mariadb/storage/xtradb/btr/btr0cur.cc
2017-10-02 10:45:55 +03:00

6155 lines
174 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2008, Google Inc.
Copyright (c) 2012, Facebook Inc.
Copyright (c) 2015, 2017, MariaDB Corporation.
Portions of this file contain modifications contributed and copyrighted by
Google, Inc. Those modifications are gratefully acknowledged and are described
briefly in the InnoDB documentation. The contributions by Google are
incorporated with their permission, and subject to the conditions contained in
the file COPYING.Google.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file btr/btr0cur.cc
The index tree cursor
All changes that row operations make to a B-tree or the records
there must go through this module! Undo log records are written here
of every modify or insert of a clustered index record.
NOTE!!!
To make sure we do not run out of disk space during a pessimistic
insert or update, we have to reserve 2 x the height of the index tree
many pages in the tablespace before we start the operation, because
if leaf splitting has been started, it is difficult to undo, except
by crashing the database and doing a roll-forward.
Created 10/16/1994 Heikki Tuuri
*******************************************************/
#include "btr0cur.h"
#ifdef UNIV_NONINL
#include "btr0cur.ic"
#endif
#include "row0upd.h"
#ifndef UNIV_HOTBACKUP
#include "mtr0log.h"
#include "page0page.h"
#include "page0zip.h"
#include "rem0rec.h"
#include "rem0cmp.h"
#include "buf0lru.h"
#include "btr0btr.h"
#include "btr0sea.h"
#include "row0log.h"
#include "row0purge.h"
#include "row0upd.h"
#include "trx0rec.h"
#include "trx0roll.h" /* trx_is_recv() */
#include "que0que.h"
#include "row0row.h"
#include "srv0srv.h"
#include "ibuf0ibuf.h"
#include "lock0lock.h"
#include "zlib.h"
/** Buffered B-tree operation types, introduced as part of delete buffering. */
enum btr_op_t {
BTR_NO_OP = 0, /*!< Not buffered */
BTR_INSERT_OP, /*!< Insert, do not ignore UNIQUE */
BTR_INSERT_IGNORE_UNIQUE_OP, /*!< Insert, ignoring UNIQUE */
BTR_DELETE_OP, /*!< Purge a delete-marked record */
BTR_DELMARK_OP /*!< Mark a record for deletion */
};
#ifdef UNIV_DEBUG
/** If the following is set to TRUE, this module prints a lot of
trace information of individual record operations */
UNIV_INTERN ibool btr_cur_print_record_ops = FALSE;
#endif /* UNIV_DEBUG */
/** Number of searches down the B-tree in btr_cur_search_to_nth_level(). */
UNIV_INTERN ulint btr_cur_n_non_sea = 0;
/** Number of successful adaptive hash index lookups in
btr_cur_search_to_nth_level(). */
UNIV_INTERN ulint btr_cur_n_sea = 0;
/** Old value of btr_cur_n_non_sea. Copied by
srv_refresh_innodb_monitor_stats(). Referenced by
srv_printf_innodb_monitor(). */
UNIV_INTERN ulint btr_cur_n_non_sea_old = 0;
/** Old value of btr_cur_n_sea. Copied by
srv_refresh_innodb_monitor_stats(). Referenced by
srv_printf_innodb_monitor(). */
UNIV_INTERN ulint btr_cur_n_sea_old = 0;
#ifdef UNIV_DEBUG
/* Flag to limit optimistic insert records */
UNIV_INTERN uint btr_cur_limit_optimistic_insert_debug = 0;
#endif /* UNIV_DEBUG */
/** In the optimistic insert, if the insert does not fit, but this much space
can be released by page reorganize, then it is reorganized */
#define BTR_CUR_PAGE_REORGANIZE_LIMIT (UNIV_PAGE_SIZE / 32)
/** The structure of a BLOB part header */
/* @{ */
/*--------------------------------------*/
#define BTR_BLOB_HDR_PART_LEN 0 /*!< BLOB part len on this
page */
#define BTR_BLOB_HDR_NEXT_PAGE_NO 4 /*!< next BLOB part page no,
FIL_NULL if none */
/*--------------------------------------*/
#define BTR_BLOB_HDR_SIZE 8 /*!< Size of a BLOB
part header, in bytes */
/** Estimated table level stats from sampled value.
@param value sampled stats
@param index index being sampled
@param sample number of sampled rows
@param ext_size external stored data size
@param not_empty table not empty
@return estimated table wide stats from sampled value */
#define BTR_TABLE_STATS_FROM_SAMPLE(value, index, sample, ext_size, not_empty)\
(((value) * (ib_int64_t) index->stat_n_leaf_pages \
+ (sample) - 1 + (ext_size) + (not_empty)) / ((sample) + (ext_size)))
/* @} */
#endif /* !UNIV_HOTBACKUP */
/** A BLOB field reference full of zero, for use in assertions and tests.
Initially, BLOB field references are set to zero, in
dtuple_convert_big_rec(). */
const byte field_ref_zero[BTR_EXTERN_FIELD_REF_SIZE] = {
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
};
#ifndef UNIV_HOTBACKUP
/*******************************************************************//**
Marks all extern fields in a record as owned by the record. This function
should be called if the delete mark of a record is removed: a not delete
marked record always owns all its extern fields. */
static
void
btr_cur_unmark_extern_fields(
/*=========================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed
part will be updated, or NULL */
rec_t* rec, /*!< in/out: record in a clustered index */
dict_index_t* index, /*!< in: index of the page */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
mtr_t* mtr); /*!< in: mtr, or NULL if not logged */
/*******************************************************************//**
Adds path information to the cursor for the current page, for which
the binary search has been performed. */
static
void
btr_cur_add_path_info(
/*==================*/
btr_cur_t* cursor, /*!< in: cursor positioned on a page */
ulint height, /*!< in: height of the page in tree;
0 means leaf node */
ulint root_height); /*!< in: root node height in tree */
/***********************************************************//**
Frees the externally stored fields for a record, if the field is mentioned
in the update vector. */
static
void
btr_rec_free_updated_extern_fields(
/*===============================*/
dict_index_t* index, /*!< in: index of rec; the index tree MUST be
X-latched */
rec_t* rec, /*!< in: record */
page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed
part will be updated, or NULL */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
const upd_t* update, /*!< in: update vector */
enum trx_rb_ctx rb_ctx, /*!< in: rollback context */
mtr_t* mtr); /*!< in: mini-transaction handle which contains
an X-latch to record page and to the tree */
/***********************************************************//**
Frees the externally stored fields for a record. */
static
void
btr_rec_free_externally_stored_fields(
/*==================================*/
dict_index_t* index, /*!< in: index of the data, the index
tree MUST be X-latched */
rec_t* rec, /*!< in: record */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed
part will be updated, or NULL */
enum trx_rb_ctx rb_ctx, /*!< in: rollback context */
mtr_t* mtr); /*!< in: mini-transaction handle which contains
an X-latch to record page and to the index
tree */
#endif /* !UNIV_HOTBACKUP */
/******************************************************//**
The following function is used to set the deleted bit of a record. */
UNIV_INLINE
void
btr_rec_set_deleted_flag(
/*=====================*/
rec_t* rec, /*!< in/out: physical record */
page_zip_des_t* page_zip,/*!< in/out: compressed page (or NULL) */
ulint flag) /*!< in: nonzero if delete marked */
{
if (page_rec_is_comp(rec)) {
rec_set_deleted_flag_new(rec, page_zip, flag);
} else {
ut_ad(!page_zip);
rec_set_deleted_flag_old(rec, flag);
}
}
#ifndef UNIV_HOTBACKUP
/*==================== B-TREE SEARCH =========================*/
/********************************************************************//**
Latches the leaf page or pages requested. */
static
void
btr_cur_latch_leaves(
/*=================*/
page_t* page, /*!< in: leaf page where the search
converged */
ulint space, /*!< in: space id */
ulint zip_size, /*!< in: compressed page size in bytes
or 0 for uncompressed pages */
ulint page_no, /*!< in: page number of the leaf */
ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ... */
btr_cur_t* cursor, /*!< in: cursor */
mtr_t* mtr) /*!< in: mtr */
{
ulint mode;
ulint sibling_mode;
ulint left_page_no;
ulint right_page_no;
buf_block_t* get_block;
ut_ad(page && mtr);
switch (latch_mode) {
case BTR_SEARCH_LEAF:
case BTR_MODIFY_LEAF:
mode = latch_mode == BTR_SEARCH_LEAF ? RW_S_LATCH : RW_X_LATCH;
get_block = btr_block_get(
space, zip_size, page_no, mode, cursor->index, mtr);
SRV_CORRUPT_TABLE_CHECK(get_block, return;);
#ifdef UNIV_BTR_DEBUG
ut_a(page_is_comp(get_block->frame) == page_is_comp(page));
#endif /* UNIV_BTR_DEBUG */
get_block->check_index_page_at_flush = TRUE;
return;
case BTR_SEARCH_TREE:
case BTR_MODIFY_TREE:
if (UNIV_UNLIKELY(latch_mode == BTR_SEARCH_TREE)) {
mode = RW_S_LATCH;
sibling_mode = RW_NO_LATCH;
} else {
mode = sibling_mode = RW_X_LATCH;
}
/* Fetch and possibly latch also brothers from left to right */
left_page_no = btr_page_get_prev(page, mtr);
if (left_page_no != FIL_NULL) {
get_block = btr_block_get(
space, zip_size, left_page_no,
sibling_mode, cursor->index, mtr);
SRV_CORRUPT_TABLE_CHECK(get_block, return;);
#ifdef UNIV_BTR_DEBUG
ut_a(page_is_comp(get_block->frame)
== page_is_comp(page));
/* For fake_change mode we avoid a detailed validation
as it operate in tweaked format where-in validation
may fail. */
ut_a(sibling_mode == RW_NO_LATCH
|| btr_page_get_next(get_block->frame, mtr)
== page_get_page_no(page));
#endif /* UNIV_BTR_DEBUG */
if (sibling_mode == RW_NO_LATCH) {
/* btr_block_get() called with RW_NO_LATCH will
fix the read block in the buffer. This serves
no purpose for the fake changes prefetching,
thus we unfix the sibling blocks immediately.*/
mtr_memo_release(mtr, get_block,
MTR_MEMO_BUF_FIX);
} else {
get_block->check_index_page_at_flush = TRUE;
}
}
get_block = btr_block_get(
space, zip_size, page_no,
mode, cursor->index, mtr);
SRV_CORRUPT_TABLE_CHECK(get_block, return;);
#ifdef UNIV_BTR_DEBUG
ut_a(page_is_comp(get_block->frame) == page_is_comp(page));
#endif /* UNIV_BTR_DEBUG */
get_block->check_index_page_at_flush = TRUE;
right_page_no = btr_page_get_next(page, mtr);
if (right_page_no != FIL_NULL) {
get_block = btr_block_get(
space, zip_size, right_page_no,
sibling_mode, cursor->index, mtr);
SRV_CORRUPT_TABLE_CHECK(get_block, return;);
#ifdef UNIV_BTR_DEBUG
ut_a(page_is_comp(get_block->frame)
== page_is_comp(page));
ut_a(btr_page_get_prev(get_block->frame, mtr)
== page_get_page_no(page));
#endif /* UNIV_BTR_DEBUG */
if (sibling_mode == RW_NO_LATCH) {
mtr_memo_release(mtr, get_block,
MTR_MEMO_BUF_FIX);
} else {
get_block->check_index_page_at_flush = TRUE;
}
}
return;
case BTR_SEARCH_PREV:
case BTR_MODIFY_PREV:
mode = latch_mode == BTR_SEARCH_PREV ? RW_S_LATCH : RW_X_LATCH;
/* latch also left brother */
left_page_no = btr_page_get_prev(page, mtr);
if (left_page_no != FIL_NULL) {
get_block = btr_block_get(
space, zip_size,
left_page_no, mode, cursor->index, mtr);
cursor->left_block = get_block;
SRV_CORRUPT_TABLE_CHECK(get_block, return;);
#ifdef UNIV_BTR_DEBUG
ut_a(page_is_comp(get_block->frame)
== page_is_comp(page));
ut_a(btr_page_get_next(get_block->frame, mtr)
== page_get_page_no(page));
#endif /* UNIV_BTR_DEBUG */
get_block->check_index_page_at_flush = TRUE;
}
get_block = btr_block_get(
space, zip_size, page_no, mode, cursor->index, mtr);
SRV_CORRUPT_TABLE_CHECK(get_block, return;);
#ifdef UNIV_BTR_DEBUG
ut_a(page_is_comp(get_block->frame) == page_is_comp(page));
#endif /* UNIV_BTR_DEBUG */
get_block->check_index_page_at_flush = TRUE;
return;
}
ut_error;
}
/********************************************************************//**
Searches an index tree and positions a tree cursor on a given level.
NOTE: n_fields_cmp in tuple must be set so that it cannot be compared
to node pointer page number fields on the upper levels of the tree!
Note that if mode is PAGE_CUR_LE, which is used in inserts, then
cursor->up_match and cursor->low_match both will have sensible values.
If mode is PAGE_CUR_GE, then up_match will a have a sensible value.
If mode is PAGE_CUR_LE , cursor is left at the place where an insert of the
search tuple should be performed in the B-tree. InnoDB does an insert
immediately after the cursor. Thus, the cursor may end up on a user record,
or on a page infimum record. */
UNIV_INTERN
dberr_t
btr_cur_search_to_nth_level(
/*========================*/
dict_index_t* index, /*!< in: index */
ulint level, /*!< in: the tree level of search */
const dtuple_t* tuple, /*!< in: data tuple; NOTE: n_fields_cmp in
tuple must be set so that it cannot get
compared to the node ptr page number field! */
ulint mode, /*!< in: PAGE_CUR_L, ...;
Inserts should always be made using
PAGE_CUR_LE to search the position! */
ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ..., ORed with
at most one of BTR_INSERT, BTR_DELETE_MARK,
BTR_DELETE, or BTR_ESTIMATE;
cursor->left_block is used to store a pointer
to the left neighbor page, in the cases
BTR_SEARCH_PREV and BTR_MODIFY_PREV;
NOTE that if has_search_latch
is != 0, we maybe do not have a latch set
on the cursor page, we assume
the caller uses his search latch
to protect the record! */
btr_cur_t* cursor, /*!< in/out: tree cursor; the cursor page is
s- or x-latched, but see also above! */
ulint has_search_latch,/*!< in: info on the latch mode the
caller currently has on btr_search_latch:
RW_S_LATCH, or 0 */
const char* file, /*!< in: file name */
ulint line, /*!< in: line where called */
mtr_t* mtr) /*!< in: mtr */
{
page_t* page;
buf_block_t* block;
ulint space;
buf_block_t* guess;
ulint height;
ulint page_no;
ulint up_match;
ulint up_bytes;
ulint low_match;
ulint low_bytes;
ulint savepoint;
ulint rw_latch;
ulint page_mode;
ulint buf_mode;
ulint estimate;
ulint zip_size;
page_cur_t* page_cursor;
btr_op_t btr_op;
ulint root_height = 0; /* remove warning */
dberr_t err = DB_SUCCESS;
#ifdef BTR_CUR_ADAPT
btr_search_t* info;
#endif
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
/* Currently, PAGE_CUR_LE is the only search mode used for searches
ending to upper levels */
ut_ad(level == 0 || mode == PAGE_CUR_LE);
ut_ad(dict_index_check_search_tuple(index, tuple));
ut_ad(!dict_index_is_ibuf(index) || ibuf_inside(mtr));
ut_ad(dtuple_check_typed(tuple));
ut_ad(!(index->type & DICT_FTS));
ut_ad(index->page != FIL_NULL);
UNIV_MEM_INVALID(&cursor->up_match, sizeof cursor->up_match);
UNIV_MEM_INVALID(&cursor->up_bytes, sizeof cursor->up_bytes);
UNIV_MEM_INVALID(&cursor->low_match, sizeof cursor->low_match);
UNIV_MEM_INVALID(&cursor->low_bytes, sizeof cursor->low_bytes);
#ifdef UNIV_DEBUG
cursor->up_match = ULINT_UNDEFINED;
cursor->low_match = ULINT_UNDEFINED;
#endif
ibool s_latch_by_caller;
s_latch_by_caller = latch_mode & BTR_ALREADY_S_LATCHED;
ut_ad(!s_latch_by_caller
|| mtr_memo_contains(mtr, dict_index_get_lock(index),
MTR_MEMO_S_LOCK));
/* These flags are mutually exclusive, they are lumped together
with the latch mode for historical reasons. It's possible for
none of the flags to be set. */
switch (UNIV_EXPECT(latch_mode
& (BTR_INSERT | BTR_DELETE | BTR_DELETE_MARK),
0)) {
case 0:
btr_op = BTR_NO_OP;
break;
case BTR_INSERT:
btr_op = (latch_mode & BTR_IGNORE_SEC_UNIQUE)
? BTR_INSERT_IGNORE_UNIQUE_OP
: BTR_INSERT_OP;
break;
case BTR_DELETE:
btr_op = BTR_DELETE_OP;
ut_a(cursor->purge_node);
break;
case BTR_DELETE_MARK:
btr_op = BTR_DELMARK_OP;
break;
default:
/* only one of BTR_INSERT, BTR_DELETE, BTR_DELETE_MARK
should be specified at a time */
ut_error;
}
/* Operations on the insert buffer tree cannot be buffered. */
ut_ad(btr_op == BTR_NO_OP || !dict_index_is_ibuf(index));
/* Operations on the clustered index cannot be buffered. */
ut_ad(btr_op == BTR_NO_OP || !dict_index_is_clust(index));
estimate = latch_mode & BTR_ESTIMATE;
/* Turn the flags unrelated to the latch mode off. */
latch_mode = BTR_LATCH_MODE_WITHOUT_FLAGS(latch_mode);
ut_ad(!s_latch_by_caller
|| latch_mode == BTR_SEARCH_LEAF
|| latch_mode == BTR_MODIFY_LEAF);
cursor->flag = BTR_CUR_BINARY;
cursor->index = index;
#ifndef BTR_CUR_ADAPT
guess = NULL;
#else
info = btr_search_get_info(index);
guess = info->root_guess;
#ifdef BTR_CUR_HASH_ADAPT
# ifdef UNIV_SEARCH_PERF_STAT
info->n_searches++;
# endif
if (rw_lock_get_writer(btr_search_get_latch(cursor->index)) ==
RW_LOCK_NOT_LOCKED
&& latch_mode <= BTR_MODIFY_LEAF
&& info->last_hash_succ
&& !estimate
# ifdef PAGE_CUR_LE_OR_EXTENDS
&& mode != PAGE_CUR_LE_OR_EXTENDS
# endif /* PAGE_CUR_LE_OR_EXTENDS */
/* If !has_search_latch, we do a dirty read of
btr_search_enabled below, and btr_search_guess_on_hash()
will have to check it again. */
&& UNIV_LIKELY(btr_search_enabled)
&& btr_search_guess_on_hash(index, info, tuple, mode,
latch_mode, cursor,
has_search_latch, mtr)) {
/* Search using the hash index succeeded */
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_GE);
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
ut_ad(cursor->low_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
btr_cur_n_sea++;
return err;
}
# endif /* BTR_CUR_HASH_ADAPT */
#endif /* BTR_CUR_ADAPT */
btr_cur_n_non_sea++;
/* If the hash search did not succeed, do binary search down the
tree */
if (has_search_latch) {
/* Release possible search latch to obey latching order */
rw_lock_s_unlock(btr_search_get_latch(cursor->index));
}
/* Store the position of the tree latch we push to mtr so that we
know how to release it when we have latched leaf node(s) */
savepoint = mtr_set_savepoint(mtr);
switch (latch_mode) {
case BTR_MODIFY_TREE:
mtr_x_lock(dict_index_get_lock(index), mtr);
break;
case BTR_CONT_MODIFY_TREE:
/* Do nothing */
ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index),
MTR_MEMO_X_LOCK));
break;
default:
if (!s_latch_by_caller) {
mtr_s_lock(dict_index_get_lock(index), mtr);
}
}
page_cursor = btr_cur_get_page_cur(cursor);
space = dict_index_get_space(index);
page_no = dict_index_get_page(index);
up_match = 0;
up_bytes = 0;
low_match = 0;
low_bytes = 0;
height = ULINT_UNDEFINED;
/* We use these modified search modes on non-leaf levels of the
B-tree. These let us end up in the right B-tree leaf. In that leaf
we use the original search mode. */
switch (mode) {
case PAGE_CUR_GE:
page_mode = PAGE_CUR_L;
break;
case PAGE_CUR_G:
page_mode = PAGE_CUR_LE;
break;
default:
#ifdef PAGE_CUR_LE_OR_EXTENDS
ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE
|| mode == PAGE_CUR_LE_OR_EXTENDS);
#else /* PAGE_CUR_LE_OR_EXTENDS */
ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE);
#endif /* PAGE_CUR_LE_OR_EXTENDS */
page_mode = mode;
break;
}
/* Loop and search until we arrive at the desired level */
search_loop:
buf_mode = BUF_GET;
rw_latch = RW_NO_LATCH;
if (height != 0) {
/* We are about to fetch the root or a non-leaf page. */
} else if (latch_mode <= BTR_MODIFY_LEAF) {
rw_latch = latch_mode;
if (btr_op != BTR_NO_OP
&& ibuf_should_try(index, btr_op != BTR_INSERT_OP)) {
/* Try to buffer the operation if the leaf
page is not in the buffer pool. */
buf_mode = btr_op == BTR_DELETE_OP
? BUF_GET_IF_IN_POOL_OR_WATCH
: BUF_GET_IF_IN_POOL;
}
}
zip_size = dict_table_zip_size(index->table);
retry_page_get:
block = buf_page_get_gen(
space, zip_size, page_no, rw_latch, guess, buf_mode,
file, line, mtr, &err);
/* Note that block==NULL signifies either an error or change
buffering. */
if (err != DB_SUCCESS) {
ut_ad(block == NULL);
if (err == DB_DECRYPTION_FAILED) {
ib_push_warning((void *)NULL,
DB_DECRYPTION_FAILED,
"Table %s is encrypted but encryption service or"
" used key_id is not available. "
" Can't continue reading table.",
index->table->name);
index->table->file_unreadable = true;
}
goto func_exit;
}
if (block == NULL) {
SRV_CORRUPT_TABLE_CHECK(buf_mode == BUF_GET_IF_IN_POOL ||
