mariadb/storage/heap/ha_heap.cc
Mattias Jonsson e0887df8e1 Bug#11766249 bug#59316: PARTITIONING AND INDEX_MERGE MEMORY LEAK
When executing row-ordered-retrieval index merge,
the handler was cloned, but it used the wrong
memory root, so instead of allocating memory
on the thread/query's mem_root, it used the table's
mem_root, resulting in non released memory in the
table object, and was not freed until the table was
closed.

Solution was to ensure that memory used during cloning
of a handler was allocated from the correct memory root.

This was implemented by fixing handler::clone() to also
take a name argument, so it can be used with partitioning.
And in ha_partition only allocate the ha_partition's ref, and
call the original ha_partition partitions clone() and set at cloned
partitions.

Fix of .bzrignore on Windows with VS 2010
2011-03-25 12:36:02 +01:00

769 lines
21 KiB
C++

/* Copyright (C) 2000-2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#define MYSQL_SERVER 1
#include "mysql_priv.h"
#include <mysql/plugin.h>
#include "ha_heap.h"
#include "heapdef.h"
static handler *heap_create_handler(handlerton *hton,
TABLE_SHARE *table,
MEM_ROOT *mem_root);
int heap_panic(handlerton *hton, ha_panic_function flag)
{
return hp_panic(flag);
}
int heap_init(void *p)
{
handlerton *heap_hton;
heap_hton= (handlerton *)p;
heap_hton->state= SHOW_OPTION_YES;
heap_hton->db_type= DB_TYPE_HEAP;
heap_hton->create= heap_create_handler;
heap_hton->panic= heap_panic;
heap_hton->flags= HTON_CAN_RECREATE;
return 0;
}
static handler *heap_create_handler(handlerton *hton,
TABLE_SHARE *table,
MEM_ROOT *mem_root)
{
return new (mem_root) ha_heap(hton, table);
}
/*****************************************************************************
** HEAP tables
*****************************************************************************/
ha_heap::ha_heap(handlerton *hton, TABLE_SHARE *table_arg)
:handler(hton, table_arg), file(0), records_changed(0), key_stat_version(0),
internal_table(0)
{}
static const char *ha_heap_exts[] = {
NullS
};
const char **ha_heap::bas_ext() const
{
return ha_heap_exts;
}
/*
Hash index statistics is updated (copied from HP_KEYDEF::hash_buckets to
rec_per_key) after 1/HEAP_STATS_UPDATE_THRESHOLD fraction of table records
have been inserted/updated/deleted. delete_all_rows() and table flush cause
immediate update.
NOTE
hash index statistics must be updated when number of table records changes
from 0 to non-zero value and vice versa. Otherwise records_in_range may
erroneously return 0 and 'range' may miss records.
*/
#define HEAP_STATS_UPDATE_THRESHOLD 10
int ha_heap::open(const char *name, int mode, uint test_if_locked)
{
if ((test_if_locked & HA_OPEN_INTERNAL_TABLE) ||
(!(file= heap_open(name, mode)) && my_errno == ENOENT))
{
HA_CREATE_INFO create_info;
internal_table= test(test_if_locked & HA_OPEN_INTERNAL_TABLE);
bzero(&create_info, sizeof(create_info));
file= 0;
if (!create(name, table, &create_info))
{
file= internal_table ?
heap_open_from_share(internal_share, mode) :
heap_open_from_share_and_register(internal_share, mode);
if (!file)
{
/* Couldn't open table; Remove the newly created table */
pthread_mutex_lock(&THR_LOCK_heap);
hp_free(internal_share);
pthread_mutex_unlock(&THR_LOCK_heap);
}
implicit_emptied= 1;
}
}
ref_length= sizeof(HEAP_PTR);
if (file)
{
/* Initialize variables for the opened table */
set_keys_for_scanning();
/*
We cannot run update_key_stats() here because we do not have a
lock on the table. The 'records' count might just be changed
temporarily at this moment and we might get wrong statistics (Bug
#10178). Instead we request for update. This will be done in
ha_heap::info(), which is always called before key statistics are
used.
