
new (output->mem_root) Explain_union(output->mem_root,
|
|
thd->lex->analyze_stmt);
|
|
|
|
|
|
if (derived)
|
|
eu->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
|
|
/*
|
|
Note: Non-merged semi-joins cannot be made out of UNIONs currently, so we
|
|
dont ever set EXPLAIN_NODE_NON_MERGED_SJ.
|
|
*/
|
|
|
|
for (SELECT_LEX *sl= first; sl; sl= sl->next_select())
|
|
eu->add_select(sl->select_number);
|
|
|
|
eu->fake_select_type= "UNION RESULT";
|
|
eu->using_filesort= MY_TEST(global_parameters()->order_list.first);
|
|
eu->using_tmp= union_needs_tmp_table();
|
|
|
|
// Save the UNION node
|
|
output->add_node(eu);
|
|
|
|
if (eu->get_select_id() == 1)
|
|
output->query_plan_ready();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
@see st_select_lex_unit::save_union_explain
|
|
*/
|
|
|
|
int st_select_lex_unit::save_union_explain_part2(Explain_query *output)
|
|
{
|
|
Explain_union *eu= output->get_union(first_select()->select_number);
|
|
if (fake_select_lex)
|
|
{
|
|
for (SELECT_LEX_UNIT *unit= fake_select_lex->first_inner_unit();
|
|
unit; unit= unit->next_unit())
|
|
{
|
|
if (!(unit->item && unit->item->eliminated))
|
|
{
|
|
eu->add_child(unit->first_select()->select_number);
|
|
}
|
|
}
|
|
fake_select_lex->join->explain= &eu->fake_select_lex_explain;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
A routine used by the parser to decide whether we are specifying a full
|
|
partitioning or if only partitions to add or to split.
|
|
|
|
@note This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it
|
|
is used from the sql parser that doesn't have any ifdef's
|
|
|
|
@retval TRUE Yes, it is part of a management partition command
|
|
@retval FALSE No, not a management partition command
|
|
*/
|
|
|
|
bool LEX::is_partition_management() const
|
|
{
|
|
return (sql_command == SQLCOM_ALTER_TABLE &&
|
|
(alter_info.flags == Alter_info::ALTER_ADD_PARTITION ||
|
|
alter_info.flags == Alter_info::ALTER_REORGANIZE_PARTITION));
|
|
}
|
|
|
|
#ifdef MYSQL_SERVER
|
|
uint binlog_unsafe_map[256];
|
|
|
|
#define UNSAFE(a, b, c) \
|
|
{ \
|
|
DBUG_PRINT("unsafe_mixed_statement", ("SETTING BASE VALUES: %s, %s, %02X\n", \
|
|
LEX::stmt_accessed_table_string(a), \
|
|
LEX::stmt_accessed_table_string(b), \
|
|
c)); \
|
|
unsafe_mixed_statement(a, b, c); \
|
|
}
|
|
|
|
/*
|
|
Sets the combination given by "a" and "b" and automatically combinations
|
|
given by other types of access, i.e. 2^(8 - 2), as unsafe.
|
|
|
|
It may happen a colision when automatically defining a combination as unsafe.
|
|
For that reason, a combination has its unsafe condition redefined only when
|
|
the new_condition is greater then the old. For instance,
|
|
|
|
. (BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY) is never overwritten by
|
|
. (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF).
|
|
*/
|
|
void unsafe_mixed_statement(LEX::enum_stmt_accessed_table a,
|
|
LEX::enum_stmt_accessed_table b, uint condition)
|
|
{
|
|
int type= 0;
|
|
int index= (1U << a) | (1U << b);
|
|
|
|
|
|
for (type= 0; type < 256; type++)
|
|
{
|
|
if ((type & index) == index)
|
|
{
|
|
binlog_unsafe_map[type] |= condition;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
The BINLOG_* AND TRX_CACHE_* values can be combined by using '&' or '|',
|
|
which means that both conditions need to be satisfied or any of them is
|
|
enough. For example,
|
|
|
|
. BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY means that the statment is
|
|
unsafe when the option is on and trx-cache is not empty;
|
|
|
|
. BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF means the statement is unsafe
|
|
in all cases.
|
|
|
|
. TRX_CACHE_EMPTY | TRX_CACHE_NOT_EMPTY means the statement is unsafe
|
|
in all cases. Similar as above.
|
|
*/
|
|
void binlog_unsafe_map_init()
|
|
{
|
|
memset((void*) binlog_unsafe_map, 0, sizeof(uint) * 256);
|
|
|
|
/*
|
|
Classify a statement as unsafe when there is a mixed statement and an
|
|
on-going transaction at any point of the execution if:
|
|
|
|
1. The mixed statement is about to update a transactional table and
|
|
a non-transactional table.
|
|
|
|
2. The mixed statement is about to update a transactional table and
|
|
read from a non-transactional table.
|
|
|
|
3. The mixed statement is about to update a non-transactional table
|
|
and temporary transactional table.
|
|
|
|
4. The mixed statement is about to update a temporary transactional
|
|
table and read from a non-transactional table.
|
|
|
|
5. The mixed statement is about to update a transactional table and
|
|
a temporary non-transactional table.
|
|
|
|
6. The mixed statement is about to update a transactional table and
|
|
read from a temporary non-transactional table.
|
|
|
|
7. The mixed statement is about to update a temporary transactional
|
|
table and temporary non-transactional table.
|
|
|
|
8. The mixed statement is about to update a temporary transactional
|
|
table and read from a temporary non-transactional table.
|
|
|
|
After updating a transactional table if:
|
|
|
|
9. The mixed statement is about to update a non-transactional table
|
|
and read from a transactional table.
|
|
|
|
10. The mixed statement is about to update a non-transactional table
|
|
and read from a temporary transactional table.
|
|
|
|
11. The mixed statement is about to update a temporary non-transactional
|
|
table and read from a transactional table.
|
|
|
|
12. The mixed statement is about to update a temporary non-transactional
|
|
table and read from a temporary transactional table.
|
|
|
|
13. The mixed statement is about to update a temporary non-transactional
|
|
table and read from a non-transactional table.
|
|
|
|
The reason for this is that locks acquired may not protected a concurrent
|
|
transaction of interfering in the current execution and by consequence in
|
|
the result.
|
|
*/
|
|
/* Case 1. */
|
|
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
|
/* Case 2. */
|
|
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
|
/* Case 3. */
|
|
UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_WRITES_TEMP_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
|
/* Case 4. */
|
|
UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
|
/* Case 5. */
|
|
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON);
|
|
/* Case 6. */
|
|
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON);
|
|
/* Case 7. */
|
|
UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON);
|
|
/* Case 8. */
|
|
UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON);
|
|
/* Case 9. */
|
|
UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE,
|
|
(BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY);
|
|
/* Case 10 */
|
|
UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE,
|
|
(BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY);
|
|
/* Case 11. */
|
|
UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY);
|
|
/* Case 12. */
|
|
UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE,
|
|
BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY);
|
|
/* Case 13. */
|
|
UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
|
|
BINLOG_DIRECT_OFF & TRX_CACHE_NOT_EMPTY);
|
|
}
|
|
#endif
|
|
|