buf_mode == BUF_GET_IF_IN_POOL_OR_WATCH,
{
page_cursor->block = 0;
page_cursor->rec = 0;
if (estimate) {
cursor->path_arr->nth_rec =
ULINT_UNDEFINED;
}
goto func_exit;
});
/* This must be a search to perform an insert/delete
mark/ delete; try using the insert/delete buffer */
ut_ad(height == 0);
ut_ad(cursor->thr);
switch (btr_op) {
case BTR_INSERT_OP:
case BTR_INSERT_IGNORE_UNIQUE_OP:
ut_ad(buf_mode == BUF_GET_IF_IN_POOL);
if (ibuf_insert(IBUF_OP_INSERT, tuple, index,
space, zip_size, page_no,
cursor->thr)) {
cursor->flag = BTR_CUR_INSERT_TO_IBUF;
goto func_exit;
}
break;
case BTR_DELMARK_OP:
ut_ad(buf_mode == BUF_GET_IF_IN_POOL);
if (ibuf_insert(IBUF_OP_DELETE_MARK, tuple,
index, space, zip_size,
page_no, cursor->thr)) {
cursor->flag = BTR_CUR_DEL_MARK_IBUF;
goto func_exit;
}
break;
case BTR_DELETE_OP:
ut_ad(buf_mode == BUF_GET_IF_IN_POOL_OR_WATCH);
if (!row_purge_poss_sec(cursor->purge_node,
index, tuple)) {
/* The record cannot be purged yet. */
cursor->flag = BTR_CUR_DELETE_REF;
} else if (ibuf_insert(IBUF_OP_DELETE, tuple,
index, space, zip_size,
page_no,
cursor->thr)) {
/* The purge was buffered. */
cursor->flag = BTR_CUR_DELETE_IBUF;
} else {
/* The purge could not be buffered. */
buf_pool_watch_unset(space, page_no);
break;
}
buf_pool_watch_unset(space, page_no);
goto func_exit;
default:
ut_error;
}
/* Insert to the insert/delete buffer did not succeed, we
must read the page from disk. */
buf_mode = BUF_GET;
goto retry_page_get;
}
block->check_index_page_at_flush = TRUE;
page = buf_block_get_frame(block);
SRV_CORRUPT_TABLE_CHECK(page,
{
page_cursor->block = 0;
page_cursor->rec = 0;
if (estimate) {
cursor->path_arr->nth_rec = ULINT_UNDEFINED;
}
goto func_exit;
});
if (rw_latch != RW_NO_LATCH) {
#ifdef UNIV_ZIP_DEBUG
const page_zip_des_t* page_zip
= buf_block_get_page_zip(block);
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
buf_block_dbg_add_level(
block, dict_index_is_ibuf(index)
? SYNC_IBUF_TREE_NODE : SYNC_TREE_NODE);
}
ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX);
ut_ad(index->id == btr_page_get_index_id(page));
if (UNIV_UNLIKELY(height == ULINT_UNDEFINED)) {
/* We are in the root node */
height = btr_page_get_level(page, mtr);
root_height = height;
cursor->tree_height = root_height + 1;
#ifdef BTR_CUR_ADAPT
if (block != guess) {
info->root_guess = block;
}
#endif
}
if (height == 0) {
if (rw_latch == RW_NO_LATCH) {
btr_cur_latch_leaves(
page, space, zip_size, page_no, latch_mode,
cursor, mtr);
}
switch (latch_mode) {
case BTR_MODIFY_TREE:
case BTR_CONT_MODIFY_TREE:
break;
default:
if (!s_latch_by_caller) {
/* Release the tree s-latch */
mtr_release_s_latch_at_savepoint(
mtr, savepoint,
dict_index_get_lock(index));
}
}
page_mode = mode;
}
page_cur_search_with_match(
block, index, tuple, page_mode, &up_match, &up_bytes,
&low_match, &low_bytes, page_cursor);
if (estimate) {
btr_cur_add_path_info(cursor, height, root_height);
}
/* If this is the desired level, leave the loop */
ut_ad(height == btr_page_get_level(page_cur_get_page(page_cursor),
mtr));
if (level != height) {
const rec_t* node_ptr;
ut_ad(height > 0);
height--;
guess = NULL;
node_ptr = page_cur_get_rec(page_cursor);
offsets = rec_get_offsets(
node_ptr, index, offsets, ULINT_UNDEFINED, &heap);
/* Go to the child node */
page_no = btr_node_ptr_get_child_page_no(node_ptr, offsets);
if (UNIV_UNLIKELY(height == 0 && dict_index_is_ibuf(index))) {
/* We're doing a search on an ibuf tree and we're one
level above the leaf page. */
ut_ad(level == 0);
buf_mode = BUF_GET;
rw_latch = RW_NO_LATCH;
goto retry_page_get;
}
goto search_loop;
}
if (level != 0) {
/* x-latch the page */
buf_block_t* child_block = btr_block_get(
space, zip_size, page_no, RW_X_LATCH, index, mtr);
page = buf_block_get_frame(child_block);
btr_assert_not_corrupted(child_block, index);
} else {
cursor->low_match = low_match;
cursor->low_bytes = low_bytes;
cursor->up_match = up_match;
cursor->up_bytes = up_bytes;
#ifdef BTR_CUR_ADAPT
/* We do a dirty read of btr_search_enabled here. We
will properly check btr_search_enabled again in
btr_search_build_page_hash_index() before building a
page hash index, while holding btr_search_latch. */
if (btr_search_enabled) {
btr_search_info_update(index, cursor);
}
#endif
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_GE);
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
ut_ad(cursor->low_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
}
func_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
if (has_search_latch) {
rw_lock_s_lock(btr_search_get_latch(cursor->index));
}
return err;
}
/*****************************************************************//**
Opens a cursor at either end of an index. */
UNIV_INTERN
dberr_t
btr_cur_open_at_index_side_func(
/*============================*/
bool from_left, /*!< in: true if open to the low end,
false if to the high end */
dict_index_t* index, /*!< in: index */
ulint latch_mode, /*!< in: latch mode */
btr_cur_t* cursor, /*!< in/out: cursor */
ulint level, /*!< in: level to search for
(0=leaf). */
const char* file, /*!< in: file name */
ulint line, /*!< in: line where called */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
page_cur_t* page_cursor;
ulint page_no;
ulint space;
ulint zip_size;
ulint height;
ulint root_height = 0; /* remove warning */
rec_t* node_ptr;
ulint estimate;
ulint savepoint;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
dberr_t err = DB_SUCCESS;
rec_offs_init(offsets_);
estimate = latch_mode & BTR_ESTIMATE;
latch_mode &= ~BTR_ESTIMATE;
ut_ad(level != ULINT_UNDEFINED);
/* Store the position of the tree latch we push to mtr so that we
know how to release it when we have latched the leaf node */
savepoint = mtr_set_savepoint(mtr);
switch (latch_mode) {
case BTR_CONT_MODIFY_TREE:
break;
case BTR_MODIFY_TREE:
mtr_x_lock(dict_index_get_lock(index), mtr);
break;
case BTR_SEARCH_LEAF | BTR_ALREADY_S_LATCHED:
case BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED:
ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index),
MTR_MEMO_S_LOCK));
break;
default:
mtr_s_lock(dict_index_get_lock(index), mtr);
}
page_cursor = btr_cur_get_page_cur(cursor);
cursor->index = index;
space = dict_index_get_space(index);
zip_size = dict_table_zip_size(index->table);
page_no = dict_index_get_page(index);
height = ULINT_UNDEFINED;
for (;;) {
buf_block_t* block=NULL;
page_t* page=NULL;
block = buf_page_get_gen(space, zip_size, page_no,
RW_NO_LATCH, NULL, BUF_GET,
file, line, mtr, &err);
ut_ad((block != NULL) == (err == DB_SUCCESS));
if (err != DB_SUCCESS) {
if (err == DB_DECRYPTION_FAILED) {
ib_push_warning((void *)NULL,
DB_DECRYPTION_FAILED,
"Table %s is encrypted but encryption service or"
" used key_id is not available. "
" Can't continue reading table.",
index->table->name);
index->table->file_unreadable = true;
}
goto exit_loop;
}
page = buf_block_get_frame(block);
SRV_CORRUPT_TABLE_CHECK(page,
{
page_cursor->block = 0;
page_cursor->rec = 0;
if (estimate) {
cursor->path_arr->nth_rec =
ULINT_UNDEFINED;
}
/* Can't use break with the macro */
goto exit_loop;
});
ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX);
ut_ad(index->id == btr_page_get_index_id(page));
block->check_index_page_at_flush = TRUE;
if (height == ULINT_UNDEFINED) {
/* We are in the root node */
height = btr_page_get_level(page, mtr);
root_height = height;
ut_a(height >= level);
} else {
/* TODO: flag the index corrupted if this fails */
ut_ad(height == btr_page_get_level(page, mtr));
}
if (height == level) {
btr_cur_latch_leaves(
page, space, zip_size, page_no,
latch_mode & ~BTR_ALREADY_S_LATCHED,
cursor, mtr);
if (height == 0) {
/* In versions <= 3.23.52 we had
forgotten to release the tree latch
here. If in an index scan we had to
scan far to find a record visible to
the current transaction, that could
starve others waiting for the tree
latch. */
switch (latch_mode) {
case BTR_MODIFY_TREE:
case BTR_CONT_MODIFY_TREE:
case BTR_SEARCH_LEAF | BTR_ALREADY_S_LATCHED:
case BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED:
break;
default:
/* Release the tree s-latch */
mtr_release_s_latch_at_savepoint(
mtr, savepoint,
dict_index_get_lock(index));
}
}
}
if (from_left) {
page_cur_set_before_first(block, page_cursor);
} else {
page_cur_set_after_last(block, page_cursor);
}
if (height == level) {
if (estimate) {
btr_cur_add_path_info(cursor, height,
root_height);
}
break;
}
ut_ad(height > 0);
if (from_left) {
page_cur_move_to_next(page_cursor);
} else {
page_cur_move_to_prev(page_cursor);
}
if (estimate) {
btr_cur_add_path_info(cursor, height, root_height);
}
height--;
node_ptr = page_cur_get_rec(page_cursor);
offsets = rec_get_offsets(node_ptr, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
/* Go to the child node */
page_no = btr_node_ptr_get_child_page_no(node_ptr, offsets);
}
exit_loop:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return err;
}
/**********************************************************************//**
Positions a cursor at a randomly chosen position within a B-tree. */
UNIV_INTERN
void
btr_cur_open_at_rnd_pos_func(
/*=========================*/
dict_index_t* index, /*!< in: index */
ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ... */
btr_cur_t* cursor, /*!< in/out: B-tree cursor */
const char* file, /*!< in: file name */
ulint line, /*!< in: line where called */
mtr_t* mtr) /*!< in: mtr */
{
page_cur_t* page_cursor;
ulint page_no;
ulint space;
ulint zip_size;
ulint height;
rec_t* node_ptr;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
switch (latch_mode) {
case BTR_MODIFY_TREE:
mtr_x_lock(dict_index_get_lock(index), mtr);
break;
default:
ut_ad(latch_mode != BTR_CONT_MODIFY_TREE);
mtr_s_lock(dict_index_get_lock(index), mtr);
}
page_cursor = btr_cur_get_page_cur(cursor);
cursor->index = index;
space = dict_index_get_space(index);
zip_size = dict_table_zip_size(index->table);
page_no = dict_index_get_page(index);
height = ULINT_UNDEFINED;
for (;;) {
buf_block_t* block;
page_t* page;
dberr_t err=DB_SUCCESS;
block = buf_page_get_gen(space, zip_size, page_no,
RW_NO_LATCH, NULL, BUF_GET,
file, line, mtr, &err);
ut_ad((block != NULL) == (err == DB_SUCCESS));
if (err != DB_SUCCESS) {
if (err == DB_DECRYPTION_FAILED) {
ib_push_warning((void *)NULL,
DB_DECRYPTION_FAILED,
"Table %s is encrypted but encryption service or"
" used key_id is not available. "
" Can't continue reading table.",
index->table->name);
index->table->file_unreadable = true;
}
goto exit_loop;
}
page = buf_block_get_frame(block);
SRV_CORRUPT_TABLE_CHECK(page,
{
page_cursor->block = 0;
page_cursor->rec = 0;
goto exit_loop;
});
ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX);
ut_ad(index->id == btr_page_get_index_id(page));
if (height == ULINT_UNDEFINED) {
/* We are in the root node */
height = btr_page_get_level(page, mtr);
}
if (height == 0) {
btr_cur_latch_leaves(page, space, zip_size, page_no,
latch_mode, cursor, mtr);
}
page_cur_open_on_rnd_user_rec(block, page_cursor);
if (height == 0) {
break;
}
ut_ad(height > 0);
height--;
node_ptr = page_cur_get_rec(page_cursor);
offsets = rec_get_offsets(node_ptr, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
/* Go to the child node */
page_no = btr_node_ptr_get_child_page_no(node_ptr, offsets);
}
exit_loop:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
/*==================== B-TREE INSERT =========================*/
/*************************************************************//**
Inserts a record if there is enough space, or if enough space can
be freed by reorganizing. Differs from btr_cur_optimistic_insert because
no heuristics is applied to whether it pays to use CPU time for
reorganizing the page or not.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if this is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit().
@return pointer to inserted record if succeed, else NULL */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
rec_t*
btr_cur_insert_if_possible(
/*=======================*/
btr_cur_t* cursor, /*!< in: cursor on page after which to insert;
cursor stays valid */
const dtuple_t* tuple, /*!< in: tuple to insert; the size info need not
have been stored to tuple */
ulint** offsets,/*!< out: offsets on *rec */
mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */
ulint n_ext, /*!< in: number of externally stored columns */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
page_cur_t* page_cursor;
rec_t* rec;
ut_ad(dtuple_check_typed(tuple));
ut_ad(mtr_memo_contains(mtr, btr_cur_get_block(cursor),
MTR_MEMO_PAGE_X_FIX));
page_cursor = btr_cur_get_page_cur(cursor);
/* Now, try the insert */
rec = page_cur_tuple_insert(page_cursor, tuple, cursor->index,
offsets, heap, n_ext, mtr);
/* If the record did not fit, reorganize.
For compressed pages, page_cur_tuple_insert()
attempted this already. */
if (!rec && !page_cur_get_page_zip(page_cursor)
&& btr_page_reorganize(page_cursor, cursor->index, mtr)) {
rec = page_cur_tuple_insert(
page_cursor, tuple, cursor->index,
offsets, heap, n_ext, mtr);
}
ut_ad(!rec || rec_offs_validate(rec, cursor->index, *offsets));
return(rec);
}
/*************************************************************//**
For an insert, checks the locks and does the undo logging if desired.
@return DB_SUCCESS, DB_WAIT_LOCK, DB_FAIL, or error number */
UNIV_INLINE MY_ATTRIBUTE((warn_unused_result, nonnull(2,3,5,6)))
dberr_t
btr_cur_ins_lock_and_undo(
/*======================*/
ulint flags, /*!< in: undo logging and locking flags: if
not zero, the parameters index and thr
should be specified */
btr_cur_t* cursor, /*!< in: cursor on page after which to insert */
dtuple_t* entry, /*!< in/out: entry to insert */
que_thr_t* thr, /*!< in: query thread or NULL */
mtr_t* mtr, /*!< in/out: mini-transaction */
ibool* inherit)/*!< out: TRUE if the inserted new record maybe
should inherit LOCK_GAP type locks from the
successor record */
{
dict_index_t* index;
dberr_t err;
rec_t* rec;
roll_ptr_t roll_ptr;
if (UNIV_UNLIKELY(thr && thr_get_trx(thr)->fake_changes)) {
/* skip LOCK, UNDO */
return(DB_SUCCESS);
}
/* Check if we have to wait for a lock: enqueue an explicit lock
request if yes */
rec = btr_cur_get_rec(cursor);
index = cursor->index;
ut_ad(!dict_index_is_online_ddl(index)
|| dict_index_is_clust(index)
|| (flags & BTR_CREATE_FLAG));
err = lock_rec_insert_check_and_lock(flags, rec,
btr_cur_get_block(cursor),
index, thr, mtr, inherit);
if (err != DB_SUCCESS
|| !(~flags | (BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG))
|| !dict_index_is_clust(index) || dict_index_is_ibuf(index)) {
return(err);
}
if (flags & BTR_NO_UNDO_LOG_FLAG) {
roll_ptr = 0;
} else {
err = trx_undo_report_row_operation(thr, index, entry,
NULL, 0, NULL, NULL,
&roll_ptr);
if (err != DB_SUCCESS) {
return(err);
}
}
/* Now we can fill in the roll ptr field in entry */
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_index_entry_sys_field(entry, index,
DATA_ROLL_PTR, roll_ptr);
}
return(DB_SUCCESS);
}
#ifdef UNIV_DEBUG
/*************************************************************//**
Report information about a transaction. */
static
void
btr_cur_trx_report(
/*===============*/
trx_id_t trx_id, /*!< in: transaction id */
const dict_index_t* index, /*!< in: index */
const char* op) /*!< in: operation */
{
fprintf(stderr, "Trx with id " TRX_ID_FMT " going to ", trx_id);
fputs(op, stderr);
dict_index_name_print(stderr, NULL, index);
putc('\n', stderr);
}
#endif /* UNIV_DEBUG */
/*************************************************************//**
Tries to perform an insert to a page in an index tree, next to cursor.
It is assumed that mtr holds an x-latch on the page. The operation does
not succeed if there is too little space on the page. If there is just
one record on the page, the insert will always succeed; this is to
prevent trying to split a page with just one record.
@return DB_SUCCESS, DB_WAIT_LOCK, DB_FAIL, or error number */
UNIV_INTERN
dberr_t
btr_cur_optimistic_insert(
/*======================*/
ulint flags, /*!< in: undo logging and locking flags: if not
zero, the parameters index and thr should be
specified */
btr_cur_t* cursor, /*!< in: cursor on page after which to insert;
cursor stays valid */
ulint** offsets,/*!< out: offsets on *rec */
mem_heap_t** heap, /*!< in/out: pointer to memory heap */
dtuple_t* entry, /*!< in/out: entry to insert */
rec_t** rec, /*!< out: pointer to inserted record if
succeed */
big_rec_t** big_rec,/*!< out: big rec vector whose fields have to
be stored externally by the caller */
ulint n_ext, /*!< in: number of externally stored columns */
que_thr_t* thr, /*!< in/out: query thread; can be NULL if
!(~flags
& (BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG)) */
mtr_t* mtr) /*!< in/out: mini-transaction;
if this function returns DB_SUCCESS on
a leaf page of a secondary index in a
compressed tablespace, the caller must
mtr_commit(mtr) before latching
any further pages */
{
big_rec_t* big_rec_vec = NULL;
dict_index_t* index;
page_cur_t* page_cursor;
buf_block_t* block;
page_t* page;
rec_t* dummy;
ibool leaf;
ibool reorg;
ibool inherit = TRUE;
ulint zip_size;
ulint rec_size;
dberr_t err;
ut_ad(thr || !(~flags & (BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG)));
*big_rec = NULL;
block = btr_cur_get_block(cursor);
SRV_CORRUPT_TABLE_CHECK(block, return(DB_CORRUPTION););
page = buf_block_get_frame(block);
index = cursor->index;
const bool fake_changes = (~flags & (BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG))
&& thr_get_trx(thr)->fake_changes;
ut_ad(fake_changes
|| mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX));
ut_ad(!dict_index_is_online_ddl(index)
|| dict_index_is_clust(index)
|| (flags & BTR_CREATE_FLAG));
ut_ad(dtuple_check_typed(entry));
zip_size = buf_block_get_zip_size(block);
#ifdef UNIV_DEBUG_VALGRIND
if (zip_size) {
UNIV_MEM_ASSERT_RW(page, UNIV_PAGE_SIZE);
UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size);
}
#endif /* UNIV_DEBUG_VALGRIND */
#ifdef UNIV_DEBUG
if (btr_cur_print_record_ops && thr) {
btr_cur_trx_report(thr_get_trx(thr)->id, index, "insert ");
dtuple_print(stderr, entry);
}
#endif /* UNIV_DEBUG */
leaf = page_is_leaf(page);
/* Calculate the record size when entry is converted to a record */
rec_size = rec_get_converted_size(index, entry, n_ext);
if (page_zip_rec_needs_ext(rec_size, page_is_comp(page),
dtuple_get_n_fields(entry), zip_size)) {
/* The record is so big that we have to store some fields
externally on separate database pages */
big_rec_vec = dtuple_convert_big_rec(index, entry, &n_ext);
if (UNIV_UNLIKELY(big_rec_vec == NULL)) {
return(DB_TOO_BIG_RECORD);
}
rec_size = rec_get_converted_size(index, entry, n_ext);
}
if (zip_size) {
/* Estimate the free space of an empty compressed page.
Subtract one byte for the encoded heap_no in the
modification log. */
ulint free_space_zip = page_zip_empty_size(
cursor->index->n_fields, zip_size);
ulint n_uniq = dict_index_get_n_unique_in_tree(index);
ut_ad(dict_table_is_comp(index->table));
if (free_space_zip == 0) {
too_big:
if (big_rec_vec) {
dtuple_convert_back_big_rec(
index, entry, big_rec_vec);
}
return(DB_TOO_BIG_RECORD);
}
/* Subtract one byte for the encoded heap_no in the
modification log. */
free_space_zip--;
/* There should be enough room for two node pointer
records on an empty non-leaf page. This prevents
infinite page splits. */
if (entry->n_fields >= n_uniq
&& (REC_NODE_PTR_SIZE
+ rec_get_converted_size_comp_prefix(
index, entry->fields, n_uniq, NULL)
/* On a compressed page, there is
a two-byte entry in the dense
page directory for every record.