*/
key_stat_version= file->s->key_stat_version-1;
}
return (file ? 0 : 1);
}
int ha_heap::close(void)
{
return internal_table ? hp_close(file) : heap_close(file);
}
/*
Create a copy of this table
DESCRIPTION
Do same as default implementation but use file->s->name instead of
table->s->path. This is needed by Windows where the clone() call sees
'/'-delimited path in table->s->path, while ha_heap::open() was called
with '\'-delimited path.
*/
handler *ha_heap::clone(const char *name, MEM_ROOT *mem_root)
{
handler *new_handler= get_new_handler(table->s, mem_root, table->s->db_type());
if (new_handler && !new_handler->ha_open(table, file->s->name, table->db_stat,
HA_OPEN_IGNORE_IF_LOCKED))
return new_handler;
return NULL; /* purecov: inspected */
}
/*
Compute which keys to use for scanning
SYNOPSIS
set_keys_for_scanning()
no parameter
DESCRIPTION
Set the bitmap btree_keys, which is used when the upper layers ask
which keys to use for scanning. For each btree index the
corresponding bit is set.
RETURN
void
*/
void ha_heap::set_keys_for_scanning(void)
{
btree_keys.clear_all();
for (uint i= 0 ; i < table->s->keys ; i++)
{
if (table->key_info[i].algorithm == HA_KEY_ALG_BTREE)
btree_keys.set_bit(i);
}
}
void ha_heap::update_key_stats()
{
for (uint i= 0; i < table->s->keys; i++)
{
KEY *key=table->key_info+i;
if (!key->rec_per_key)
continue;
if (key->algorithm != HA_KEY_ALG_BTREE)
{
if (key->flags & HA_NOSAME)
key->rec_per_key[key->key_parts-1]= 1;
else
{
ha_rows hash_buckets= file->s->keydef[i].hash_buckets;
uint no_records= hash_buckets ? (uint) (file->s->records/hash_buckets) : 2;
if (no_records < 2)
no_records= 2;
key->rec_per_key[key->key_parts-1]= no_records;
}
}
}
records_changed= 0;
/* At the end of update_key_stats() we can proudly claim they are OK. */
key_stat_version= file->s->key_stat_version;
}
int ha_heap::write_row(uchar * buf)
{
int res;
ha_statistic_increment(&SSV::ha_write_count);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
if (table->next_number_field && buf == table->record[0])
{
if ((res= update_auto_increment()))
return res;
}
res= heap_write(file,buf);
if (!res && (++records_changed*HEAP_STATS_UPDATE_THRESHOLD >
file->s->records))
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return res;
}
int ha_heap::update_row(const uchar * old_data, uchar * new_data)
{
int res;
ha_statistic_increment(&SSV::ha_update_count);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
table->timestamp_field->set_time();
res= heap_update(file,old_data,new_data);
if (!res && ++records_changed*HEAP_STATS_UPDATE_THRESHOLD >
file->s->records)
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return res;
}
int ha_heap::delete_row(const uchar * buf)
{
int res;
ha_statistic_increment(&SSV::ha_delete_count);
res= heap_delete(file,buf);
if (!res && table->s->tmp_table == NO_TMP_TABLE &&
++records_changed*HEAP_STATS_UPDATE_THRESHOLD > file->s->records)
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return res;
}
int ha_heap::index_read_map(uchar *buf, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag)
{
DBUG_ASSERT(inited==INDEX);
ha_statistic_increment(&SSV::ha_read_key_count);
int error = heap_rkey(file,buf,active_index, key, keypart_map, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_last_map(uchar *buf, const uchar *key,
key_part_map keypart_map)
{
DBUG_ASSERT(inited==INDEX);
ha_statistic_increment(&SSV::ha_read_key_count);
int error= heap_rkey(file, buf, active_index, key, keypart_map,