But there is no record header. */
- (REC_N_NEW_EXTRA_BYTES - 2)
> free_space_zip / 2)) {
goto too_big;
}
}
LIMIT_OPTIMISTIC_INSERT_DEBUG(page_get_n_recs(page),
goto fail);
if (leaf && zip_size
&& (page_get_data_size(page) + rec_size
>= dict_index_zip_pad_optimal_page_size(index))) {
/* If compression padding tells us that insertion will
result in too packed up page i.e.: which is likely to
cause compression failure then don't do an optimistic
insertion. */
fail:
err = DB_FAIL;
fail_err:
if (big_rec_vec) {
dtuple_convert_back_big_rec(index, entry, big_rec_vec);
}
return(err);
}
ulint max_size = page_get_max_insert_size_after_reorganize(page, 1);
if (page_has_garbage(page)) {
if ((max_size < rec_size
|| max_size < BTR_CUR_PAGE_REORGANIZE_LIMIT)
&& page_get_n_recs(page) > 1
&& page_get_max_insert_size(page, 1) < rec_size) {
goto fail;
}
} else if (max_size < rec_size) {
goto fail;
}
/* If there have been many consecutive inserts to the
clustered index leaf page of an uncompressed table, check if
we have to split the page to reserve enough free space for
future updates of records. */
if (leaf && !zip_size && dict_index_is_clust(index)
&& page_get_n_recs(page) >= 2
&& dict_index_get_space_reserve() + rec_size > max_size
&& (btr_page_get_split_rec_to_right(cursor, &dummy)
|| btr_page_get_split_rec_to_left(cursor, &dummy))) {
goto fail;
}
/* Check locks and write to the undo log, if specified */
err = btr_cur_ins_lock_and_undo(flags, cursor, entry,
thr, mtr, &inherit);
if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
goto fail_err;
}
if (UNIV_UNLIKELY(fake_changes)) {
/* skip CHANGE, LOG */
*big_rec = big_rec_vec;
return(err); /* == DB_SUCCESS */
}
page_cursor = btr_cur_get_page_cur(cursor);
/* Now, try the insert */
{
const rec_t* page_cursor_rec = page_cur_get_rec(page_cursor);
*rec = page_cur_tuple_insert(page_cursor, entry, index,
offsets, heap, n_ext, mtr);
reorg = page_cursor_rec != page_cur_get_rec(page_cursor);
}
if (*rec) {
} else if (zip_size) {
/* Reset the IBUF_BITMAP_FREE bits, because
page_cur_tuple_insert() will have attempted page
reorganize before failing. */
if (leaf && !dict_index_is_clust(index)) {
ibuf_reset_free_bits(block);
}
goto fail;
} else {
ut_ad(!reorg);
/* If the record did not fit, reorganize */
if (!btr_page_reorganize(page_cursor, index, mtr)) {
ut_ad(0);
goto fail;
}
ut_ad(page_get_max_insert_size(page, 1) == max_size);
reorg = TRUE;
*rec = page_cur_tuple_insert(page_cursor, entry, index,
offsets, heap, n_ext, mtr);
if (UNIV_UNLIKELY(!*rec)) {
fputs("InnoDB: Error: cannot insert tuple ", stderr);
dtuple_print(stderr, entry);
fputs(" into ", stderr);
dict_index_name_print(stderr, thr_get_trx(thr), index);
fprintf(stderr, "\nInnoDB: max insert size %lu\n",
(ulong) max_size);
ut_error;
}
}
#ifdef BTR_CUR_HASH_ADAPT
if (!reorg && leaf && (cursor->flag == BTR_CUR_HASH)) {
btr_search_update_hash_node_on_insert(cursor);
} else {
btr_search_update_hash_on_insert(cursor);
}
#endif
if (!(flags & BTR_NO_LOCKING_FLAG) && inherit) {
lock_update_insert(block, *rec);
}
if (leaf && !dict_index_is_clust(index)) {
/* Update the free bits of the B-tree page in the
insert buffer bitmap. */
/* The free bits in the insert buffer bitmap must
never exceed the free space on a page. It is safe to
decrement or reset the bits in the bitmap in a
mini-transaction that is committed before the
mini-transaction that affects the free space. */
/* It is unsafe to increment the bits in a separately
committed mini-transaction, because in crash recovery,
the free bits could momentarily be set too high. */
if (zip_size) {
/* Update the bits in the same mini-transaction. */
ibuf_update_free_bits_zip(block, mtr);
} else {
/* Decrement the bits in a separate
mini-transaction. */
ibuf_update_free_bits_if_full(
block, max_size,
rec_size + PAGE_DIR_SLOT_SIZE);
}
}
*big_rec = big_rec_vec;
return(DB_SUCCESS);
}
/*************************************************************//**
Performs an insert on a page of an index tree. It is assumed that mtr
holds an x-latch on the tree and on the cursor page. If the insert is
made on the leaf level, to avoid deadlocks, mtr must also own x-latches
to brothers of page, if those brothers exist.
@return DB_SUCCESS or error number */
UNIV_INTERN
dberr_t
btr_cur_pessimistic_insert(
/*=======================*/
ulint flags, /*!< in: undo logging and locking flags: if not
zero, the parameter thr should be
specified; if no undo logging is specified,
then the caller must have reserved enough
free extents in the file space so that the
insertion will certainly succeed */
btr_cur_t* cursor, /*!< in: cursor after which to insert;
cursor stays valid */
ulint** offsets,/*!< out: offsets on *rec */
mem_heap_t** heap, /*!< in/out: pointer to memory heap
that can be emptied */
dtuple_t* entry, /*!< in/out: entry to insert */
rec_t** rec, /*!< out: pointer to inserted record if
succeed */
big_rec_t** big_rec,/*!< out: big rec vector whose fields have to
be stored externally by the caller */
ulint n_ext, /*!< in: number of externally stored columns */
que_thr_t* thr, /*!< in/out: query thread; can be NULL if
!(~flags
& (BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG)) */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
dict_index_t* index = cursor->index;
ulint zip_size = dict_table_zip_size(index->table);
big_rec_t* big_rec_vec = NULL;
dberr_t err;
ibool inherit = FALSE;
ibool success;
ulint n_reserved = 0;
ut_ad(dtuple_check_typed(entry));
ut_ad(thr || !(~flags & (BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG)));
*big_rec = NULL;
const bool fake_changes = (~flags & (BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG))
&& thr_get_trx(thr)->fake_changes;
ut_ad(fake_changes || mtr_memo_contains(mtr,
dict_index_get_lock(btr_cur_get_index(cursor)),
MTR_MEMO_X_LOCK));
ut_ad(fake_changes || mtr_memo_contains(mtr, btr_cur_get_block(cursor),
MTR_MEMO_PAGE_X_FIX));
ut_ad(!dict_index_is_online_ddl(index)
|| dict_index_is_clust(index)
|| (flags & BTR_CREATE_FLAG));
cursor->flag = BTR_CUR_BINARY;
/* Check locks and write to undo log, if specified */
err = btr_cur_ins_lock_and_undo(flags, cursor, entry,
thr, mtr, &inherit);
if (err != DB_SUCCESS) {
return(err);
}
if (!(flags & BTR_NO_UNDO_LOG_FLAG)) {
ut_a(cursor->tree_height != ULINT_UNDEFINED);
/* First reserve enough free space for the file segments
of the index tree, so that the insert will not fail because
of lack of space */
ulint n_extents = cursor->tree_height / 16 + 3;
success = fsp_reserve_free_extents(&n_reserved, index->space,
n_extents, FSP_NORMAL, mtr);
if (!success) {
return(DB_OUT_OF_FILE_SPACE);
}
}
if (page_zip_rec_needs_ext(rec_get_converted_size(index, entry, n_ext),
dict_table_is_comp(index->table),
dtuple_get_n_fields(entry),
zip_size)) {
/* The record is so big that we have to store some fields
externally on separate database pages */
if (UNIV_LIKELY_NULL(big_rec_vec)) {
/* This should never happen, but we handle
the situation in a robust manner. */
ut_ad(0);
dtuple_convert_back_big_rec(index, entry, big_rec_vec);
}
big_rec_vec = dtuple_convert_big_rec(index, entry, &n_ext);
if (big_rec_vec == NULL) {
if (n_reserved > 0) {
fil_space_release_free_extents(index->space,
n_reserved);
}
return(DB_TOO_BIG_RECORD);
}
}
if (UNIV_UNLIKELY(fake_changes)) {
/* skip CHANGE, LOG */
if (n_reserved > 0) {
fil_space_release_free_extents(index->space,
n_reserved);
}
*big_rec = big_rec_vec;
return(DB_SUCCESS);
}
if (dict_index_get_page(index)
== buf_block_get_page_no(btr_cur_get_block(cursor))) {
/* The page is the root page */
*rec = btr_root_raise_and_insert(
flags, cursor, offsets, heap, entry, n_ext, mtr);
} else {
*rec = btr_page_split_and_insert(
flags, cursor, offsets, heap, entry, n_ext, mtr);
}
if (*rec == NULL && os_has_said_disk_full) {
return(DB_OUT_OF_FILE_SPACE);
}
ut_ad(page_rec_get_next(btr_cur_get_rec(cursor)) == *rec);
if (!(flags & BTR_NO_LOCKING_FLAG)) {
/* The cursor might be moved to the other page,
and the max trx id field should be updated after
the cursor was fixed. */
if (!dict_index_is_clust(index)) {
page_update_max_trx_id(
btr_cur_get_block(cursor),
btr_cur_get_page_zip(cursor),
thr_get_trx(thr)->id, mtr);
}
if (!page_rec_is_infimum(btr_cur_get_rec(cursor))) {
/* split and inserted need to call
lock_update_insert() always. */
inherit = TRUE;
}
buf_block_t* block = btr_cur_get_block(cursor);
buf_frame_t* frame = NULL;
if (block) {
frame = buf_block_get_frame(block);
}
/* split and inserted need to call
lock_update_insert() always. */
if (frame && btr_page_get_prev(frame, mtr) == FIL_NULL) {
inherit = TRUE;
}
}
#ifdef BTR_CUR_ADAPT
btr_search_update_hash_on_insert(cursor);
#endif
if (inherit && !(flags & BTR_NO_LOCKING_FLAG)) {
lock_update_insert(btr_cur_get_block(cursor), *rec);
}
if (n_reserved > 0) {
fil_space_release_free_extents(index->space, n_reserved);
}
*big_rec = big_rec_vec;
return(DB_SUCCESS);
}
/*==================== B-TREE UPDATE =========================*/
/*************************************************************//**
For an update, checks the locks and does the undo logging.
@return DB_SUCCESS, DB_WAIT_LOCK, or error number */
UNIV_INLINE MY_ATTRIBUTE((warn_unused_result))
dberr_t
btr_cur_upd_lock_and_undo(
/*======================*/
ulint flags, /*!< in: undo logging and locking flags */
btr_cur_t* cursor, /*!< in: cursor on record to update */
const ulint* offsets,/*!< in: rec_get_offsets() on cursor */
const upd_t* update, /*!< in: update vector */
ulint cmpl_info,/*!< in: compiler info on secondary index
updates */
que_thr_t* thr, /*!< in: query thread
(can be NULL if BTR_NO_LOCKING_FLAG) */
mtr_t* mtr, /*!< in/out: mini-transaction */
roll_ptr_t* roll_ptr)/*!< out: roll pointer */
{
dict_index_t* index;
const rec_t* rec;
dberr_t err;
ut_ad((thr != NULL) || (flags & BTR_NO_LOCKING_FLAG));
if (!(flags & BTR_NO_LOCKING_FLAG) && thr_get_trx(thr)->fake_changes) {
/* skip LOCK, UNDO */
return(DB_SUCCESS);
}
rec = btr_cur_get_rec(cursor);
index = cursor->index;
ut_ad(rec_offs_validate(rec, index, offsets));
if (!dict_index_is_clust(index)) {
ut_ad(dict_index_is_online_ddl(index)
== !!(flags & BTR_CREATE_FLAG));
/* We do undo logging only when we update a clustered index
record */
return(lock_sec_rec_modify_check_and_lock(
flags, btr_cur_get_block(cursor), rec,
index, thr, mtr));
}
/* Check if we have to wait for a lock: enqueue an explicit lock
request if yes */
if (!(flags & BTR_NO_LOCKING_FLAG)) {
err = lock_clust_rec_modify_check_and_lock(
flags, btr_cur_get_block(cursor), rec, index,
offsets, thr);
if (err != DB_SUCCESS) {
return(err);
}
}
/* Append the info about the update in the undo log */
return((flags & BTR_NO_UNDO_LOG_FLAG)
? DB_SUCCESS
: trx_undo_report_row_operation(
thr, index, NULL, update,
cmpl_info, rec, offsets, roll_ptr));
}
/***********************************************************//**
Writes a redo log record of updating a record in-place. */
UNIV_INTERN
void
btr_cur_update_in_place_log(
/*========================*/
ulint flags, /*!< in: flags */
const rec_t* rec, /*!< in: record */
dict_index_t* index, /*!< in: index of the record */
const upd_t* update, /*!< in: update vector */
trx_id_t trx_id, /*!< in: transaction id */
roll_ptr_t roll_ptr, /*!< in: roll ptr */
mtr_t* mtr) /*!< in: mtr */
{
byte* log_ptr;
const page_t* page = page_align(rec);
ut_ad(flags < 256);
ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table));
log_ptr = mlog_open_and_write_index(mtr, rec, index, page_is_comp(page)
? MLOG_COMP_REC_UPDATE_IN_PLACE
: MLOG_REC_UPDATE_IN_PLACE,
1 + DATA_ROLL_PTR_LEN + 14 + 2
+ MLOG_BUF_MARGIN);
if (!log_ptr) {
/* Logging in mtr is switched off during crash recovery */
return;
}
/* For secondary indexes, we could skip writing the dummy system fields
to the redo log but we have to change redo log parsing of
MLOG_REC_UPDATE_IN_PLACE/MLOG_COMP_REC_UPDATE_IN_PLACE or we have to add
new redo log record. For now, just write dummy sys fields to the redo
log if we are updating a secondary index record.
*/
mach_write_to_1(log_ptr, flags);
log_ptr++;
if (dict_index_is_clust(index)) {
log_ptr = row_upd_write_sys_vals_to_log(
index, trx_id, roll_ptr, log_ptr, mtr);
} else {
/* Dummy system fields for a secondary index */
/* TRX_ID Position */
log_ptr += mach_write_compressed(log_ptr, 0);
/* ROLL_PTR */
trx_write_roll_ptr(log_ptr, 0);
log_ptr += DATA_ROLL_PTR_LEN;
/* TRX_ID */
log_ptr += mach_ull_write_compressed(log_ptr, 0);
}
mach_write_to_2(log_ptr, page_offset(rec));
log_ptr += 2;
row_upd_index_write_log(update, log_ptr, mtr);
}
#endif /* UNIV_HOTBACKUP */
/***********************************************************//**
Parses a redo log record of updating a record in-place.
@return end of log record or NULL */
UNIV_INTERN
byte*
btr_cur_parse_update_in_place(
/*==========================*/
byte* ptr, /*!< in: buffer */
byte* end_ptr,/*!< in: buffer end */
page_t* page, /*!< in/out: page or NULL */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
dict_index_t* index) /*!< in: index corresponding to page */
{
ulint flags;
rec_t* rec;
upd_t* update;
ulint pos;
trx_id_t trx_id;
roll_ptr_t roll_ptr;
ulint rec_offset;
mem_heap_t* heap;
ulint* offsets;
if (end_ptr < ptr + 1) {
return(NULL);
}
flags = mach_read_from_1(ptr);
ptr++;
ptr = row_upd_parse_sys_vals(ptr, end_ptr, &pos, &trx_id, &roll_ptr);
if (ptr == NULL) {
return(NULL);
}
if (end_ptr < ptr + 2) {
return(NULL);
}
rec_offset = mach_read_from_2(ptr);
ptr += 2;
ut_a(rec_offset <= UNIV_PAGE_SIZE);
heap = mem_heap_create(256);
ptr = row_upd_index_parse(ptr, end_ptr, heap, &update);
if (!ptr || !page) {
goto func_exit;
}
ut_a((ibool)!!page_is_comp(page) == dict_table_is_comp(index->table));
rec = page + rec_offset;
/* We do not need to reserve btr_search_latch, as the page is only
being recovered, and there cannot be a hash index to it. */
offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap);
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_rec_sys_fields_in_recovery(rec, page_zip, offsets,
pos, trx_id, roll_ptr);
}
row_upd_rec_in_place(rec, index, offsets, update, page_zip);
func_exit:
mem_heap_free(heap);
return(ptr);
}
#ifndef UNIV_HOTBACKUP
/*************************************************************//**
See if there is enough place in the page modification log to log
an update-in-place.
@retval false if out of space; IBUF_BITMAP_FREE will be reset
outside mtr if the page was recompressed
@retval true if enough place;
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is
a secondary index leaf page. This has to be done either within the
same mini-transaction, or by invoking ibuf_reset_free_bits() before
mtr_commit(mtr). */
UNIV_INTERN
bool
btr_cur_update_alloc_zip_func(
/*==========================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page */
page_cur_t* cursor, /*!< in/out: B-tree page cursor */
dict_index_t* index, /*!< in: the index corresponding to cursor */
#ifdef UNIV_DEBUG
ulint* offsets,/*!< in/out: offsets of the cursor record */
#endif /* UNIV_DEBUG */
ulint length, /*!< in: size needed */
bool create, /*!< in: true=delete-and-insert,
false=update-in-place */
mtr_t* mtr, /*!< in/out: mini-transaction */
trx_t* trx) /*!< in: NULL or transaction */
{
const page_t* page = page_cur_get_page(cursor);
ut_ad(page_zip == page_cur_get_page_zip(cursor));
ut_ad(!dict_index_is_ibuf(index));
ut_ad(rec_offs_validate(page_cur_get_rec(cursor), index, offsets));
if (page_zip_available(page_zip, dict_index_is_clust(index),
length, create)) {
return(true);
}
if (!page_zip->m_nonempty && !page_has_garbage(page)) {
/* The page has been freshly compressed, so
reorganizing it will not help. */
return(false);
}
if (create && page_is_leaf(page)
&& (length + page_get_data_size(page)
>= dict_index_zip_pad_optimal_page_size(index))) {
return(false);
}
if (UNIV_UNLIKELY(trx && trx->fake_changes)) {
/* Don't call page_zip_compress_write_log_no_data as that has
assert which would fail. Assume there won't be a compression
failure. */
return(true);
}
if (!btr_page_reorganize(cursor, index, mtr)) {
goto out_of_space;
}
rec_offs_make_valid(page_cur_get_rec(cursor), index, offsets);
/* After recompressing a page, we must make sure that the free
bits in the insert buffer bitmap will not exceed the free
space on the page. Because this function will not attempt
recompression unless page_zip_available() fails above, it is
safe to reset the free bits if page_zip_available() fails
again, below. The free bits can safely be reset in a separate
mini-transaction. If page_zip_available() succeeds below, we
can be sure that the btr_page_reorganize() above did not reduce
the free space available on the page. */
if (page_zip_available(page_zip, dict_index_is_clust(index),
length, create)) {
return(true);
}
out_of_space:
ut_ad(rec_offs_validate(page_cur_get_rec(cursor), index, offsets));
/* Out of space: reset the free bits. */
if (!dict_index_is_clust(index) && page_is_leaf(page)) {
ibuf_reset_free_bits(page_cur_get_block(cursor));
}
return(false);
}
/*************************************************************//**
Updates a record when the update causes no size changes in its fields.
We assume here that the ordering fields of the record do not change.
@return locking or undo log related error code, or
@retval DB_SUCCESS on success
@retval DB_ZIP_OVERFLOW if there is not enough space left
on the compressed page (IBUF_BITMAP_FREE was reset outside mtr) */
UNIV_INTERN
dberr_t
btr_cur_update_in_place(
/*====================*/
ulint flags, /*!< in: undo logging and locking flags */
btr_cur_t* cursor, /*!< in: cursor on the record to update;
cursor stays valid and positioned on the
same record */
ulint* offsets,/*!< in/out: offsets on cursor->page_cur.rec */
const upd_t* update, /*!< in: update vector */
ulint cmpl_info,/*!< in: compiler info on secondary index
updates */
que_thr_t* thr, /*!< in: query thread */
trx_id_t trx_id, /*!< in: transaction id */
mtr_t* mtr) /*!< in/out: mini-transaction; if this
is a secondary index, the caller must
mtr_commit(mtr) before latching any
further pages */
{
dict_index_t* index;
buf_block_t* block;
page_zip_des_t* page_zip;
dberr_t err;
rec_t* rec;
roll_ptr_t roll_ptr = 0;
ulint was_delete_marked;
ibool is_hashed;
trx_t* trx;
rec = btr_cur_get_rec(cursor);
index = cursor->index;
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table));
/* The insert buffer tree should never be updated in place. */
ut_ad(!dict_index_is_ibuf(index));
ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG)
|| dict_index_is_clust(index));
ut_ad(thr_get_trx(thr)->id == trx_id
|| (flags & ~(BTR_KEEP_POS_FLAG | BTR_KEEP_IBUF_BITMAP))
== (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG
| BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG));
ut_ad(fil_page_get_type(btr_cur_get_page(cursor)) == FIL_PAGE_INDEX);
ut_ad(btr_page_get_index_id(btr_cur_get_page(cursor)) == index->id);
#ifdef UNIV_DEBUG
if (btr_cur_print_record_ops) {
btr_cur_trx_report(trx_id, index, "update ");
rec_print_new(stderr, rec, offsets);
}
#endif /* UNIV_DEBUG */
block = btr_cur_get_block(cursor);
page_zip = buf_block_get_page_zip(block);
trx = thr_get_trx(thr);
/* Check that enough space is available on the compressed page. */
if (page_zip) {
if (!btr_cur_update_alloc_zip(
page_zip, btr_cur_get_page_cur(cursor),
index, offsets, rec_offs_size(offsets),
false, mtr, trx)) {
return(DB_ZIP_OVERFLOW);
}
rec = btr_cur_get_rec(cursor);
}
/* Do lock checking and undo logging */
err = btr_cur_upd_lock_and_undo(flags, cursor, offsets,
update, cmpl_info,
thr, mtr, &roll_ptr);
if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
/* We may need to update the IBUF_BITMAP_FREE
bits after a reorganize that was done in
btr_cur_update_alloc_zip(). */
goto func_exit;
}
if (UNIV_UNLIKELY(trx->fake_changes)) {
/* skip CHANGE, LOG */
return(err); /* == DB_SUCCESS */
}
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_rec_sys_fields(rec, NULL, index, offsets,
thr_get_trx(thr), roll_ptr);
}
was_delete_marked = rec_get_deleted_flag(
rec, page_is_comp(buf_block_get_frame(block)));
is_hashed = (block->index != NULL);
if (is_hashed) {
/* TO DO: Can we skip this if none of the fields
index->search_info->curr_n_fields
are being updated? */
/* The function row_upd_changes_ord_field_binary works only
if the update vector was built for a clustered index, we must
NOT call it if index is secondary */
if (!dict_index_is_clust(index)
|| row_upd_changes_ord_field_binary(index, update, thr,
NULL, NULL)) {
/* Remove possible hash index pointer to this record */
btr_search_update_hash_on_delete(cursor);
}
rw_lock_x_lock(btr_search_get_latch(cursor->index));
}
row_upd_rec_in_place(rec, index, offsets, update, page_zip);
if (is_hashed) {
rw_lock_x_unlock(btr_search_get_latch(cursor->index));
}
btr_cur_update_in_place_log(flags, rec, index, update,
trx_id, roll_ptr, mtr);
if (was_delete_marked
&& !rec_get_deleted_flag(
rec, page_is_comp(buf_block_get_frame(block)))) {
/* The new updated record owns its possible externally
stored fields */
btr_cur_unmark_extern_fields(page_zip,
rec, index, offsets, mtr);
}
ut_ad(err == DB_SUCCESS);
func_exit:
if (page_zip
&& !(flags & BTR_KEEP_IBUF_BITMAP)
&& !dict_index_is_clust(index)
&& block) {
buf_frame_t* frame = buf_block_get_frame(block);
if (frame && page_is_leaf(frame)) {
/* Update the free bits in the insert buffer. */
ibuf_update_free_bits_zip(block, mtr);
}
}
return(err);
}
/*************************************************************//**
Tries to update a record on a page in an index tree. It is assumed that mtr
holds an x-latch on the page. The operation does not succeed if there is too
little space on the page or if the update would result in too empty a page,
so that tree compression is recommended. We assume here that the ordering
fields of the record do not change.
@return error code, including
@retval DB_SUCCESS on success
@retval DB_OVERFLOW if the updated record does not fit
@retval DB_UNDERFLOW if the page would become too empty
@retval DB_ZIP_OVERFLOW if there is not enough space left
on the compressed page (IBUF_BITMAP_FREE was reset outside mtr) */
UNIV_INTERN
dberr_t
btr_cur_optimistic_update(
/*======================*/
ulint flags, /*!< in: undo logging and locking flags */
btr_cur_t* cursor, /*!< in: cursor on the record to update;
cursor stays valid and positioned on the
same record */
ulint** offsets,/*!< out: offsets on cursor->page_cur.rec */
mem_heap_t** heap, /*!< in/out: pointer to NULL or memory heap */
const upd_t* update, /*!< in: update vector; this must also
contain trx id and roll ptr fields */
ulint cmpl_info,/*!< in: compiler info on secondary index
updates */
que_thr_t* thr, /*!< in: query thread */
trx_id_t trx_id, /*!< in: transaction id */
mtr_t* mtr) /*!< in/out: mini-transaction; if this
is a secondary index, the caller must
mtr_commit(mtr) before latching any
further pages */
{
dict_index_t* index;
page_cur_t* page_cursor;
dberr_t err;
buf_block_t* block;
page_t* page;
page_zip_des_t* page_zip;
rec_t* rec;
ulint max_size;
ulint new_rec_size;
ulint old_rec_size;
ulint max_ins_size = 0;
dtuple_t* new_entry;
roll_ptr_t roll_ptr;
ulint i;
ulint n_ext;
block = btr_cur_get_block(cursor);
page = buf_block_get_frame(block);
rec = btr_cur_get_rec(cursor);
index = cursor->index;
ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table));
ut_ad(thr_get_trx(thr)->fake_changes
|| mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX));
/* The insert buffer tree should never be updated in place. */
ut_ad(!dict_index_is_ibuf(index));
ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG)
|| dict_index_is_clust(index));
ut_ad(thr_get_trx(thr)->id == trx_id
|| (flags & ~(BTR_KEEP_POS_FLAG | BTR_KEEP_IBUF_BITMAP))
== (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG
| BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG));
ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX);
ut_ad(btr_page_get_index_id(page) == index->id);
*offsets = rec_get_offsets(rec, index, *offsets,
ULINT_UNDEFINED, heap);
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
ut_a(!rec_offs_any_null_extern(rec, *offsets)
|| trx_is_recv(thr_get_trx(thr)));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
#ifdef UNIV_DEBUG
if (btr_cur_print_record_ops) {
btr_cur_trx_report(trx_id, index, "update ");
rec_print_new(stderr, rec, *offsets);
}
#endif /* UNIV_DEBUG */
if (!row_upd_changes_field_size_or_external(index, *offsets, update)) {
/* The simplest and the most common case: the update does not
change the size of any field and none of the updated fields is
externally stored in rec or update, and there is enough space
on the compressed page to log the update. */
return(btr_cur_update_in_place(
flags, cursor, *offsets, update,
cmpl_info, thr, trx_id, mtr));
}
if (rec_offs_any_extern(*offsets)) {
any_extern:
/* Externally stored fields are treated in pessimistic
update */
return(DB_OVERFLOW);
}
for (i = 0; i < upd_get_n_fields(update); i++) {
if (dfield_is_ext(&upd_get_nth_field(update, i)->new_val)) {
goto any_extern;
}
}
page_cursor = btr_cur_get_page_cur(cursor);
if (!*heap) {
*heap = mem_heap_create(
rec_offs_size(*offsets)
+ DTUPLE_EST_ALLOC(rec_offs_n_fields(*offsets)));
}
new_entry = row_rec_to_index_entry(rec, index, *offsets,
&n_ext, *heap);
/* We checked above that there are no externally stored fields. */
ut_a(!n_ext);
/* The page containing the clustered index record
corresponding to new_entry is latched in mtr.
Thus the following call is safe. */
row_upd_index_replace_new_col_vals_index_pos(new_entry, index, update,
FALSE, *heap);
old_rec_size = rec_offs_size(*offsets);
new_rec_size = rec_get_converted_size(index, new_entry, 0);
page_zip = buf_block_get_page_zip(block);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
if (page_zip) {
if (page_zip_rec_needs_ext(new_rec_size, page_is_comp(page),
dict_index_get_n_fields(index),
page_zip_get_size(page_zip))) {
goto any_extern;
}
if (!btr_cur_update_alloc_zip(
page_zip, page_cursor, index, *offsets,
new_rec_size, true, mtr, thr_get_trx(thr))) {
return(DB_ZIP_OVERFLOW);
}
rec = page_cur_get_rec(page_cursor);
}
/* We limit max record size to 16k even for 64k page size. */
if (new_rec_size >= COMPRESSED_REC_MAX_DATA_SIZE ||
(!dict_table_is_comp(index->table)
&& new_rec_size >= REDUNDANT_REC_MAX_DATA_SIZE)) {
err = DB_OVERFLOW;
goto func_exit;
}
if (UNIV_UNLIKELY(new_rec_size
>= (page_get_free_space_of_empty(page_is_comp(page))
/ 2))) {
/* We may need to update the IBUF_BITMAP_FREE
bits after a reorganize that was done in
btr_cur_update_alloc_zip(). */
err = DB_OVERFLOW;
goto func_exit;
}
if (UNIV_UNLIKELY(page_get_data_size(page)
- old_rec_size + new_rec_size
< BTR_CUR_PAGE_COMPRESS_LIMIT)) {
/* We may need to update the IBUF_BITMAP_FREE
bits after a reorganize that was done in
btr_cur_update_alloc_zip(). */
/* The page would become too empty */
err = DB_UNDERFLOW;
goto func_exit;
}
/* We do not attempt to reorganize if the page is compressed.
This is because the page may fail to compress after reorganization. */
max_size = page_zip
? page_get_max_insert_size(page, 1)
: (old_rec_size
+ page_get_max_insert_size_after_reorganize(page, 1));
if (!page_zip) {
max_ins_size = page_get_max_insert_size_after_reorganize(page, 1);
}
if (!(((max_size >= BTR_CUR_PAGE_REORGANIZE_LIMIT)
&& (max_size >= new_rec_size))
|| (page_get_n_recs(page) <= 1))) {
/* We may need to update the IBUF_BITMAP_FREE
bits after a reorganize that was done in
btr_cur_update_alloc_zip(). */
/* There was not enough space, or it did not pay to
reorganize: for simplicity, we decide what to do assuming a
reorganization is needed, though it might not be necessary */
err = DB_OVERFLOW;
goto func_exit;
}
/* Do lock checking and undo logging */
err = btr_cur_upd_lock_and_undo(flags, cursor, *offsets,
update, cmpl_info,
thr, mtr, &roll_ptr);
if (err != DB_SUCCESS) {
/* We may need to update the IBUF_BITMAP_FREE
bits after a reorganize that was done in
btr_cur_update_alloc_zip(). */
goto func_exit;
}
if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) {
/* skip CHANGE, LOG */
ut_ad(err == DB_SUCCESS);
return(DB_SUCCESS);
}
/* Ok, we may do the replacement. Store on the page infimum the
explicit locks on rec, before deleting rec (see the comment in
btr_cur_pessimistic_update). */
lock_rec_store_on_page_infimum(block, rec);
btr_search_update_hash_on_delete(cursor);
page_cur_delete_rec(page_cursor, index, *offsets, mtr);
page_cur_move_to_prev(page_cursor);
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_index_entry_sys_field(new_entry, index, DATA_ROLL_PTR,
roll_ptr);
row_upd_index_entry_sys_field(new_entry, index, DATA_TRX_ID,
trx_id);
}
/* There are no externally stored columns in new_entry */
rec = btr_cur_insert_if_possible(
cursor, new_entry, offsets, heap, 0/*n_ext*/, mtr);
ut_a(rec); /* <- We calculated above the insert would fit */
/* Restore the old explicit lock state on the record */
lock_rec_restore_from_page_infimum(block, rec, block);
page_cur_move_to_next(page_cursor);
ut_ad(err == DB_SUCCESS);
func_exit:
if (!(flags & BTR_KEEP_IBUF_BITMAP)
&& !dict_index_is_clust(index)
&& page_is_leaf(page)) {
if (page_zip) {
ibuf_update_free_bits_zip(block, mtr);
} else {
ibuf_update_free_bits_low(block, max_ins_size, mtr);
}
}
return(err);
}
/*************************************************************//**
If, in a split, a new supremum record was created as the predecessor of the
updated record, the supremum record must inherit exactly the locks on the
updated record. In the split it may have inherited locks from the successor
of the updated record, which is not correct. This function restores the
right locks for the new supremum. */
static
void
btr_cur_pess_upd_restore_supremum(
/*==============================*/
buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: updated record */
mtr_t* mtr) /*!< in: mtr */
{
page_t* page;
buf_block_t* prev_block;
ulint space;
ulint zip_size;
ulint prev_page_no;
page = buf_block_get_frame(block);
if (page_rec_get_next(page_get_infimum_rec(page)) != rec) {
/* Updated record is not the first user record on its page */
return;
}
space = buf_block_get_space(block);
zip_size = buf_block_get_zip_size(block);
prev_page_no = btr_page_get_prev(page, mtr);
ut_ad(prev_page_no != FIL_NULL);
prev_block = buf_page_get_with_no_latch(space, zip_size,
prev_page_no, mtr);
#ifdef UNIV_BTR_DEBUG
ut_a(btr_page_get_next(prev_block->frame, mtr)
== page_get_page_no(page));
#endif /* UNIV_BTR_DEBUG */
/* We must already have an x-latch on prev_block! */
ut_ad(mtr_memo_contains(mtr, prev_block, MTR_MEMO_PAGE_X_FIX));
lock_rec_reset_and_inherit_gap_locks(prev_block, block,
PAGE_HEAP_NO_SUPREMUM,
page_rec_get_heap_no(rec));
}
/*************************************************************//**
Check if the total length of the modified blob for the row is within 10%
of the total redo log size. This constraint on the blob length is to
avoid overwriting the redo logs beyond the last checkpoint lsn.
@return DB_SUCCESS or DB_TOO_BIG_FOR_REDO. */
static
dberr_t
btr_check_blob_limit(const big_rec_t* big_rec_vec)
{
const ib_uint64_t redo_size = srv_n_log_files * srv_log_file_size
* UNIV_PAGE_SIZE;
const ib_uint64_t redo_10p = redo_size / 10;
ib_uint64_t total_blob_len = 0;
dberr_t err = DB_SUCCESS;
/* Calculate the total number of bytes for blob data */
for (ulint i = 0; i < big_rec_vec->n_fields; i++) {
total_blob_len += big_rec_vec->fields[i].len;
}
if (total_blob_len > redo_10p) {
ib_logf(IB_LOG_LEVEL_ERROR, "The total blob data"
" length (" UINT64PF ") is greater than"
" 10%% of the total redo log size (" UINT64PF
"). Please increase total redo log size.",
total_blob_len, redo_size);
err = DB_TOO_BIG_FOR_REDO;
}
return(err);
}
/*************************************************************//**
Performs an update of a record on a page of a tree. It is assumed
that mtr holds an x-latch on the tree and on the cursor page. If the
update is made on the leaf level, to avoid deadlocks, mtr must also
own x-latches to brothers of page, if those brothers exist. We assume
here that the ordering fields of the record do not change.
@return DB_SUCCESS or error code */
UNIV_INTERN
dberr_t
btr_cur_pessimistic_update(
/*=======================*/
ulint flags, /*!< in: undo logging, locking, and rollback
flags */
btr_cur_t* cursor, /*!< in/out: cursor on the record to update;
cursor may become invalid if *big_rec == NULL
|| !(flags & BTR_KEEP_POS_FLAG) */
ulint** offsets,/*!< out: offsets on cursor->page_cur.rec */
mem_heap_t** offsets_heap,
/*!< in/out: pointer to memory heap
that can be emptied */
mem_heap_t* entry_heap,
/*!< in/out: memory heap for allocating
big_rec and the index tuple */
big_rec_t** big_rec,/*!< out: big rec vector whose fields have to
be stored externally by the caller */
const upd_t* update, /*!< in: update vector; this is allowed also
contain trx id and roll ptr fields, but
the values in update vector have no effect */
ulint cmpl_info,/*!< in: compiler info on secondary index
updates */
que_thr_t* thr, /*!< in: query thread */
trx_id_t trx_id, /*!< in: transaction id */
mtr_t* mtr) /*!< in/out: mini-transaction; must be
committed before latching any further pages */
{
big_rec_t* big_rec_vec = NULL;
big_rec_t* dummy_big_rec;
dict_index_t* index;
buf_block_t* block;
page_t* page;
page_zip_des_t* page_zip;
rec_t* rec;
page_cur_t* page_cursor;
dberr_t err;
dberr_t optim_err;
roll_ptr_t roll_ptr;
ibool was_first;
ulint n_reserved = 0;
ulint n_ext;
trx_t* trx;
ulint max_ins_size = 0;
*offsets = NULL;
*big_rec = NULL;
block = btr_cur_get_block(cursor);
page = buf_block_get_frame(block);
page_zip = buf_block_get_page_zip(block);
index = cursor->index;
ut_ad(thr_get_trx(thr)->fake_changes
|| mtr_memo_contains(mtr, dict_index_get_lock(index),
MTR_MEMO_X_LOCK));
ut_ad(thr_get_trx(thr)->fake_changes
|| mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX));
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
/* The insert buffer tree should never be updated in place. */
ut_ad(!dict_index_is_ibuf(index));
ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG)
|| dict_index_is_clust(index));
ut_ad(thr_get_trx(thr)->id == trx_id
|| (flags & ~BTR_KEEP_POS_FLAG)
== (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG
| BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG));
err = optim_err = btr_cur_optimistic_update(
flags | BTR_KEEP_IBUF_BITMAP,
cursor, offsets, offsets_heap, update,
cmpl_info, thr, trx_id, mtr);
switch (err) {
case DB_ZIP_OVERFLOW:
case DB_UNDERFLOW:
case DB_OVERFLOW:
break;
default:
err_exit:
/* We suppressed this with BTR_KEEP_IBUF_BITMAP.
For DB_ZIP_OVERFLOW, the IBUF_BITMAP_FREE bits were
already reset by btr_cur_update_alloc_zip() if the
page was recompressed. */
if (page_zip
&& optim_err != DB_ZIP_OVERFLOW
&& !dict_index_is_clust(index)
&& page_is_leaf(page)) {
ibuf_update_free_bits_zip(block, mtr);
}
return(err);
}
/* Do lock checking and undo logging */
err = btr_cur_upd_lock_and_undo(flags, cursor, *offsets,
update, cmpl_info,
thr, mtr, &roll_ptr);
if (err != DB_SUCCESS) {
goto err_exit;
}
if (optim_err == DB_OVERFLOW) {
ulint reserve_flag;
ulint n_extents;
/* First reserve enough free space for the file segments
of the index tree, so that the update will not fail because
of lack of space */
if (UNIV_UNLIKELY(cursor->tree_height == ULINT_UNDEFINED)) {
/* When the tree height is uninitialized due to fake
changes, reserve some hardcoded number of extents. */
ut_a(thr_get_trx(thr)->fake_changes);
n_extents = 3;
}
else {
n_extents = cursor->tree_height / 16 + 3;
}
if (flags & BTR_NO_UNDO_LOG_FLAG) {
reserve_flag = FSP_CLEANING;
} else {
reserve_flag = FSP_NORMAL;
}
if (!fsp_reserve_free_extents(&n_reserved, index->space,
n_extents, reserve_flag, mtr)) {
err = DB_OUT_OF_FILE_SPACE;
goto err_exit;
}
}
rec = btr_cur_get_rec(cursor);
*offsets = rec_get_offsets(
rec, index, *offsets, ULINT_UNDEFINED, offsets_heap);
dtuple_t* new_entry = row_rec_to_index_entry(
rec, index, *offsets, &n_ext, entry_heap);
/* The page containing the clustered index record
corresponding to new_entry is latched in mtr. If the
clustered index record is delete-marked, then its externally
stored fields cannot have been purged yet, because then the
purge would also have removed the clustered index record
itself. Thus the following call is safe. */
row_upd_index_replace_new_col_vals_index_pos(new_entry, index, update,
FALSE, entry_heap);
trx = thr_get_trx(thr);
if (!(flags & BTR_KEEP_SYS_FLAG) && UNIV_LIKELY(!trx->fake_changes)) {
row_upd_index_entry_sys_field(new_entry, index, DATA_ROLL_PTR,
roll_ptr);
row_upd_index_entry_sys_field(new_entry, index, DATA_TRX_ID,
trx_id);
}
if ((flags & BTR_NO_UNDO_LOG_FLAG) && rec_offs_any_extern(*offsets)) {
/* We are in a transaction rollback undoing a row
update: we must free possible externally stored fields
which got new values in the update, if they are not
inherited values. They can be inherited if we have
updated the primary key to another value, and then
update it back again. */
ut_ad(big_rec_vec == NULL);
/* fake_changes should not cause undo. so never reaches here */
ut_ad(!(trx->fake_changes));
btr_rec_free_updated_extern_fields(
index, rec, page_zip, *offsets, update,
trx_is_recv(thr_get_trx(thr))
? RB_RECOVERY : RB_NORMAL, mtr);
}
/* We have to set appropriate extern storage bits in the new
record to be inserted: we have to remember which fields were such */
ut_ad(!page_is_comp(page) || !rec_get_node_ptr_flag(rec));
ut_ad(rec_offs_validate(rec, index, *offsets));
n_ext += btr_push_update_extern_fields(new_entry, update, entry_heap);
if (page_zip) {
ut_ad(page_is_comp(page));
if (page_zip_rec_needs_ext(
rec_get_converted_size(index, new_entry, n_ext),
TRUE,
dict_index_get_n_fields(index),
page_zip_get_size(page_zip))) {
goto make_external;
}
} else if (page_zip_rec_needs_ext(
rec_get_converted_size(index, new_entry, n_ext),
page_is_comp(page), 0, 0)) {
make_external:
big_rec_vec = dtuple_convert_big_rec(index, new_entry, &n_ext);
if (UNIV_UNLIKELY(big_rec_vec == NULL)) {
/* We cannot goto return_after_reservations,
because we may need to update the
IBUF_BITMAP_FREE bits, which was suppressed by
BTR_KEEP_IBUF_BITMAP. */
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip
|| page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
if (n_reserved > 0) {
fil_space_release_free_extents(
index->space, n_reserved);
}
err = DB_TOO_BIG_RECORD;
goto err_exit;
}
ut_ad(page_is_leaf(page));
ut_ad(dict_index_is_clust(index));
ut_ad(flags & BTR_KEEP_POS_FLAG);
}
if (UNIV_UNLIKELY(trx->fake_changes)) {
/* skip CHANGE, LOG */
err = DB_SUCCESS;
goto return_after_reservations;
}
if (big_rec_vec) {
err = btr_check_blob_limit(big_rec_vec);
if (err != DB_SUCCESS) {
if (n_reserved > 0) {
fil_space_release_free_extents(
index->space, n_reserved);
}
goto err_exit;
}
}
if (!page_zip) {
max_ins_size = page_get_max_insert_size_after_reorganize(page, 1);
}
/* Store state of explicit locks on rec on the page infimum record,
before deleting rec. The page infimum acts as a dummy carrier of the
locks, taking care also of lock releases, before we can move the locks
back on the actual record. There is a special case: if we are
inserting on the root page and the insert causes a call of
btr_root_raise_and_insert. Therefore we cannot in the lock system
delete the lock structs set on the root page even if the root
page carries just node pointers. */
lock_rec_store_on_page_infimum(block, rec);
btr_search_update_hash_on_delete(cursor);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
page_cursor = btr_cur_get_page_cur(cursor);
page_cur_delete_rec(page_cursor, index, *offsets, mtr);
page_cur_move_to_prev(page_cursor);
rec = btr_cur_insert_if_possible(cursor, new_entry,
offsets, offsets_heap, n_ext, mtr);
if (rec) {
page_cursor->rec = rec;
lock_rec_restore_from_page_infimum(btr_cur_get_block(cursor),
rec, block);
if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets))) {
/* The new inserted record owns its possible externally
stored fields */
btr_cur_unmark_extern_fields(
page_zip, rec, index, *offsets, mtr);
}
bool adjust = big_rec_vec && (flags & BTR_KEEP_POS_FLAG);
if (btr_cur_compress_if_useful(cursor, adjust, mtr)) {
if (adjust) {
rec_offs_make_valid(
page_cursor->rec, index, *offsets);
}
} else if (!dict_index_is_clust(index)
&& page_is_leaf(page)) {
/* Update the free bits in the insert buffer.
This is the same block which was skipped by
BTR_KEEP_IBUF_BITMAP. */
if (page_zip) {
ibuf_update_free_bits_zip(block, mtr);
} else {
ibuf_update_free_bits_low(block, max_ins_size,
mtr);
}
}
err = DB_SUCCESS;
goto return_after_reservations;
} else {
/* If the page is compressed and it initially
compresses very well, and there is a subsequent insert
of a badly-compressing record, it is possible for
btr_cur_optimistic_update() to return DB_UNDERFLOW and
btr_cur_insert_if_possible() to return FALSE. */
ut_a(page_zip || optim_err != DB_UNDERFLOW);
/* Out of space: reset the free bits.
This is the same block which was skipped by
BTR_KEEP_IBUF_BITMAP. */
if (!dict_index_is_clust(index) && page_is_leaf(page)) {
ibuf_reset_free_bits(block);
}
}
if (big_rec_vec) {
ut_ad(page_is_leaf(page));
ut_ad(dict_index_is_clust(index));
ut_ad(flags & BTR_KEEP_POS_FLAG);
/* btr_page_split_and_insert() in
btr_cur_pessimistic_insert() invokes
mtr_memo_release(mtr, index->lock, MTR_MEMO_X_LOCK).
We must keep the index->lock when we created a
big_rec, so that row_upd_clust_rec() can store the
big_rec in the same mini-transaction. */
mtr_x_lock(dict_index_get_lock(index), mtr);
}
/* Was the record to be updated positioned as the first user
record on its page? */
was_first = page_cur_is_before_first(page_cursor);
/* Lock checks and undo logging were already performed by
btr_cur_upd_lock_and_undo(). We do not try
btr_cur_optimistic_insert() because
btr_cur_insert_if_possible() already failed above. */
err = btr_cur_pessimistic_insert(BTR_NO_UNDO_LOG_FLAG
| BTR_NO_LOCKING_FLAG
| BTR_KEEP_SYS_FLAG,
cursor, offsets, offsets_heap,
new_entry, &rec,
&dummy_big_rec, n_ext, NULL, mtr);
ut_a(rec);
ut_a(err == DB_SUCCESS);
ut_a(dummy_big_rec == NULL);
ut_ad(rec_offs_validate(rec, cursor->index, *offsets));
page_cursor->rec = rec;
if (dict_index_is_sec_or_ibuf(index)) {
/* Update PAGE_MAX_TRX_ID in the index page header.