HA_READ_PREFIX_LAST);
table->status= error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_idx_map(uchar *buf, uint index, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag)
{
ha_statistic_increment(&SSV::ha_read_key_count);
int error = heap_rkey(file, buf, index, key, keypart_map, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_next(uchar * buf)
{
DBUG_ASSERT(inited==INDEX);
ha_statistic_increment(&SSV::ha_read_next_count);
int error=heap_rnext(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_prev(uchar * buf)
{
DBUG_ASSERT(inited==INDEX);
ha_statistic_increment(&SSV::ha_read_prev_count);
int error=heap_rprev(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_first(uchar * buf)
{
DBUG_ASSERT(inited==INDEX);
ha_statistic_increment(&SSV::ha_read_first_count);
int error=heap_rfirst(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_last(uchar * buf)
{
DBUG_ASSERT(inited==INDEX);
ha_statistic_increment(&SSV::ha_read_last_count);
int error=heap_rlast(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_init(bool scan)
{
return scan ? heap_scan_init(file) : 0;
}
int ha_heap::rnd_next(uchar *buf)
{
ha_statistic_increment(&SSV::ha_read_rnd_next_count);
int error=heap_scan(file, buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_pos(uchar * buf, uchar *pos)
{
int error;
HEAP_PTR heap_position;
ha_statistic_increment(&SSV::ha_read_rnd_count);
memcpy_fixed((char*) &heap_position, pos, sizeof(HEAP_PTR));
error=heap_rrnd(file, buf, heap_position);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
void ha_heap::position(const uchar *record)
{
*(HEAP_PTR*) ref= heap_position(file); // Ref is aligned
}
int ha_heap::info(uint flag)
{
HEAPINFO hp_info;
(void) heap_info(file,&hp_info,flag);
errkey= hp_info.errkey;
stats.records= hp_info.records;
stats.deleted= hp_info.deleted;
stats.mean_rec_length= hp_info.reclength;
stats.data_file_length= hp_info.data_length;
stats.index_file_length= hp_info.index_length;
stats.max_data_file_length= hp_info.max_records * hp_info.reclength;
stats.delete_length= hp_info.deleted * hp_info.reclength;
if (flag & HA_STATUS_AUTO)
stats.auto_increment_value= hp_info.auto_increment;
/*
If info() is called for the first time after open(), we will still
have to update the key statistics. Hoping that a table lock is now
in place.
*/
if (key_stat_version != file->s->key_stat_version)
update_key_stats();
return 0;
}
int ha_heap::extra(enum ha_extra_function operation)
{
return heap_extra(file,operation);
}
int ha_heap::reset()
{
return heap_reset(file);
}
int ha_heap::delete_all_rows()
{
heap_clear(file);
if (table->s->tmp_table == NO_TMP_TABLE)
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return 0;
}
int ha_heap::reset_auto_increment(ulonglong value)
{
file->s->auto_increment= value;
return 0;
}
int ha_heap::external_lock(THD *thd, int lock_type)
{
return 0; // No external locking
}
/*
Disable indexes.
SYNOPSIS
disable_indexes()
mode mode of operation:
HA_KEY_SWITCH_NONUNIQ disable all non-unique keys
HA_KEY_SWITCH_ALL disable all keys
HA_KEY_SWITCH_NONUNIQ_SAVE dis. non-uni. and make persistent
HA_KEY_SWITCH_ALL_SAVE dis. all keys and make persistent
DESCRIPTION
Disable indexes and clear keys to use for scanning.
IMPLEMENTATION
HA_KEY_SWITCH_NONUNIQ is not implemented.
HA_KEY_SWITCH_NONUNIQ_SAVE is not implemented with HEAP.
HA_KEY_SWITCH_ALL_SAVE is not implemented with HEAP.
RETURN
0 ok
HA_ERR_WRONG_COMMAND mode not implemented.