It was not updated by btr_cur_pessimistic_insert()
because of BTR_NO_LOCKING_FLAG. */
buf_block_t* rec_block;
rec_block = btr_cur_get_block(cursor);
page_update_max_trx_id(rec_block,
buf_block_get_page_zip(rec_block),
trx_id, mtr);
}
if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets))) {
/* The new inserted record owns its possible externally
stored fields */
buf_block_t* rec_block = btr_cur_get_block(cursor);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
page = buf_block_get_frame(rec_block);
#endif /* UNIV_ZIP_DEBUG */
page_zip = buf_block_get_page_zip(rec_block);
btr_cur_unmark_extern_fields(page_zip,
rec, index, *offsets, mtr);
}
lock_rec_restore_from_page_infimum(btr_cur_get_block(cursor),
rec, block);
/* If necessary, restore also the correct lock state for a new,
preceding supremum record created in a page split. While the old
record was nonexistent, the supremum might have inherited its locks
from a wrong record. */
if (!was_first) {
btr_cur_pess_upd_restore_supremum(btr_cur_get_block(cursor),
rec, mtr);
}
return_after_reservations:
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
if (n_reserved > 0) {
fil_space_release_free_extents(index->space, n_reserved);
}
*big_rec = big_rec_vec;
return(err);
}
/*==================== B-TREE DELETE MARK AND UNMARK ===============*/
/****************************************************************//**
Writes the redo log record for delete marking or unmarking of an index
record. */
UNIV_INLINE
void
btr_cur_del_mark_set_clust_rec_log(
/*===============================*/
rec_t* rec, /*!< in: record */
dict_index_t* index, /*!< in: index of the record */
trx_id_t trx_id, /*!< in: transaction id */
roll_ptr_t roll_ptr,/*!< in: roll ptr to the undo log record */
mtr_t* mtr) /*!< in: mtr */
{
byte* log_ptr;
ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table));
log_ptr = mlog_open_and_write_index(mtr, rec, index,
page_rec_is_comp(rec)
? MLOG_COMP_REC_CLUST_DELETE_MARK
: MLOG_REC_CLUST_DELETE_MARK,
1 + 1 + DATA_ROLL_PTR_LEN
+ 14 + 2);
if (!log_ptr) {
/* Logging in mtr is switched off during crash recovery */
return;
}
*log_ptr++ = 0;
*log_ptr++ = 1;
log_ptr = row_upd_write_sys_vals_to_log(
index, trx_id, roll_ptr, log_ptr, mtr);
mach_write_to_2(log_ptr, page_offset(rec));
log_ptr += 2;
mlog_close(mtr, log_ptr);
}
#endif /* !UNIV_HOTBACKUP */
/****************************************************************//**
Parses the redo log record for delete marking or unmarking of a clustered
index record.
@return end of log record or NULL */
UNIV_INTERN
byte*
btr_cur_parse_del_mark_set_clust_rec(
/*=================================*/
byte* ptr, /*!< in: buffer */
byte* end_ptr,/*!< in: buffer end */
page_t* page, /*!< in/out: page or NULL */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
dict_index_t* index) /*!< in: index corresponding to page */
{
ulint flags;
ulint val;
ulint pos;
trx_id_t trx_id;
roll_ptr_t roll_ptr;
ulint offset;
rec_t* rec;
ut_ad(!page
|| !!page_is_comp(page) == dict_table_is_comp(index->table));
if (end_ptr < ptr + 2) {
return(NULL);
}
flags = mach_read_from_1(ptr);
ptr++;
val = mach_read_from_1(ptr);
ptr++;
ptr = row_upd_parse_sys_vals(ptr, end_ptr, &pos, &trx_id, &roll_ptr);
if (ptr == NULL) {
return(NULL);
}
if (end_ptr < ptr + 2) {
return(NULL);
}
offset = mach_read_from_2(ptr);
ptr += 2;
ut_a(offset <= UNIV_PAGE_SIZE);
if (page) {
rec = page + offset;
/* We do not need to reserve btr_search_latch, as the page
is only being recovered, and there cannot be a hash index to
it. Besides, these fields are being updated in place
and the adaptive hash index does not depend on them. */
btr_rec_set_deleted_flag(rec, page_zip, val);
if (!(flags & BTR_KEEP_SYS_FLAG)) {
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
row_upd_rec_sys_fields_in_recovery(
rec, page_zip,
rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &heap),
pos, trx_id, roll_ptr);
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
}
return(ptr);
}
#ifndef UNIV_HOTBACKUP
/***********************************************************//**
Marks a clustered index record deleted. Writes an undo log record to
undo log on this delete marking. Writes in the trx id field the id
of the deleting transaction, and in the roll ptr field pointer to the
undo log record created.
@return DB_SUCCESS, DB_LOCK_WAIT, or error number */
UNIV_INTERN
dberr_t
btr_cur_del_mark_set_clust_rec(
/*===========================*/
buf_block_t* block, /*!< in/out: buffer block of the record */
rec_t* rec, /*!< in/out: record */
dict_index_t* index, /*!< in: clustered index of the record */
const ulint* offsets,/*!< in: rec_get_offsets(rec) */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
roll_ptr_t roll_ptr;
dberr_t err;
page_zip_des_t* page_zip;
trx_t* trx;
ut_ad(dict_index_is_clust(index));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table));
ut_ad(buf_block_get_frame(block) == page_align(rec));
ut_ad(page_is_leaf(page_align(rec)));
#ifdef UNIV_DEBUG
if (btr_cur_print_record_ops) {
btr_cur_trx_report(thr_get_trx(thr)->id, index, "del mark ");
rec_print_new(stderr, rec, offsets);
}
#endif /* UNIV_DEBUG */
ut_ad(dict_index_is_clust(index));
ut_ad(!rec_get_deleted_flag(rec, rec_offs_comp(offsets)));
if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) {
/* skip LOCK, UNDO, CHANGE, LOG */
return(DB_SUCCESS);
}
err = lock_clust_rec_modify_check_and_lock(BTR_NO_LOCKING_FLAG, block,
rec, index, offsets, thr);
if (err != DB_SUCCESS) {
return(err);
}
err = trx_undo_report_row_operation(thr,
index, NULL, NULL, 0, rec, offsets,
&roll_ptr);
if (err != DB_SUCCESS) {
return(err);
}
/* The btr_search_latch is not needed here, because
the adaptive hash index does not depend on the delete-mark
and the delete-mark is being updated in place. */
page_zip = buf_block_get_page_zip(block);
btr_blob_dbg_set_deleted_flag(rec, index, offsets, TRUE);
btr_rec_set_deleted_flag(rec, page_zip, TRUE);
trx = thr_get_trx(thr);
if (dict_index_is_online_ddl(index)) {
row_log_table_delete(rec, index, offsets, NULL);
}
row_upd_rec_sys_fields(rec, page_zip, index, offsets, trx, roll_ptr);
btr_cur_del_mark_set_clust_rec_log(rec, index, trx->id,
roll_ptr, mtr);
return(err);
}
/****************************************************************//**
Writes the redo log record for a delete mark setting of a secondary
index record. */
UNIV_INLINE
void
btr_cur_del_mark_set_sec_rec_log(
/*=============================*/
rec_t* rec, /*!< in: record */
ibool val, /*!< in: value to set */
mtr_t* mtr) /*!< in: mtr */
{
byte* log_ptr;
ut_ad(val <= 1);
log_ptr = mlog_open(mtr, 11 + 1 + 2);
if (!log_ptr) {
/* Logging in mtr is switched off during crash recovery:
in that case mlog_open returns NULL */
return;
}
log_ptr = mlog_write_initial_log_record_fast(
rec, MLOG_REC_SEC_DELETE_MARK, log_ptr, mtr);
mach_write_to_1(log_ptr, val);
log_ptr++;
mach_write_to_2(log_ptr, page_offset(rec));
log_ptr += 2;
mlog_close(mtr, log_ptr);
}
#endif /* !UNIV_HOTBACKUP */
/****************************************************************//**
Parses the redo log record for delete marking or unmarking of a secondary
index record.
@return end of log record or NULL */
UNIV_INTERN
byte*
btr_cur_parse_del_mark_set_sec_rec(
/*===============================*/
byte* ptr, /*!< in: buffer */
byte* end_ptr,/*!< in: buffer end */
page_t* page, /*!< in/out: page or NULL */
page_zip_des_t* page_zip)/*!< in/out: compressed page, or NULL */
{
ulint val;
ulint offset;
rec_t* rec;
if (end_ptr < ptr + 3) {
return(NULL);
}
val = mach_read_from_1(ptr);
ptr++;
offset = mach_read_from_2(ptr);
ptr += 2;
ut_a(offset <= UNIV_PAGE_SIZE);
if (page) {
rec = page + offset;
/* We do not need to reserve btr_search_latch, as the page
is only being recovered, and there cannot be a hash index to
it. Besides, the delete-mark flag is being updated in place
and the adaptive hash index does not depend on it. */
btr_rec_set_deleted_flag(rec, page_zip, val);
}
return(ptr);
}
#ifndef UNIV_HOTBACKUP
/***********************************************************//**
Sets a secondary index record delete mark to TRUE or FALSE.
@return DB_SUCCESS, DB_LOCK_WAIT, or error number */
UNIV_INTERN
dberr_t
btr_cur_del_mark_set_sec_rec(
/*=========================*/
ulint flags, /*!< in: locking flag */
btr_cur_t* cursor, /*!< in: cursor */
ibool val, /*!< in: value to set */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
buf_block_t* block;
rec_t* rec;
dberr_t err;
if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) {
/* skip LOCK, CHANGE, LOG */
return(DB_SUCCESS);
}
block = btr_cur_get_block(cursor);
rec = btr_cur_get_rec(cursor);
#ifdef UNIV_DEBUG
if (btr_cur_print_record_ops) {
btr_cur_trx_report(thr_get_trx(thr)->id, cursor->index,
"del mark ");
rec_print(stderr, rec, cursor->index);
}
#endif /* UNIV_DEBUG */
err = lock_sec_rec_modify_check_and_lock(flags,
btr_cur_get_block(cursor),
rec, cursor->index, thr, mtr);
if (err != DB_SUCCESS) {
return(err);
}
ut_ad(!!page_rec_is_comp(rec)
== dict_table_is_comp(cursor->index->table));
/* We do not need to reserve btr_search_latch, as the
delete-mark flag is being updated in place and the adaptive
hash index does not depend on it. */
btr_rec_set_deleted_flag(rec, buf_block_get_page_zip(block), val);
btr_cur_del_mark_set_sec_rec_log(rec, val, mtr);
return(DB_SUCCESS);
}
/***********************************************************//**
Sets a secondary index record's delete mark to the given value. This
function is only used by the insert buffer merge mechanism. */
UNIV_INTERN
void
btr_cur_set_deleted_flag_for_ibuf(
/*==============================*/
rec_t* rec, /*!< in/out: record */
page_zip_des_t* page_zip, /*!< in/out: compressed page
corresponding to rec, or NULL
when the tablespace is
uncompressed */
ibool val, /*!< in: value to set */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
/* We do not need to reserve btr_search_latch, as the page
has just been read to the buffer pool and there cannot be
a hash index to it. Besides, the delete-mark flag is being
updated in place and the adaptive hash index does not depend
on it. */
btr_rec_set_deleted_flag(rec, page_zip, val);
btr_cur_del_mark_set_sec_rec_log(rec, val, mtr);
}
/*==================== B-TREE RECORD REMOVE =========================*/
/*************************************************************//**
Tries to compress a page of the tree if it seems useful. It is assumed
that mtr holds an x-latch on the tree and on the cursor page. To avoid
deadlocks, mtr must also own x-latches to brothers of page, if those
brothers exist. NOTE: it is assumed that the caller has reserved enough
free extents so that the compression will always succeed if done!
@return TRUE if compression occurred */
UNIV_INTERN
ibool
btr_cur_compress_if_useful(
/*=======================*/
btr_cur_t* cursor, /*!< in/out: cursor on the page to compress;
cursor does not stay valid if !adjust and
compression occurs */
ibool adjust, /*!< in: TRUE if should adjust the
cursor position even if compression occurs */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
ut_ad(mtr_memo_contains(mtr,
dict_index_get_lock(btr_cur_get_index(cursor)),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, btr_cur_get_block(cursor),
MTR_MEMO_PAGE_X_FIX));
return(btr_cur_compress_recommendation(cursor, mtr)
&& btr_compress(cursor, adjust, mtr));
}
/*******************************************************//**
Removes the record on which the tree cursor is positioned on a leaf page.
It is assumed that the mtr has an x-latch on the page where the cursor is
positioned, but no latch on the whole tree.
@return TRUE if success, i.e., the page did not become too empty */
UNIV_INTERN
ibool
btr_cur_optimistic_delete_func(
/*===========================*/
btr_cur_t* cursor, /*!< in: cursor on leaf page, on the record to
delete; cursor stays valid: if deletion
succeeds, on function exit it points to the
successor of the deleted record */
#ifdef UNIV_DEBUG
ulint flags, /*!< in: BTR_CREATE_FLAG or 0 */
#endif /* UNIV_DEBUG */
mtr_t* mtr) /*!< in: mtr; if this function returns
TRUE on a leaf page of a secondary
index, the mtr must be committed
before latching any further pages */
{
buf_block_t* block;
rec_t* rec;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
ibool no_compress_needed;
rec_offs_init(offsets_);
ut_ad(flags == 0 || flags == BTR_CREATE_FLAG);
ut_ad(mtr_memo_contains(mtr, btr_cur_get_block(cursor),
MTR_MEMO_PAGE_X_FIX));
/* This is intended only for leaf page deletions */
block = btr_cur_get_block(cursor);
SRV_CORRUPT_TABLE_CHECK(block, return(DB_CORRUPTION););
ut_ad(page_is_leaf(buf_block_get_frame(block)));
ut_ad(!dict_index_is_online_ddl(cursor->index)
|| dict_index_is_clust(cursor->index)
|| (flags & BTR_CREATE_FLAG));
rec = btr_cur_get_rec(cursor);
offsets = rec_get_offsets(rec, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
no_compress_needed = !rec_offs_any_extern(offsets)
&& btr_cur_can_delete_without_compress(
cursor, rec_offs_size(offsets), mtr);
if (no_compress_needed) {
page_t* page = buf_block_get_frame(block);
page_zip_des_t* page_zip= buf_block_get_page_zip(block);
lock_update_delete(block, rec);
btr_search_update_hash_on_delete(cursor);
if (page_zip) {
#ifdef UNIV_ZIP_DEBUG
ut_a(page_zip_validate(page_zip, page, cursor->index));
#endif /* UNIV_ZIP_DEBUG */
page_cur_delete_rec(btr_cur_get_page_cur(cursor),
cursor->index, offsets, mtr);
#ifdef UNIV_ZIP_DEBUG
ut_a(page_zip_validate(page_zip, page, cursor->index));
#endif /* UNIV_ZIP_DEBUG */
/* On compressed pages, the IBUF_BITMAP_FREE
space is not affected by deleting (purging)
records, because it is defined as the minimum
of space available *without* reorganize, and
space available in the modification log. */
} else {
const ulint max_ins
= page_get_max_insert_size_after_reorganize(
page, 1);
page_cur_delete_rec(btr_cur_get_page_cur(cursor),
cursor->index, offsets, mtr);
/* The change buffer does not handle inserts
into non-leaf pages, into clustered indexes,
or into the change buffer. */
if (page_is_leaf(page)
&& !dict_index_is_clust(cursor->index)
&& !dict_index_is_ibuf(cursor->index)) {
ibuf_update_free_bits_low(block, max_ins, mtr);
}
}
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(no_compress_needed);
}
/*************************************************************//**
Removes the record on which the tree cursor is positioned. Tries
to compress the page if its fillfactor drops below a threshold
or if it is the only page on the level. It is assumed that mtr holds
an x-latch on the tree and on the cursor page. To avoid deadlocks,
mtr must also own x-latches to brothers of page, if those brothers
exist.
@return TRUE if compression occurred */
UNIV_INTERN
ibool
btr_cur_pessimistic_delete(
/*=======================*/
dberr_t* err, /*!< out: DB_SUCCESS or DB_OUT_OF_FILE_SPACE;
the latter may occur because we may have
to update node pointers on upper levels,
and in the case of variable length keys
these may actually grow in size */
ibool has_reserved_extents, /*!< in: TRUE if the
caller has already reserved enough free
extents so that he knows that the operation
will succeed */
btr_cur_t* cursor, /*!< in: cursor on the record to delete;
if compression does not occur, the cursor
stays valid: it points to successor of
deleted record on function exit */
ulint flags, /*!< in: BTR_CREATE_FLAG or 0 */
enum trx_rb_ctx rb_ctx, /*!< in: rollback context */
mtr_t* mtr) /*!< in: mtr */
{
buf_block_t* block;
page_t* page;
page_zip_des_t* page_zip;
dict_index_t* index;
rec_t* rec;
ulint n_reserved = 0;
ibool success;
ibool ret = FALSE;
mem_heap_t* heap;
ulint* offsets;
block = btr_cur_get_block(cursor);
page = buf_block_get_frame(block);
index = btr_cur_get_index(cursor);
ut_ad(flags == 0 || flags == BTR_CREATE_FLAG);
ut_ad(!dict_index_is_online_ddl(index)
|| dict_index_is_clust(index)
|| (flags & BTR_CREATE_FLAG));
ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX));
if (!has_reserved_extents) {
/* First reserve enough free space for the file segments
of the index tree, so that the node pointer updates will
not fail because of lack of space */
ut_a(cursor->tree_height != ULINT_UNDEFINED);
ulint n_extents = cursor->tree_height / 32 + 1;
success = fsp_reserve_free_extents(&n_reserved,
index->space,
n_extents,
FSP_CLEANING, mtr);
if (!success) {
*err = DB_OUT_OF_FILE_SPACE;
return(FALSE);
}
}
heap = mem_heap_create(1024);
rec = btr_cur_get_rec(cursor);
page_zip = buf_block_get_page_zip(block);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap);
if (rec_offs_any_extern(offsets)) {
btr_rec_free_externally_stored_fields(index,
rec, offsets, page_zip,
rb_ctx, mtr);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
}
if (flags == 0) {
lock_update_delete(block, rec);
}
if (UNIV_UNLIKELY(page_get_n_recs(page) < 2)
&& UNIV_UNLIKELY(dict_index_get_page(index)
!= buf_block_get_page_no(block))) {
/* If there is only one record, drop the whole page in
btr_discard_page, if this is not the root page */
btr_discard_page(cursor, mtr);
ret = TRUE;
goto return_after_reservations;
}
if (!page_is_leaf(page)
&& UNIV_UNLIKELY(rec == page_rec_get_next(
page_get_infimum_rec(page)))) {
rec_t* next_rec = page_rec_get_next(rec);
if (btr_page_get_prev(page, mtr) == FIL_NULL) {
/* If we delete the leftmost node pointer on a
non-leaf level, we must mark the new leftmost node
pointer as the predefined minimum record */
/* This will make page_zip_validate() fail until
page_cur_delete_rec() completes. This is harmless,
because everything will take place within a single
mini-transaction and because writing to the redo log
is an atomic operation (performed by mtr_commit()). */
btr_set_min_rec_mark(next_rec, mtr);
} else {
/* Otherwise, if we delete the leftmost node pointer
on a page, we have to change the father node pointer
so that it is equal to the new leftmost node pointer
on the page */
ulint level = btr_page_get_level(page, mtr);
btr_node_ptr_delete(index, block, mtr);
dtuple_t* node_ptr = dict_index_build_node_ptr(
index, next_rec, buf_block_get_page_no(block),
heap, level);
btr_insert_on_non_leaf_level(
flags, index, level + 1, node_ptr, mtr);
}
}
btr_search_update_hash_on_delete(cursor);
page_cur_delete_rec(btr_cur_get_page_cur(cursor), index, offsets, mtr);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
ut_ad(btr_check_node_ptr(index, block, mtr));
return_after_reservations:
*err = DB_SUCCESS;
mem_heap_free(heap);
if (ret == FALSE) {
ret = btr_cur_compress_if_useful(cursor, FALSE, mtr);
}
if (n_reserved > 0) {
fil_space_release_free_extents(index->space, n_reserved);
}
return(ret);
}
/*******************************************************************//**
Adds path information to the cursor for the current page, for which
the binary search has been performed. */
static
void
btr_cur_add_path_info(
/*==================*/
btr_cur_t* cursor, /*!< in: cursor positioned on a page */
ulint height, /*!< in: height of the page in tree;
0 means leaf node */
ulint root_height) /*!< in: root node height in tree */
{
btr_path_t* slot;
const rec_t* rec;
const page_t* page;
ut_a(cursor->path_arr);
if (root_height >= BTR_PATH_ARRAY_N_SLOTS - 1) {
/* Do nothing; return empty path */
slot = cursor->path_arr;
slot->nth_rec = ULINT_UNDEFINED;
return;
}
if (height == 0) {
/* Mark end of slots for path */
slot = cursor->path_arr + root_height + 1;
slot->nth_rec = ULINT_UNDEFINED;
}
rec = btr_cur_get_rec(cursor);
slot = cursor->path_arr + (root_height - height);
page = page_align(rec);
slot->nth_rec = page_rec_get_n_recs_before(rec);
slot->n_recs = page_get_n_recs(page);
slot->page_no = page_get_page_no(page);
slot->page_level = btr_page_get_level_low(page);
}
/*******************************************************************//**
Estimate the number of rows between slot1 and slot2 for any level on a
B-tree. This function starts from slot1->page and reads a few pages to
the right, counting their records. If we reach slot2->page quickly then
we know exactly how many records there are between slot1 and slot2 and
we set is_n_rows_exact to TRUE. If we cannot reach slot2->page quickly
then we calculate the average number of records in the pages scanned
so far and assume that all pages that we did not scan up to slot2->page
contain the same number of records, then we multiply that average to
the number of pages between slot1->page and slot2->page (which is
n_rows_on_prev_level). In this case we set is_n_rows_exact to FALSE.
@return number of rows (exact or estimated) */
static
ib_int64_t
btr_estimate_n_rows_in_range_on_level(
/*==================================*/
dict_index_t* index, /*!< in: index */
btr_path_t* slot1, /*!< in: left border */
btr_path_t* slot2, /*!< in: right border */
ib_int64_t n_rows_on_prev_level, /*!< in: number of rows
on the previous level for the
same descend paths; used to
determine the numbe of pages
on this level */
ibool* is_n_rows_exact) /*!< out: TRUE if the returned
value is exact i.e. not an
estimation */
{
ulint space;
ib_int64_t n_rows;
ulint n_pages_read;
ulint page_no;
ulint zip_size;
ulint level;
space = dict_index_get_space(index);
n_rows = 0;
n_pages_read = 0;
/* Assume by default that we will scan all pages between
slot1->page_no and slot2->page_no */
*is_n_rows_exact = TRUE;
/* add records from slot1->page_no which are to the right of
the record which serves as a left border of the range, if any */
if (slot1->nth_rec < slot1->n_recs) {
n_rows += slot1->n_recs - slot1->nth_rec;
}
/* add records from slot2->page_no which are to the left of
the record which servers as a right border of the range, if any */
if (slot2->nth_rec > 1) {
n_rows += slot2->nth_rec - 1;
}
/* count the records in the pages between slot1->page_no and
slot2->page_no (non inclusive), if any */
zip_size = fil_space_get_zip_size(space);
/* Do not read more than this number of pages in order not to hurt
performance with this code which is just an estimation. If we read
this many pages before reaching slot2->page_no then we estimate the
average from the pages scanned so far */
# define N_PAGES_READ_LIMIT 10
page_no = slot1->page_no;
level = slot1->page_level;
do {
mtr_t mtr;
page_t* page;
buf_block_t* block;
dberr_t err=DB_SUCCESS;
mtr_start(&mtr);
/* Fetch the page. Because we are not holding the
index->lock, the tree may have changed and we may be
attempting to read a page that is no longer part of
the B-tree. We pass BUF_GET_POSSIBLY_FREED in order to
silence a debug assertion about this. */
block = buf_page_get_gen(space, zip_size, page_no, RW_S_LATCH,
NULL, BUF_GET_POSSIBLY_FREED,
__FILE__, __LINE__, &mtr, &err);
ut_ad((block != NULL) == (err == DB_SUCCESS));
if (err != DB_SUCCESS) {
if (err == DB_DECRYPTION_FAILED) {
ib_push_warning((void *)NULL,
DB_DECRYPTION_FAILED,
"Table %s is encrypted but encryption service or"
" used key_id is not available. "
" Can't continue reading table.",
index->table->name);
index->table->file_unreadable = true;
}
mtr_commit(&mtr);
goto inexact;
}
page = buf_block_get_frame(block);
/* It is possible that the tree has been reorganized in the
meantime and this is a different page. If this happens the
calculated estimate will be bogus, which is not fatal as
this is only an estimate. We are sure that a page with
page_no exists because InnoDB never frees pages, only
reuses them. */
if (fil_page_get_type(page) != FIL_PAGE_INDEX
|| btr_page_get_index_id(page) != index->id
|| btr_page_get_level_low(page) != level) {
/* The page got reused for something else */
mtr_commit(&mtr);
goto inexact;
}
/* It is possible but highly unlikely that the page was
originally written by an old version of InnoDB that did
not initialize FIL_PAGE_TYPE on other than B-tree pages.
For example, this could be an almost-empty BLOB page
that happens to contain the magic values in the fields
that we checked above. */
n_pages_read++;
if (page_no != slot1->page_no) {
/* Do not count the records on slot1->page_no,
we already counted them before this loop. */
n_rows += page_get_n_recs(page);
}
page_no = btr_page_get_next(page, &mtr);
mtr_commit(&mtr);
if (n_pages_read == N_PAGES_READ_LIMIT
|| page_no == FIL_NULL) {
/* Either we read too many pages or
we reached the end of the level without passing
through slot2->page_no, the tree must have changed
in the meantime */
goto inexact;
}
} while (page_no != slot2->page_no);
return(n_rows);
inexact:
*is_n_rows_exact = FALSE;
/* We did interrupt before reaching slot2->page */
if (n_pages_read > 0) {
/* The number of pages on this level is
n_rows_on_prev_level, multiply it by the
average number of recs per page so far */
n_rows = n_rows_on_prev_level
* n_rows / n_pages_read;
} else {
/* The tree changed before we could even
start with slot1->page_no */
n_rows = 10;
}
return(n_rows);
}
/** If the tree gets changed too much between the two dives for the left
and right boundary then btr_estimate_n_rows_in_range_low() will retry
that many times before giving up and returning the value stored in
rows_in_range_arbitrary_ret_val. */
static const unsigned rows_in_range_max_retries = 4;
/** We pretend that a range has that many records if the tree keeps changing
for rows_in_range_max_retries retries while we try to estimate the records
in a given range. */
static const ib_int64_t rows_in_range_arbitrary_ret_val = 10;
/** Estimates the number of rows in a given index range.
@param[in] index index
@param[in] tuple1 range start, may also be empty tuple
@param[in] mode1 search mode for range start
@param[in] tuple2 range end, may also be empty tuple
@param[in] mode2 search mode for range end
@param[in] trx trx
@param[in] nth_attempt if the tree gets modified too much while
we are trying to analyze it, then we will retry (this function will call
itself, incrementing this parameter)
@return estimated number of rows; if after rows_in_range_max_retries
retries the tree keeps changing, then we will just return
rows_in_range_arbitrary_ret_val as a result (if
nth_attempt >= rows_in_range_max_retries and the tree is modified between
the two dives). */
static
ib_int64_t
btr_estimate_n_rows_in_range_low(
dict_index_t* index,
const dtuple_t* tuple1,
ulint mode1,
const dtuple_t* tuple2,
ulint mode2,
trx_t* trx,
unsigned nth_attempt)
{
btr_path_t path1[BTR_PATH_ARRAY_N_SLOTS];
btr_path_t path2[BTR_PATH_ARRAY_N_SLOTS];
btr_cur_t cursor;
btr_path_t* slot1;
btr_path_t* slot2;
ibool diverged;
ibool diverged_lot;
ulint divergence_level;
ib_int64_t n_rows;
ibool is_n_rows_exact;
ulint i;
mtr_t mtr;
ib_int64_t table_n_rows;
table_n_rows = dict_table_get_n_rows(index->table);
mtr_start_trx(&mtr, trx);
cursor.path_arr = path1;
if (dtuple_get_n_fields(tuple1) > 0) {
btr_cur_search_to_nth_level(index, 0, tuple1, mode1,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, 0,
__FILE__, __LINE__, &mtr);
} else {
btr_cur_open_at_index_side(true, index,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, 0, &mtr);
}
mtr_commit(&mtr);
if (index->table->file_unreadable) {
return (0);
}
mtr_start_trx(&mtr, trx);
#ifdef UNIV_DEBUG
if (!strcmp(index->name, "iC")) {
DEBUG_SYNC_C("btr_estimate_n_rows_in_range_between_dives");
}
#endif
cursor.path_arr = path2;
if (dtuple_get_n_fields(tuple2) > 0) {
btr_cur_search_to_nth_level(index, 0, tuple2, mode2,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, 0,
__FILE__, __LINE__, &mtr);
} else {
btr_cur_open_at_index_side(false, index,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, 0, &mtr);
}
mtr_commit(&mtr);
/* We have the path information for the range in path1 and path2 */
n_rows = 1;
is_n_rows_exact = TRUE;
diverged = FALSE; /* This becomes true when the path is not
the same any more */
diverged_lot = FALSE; /* This becomes true when the paths are
not the same or adjacent any more */
divergence_level = 1000000; /* This is the level where paths diverged
a lot */
for (i = 0; ; i++) {
ut_ad(i < BTR_PATH_ARRAY_N_SLOTS);
slot1 = path1 + i;
slot2 = path2 + i;
if (slot1->nth_rec == ULINT_UNDEFINED
|| slot2->nth_rec == ULINT_UNDEFINED) {
if (i > divergence_level + 1 && !is_n_rows_exact) {
/* In trees whose height is > 1 our algorithm
tends to underestimate: multiply the estimate
by 2: */
n_rows = n_rows * 2;
}
DBUG_EXECUTE_IF("bug14007649", return(n_rows););
/* Do not estimate the number of rows in the range
to over 1 / 2 of the estimated rows in the whole
table */
if (n_rows > table_n_rows / 2 && !is_n_rows_exact) {
n_rows = table_n_rows / 2;
/* If there are just 0 or 1 rows in the table,
then we estimate all rows are in the range */
if (n_rows == 0) {
n_rows = table_n_rows;
}
}
return(n_rows);
}
if (!diverged && slot1->nth_rec != slot2->nth_rec) {
/* If both slots do not point to the same page or if
the paths have crossed and the same page on both
apparently contains a different number of records,
this means that the tree must have changed between
the dive for slot1 and the dive for slot2 at the
beginning of this function. */
if (slot1->page_no != slot2->page_no
|| slot1->page_level != slot2->page_level
|| (slot1->nth_rec >= slot2->nth_rec
&& slot1->n_recs != slot2->n_recs)) {
/* If the tree keeps changing even after a
few attempts, then just return some arbitrary
number. */
if (nth_attempt >= rows_in_range_max_retries) {
return(rows_in_range_arbitrary_ret_val);
}
const ib_int64_t ret =
btr_estimate_n_rows_in_range_low(
index, tuple1, mode1,
tuple2, mode2, trx,
nth_attempt + 1);
return(ret);
}
diverged = TRUE;
if (slot1->nth_rec < slot2->nth_rec) {
n_rows = slot2->nth_rec - slot1->nth_rec;
if (n_rows > 1) {
diverged_lot = TRUE;
divergence_level = i;
}
} else {
/* It is possible that
slot1->nth_rec >= slot2->nth_rec
if, for example, we have a single page
tree which contains (inf, 5, 6, supr)
and we select where x > 20 and x < 30;
in this case slot1->nth_rec will point
to the supr record and slot2->nth_rec
will point to 6 */
return(0);
}
} else if (diverged && !diverged_lot) {
if (slot1->nth_rec < slot1->n_recs
|| slot2->nth_rec > 1) {
diverged_lot = TRUE;
divergence_level = i;
n_rows = 0;
if (slot1->nth_rec < slot1->n_recs) {
n_rows += slot1->n_recs
- slot1->nth_rec;
}
if (slot2->nth_rec > 1) {
n_rows += slot2->nth_rec - 1;
}
}
} else if (diverged_lot) {
n_rows = btr_estimate_n_rows_in_range_on_level(
index, slot1, slot2, n_rows,
&is_n_rows_exact);
}
}
}
/** Estimates the number of rows in a given index range.
@param[in] index index
@param[in] tuple1 range start, may also be empty tuple
@param[in] mode1 search mode for range start
@param[in] tuple2 range end, may also be empty tuple
@param[in] mode2 search mode for range end
@param[in] trx trx
@return estimated number of rows */
ib_int64_t
btr_estimate_n_rows_in_range(
dict_index_t* index,
const dtuple_t* tuple1,
ulint mode1,
const dtuple_t* tuple2,
ulint mode2,
trx_t* trx)
{
const ib_int64_t ret = btr_estimate_n_rows_in_range_low(
index, tuple1, mode1, tuple2, mode2, trx,
1 /* first attempt */);
return(ret);
}
/*******************************************************************//**
Record the number of non_null key values in a given index for
each n-column prefix of the index where 1 <= n <= dict_index_get_n_unique(index).
The estimates are eventually stored in the array:
index->stat_n_non_null_key_vals[], which is indexed from 0 to n-1. */
static
void
btr_record_not_null_field_in_rec(
/*=============================*/
ulint n_unique, /*!< in: dict_index_get_n_unique(index),
number of columns uniquely determine
an index entry */
const ulint* offsets, /*!< in: rec_get_offsets(rec, index),
its size could be for all fields or
that of "n_unique" */
ib_uint64_t* n_not_null) /*!< in/out: array to record number of
not null rows for n-column prefix */
{
ulint i;
ut_ad(rec_offs_n_fields(offsets) >= n_unique);
if (n_not_null == NULL) {
return;
}
for (i = 0; i < n_unique; i++) {
if (rec_offs_nth_sql_null(offsets, i)) {
break;
}
n_not_null[i]++;
}
}
/*******************************************************************//**
Estimates the number of different key values in a given index, for
each n-column prefix of the index where 1 <= n <= dict_index_get_n_unique(index).
The estimates are stored in the array index->stat_n_diff_key_vals[] (indexed
0..n_uniq-1) and the number of pages that were sampled is saved in
index->stat_n_sample_sizes[].
If innodb_stats_method is nulls_ignored, we also record the number of
non-null values for each prefix and stored the estimates in
array index->stat_n_non_null_key_vals. */
UNIV_INTERN
void
btr_estimate_number_of_different_key_vals(
/*======================================*/
dict_index_t* index) /*!< in: index */
{
btr_cur_t cursor;
page_t* page;
rec_t* rec;
ulint n_cols;
ulint matched_fields;
ulint matched_bytes;
ib_uint64_t* n_diff;
ib_uint64_t* n_not_null;
ibool stats_null_not_equal;
ullint n_sample_pages=1; /* number of pages to sample */
ulint not_empty_flag = 0;
ulint total_external_size = 0;
ulint i;
ulint j;
ullint add_on;
mtr_t mtr;
mem_heap_t* heap = NULL;
ulint* offsets_rec = NULL;
ulint* offsets_next_rec = NULL;
n_cols = dict_index_get_n_unique(index);
heap = mem_heap_create((sizeof *n_diff + sizeof *n_not_null)
* n_cols
+ dict_index_get_n_fields(index)
* (sizeof *offsets_rec
+ sizeof *offsets_next_rec));
n_diff = (ib_uint64_t*) mem_heap_zalloc(
heap, n_cols * sizeof(ib_int64_t));
n_not_null = NULL;
/* Check srv_innodb_stats_method setting, and decide whether we
need to record non-null value and also decide if NULL is
considered equal (by setting stats_null_not_equal value) */
switch (srv_innodb_stats_method) {
case SRV_STATS_NULLS_IGNORED:
n_not_null = (ib_uint64_t*) mem_heap_zalloc(
heap, n_cols * sizeof *n_not_null);
/* fall through */
case SRV_STATS_NULLS_UNEQUAL:
/* for both SRV_STATS_NULLS_IGNORED and SRV_STATS_NULLS_UNEQUAL
case, we will treat NULLs as unequal value */
stats_null_not_equal = TRUE;
break;
case SRV_STATS_NULLS_EQUAL:
stats_null_not_equal = FALSE;
break;
default:
ut_error;
}
if (srv_stats_sample_traditional) {
/* It makes no sense to test more pages than are contained
in the index, thus we lower the number if it is too high */
if (srv_stats_transient_sample_pages > index->stat_index_size) {
if (index->stat_index_size > 0) {
n_sample_pages = index->stat_index_size;
}
} else {
n_sample_pages = srv_stats_transient_sample_pages;
}
} else {
/* New logaritmic number of pages that are estimated.
Number of pages estimated should be between 1 and
index->stat_index_size.
If we have only 0 or 1 index pages then we can only take 1
sample. We have already initialized n_sample_pages to 1.
So taking index size as I and sample as S and log(I)*S as L
requirement 1) we want the out limit of the expression to not exceed I;
requirement 2) we want the ideal pages to be at least S;
so the current expression is min(I, max( min(S,I), L)
looking for simplifications:
case 1: assume S < I
min(I, max( min(S,I), L) -> min(I , max( S, L))
but since L=LOG2(I)*S and log2(I) >=1 L>S always so max(S,L) = L.
so we have: min(I , L)
case 2: assume I < S
min(I, max( min(S,I), L) -> min(I, max( I, L))
case 2a: L > I
min(I, max( I, L)) -> min(I, L) -> I
case 2b: when L < I
min(I, max( I, L)) -> min(I, I ) -> I
so taking all case2 paths is I, our expression is:
n_pages = S < I? min(I,L) : I
*/
if (index->stat_index_size > 1) {
n_sample_pages = (srv_stats_transient_sample_pages < index->stat_index_size) ?
ut_min(index->stat_index_size,
ulint(log2(index->stat_index_size)*srv_stats_transient_sample_pages))
: index->stat_index_size;
}
}
/* Sanity check */
ut_ad(n_sample_pages > 0 && n_sample_pages <= (index->stat_index_size < 1 ? 1 : index->stat_index_size));
/* We sample some pages in the index to get an estimate */
for (i = 0; i < n_sample_pages; i++) {
mtr_start(&mtr);
btr_cur_open_at_rnd_pos(index, BTR_SEARCH_LEAF, &cursor, &mtr);
/* Count the number of different key values for each prefix of
the key on this index page. If the prefix does not determine
the index record uniquely in the B-tree, then we subtract one
because otherwise our algorithm would give a wrong estimate
for an index where there is just one key value. */
if (index->table->file_unreadable) {
mtr_commit(&mtr);
goto exit_loop;
}
page = btr_cur_get_page(&cursor);
SRV_CORRUPT_TABLE_CHECK(page, goto exit_loop;);
DBUG_EXECUTE_IF("ib_corrupt_page_while_stats_calc",
page = NULL;);
SRV_CORRUPT_TABLE_CHECK(page,
{
mtr_commit(&mtr);
goto exit_loop;
});
rec = page_rec_get_next(page_get_infimum_rec(page));
if (!page_rec_is_supremum(rec)) {
not_empty_flag = 1;
offsets_rec = rec_get_offsets(rec, index, offsets_rec,
ULINT_UNDEFINED, &heap);
if (n_not_null != NULL) {
btr_record_not_null_field_in_rec(
n_cols, offsets_rec, n_not_null);
}
}
while (!page_rec_is_supremum(rec)) {
rec_t* next_rec = page_rec_get_next(rec);
if (page_rec_is_supremum(next_rec)) {
total_external_size +=
btr_rec_get_externally_stored_len(
rec, offsets_rec);
break;
}
matched_fields = 0;
matched_bytes = 0;
offsets_next_rec = rec_get_offsets(next_rec, index,
offsets_next_rec,
ULINT_UNDEFINED,
&heap);
cmp_rec_rec_with_match(rec, next_rec,
offsets_rec, offsets_next_rec,
index, stats_null_not_equal,
&matched_fields,
&matched_bytes);
for (j = matched_fields; j < n_cols; j++) {
/* We add one if this index record has
a different prefix from the previous */
n_diff[j]++;
}
if (n_not_null != NULL) {
btr_record_not_null_field_in_rec(
n_cols, offsets_next_rec, n_not_null);
}
total_external_size
+= btr_rec_get_externally_stored_len(
rec, offsets_rec);
rec = next_rec;
/* Initialize offsets_rec for the next round
and assign the old offsets_rec buffer to
offsets_next_rec. */
{
ulint* offsets_tmp = offsets_rec;
offsets_rec = offsets_next_rec;
offsets_next_rec = offsets_tmp;
}
}
if (n_cols == dict_index_get_n_unique_in_tree(index)) {
/* If there is more than one leaf page in the tree,
we add one because we know that the first record
on the page certainly had a different prefix than the
last record on the previous index page in the
alphabetical order. Before this fix, if there was
just one big record on each clustered index page, the
algorithm grossly underestimated the number of rows
in the table. */
if (btr_page_get_prev(page, &mtr) != FIL_NULL
|| btr_page_get_next(page, &mtr) != FIL_NULL) {
n_diff[n_cols - 1]++;
}
}
mtr_commit(&mtr);
}
exit_loop:
/* If we saw k borders between different key values on
n_sample_pages leaf pages, we can estimate how many
there will be in index->stat_n_leaf_pages */
/* We must take into account that our sample actually represents
also the pages used for external storage of fields (those pages are
included in index->stat_n_leaf_pages) */
for (j = 0; j < n_cols; j++) {
index->stat_n_diff_key_vals[j]
= BTR_TABLE_STATS_FROM_SAMPLE(
n_diff[j], index, n_sample_pages,
total_external_size, not_empty_flag);
/* If the tree is small, smaller than
10 * n_sample_pages + total_external_size, then
the above estimate is ok. For bigger trees it is common that we
do not see any borders between key values in the few pages
we pick. But still there may be n_sample_pages
different key values, or even more. Let us try to approximate
that: */
add_on = index->stat_n_leaf_pages
/ (10 * (n_sample_pages
+ total_external_size));
if (add_on > n_sample_pages) {
add_on = n_sample_pages;
}
index->stat_n_diff_key_vals[j] += add_on;
index->stat_n_sample_sizes[j] = n_sample_pages;
/* Update the stat_n_non_null_key_vals[] with our
sampled result. stat_n_non_null_key_vals[] is created
and initialized to zero in dict_index_add_to_cache(),
along with stat_n_diff_key_vals[] array */
if (n_not_null != NULL) {
index->stat_n_non_null_key_vals[j] =
BTR_TABLE_STATS_FROM_SAMPLE(
n_not_null[j], index, n_sample_pages,
total_external_size, not_empty_flag);
}
}
mem_heap_free(heap);
}
/*================== EXTERNAL STORAGE OF BIG FIELDS ===================*/
/***********************************************************//**
Gets the offset of the pointer to the externally stored part of a field.
@return offset of the pointer to the externally stored part */
static
ulint
btr_rec_get_field_ref_offs(
/*=======================*/
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
ulint n) /*!< in: index of the external field */
{
ulint field_ref_offs;
ulint local_len;
ut_a(rec_offs_nth_extern(offsets, n));
field_ref_offs = rec_get_nth_field_offs(offsets, n, &local_len);
ut_a(local_len != UNIV_SQL_NULL);
ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
return(field_ref_offs + local_len - BTR_EXTERN_FIELD_REF_SIZE);
}
/** Gets a pointer to the externally stored part of a field.
@param rec record
@param offsets rec_get_offsets(rec)
@param n index of the externally stored field
@return pointer to the externally stored part */
#define btr_rec_get_field_ref(rec, offsets, n) \
((rec) + btr_rec_get_field_ref_offs(offsets, n))
/** Gets the externally stored size of a record, in units of a database page.