*/
int ha_heap::disable_indexes(uint mode)
{
int error;
if (mode == HA_KEY_SWITCH_ALL)
{
if (!(error= heap_disable_indexes(file)))
set_keys_for_scanning();
}
else
{
/* mode not implemented */
error= HA_ERR_WRONG_COMMAND;
}
return error;
}
/*
Enable indexes.
SYNOPSIS
enable_indexes()
mode mode of operation:
HA_KEY_SWITCH_NONUNIQ enable all non-unique keys
HA_KEY_SWITCH_ALL enable all keys
HA_KEY_SWITCH_NONUNIQ_SAVE en. non-uni. and make persistent
HA_KEY_SWITCH_ALL_SAVE en. all keys and make persistent
DESCRIPTION
Enable indexes and set keys to use for scanning.
The indexes might have been disabled by disable_index() before.
The function works only if both data and indexes are empty,
since the heap storage engine cannot repair the indexes.
To be sure, call handler::delete_all_rows() before.
IMPLEMENTATION
HA_KEY_SWITCH_NONUNIQ is not implemented.
HA_KEY_SWITCH_NONUNIQ_SAVE is not implemented with HEAP.
HA_KEY_SWITCH_ALL_SAVE is not implemented with HEAP.
RETURN
0 ok
HA_ERR_CRASHED data or index is non-empty. Delete all rows and retry.
HA_ERR_WRONG_COMMAND mode not implemented.
*/
int ha_heap::enable_indexes(uint mode)
{
int error;
if (mode == HA_KEY_SWITCH_ALL)
{
if (!(error= heap_enable_indexes(file)))
set_keys_for_scanning();
}
else
{
/* mode not implemented */
error= HA_ERR_WRONG_COMMAND;
}
return error;
}
/*
Test if indexes are disabled.
SYNOPSIS
indexes_are_disabled()
no parameters
RETURN
0 indexes are not disabled
1 all indexes are disabled
[2 non-unique indexes are disabled - NOT YET IMPLEMENTED]
*/
int ha_heap::indexes_are_disabled(void)
{
return heap_indexes_are_disabled(file);
}
THR_LOCK_DATA **ha_heap::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type != TL_IGNORE && file->lock.type == TL_UNLOCK)
file->lock.type=lock_type;
*to++= &file->lock;
return to;
}
/*
We have to ignore ENOENT entries as the HEAP table is created on open and
not when doing a CREATE on the table.
*/
int ha_heap::delete_table(const char *name)
{
int error= heap_delete_table(name);
return error == ENOENT ? 0 : error;
}
void ha_heap::drop_table(const char *name)
{
file->s->delete_on_close= 1;
close();
}
int ha_heap::rename_table(const char * from, const char * to)
{
return heap_rename(from,to);
}
ha_rows ha_heap::records_in_range(uint inx, key_range *min_key,
key_range *max_key)
{
KEY *key=table->key_info+inx;
if (key->algorithm == HA_KEY_ALG_BTREE)
return hp_rb_records_in_range(file, inx, min_key, max_key);
if (!min_key || !max_key ||
min_key->length != max_key->length ||
min_key->length != key->key_length ||
min_key->flag != HA_READ_KEY_EXACT ||
max_key->flag != HA_READ_AFTER_KEY)
return HA_POS_ERROR; // Can only use exact keys
if (stats.records <= 1)
return stats.records;
/* Assert that info() did run. We need current statistics here. */
DBUG_ASSERT(key_stat_version == file->s->key_stat_version);
return key->rec_per_key[key->key_parts-1];
}
int ha_heap::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
uint key, parts, mem_per_row= 0, keys= table_arg->s->keys;
uint auto_key= 0, auto_key_type= 0;
ha_rows max_rows;