@param[in] rec record
@param[in] offsets array returned by rec_get_offsets()
@return externally stored part, in units of a database page */
ulint
btr_rec_get_externally_stored_len(
const rec_t* rec,
const ulint* offsets)
{
ulint n_fields;
ulint total_extern_len = 0;
ulint i;
ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec));
if (!rec_offs_any_extern(offsets)) {
return(0);
}
n_fields = rec_offs_n_fields(offsets);
for (i = 0; i < n_fields; i++) {
if (rec_offs_nth_extern(offsets, i)) {
ulint extern_len = mach_read_from_4(
btr_rec_get_field_ref(rec, offsets, i)
+ BTR_EXTERN_LEN + 4);
total_extern_len += ut_calc_align(extern_len,
UNIV_PAGE_SIZE);
}
}
return(total_extern_len / UNIV_PAGE_SIZE);
}
/*******************************************************************//**
Sets the ownership bit of an externally stored field in a record. */
static
void
btr_cur_set_ownership_of_extern_field(
/*==================================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed
part will be updated, or NULL */
rec_t* rec, /*!< in/out: clustered index record */
dict_index_t* index, /*!< in: index of the page */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
ulint i, /*!< in: field number */
ibool val, /*!< in: value to set */
mtr_t* mtr) /*!< in: mtr, or NULL if not logged */
{
byte* data;
ulint local_len;
ulint byte_val;
data = rec_get_nth_field(rec, offsets, i, &local_len);
ut_ad(rec_offs_nth_extern(offsets, i));
ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
local_len -= BTR_EXTERN_FIELD_REF_SIZE;
byte_val = mach_read_from_1(data + local_len + BTR_EXTERN_LEN);
if (val) {
byte_val = byte_val & (~BTR_EXTERN_OWNER_FLAG);
} else {
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
ut_a(!(byte_val & BTR_EXTERN_OWNER_FLAG));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
byte_val = byte_val | BTR_EXTERN_OWNER_FLAG;
}
if (page_zip) {
mach_write_to_1(data + local_len + BTR_EXTERN_LEN, byte_val);
page_zip_write_blob_ptr(page_zip, rec, index, offsets, i, mtr);
} else if (mtr != NULL) {
mlog_write_ulint(data + local_len + BTR_EXTERN_LEN, byte_val,
MLOG_1BYTE, mtr);
} else {
mach_write_to_1(data + local_len + BTR_EXTERN_LEN, byte_val);
}
btr_blob_dbg_owner(rec, index, offsets, i, val);
}
/*******************************************************************//**
Marks non-updated off-page fields as disowned by this record. The ownership
must be transferred to the updated record which is inserted elsewhere in the
index tree. In purge only the owner of externally stored field is allowed
to free the field. */
UNIV_INTERN
void
btr_cur_disown_inherited_fields(
/*============================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed
part will be updated, or NULL */
rec_t* rec, /*!< in/out: record in a clustered index */
dict_index_t* index, /*!< in: index of the page */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
const upd_t* update, /*!< in: update vector */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
ulint i;
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec));
ut_ad(rec_offs_any_extern(offsets));
for (i = 0; i < rec_offs_n_fields(offsets); i++) {
if (rec_offs_nth_extern(offsets, i)
&& !upd_get_field_by_field_no(update, i)) {
btr_cur_set_ownership_of_extern_field(
page_zip, rec, index, offsets, i, FALSE, mtr);
}
}
}
/*******************************************************************//**
Marks all extern fields in a record as owned by the record. This function
should be called if the delete mark of a record is removed: a not delete
marked record always owns all its extern fields. */
static
void
btr_cur_unmark_extern_fields(
/*=========================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed
part will be updated, or NULL */
rec_t* rec, /*!< in/out: record in a clustered index */
dict_index_t* index, /*!< in: index of the page */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
mtr_t* mtr) /*!< in: mtr, or NULL if not logged */
{
ulint n;
ulint i;
ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec));
n = rec_offs_n_fields(offsets);
if (!rec_offs_any_extern(offsets)) {
return;
}
for (i = 0; i < n; i++) {
if (rec_offs_nth_extern(offsets, i)) {
btr_cur_set_ownership_of_extern_field(
page_zip, rec, index, offsets, i, TRUE, mtr);
}
}
}
/*******************************************************************//**
Flags the data tuple fields that are marked as extern storage in the
update vector. We use this function to remember which fields we must
mark as extern storage in a record inserted for an update.
@return number of flagged external columns */
UNIV_INTERN
ulint
btr_push_update_extern_fields(
/*==========================*/
dtuple_t* tuple, /*!< in/out: data tuple */
const upd_t* update, /*!< in: update vector */
mem_heap_t* heap) /*!< in: memory heap */
{
ulint n_pushed = 0;
ulint n;
const upd_field_t* uf;
uf = update->fields;
n = upd_get_n_fields(update);
for (; n--; uf++) {
if (dfield_is_ext(&uf->new_val)) {
dfield_t* field
= dtuple_get_nth_field(tuple, uf->field_no);
if (!dfield_is_ext(field)) {
dfield_set_ext(field);
n_pushed++;
}
switch (uf->orig_len) {
byte* data;
ulint len;
byte* buf;
case 0:
break;
case BTR_EXTERN_FIELD_REF_SIZE:
/* Restore the original locally stored
part of the column. In the undo log,
InnoDB writes a longer prefix of externally
stored columns, so that column prefixes
in secondary indexes can be reconstructed. */
dfield_set_data(field, (byte*) dfield_get_data(field)
+ dfield_get_len(field)
- BTR_EXTERN_FIELD_REF_SIZE,
BTR_EXTERN_FIELD_REF_SIZE);
dfield_set_ext(field);
break;
default:
/* Reconstruct the original locally
stored part of the column. The data
will have to be copied. */
ut_a(uf->orig_len > BTR_EXTERN_FIELD_REF_SIZE);
data = (byte*) dfield_get_data(field);
len = dfield_get_len(field);
buf = (byte*) mem_heap_alloc(heap,
uf->orig_len);
/* Copy the locally stored prefix. */
memcpy(buf, data,
uf->orig_len
- BTR_EXTERN_FIELD_REF_SIZE);
/* Copy the BLOB pointer. */
memcpy(buf + uf->orig_len
- BTR_EXTERN_FIELD_REF_SIZE,
data + len - BTR_EXTERN_FIELD_REF_SIZE,
BTR_EXTERN_FIELD_REF_SIZE);
dfield_set_data(field, buf, uf->orig_len);
dfield_set_ext(field);
}
}
}
return(n_pushed);
}
/*******************************************************************//**
Returns the length of a BLOB part stored on the header page.
@return part length */
static
ulint
btr_blob_get_part_len(
/*==================*/
const byte* blob_header) /*!< in: blob header */
{
return(mach_read_from_4(blob_header + BTR_BLOB_HDR_PART_LEN));
}
/*******************************************************************//**
Returns the page number where the next BLOB part is stored.
@return page number or FIL_NULL if no more pages */
static
ulint
btr_blob_get_next_page_no(
/*======================*/
const byte* blob_header) /*!< in: blob header */
{
return(mach_read_from_4(blob_header + BTR_BLOB_HDR_NEXT_PAGE_NO));
}
/*******************************************************************//**
Deallocate a buffer block that was reserved for a BLOB part. */
static
void
btr_blob_free(
/*==========*/
buf_block_t* block, /*!< in: buffer block */
ibool all, /*!< in: TRUE=remove also the compressed page
if there is one */
mtr_t* mtr) /*!< in: mini-transaction to commit */
{
buf_pool_t* buf_pool = buf_pool_from_block(block);
ulint space = buf_block_get_space(block);
ulint page_no = buf_block_get_page_no(block);
bool freed = false;
ut_ad(mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX));
mtr_commit(mtr);
mutex_enter(&buf_pool->LRU_list_mutex);
mutex_enter(&block->mutex);
/* Only free the block if it is still allocated to
the same file page. */
if (buf_block_get_state(block)
== BUF_BLOCK_FILE_PAGE
&& buf_block_get_space(block) == space
&& buf_block_get_page_no(block) == page_no) {
freed = buf_LRU_free_page(&block->page, all);
if (!freed && all && block->page.zip.data
/* Now, buf_LRU_free_page() may release mutexes
temporarily */
&& buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE
&& buf_block_get_space(block) == space
&& buf_block_get_page_no(block) == page_no) {
/* Attempt to deallocate the uncompressed page
if the whole block cannot be deallocted. */
freed = buf_LRU_free_page(&block->page, false);
}
}
if (!freed) {
mutex_exit(&buf_pool->LRU_list_mutex);
}
mutex_exit(&block->mutex);
}
/*******************************************************************//**
Stores the fields in big_rec_vec to the tablespace and puts pointers to
them in rec. The extern flags in rec will have to be set beforehand.
The fields are stored on pages allocated from leaf node
file segment of the index tree.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE or DB_TOO_BIG_FOR_REDO */
UNIV_INTERN
dberr_t
btr_store_big_rec_extern_fields(
/*============================*/
dict_index_t* index, /*!< in: index of rec; the index tree
MUST be X-latched */
buf_block_t* rec_block, /*!< in/out: block containing rec */
rec_t* rec, /*!< in/out: record */
const ulint* offsets, /*!< in: rec_get_offsets(rec, index);
the "external storage" flags in offsets
will not correspond to rec when
this function returns */
const big_rec_t*big_rec_vec, /*!< in: vector containing fields
to be stored externally */
mtr_t* btr_mtr, /*!< in: mtr containing the
latches to the clustered index */
enum blob_op op) /*! in: operation code */
{
ulint rec_page_no;
byte* field_ref;
ulint extern_len;
ulint store_len;
ulint page_no;
ulint space_id;
ulint zip_size;
ulint prev_page_no;
ulint hint_page_no;
ulint i;
mtr_t mtr;
mtr_t* alloc_mtr;
mem_heap_t* heap = NULL;
page_zip_des_t* page_zip;
z_stream c_stream;
buf_block_t** freed_pages = NULL;
ulint n_freed_pages = 0;
dberr_t error = DB_SUCCESS;
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(rec_offs_any_extern(offsets));
ut_ad(mtr_memo_contains(btr_mtr, dict_index_get_lock(index),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(btr_mtr, rec_block, MTR_MEMO_PAGE_X_FIX));
ut_ad(buf_block_get_frame(rec_block) == page_align(rec));
ut_a(dict_index_is_clust(index));
page_zip = buf_block_get_page_zip(rec_block);
ut_a(dict_table_zip_size(index->table)
== buf_block_get_zip_size(rec_block));
space_id = buf_block_get_space(rec_block);
zip_size = buf_block_get_zip_size(rec_block);
rec_page_no = buf_block_get_page_no(rec_block);
ut_a(fil_page_get_type(page_align(rec)) == FIL_PAGE_INDEX);
error = btr_check_blob_limit(big_rec_vec);
if (error != DB_SUCCESS) {
ut_ad(op == BTR_STORE_INSERT);
return(error);
}
if (page_zip) {
int err;
/* Zlib deflate needs 128 kilobytes for the default
window size, plus 512 << memLevel, plus a few
kilobytes for small objects. We use reduced memLevel
to limit the memory consumption, and preallocate the
heap, hoping to avoid memory fragmentation. */
heap = mem_heap_create(250000);
page_zip_set_alloc(&c_stream, heap);
err = deflateInit2(&c_stream, page_zip_level,
Z_DEFLATED, 15, 7, Z_DEFAULT_STRATEGY);
ut_a(err == Z_OK);
}
if (btr_blob_op_is_update(op)) {
/* Avoid reusing pages that have been previously freed
in btr_mtr. */
if (btr_mtr->n_freed_pages) {
if (heap == NULL) {
heap = mem_heap_create(
btr_mtr->n_freed_pages
* sizeof *freed_pages);
}
freed_pages = static_cast<buf_block_t**>(
mem_heap_alloc(
heap,
btr_mtr->n_freed_pages
* sizeof *freed_pages));
n_freed_pages = 0;
}
/* Because btr_mtr will be committed after mtr, it is
possible that the tablespace has been extended when
the B-tree record was updated or inserted, or it will
be extended while allocating pages for big_rec.
TODO: In mtr (not btr_mtr), write a redo log record
about extending the tablespace to its current size,
and remember the current size. Whenever the tablespace
grows as pages are allocated, write further redo log
records to mtr. (Currently tablespace extension is not
covered by the redo log. If it were, the record would
only be written to btr_mtr, which is committed after
mtr.) */
alloc_mtr = btr_mtr;
} else {
/* Use the local mtr for allocations. */
alloc_mtr = &mtr;
}
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
/* All pointers to externally stored columns in the record
must either be zero or they must be pointers to inherited
columns, owned by this record or an earlier record version. */
for (i = 0; i < rec_offs_n_fields(offsets); i++) {
if (!rec_offs_nth_extern(offsets, i)) {
continue;
}
field_ref = btr_rec_get_field_ref(rec, offsets, i);
ut_a(!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG));
/* Either this must be an update in place,
or the BLOB must be inherited, or the BLOB pointer
must be zero (will be written in this function). */
ut_a(op == BTR_STORE_UPDATE
|| (field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_INHERITED_FLAG)
|| !memcmp(field_ref, field_ref_zero,
BTR_EXTERN_FIELD_REF_SIZE));
}
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
/* We have to create a file segment to the tablespace
for each field and put the pointer to the field in rec */
for (i = 0; i < big_rec_vec->n_fields; i++) {
field_ref = btr_rec_get_field_ref(
rec, offsets, big_rec_vec->fields[i].field_no);
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
/* A zero BLOB pointer should have been initially inserted. */
ut_a(!memcmp(field_ref, field_ref_zero,
BTR_EXTERN_FIELD_REF_SIZE));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
extern_len = big_rec_vec->fields[i].len;
UNIV_MEM_ASSERT_RW(big_rec_vec->fields[i].data,
extern_len);
ut_a(extern_len > 0);
prev_page_no = FIL_NULL;
if (page_zip) {
int err = deflateReset(&c_stream);
ut_a(err == Z_OK);
c_stream.next_in = (Bytef*)
big_rec_vec->fields[i].data;
c_stream.avail_in = static_cast<uInt>(extern_len);
}
for (;;) {
buf_block_t* block;
page_t* page;
mtr_start(&mtr);
if (prev_page_no == FIL_NULL) {
hint_page_no = 1 + rec_page_no;
} else {
hint_page_no = prev_page_no + 1;
}
alloc_another:
block = btr_page_alloc(index, hint_page_no,
FSP_NO_DIR, 0, alloc_mtr, &mtr);
if (UNIV_UNLIKELY(block == NULL)) {
mtr_commit(&mtr);
error = DB_OUT_OF_FILE_SPACE;
goto func_exit;
}
if (rw_lock_get_x_lock_count(&block->lock) > 1) {
/* This page must have been freed in
btr_mtr previously. Put it aside, and
allocate another page for the BLOB data. */
ut_ad(alloc_mtr == btr_mtr);
ut_ad(btr_blob_op_is_update(op));
ut_ad(n_freed_pages < btr_mtr->n_freed_pages);
freed_pages[n_freed_pages++] = block;
goto alloc_another;
}
page_no = buf_block_get_page_no(block);
page = buf_block_get_frame(block);
if (prev_page_no != FIL_NULL) {
buf_block_t* prev_block;
page_t* prev_page;
prev_block = buf_page_get(space_id, zip_size,
prev_page_no,
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(prev_block,
SYNC_EXTERN_STORAGE);
prev_page = buf_block_get_frame(prev_block);
if (page_zip) {
mlog_write_ulint(
prev_page + FIL_PAGE_NEXT,
page_no, MLOG_4BYTES, &mtr);
memcpy(buf_block_get_page_zip(
prev_block)
->data + FIL_PAGE_NEXT,
prev_page + FIL_PAGE_NEXT, 4);
} else {
mlog_write_ulint(
prev_page + FIL_PAGE_DATA
+ BTR_BLOB_HDR_NEXT_PAGE_NO,
page_no, MLOG_4BYTES, &mtr);
}
} else if (dict_index_is_online_ddl(index)) {
row_log_table_blob_alloc(index, page_no);
}
if (page_zip) {
int err;
page_zip_des_t* blob_page_zip;
/* Write FIL_PAGE_TYPE to the redo log
separately, before logging any other
changes to the page, so that the debug
assertions in
recv_parse_or_apply_log_rec_body() can
be made simpler. Before InnoDB Plugin
1.0.4, the initialization of
FIL_PAGE_TYPE was logged as part of
the mlog_log_string() below. */
mlog_write_ulint(page + FIL_PAGE_TYPE,
prev_page_no == FIL_NULL
? FIL_PAGE_TYPE_ZBLOB
: FIL_PAGE_TYPE_ZBLOB2,
MLOG_2BYTES, &mtr);
c_stream.next_out = page
+ FIL_PAGE_DATA;
c_stream.avail_out
= static_cast<uInt>(page_zip_get_size(page_zip))
- FIL_PAGE_DATA;
err = deflate(&c_stream, Z_FINISH);
ut_a(err == Z_OK || err == Z_STREAM_END);
ut_a(err == Z_STREAM_END
|| c_stream.avail_out == 0);
/* Write the "next BLOB page" pointer */
mlog_write_ulint(page + FIL_PAGE_NEXT,
FIL_NULL, MLOG_4BYTES, &mtr);
/* Initialize the unused "prev page" pointer */
mlog_write_ulint(page + FIL_PAGE_PREV,
FIL_NULL, MLOG_4BYTES, &mtr);
/* Write a back pointer to the record
into the otherwise unused area. This
information could be useful in
debugging. Later, we might want to
implement the possibility to relocate
BLOB pages. Then, we would need to be
able to adjust the BLOB pointer in the
record. We do not store the heap
number of the record, because it can
change in page_zip_reorganize() or
btr_page_reorganize(). However, also
the page number of the record may
change when B-tree nodes are split or
merged. */
mlog_write_ulint(page
+ FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION,
space_id,
MLOG_4BYTES, &mtr);
mlog_write_ulint(page
+ FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION + 4,
rec_page_no,
MLOG_4BYTES, &mtr);
/* Zero out the unused part of the page. */
memset(page + page_zip_get_size(page_zip)
- c_stream.avail_out,
0, c_stream.avail_out);
mlog_log_string(page
+ FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION,
page_zip_get_size(page_zip)
- FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION,
&mtr);
/* Copy the page to compressed storage,
because it will be flushed to disk
from there. */
blob_page_zip = buf_block_get_page_zip(block);
ut_ad(blob_page_zip);
ut_ad(page_zip_get_size(blob_page_zip)
== page_zip_get_size(page_zip));
memcpy(blob_page_zip->data, page,
page_zip_get_size(page_zip));
if (err == Z_OK && prev_page_no != FIL_NULL) {
goto next_zip_page;
}
if (alloc_mtr == &mtr) {
rec_block = buf_page_get(
space_id, zip_size,
rec_page_no,
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(
rec_block,
SYNC_NO_ORDER_CHECK);
}
if (err == Z_STREAM_END) {
mach_write_to_4(field_ref
+ BTR_EXTERN_LEN, 0);
mach_write_to_4(field_ref
+ BTR_EXTERN_LEN + 4,
c_stream.total_in);
} else {
memset(field_ref + BTR_EXTERN_LEN,
0, 8);
}
if (prev_page_no == FIL_NULL) {
btr_blob_dbg_add_blob(
rec, big_rec_vec->fields[i]
.field_no, page_no, index,
"store");
mach_write_to_4(field_ref
+ BTR_EXTERN_SPACE_ID,
space_id);
mach_write_to_4(field_ref
+ BTR_EXTERN_PAGE_NO,
page_no);
mach_write_to_4(field_ref
+ BTR_EXTERN_OFFSET,
FIL_PAGE_NEXT);
}
page_zip_write_blob_ptr(
page_zip, rec, index, offsets,
big_rec_vec->fields[i].field_no,
alloc_mtr);
next_zip_page:
prev_page_no = page_no;
/* Commit mtr and release the
uncompressed page frame to save memory. */
btr_blob_free(block, FALSE, &mtr);
if (err == Z_STREAM_END) {
break;
}
} else {
mlog_write_ulint(page + FIL_PAGE_TYPE,
FIL_PAGE_TYPE_BLOB,
MLOG_2BYTES, &mtr);
if (extern_len > (UNIV_PAGE_SIZE
- FIL_PAGE_DATA
- BTR_BLOB_HDR_SIZE
- FIL_PAGE_DATA_END)) {
store_len = UNIV_PAGE_SIZE
- FIL_PAGE_DATA
- BTR_BLOB_HDR_SIZE
- FIL_PAGE_DATA_END;
} else {
store_len = extern_len;
}
mlog_write_string(page + FIL_PAGE_DATA
+ BTR_BLOB_HDR_SIZE,
(const byte*)
big_rec_vec->fields[i].data
+ big_rec_vec->fields[i].len
- extern_len,
store_len, &mtr);
mlog_write_ulint(page + FIL_PAGE_DATA
+ BTR_BLOB_HDR_PART_LEN,
store_len, MLOG_4BYTES, &mtr);
mlog_write_ulint(page + FIL_PAGE_DATA
+ BTR_BLOB_HDR_NEXT_PAGE_NO,
FIL_NULL, MLOG_4BYTES, &mtr);
extern_len -= store_len;
if (alloc_mtr == &mtr) {
rec_block = buf_page_get(
space_id, zip_size,
rec_page_no,
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(
rec_block,
SYNC_NO_ORDER_CHECK);
}
mlog_write_ulint(field_ref + BTR_EXTERN_LEN, 0,
MLOG_4BYTES, alloc_mtr);
mlog_write_ulint(field_ref
+ BTR_EXTERN_LEN + 4,
big_rec_vec->fields[i].len
- extern_len,
MLOG_4BYTES, alloc_mtr);
if (prev_page_no == FIL_NULL) {
btr_blob_dbg_add_blob(
rec, big_rec_vec->fields[i]
.field_no, page_no, index,
"store");
mlog_write_ulint(field_ref
+ BTR_EXTERN_SPACE_ID,
space_id, MLOG_4BYTES,
alloc_mtr);
mlog_write_ulint(field_ref
+ BTR_EXTERN_PAGE_NO,
page_no, MLOG_4BYTES,
alloc_mtr);
mlog_write_ulint(field_ref
+ BTR_EXTERN_OFFSET,
FIL_PAGE_DATA,
MLOG_4BYTES,
alloc_mtr);
}
prev_page_no = page_no;
mtr_commit(&mtr);
if (extern_len == 0) {
break;
}
}
}
DBUG_EXECUTE_IF("btr_store_big_rec_extern",
error = DB_OUT_OF_FILE_SPACE;
goto func_exit;);
}
func_exit:
if (page_zip) {
deflateEnd(&c_stream);
}
if (n_freed_pages) {
ulint i;
ut_ad(alloc_mtr == btr_mtr);
ut_ad(btr_blob_op_is_update(op));
for (i = 0; i < n_freed_pages; i++) {
btr_page_free_low(index, freed_pages[i], 0, true, alloc_mtr);
}
}
if (heap != NULL) {
mem_heap_free(heap);
}
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
/* All pointers to externally stored columns in the record
must be valid. */
for (i = 0; i < rec_offs_n_fields(offsets); i++) {
if (!rec_offs_nth_extern(offsets, i)) {
continue;
}
field_ref = btr_rec_get_field_ref(rec, offsets, i);
/* The pointer must not be zero if the operation
succeeded. */
ut_a(0 != memcmp(field_ref, field_ref_zero,
BTR_EXTERN_FIELD_REF_SIZE)
|| error != DB_SUCCESS);
/* The column must not be disowned by this record. */
ut_a(!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG));
}
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
return(error);
}
/*******************************************************************//**
Check the FIL_PAGE_TYPE on an uncompressed BLOB page. */
static
void
btr_check_blob_fil_page_type(
/*=========================*/
ulint space_id, /*!< in: space id */
ulint page_no, /*!< in: page number */
const page_t* page, /*!< in: page */
ibool read) /*!< in: TRUE=read, FALSE=purge */
{
ulint type = fil_page_get_type(page);
ut_a(space_id == page_get_space_id(page));
ut_a(page_no == page_get_page_no(page));
if (UNIV_UNLIKELY(type != FIL_PAGE_TYPE_BLOB)) {
ulint flags = fil_space_get_flags(space_id);
#ifndef UNIV_DEBUG /* Improve debug test coverage */
if (dict_tf_get_format(flags) == UNIV_FORMAT_A) {
/* Old versions of InnoDB did not initialize
FIL_PAGE_TYPE on BLOB pages. Do not print
anything about the type mismatch when reading
a BLOB page that is in Antelope format.*/
return;
}
#endif /* !UNIV_DEBUG */
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: FIL_PAGE_TYPE=%lu"
" on BLOB %s space %lu page %lu flags %lx\n",
(ulong) type, read ? "read" : "purge",
(ulong) space_id, (ulong) page_no, (ulong) flags);
ut_error;
}
}
/*******************************************************************//**
Frees the space in an externally stored field to the file space
management if the field in data is owned by the externally stored field,
in a rollback we may have the additional condition that the field must
not be inherited. */
UNIV_INTERN
void
btr_free_externally_stored_field(
/*=============================*/
dict_index_t* index, /*!< in: index of the data, the index
tree MUST be X-latched; if the tree
height is 1, then also the root page
must be X-latched! (this is relevant
in the case this function is called
from purge where 'data' is located on
an undo log page, not an index
page) */
byte* field_ref, /*!< in/out: field reference */
const rec_t* rec, /*!< in: record containing field_ref, for
page_zip_write_blob_ptr(), or NULL */
const ulint* offsets, /*!< in: rec_get_offsets(rec, index),
or NULL */
page_zip_des_t* page_zip, /*!< in: compressed page corresponding
to rec, or NULL if rec == NULL */
ulint i, /*!< in: field number of field_ref;
ignored if rec == NULL */
enum trx_rb_ctx rb_ctx, /*!< in: rollback context */
mtr_t* local_mtr MY_ATTRIBUTE((unused))) /*!< in: mtr
containing the latch to data an an
X-latch to the index tree */
{
page_t* page;
const ulint space_id = mach_read_from_4(
field_ref + BTR_EXTERN_SPACE_ID);
const ulint start_page = mach_read_from_4(
field_ref + BTR_EXTERN_PAGE_NO);
ulint rec_zip_size = dict_table_zip_size(index->table);
ulint ext_zip_size;
ulint page_no;
ulint next_page_no;
mtr_t mtr;
ut_ad(dict_index_is_clust(index));
ut_ad(mtr_memo_contains(local_mtr, dict_index_get_lock(index),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains_page(local_mtr, field_ref,
MTR_MEMO_PAGE_X_FIX));
ut_ad(!rec || rec_offs_validate(rec, index, offsets));
ut_ad(!rec || field_ref == btr_rec_get_field_ref(rec, offsets, i));
if (UNIV_UNLIKELY(!memcmp(field_ref, field_ref_zero,
BTR_EXTERN_FIELD_REF_SIZE))) {
/* In the rollback, we may encounter a clustered index
record with some unwritten off-page columns. There is
nothing to free then. */
if (rb_ctx == RB_NONE) {
char buf[3 * 512];
char *bufend;
ulint ispace = dict_index_get_space(index);
bufend = innobase_convert_name(buf, sizeof buf,
index->name, strlen(index->name),
NULL,
FALSE);
buf[bufend - buf]='\0';
ib_logf(IB_LOG_LEVEL_ERROR, "Unwritten off-page columns in "
"rollback context %d. Table %s index %s space_id %lu "
"index space %lu.",
rb_ctx, index->table->name, buf, space_id, ispace);
}
ut_a(rb_ctx != RB_NONE);
return;
}
ut_ad(space_id == index->space);
if (UNIV_UNLIKELY(space_id != dict_index_get_space(index))) {
ext_zip_size = fil_space_get_zip_size(space_id);
/* This must be an undo log record in the system tablespace,
that is, in row_purge_upd_exist_or_extern().
Currently, externally stored records are stored in the
same tablespace as the referring records. */
ut_ad(!page_get_space_id(page_align(field_ref)));
ut_ad(!rec);
ut_ad(!page_zip);
} else {
ext_zip_size = rec_zip_size;
}
if (!rec) {
/* This is a call from row_purge_upd_exist_or_extern(). */
ut_ad(!page_zip);
rec_zip_size = 0;
}
#ifdef UNIV_BLOB_DEBUG
if (!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)
&& !((field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_INHERITED_FLAG)
&& (rb_ctx == RB_NORMAL || rb_ctx == RB_RECOVERY))) {
/* This off-page column will be freed.
Check that no references remain. */
btr_blob_dbg_t b;
b.blob_page_no = start_page;
if (rec) {
/* Remove the reference from the record to the
BLOB. If the BLOB were not freed, the
reference would be removed when the record is
removed. Freeing the BLOB will overwrite the
BTR_EXTERN_PAGE_NO in the field_ref of the
record with FIL_NULL, which would make the
btr_blob_dbg information inconsistent with the
record. */
b.ref_page_no = page_get_page_no(page_align(rec));
b.ref_heap_no = page_rec_get_heap_no(rec);
b.ref_field_no = i;
btr_blob_dbg_rbt_delete(index, &b, "free");
}
btr_blob_dbg_assert_empty(index, b.blob_page_no);
}
#endif /* UNIV_BLOB_DEBUG */
for (;;) {
#ifdef UNIV_SYNC_DEBUG
buf_block_t* rec_block;
#endif /* UNIV_SYNC_DEBUG */
buf_block_t* ext_block;
mtr_start(&mtr);
#ifdef UNIV_SYNC_DEBUG
rec_block =
#endif /* UNIV_SYNC_DEBUG */
buf_page_get(page_get_space_id(page_align(field_ref)),
rec_zip_size,
page_get_page_no(page_align(field_ref)),
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(rec_block, SYNC_NO_ORDER_CHECK);
page_no = mach_read_from_4(field_ref + BTR_EXTERN_PAGE_NO);
if (/* There is no external storage data */
page_no == FIL_NULL
/* This field does not own the externally stored field */
|| (mach_read_from_1(field_ref + BTR_EXTERN_LEN)
& BTR_EXTERN_OWNER_FLAG)
/* Rollback and inherited field */
|| ((rb_ctx == RB_NORMAL || rb_ctx == RB_RECOVERY)
&& (mach_read_from_1(field_ref + BTR_EXTERN_LEN)
& BTR_EXTERN_INHERITED_FLAG))) {
/* Do not free */
mtr_commit(&mtr);
return;
}
if (page_no == start_page && dict_index_is_online_ddl(index)) {
row_log_table_blob_free(index, start_page);
}
ext_block = buf_page_get(space_id, ext_zip_size, page_no,
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(ext_block, SYNC_EXTERN_STORAGE);
page = buf_block_get_frame(ext_block);
if (ext_zip_size) {
/* Note that page_zip will be NULL
in row_purge_upd_exist_or_extern(). */
switch (fil_page_get_type(page)) {
case FIL_PAGE_TYPE_ZBLOB:
case FIL_PAGE_TYPE_ZBLOB2:
break;
default:
ut_error;
}
next_page_no = mach_read_from_4(page + FIL_PAGE_NEXT);
btr_page_free_low(index, ext_block, 0, true, &mtr);
if (page_zip != NULL) {
mach_write_to_4(field_ref + BTR_EXTERN_PAGE_NO,
next_page_no);
mach_write_to_4(field_ref + BTR_EXTERN_LEN + 4,
0);
page_zip_write_blob_ptr(page_zip, rec, index,
offsets, i, &mtr);
} else {
mlog_write_ulint(field_ref
+ BTR_EXTERN_PAGE_NO,
next_page_no,
MLOG_4BYTES, &mtr);
mlog_write_ulint(field_ref
+ BTR_EXTERN_LEN + 4, 0,
MLOG_4BYTES, &mtr);
}
} else {
ut_a(!page_zip);
btr_check_blob_fil_page_type(space_id, page_no, page,
FALSE);
next_page_no = mach_read_from_4(
page + FIL_PAGE_DATA
+ BTR_BLOB_HDR_NEXT_PAGE_NO);
/* We must supply the page level (= 0) as an argument
because we did not store it on the page (we save the
space overhead from an index page header. */
btr_page_free_low(index, ext_block, 0, true, &mtr);
mlog_write_ulint(field_ref + BTR_EXTERN_PAGE_NO,
next_page_no,
MLOG_4BYTES, &mtr);
/* Zero out the BLOB length. If the server
crashes during the execution of this function,
trx_rollback_or_clean_all_recovered() could
dereference the half-deleted BLOB, fetching a
wrong prefix for the BLOB. */
mlog_write_ulint(field_ref + BTR_EXTERN_LEN + 4,
0,
MLOG_4BYTES, &mtr);
}
/* Commit mtr and release the BLOB block to save memory. */
btr_blob_free(ext_block, TRUE, &mtr);
}
}
/***********************************************************//**
Frees the externally stored fields for a record. */
static
void
btr_rec_free_externally_stored_fields(
/*==================================*/
dict_index_t* index, /*!< in: index of the data, the index
tree MUST be X-latched */
rec_t* rec, /*!< in/out: record */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed
part will be updated, or NULL */
enum trx_rb_ctx rb_ctx, /*!< in: rollback context */
mtr_t* mtr) /*!< in: mini-transaction handle which contains
an X-latch to record page and to the index
tree */
{
ulint n_fields;
ulint i;
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX));
/* Free possible externally stored fields in the record */
ut_ad(dict_table_is_comp(index->table) == !!rec_offs_comp(offsets));
n_fields = rec_offs_n_fields(offsets);
for (i = 0; i < n_fields; i++) {
if (rec_offs_nth_extern(offsets, i)) {
btr_free_externally_stored_field(
index, btr_rec_get_field_ref(rec, offsets, i),
rec, offsets, page_zip, i, rb_ctx, mtr);
}
}
}
/***********************************************************//**
Frees the externally stored fields for a record, if the field is mentioned
in the update vector. */
static
void
btr_rec_free_updated_extern_fields(
/*===============================*/
dict_index_t* index, /*!< in: index of rec; the index tree MUST be
X-latched */
rec_t* rec, /*!< in/out: record */
page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed
part will be updated, or NULL */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
const upd_t* update, /*!< in: update vector */
enum trx_rb_ctx rb_ctx, /*!< in: rollback context */
mtr_t* mtr) /*!< in: mini-transaction handle which contains
an X-latch to record page and to the tree */
{
ulint n_fields;
ulint i;
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX));
/* Free possible externally stored fields in the record */
n_fields = upd_get_n_fields(update);
for (i = 0; i < n_fields; i++) {
const upd_field_t* ufield = upd_get_nth_field(update, i);
if (rec_offs_nth_extern(offsets, ufield->field_no)) {
ulint len;
byte* data = rec_get_nth_field(
rec, offsets, ufield->field_no, &len);
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
btr_free_externally_stored_field(
index, data + len - BTR_EXTERN_FIELD_REF_SIZE,
rec, offsets, page_zip,
ufield->field_no, rb_ctx, mtr);
}
}
}
/*******************************************************************//**
Copies the prefix of an uncompressed BLOB. The clustered index record
that points to this BLOB must be protected by a lock or a page latch.
@return number of bytes written to buf */
static
ulint
btr_copy_blob_prefix(
/*=================*/
byte* buf, /*!< out: the externally stored part of
the field, or a prefix of it */
ulint len, /*!< in: length of buf, in bytes */
ulint space_id,/*!< in: space id of the BLOB pages */
ulint page_no,/*!< in: page number of the first BLOB page */
ulint offset, /*!< in: offset on the first BLOB page */
trx_t* trx) /*!< in: transaction handle */
{
ulint copied_len = 0;
for (;;) {
mtr_t mtr;
buf_block_t* block;
const page_t* page;
const byte* blob_header;
ulint part_len;
ulint copy_len;
mtr_start_trx(&mtr, trx);
block = buf_page_get(space_id, 0, page_no, RW_S_LATCH, &mtr);
buf_block_dbg_add_level(block, SYNC_EXTERN_STORAGE);
page = buf_block_get_frame(block);
btr_check_blob_fil_page_type(space_id, page_no, page, TRUE);
blob_header = page + offset;
part_len = btr_blob_get_part_len(blob_header);
copy_len = ut_min(part_len, len - copied_len);
memcpy(buf + copied_len,
blob_header + BTR_BLOB_HDR_SIZE, copy_len);
copied_len += copy_len;
page_no = btr_blob_get_next_page_no(blob_header);
mtr_commit(&mtr);
if (page_no == FIL_NULL || copy_len != part_len) {
UNIV_MEM_ASSERT_RW(buf, copied_len);
return(copied_len);
}
/* On other BLOB pages except the first the BLOB header
always is at the page data start: */
offset = FIL_PAGE_DATA;
ut_ad(copied_len <= len);
}
}
/*******************************************************************//**
Copies the prefix of a compressed BLOB. The clustered index record
that points to this BLOB must be protected by a lock or a page latch.
@return number of bytes written to buf */
static
ulint
btr_copy_zblob_prefix(
/*==================*/
byte* buf, /*!< out: the externally stored part of
the field, or a prefix of it */
ulint len, /*!< in: length of buf, in bytes */
ulint zip_size,/*!< in: compressed BLOB page size */
ulint space_id,/*!< in: space id of the BLOB pages */
ulint page_no,/*!< in: page number of the first BLOB page */
ulint offset) /*!< in: offset on the first BLOB page */
{
ulint page_type = FIL_PAGE_TYPE_ZBLOB;
mem_heap_t* heap;
int err;
z_stream d_stream;
d_stream.next_out = buf;
d_stream.avail_out = static_cast<uInt>(len);
d_stream.next_in = Z_NULL;
d_stream.avail_in = 0;
/* Zlib inflate needs 32 kilobytes for the default
window size, plus a few kilobytes for small objects. */
heap = mem_heap_create(40000);
page_zip_set_alloc(&d_stream, heap);
ut_ad(ut_is_2pow(zip_size));
ut_ad(zip_size >= UNIV_ZIP_SIZE_MIN);
ut_ad(zip_size <= UNIV_ZIP_SIZE_MAX);
ut_ad(space_id);
err = inflateInit(&d_stream);
ut_a(err == Z_OK);
for (;;) {
buf_page_t* bpage;
ulint next_page_no;
/* There is no latch on bpage directly. Instead,
bpage is protected by the B-tree page latch that
is being held on the clustered index record, or,
in row_merge_copy_blobs(), by an exclusive table lock. */
bpage = buf_page_get_zip(space_id, zip_size, page_no);
if (UNIV_UNLIKELY(!bpage)) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Cannot load"
" compressed BLOB"
" page %lu space %lu\n",
(ulong) page_no, (ulong) space_id);
goto func_exit;
}
if (UNIV_UNLIKELY
(fil_page_get_type(bpage->zip.data) != page_type)) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Unexpected type %lu of"
" compressed BLOB"
" page %lu space %lu\n",
(ulong) fil_page_get_type(bpage->zip.data),
(ulong) page_no, (ulong) space_id);
ut_ad(0);
goto end_of_blob;
}
next_page_no = mach_read_from_4(bpage->zip.data + offset);
if (UNIV_LIKELY(offset == FIL_PAGE_NEXT)) {
/* When the BLOB begins at page header,
the compressed data payload does not
immediately follow the next page pointer. */
offset = FIL_PAGE_DATA;
} else {
offset += 4;
}
d_stream.next_in = bpage->zip.data + offset;
d_stream.avail_in = static_cast<uInt>(zip_size - offset);
err = inflate(&d_stream, Z_NO_FLUSH);
switch (err) {
case Z_OK:
if (!d_stream.avail_out) {
goto end_of_blob;
}
break;
case Z_STREAM_END:
if (next_page_no == FIL_NULL) {
goto end_of_blob;
}
/* fall through */
default:
inflate_error:
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: inflate() of"
" compressed BLOB"
" page %lu space %lu returned %d (%s)\n",
(ulong) page_no, (ulong) space_id,
err, d_stream.msg);
case Z_BUF_ERROR:
goto end_of_blob;
}
if (next_page_no == FIL_NULL) {
if (!d_stream.avail_in) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: unexpected end of"
" compressed BLOB"
" page %lu space %lu\n",
(ulong) page_no,
(ulong) space_id);
} else {
err = inflate(&d_stream, Z_FINISH);
switch (err) {
case Z_STREAM_END:
case Z_BUF_ERROR:
break;
default:
goto inflate_error;
}
}
end_of_blob:
buf_page_release_zip(bpage);
goto func_exit;
}
buf_page_release_zip(bpage);
/* On other BLOB pages except the first
the BLOB header always is at the page header: */
page_no = next_page_no;
offset = FIL_PAGE_NEXT;
page_type = FIL_PAGE_TYPE_ZBLOB2;
}
func_exit:
inflateEnd(&d_stream);
mem_heap_free(heap);
UNIV_MEM_ASSERT_RW(buf, d_stream.total_out);
return(d_stream.total_out);
}
/*******************************************************************//**
Copies the prefix of an externally stored field of a record. The
clustered index record that points to this BLOB must be protected by a
lock or a page latch.
@return number of bytes written to buf */
static
ulint
btr_copy_externally_stored_field_prefix_low(
/*========================================*/
byte* buf, /*!< out: the externally stored part of
the field, or a prefix of it */
ulint len, /*!< in: length of buf, in bytes */
ulint zip_size,/*!< in: nonzero=compressed BLOB page size,
zero for uncompressed BLOBs */
ulint space_id,/*!< in: space id of the first BLOB page */
ulint page_no,/*!< in: page number of the first BLOB page */
ulint offset, /*!< in: offset on the first BLOB page */
trx_t* trx) /*!< in: transaction handle */
{
if (UNIV_UNLIKELY(len == 0)) {
return(0);
}
if (zip_size) {
return(btr_copy_zblob_prefix(buf, len, zip_size,
space_id, page_no, offset));
} else {
return(btr_copy_blob_prefix(buf, len, space_id,
page_no, offset, trx));
}
}
/*******************************************************************//**
Copies the prefix of an externally stored field of a record. The
clustered index record must be protected by a lock or a page latch.
@return the length of the copied field, or 0 if the column was being
or has been deleted */
UNIV_INTERN
ulint
btr_copy_externally_stored_field_prefix(
/*====================================*/
byte* buf, /*!< out: the field, or a prefix of it */
ulint len, /*!< in: length of buf, in bytes */
ulint zip_size,/*!< in: nonzero=compressed BLOB page size,
zero for uncompressed BLOBs */
const byte* data, /*!< in: 'internally' stored part of the
field containing also the reference to
the external part; must be protected by
a lock or a page latch */
ulint local_len,/*!< in: length of data, in bytes */
trx_t* trx) /*!< in: transaction handle */
{
ulint space_id;
ulint page_no;
ulint offset;
ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
local_len -= BTR_EXTERN_FIELD_REF_SIZE;
if (UNIV_UNLIKELY(local_len >= len)) {
memcpy(buf, data, len);
return(len);
}
memcpy(buf, data, local_len);
data += local_len;
ut_a(memcmp(data, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE));
if (!mach_read_from_4(data + BTR_EXTERN_LEN + 4)) {
/* The externally stored part of the column has been
(partially) deleted. Signal the half-deleted BLOB
to the caller. */
return(0);
}
space_id = mach_read_from_4(data + BTR_EXTERN_SPACE_ID);
page_no = mach_read_from_4(data + BTR_EXTERN_PAGE_NO);
offset = mach_read_from_4(data + BTR_EXTERN_OFFSET);
return(local_len
+ btr_copy_externally_stored_field_prefix_low(buf + local_len,
len - local_len,
zip_size,
space_id, page_no,
offset, trx));
}
/*******************************************************************//**
Copies an externally stored field of a record to mem heap. The
clustered index record must be protected by a lock or a page latch.
@return the whole field copied to heap */
UNIV_INTERN
byte*
btr_copy_externally_stored_field(
/*=============================*/
ulint* len, /*!< out: length of the whole field */
const byte* data, /*!< in: 'internally' stored part of the
field containing also the reference to
the external part; must be protected by
a lock or a page latch */
ulint zip_size,/*!< in: nonzero=compressed BLOB page size,
zero for uncompressed BLOBs */
ulint local_len,/*!< in: length of data */
mem_heap_t* heap, /*!< in: mem heap */
trx_t* trx) /*!< in: transaction handle */
{
ulint space_id;
ulint page_no;
ulint offset;
ulint extern_len;
byte* buf;
ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
local_len -= BTR_EXTERN_FIELD_REF_SIZE;
space_id = mach_read_from_4(data + local_len + BTR_EXTERN_SPACE_ID);
page_no = mach_read_from_4(data + local_len + BTR_EXTERN_PAGE_NO);
offset = mach_read_from_4(data + local_len + BTR_EXTERN_OFFSET);
/* Currently a BLOB cannot be bigger than 4 GB; we
leave the 4 upper bytes in the length field unused */
extern_len = mach_read_from_4(data + local_len + BTR_EXTERN_LEN + 4);
buf = (byte*) mem_heap_alloc(heap, local_len + extern_len);
memcpy(buf, data, local_len);
*len = local_len
+ btr_copy_externally_stored_field_prefix_low(buf + local_len,
extern_len,
zip_size,
space_id,
page_no, offset,
trx);
return(buf);
}
/*******************************************************************//**
Copies an externally stored field of a record to mem heap.
@return the field copied to heap, or NULL if the field is incomplete */
UNIV_INTERN
byte*
btr_rec_copy_externally_stored_field(
/*=================================*/
const rec_t* rec, /*!< in: record in a clustered index;
must be protected by a lock or a page latch */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
ulint zip_size,/*!< in: nonzero=compressed BLOB page size,
zero for uncompressed BLOBs */
ulint no, /*!< in: field number */
ulint* len, /*!< out: length of the field */
mem_heap_t* heap, /*!< in: mem heap */
trx_t* trx) /*!< in: transaction handle */
{
ulint local_len;
const byte* data;
ut_a(rec_offs_nth_extern(offsets, no));
/* An externally stored field can contain some initial
data from the field, and in the last 20 bytes it has the
space id, page number, and offset where the rest of the
field data is stored, and the data length in addition to
the data stored locally. We may need to store some data
locally to get the local record length above the 128 byte
limit so that field offsets are stored in two bytes, and
the extern bit is available in those two bytes. */
data = rec_get_nth_field(rec, offsets, no, &local_len);
ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
if (UNIV_UNLIKELY
(!memcmp(data + local_len - BTR_EXTERN_FIELD_REF_SIZE,
field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE))) {
/* The externally stored field was not written yet.
This record should only be seen by
recv_recovery_rollback_active() or any
TRX_ISO_READ_UNCOMMITTED transactions. */
return(NULL);
}
return(btr_copy_externally_stored_field(len, data,
zip_size, local_len, heap,
trx));
}
#endif /* !UNIV_HOTBACKUP */