HP_KEYDEF *keydef;
HA_KEYSEG *seg;
int error;
TABLE_SHARE *share= table_arg->s;
bool found_real_auto_increment= 0;
for (key= parts= 0; key < keys; key++)
parts+= table_arg->key_info[key].key_parts;
if (!(keydef= (HP_KEYDEF*) my_malloc(keys * sizeof(HP_KEYDEF) +
parts * sizeof(HA_KEYSEG),
MYF(MY_WME))))
return my_errno;
seg= my_reinterpret_cast(HA_KEYSEG*) (keydef + keys);
for (key= 0; key < keys; key++)
{
KEY *pos= table_arg->key_info+key;
KEY_PART_INFO *key_part= pos->key_part;
KEY_PART_INFO *key_part_end= key_part + pos->key_parts;
keydef[key].keysegs= (uint) pos->key_parts;
keydef[key].flag= (pos->flags & (HA_NOSAME | HA_NULL_ARE_EQUAL));
keydef[key].seg= seg;
switch (pos->algorithm) {
case HA_KEY_ALG_UNDEF:
case HA_KEY_ALG_HASH:
keydef[key].algorithm= HA_KEY_ALG_HASH;
mem_per_row+= sizeof(char*) * 2; // = sizeof(HASH_INFO)
break;
case HA_KEY_ALG_BTREE:
keydef[key].algorithm= HA_KEY_ALG_BTREE;
mem_per_row+=sizeof(TREE_ELEMENT)+pos->key_length+sizeof(char*);
break;
default:
DBUG_ASSERT(0); // cannot happen
}
for (; key_part != key_part_end; key_part++, seg++)
{
Field *field= key_part->field;
if (pos->algorithm == HA_KEY_ALG_BTREE)
seg->type= field->key_type();
else
{
if ((seg->type = field->key_type()) != (int) HA_KEYTYPE_TEXT &&
seg->type != HA_KEYTYPE_VARTEXT1 &&
seg->type != HA_KEYTYPE_VARTEXT2 &&
seg->type != HA_KEYTYPE_VARBINARY1 &&
seg->type != HA_KEYTYPE_VARBINARY2)
seg->type= HA_KEYTYPE_BINARY;
}
seg->start= (uint) key_part->offset;
seg->length= (uint) key_part->length;
seg->flag= key_part->key_part_flag;
if (field->flags & (ENUM_FLAG | SET_FLAG))
seg->charset= &my_charset_bin;
else
seg->charset= field->charset();
if (field->null_ptr)
{
seg->null_bit= field->null_bit;
seg->null_pos= (uint) (field->null_ptr - (uchar*) table_arg->record[0]);
}
else
{
seg->null_bit= 0;
seg->null_pos= 0;
}
if (field->flags & AUTO_INCREMENT_FLAG &&
table_arg->found_next_number_field &&
key == share->next_number_index)
{
/*
Store key number and type for found auto_increment key
We have to store type as seg->type can differ from it
*/
auto_key= key+ 1;
auto_key_type= field->key_type();
}
}
}
mem_per_row+= MY_ALIGN(share->reclength + 1, sizeof(char*));
max_rows = (ha_rows) (table_arg->in_use->variables.max_heap_table_size /
(ulonglong) mem_per_row);
if (table_arg->found_next_number_field)
{
keydef[share->next_number_index].flag|= HA_AUTO_KEY;
found_real_auto_increment= share->next_number_key_offset == 0;
}
HP_CREATE_INFO hp_create_info;
hp_create_info.auto_key= auto_key;
hp_create_info.auto_key_type= auto_key_type;
hp_create_info.auto_increment= (create_info->auto_increment_value ?
create_info->auto_increment_value - 1 : 0);
hp_create_info.max_table_size=current_thd->variables.max_heap_table_size;
hp_create_info.with_auto_increment= found_real_auto_increment;
hp_create_info.internal_table= internal_table;
max_rows = (ha_rows) (hp_create_info.max_table_size / mem_per_row);
error= heap_create(name,
keys, keydef, share->reclength,
(ulong) ((share->max_rows < max_rows &&
share->max_rows) ?
share->max_rows : max_rows),
(ulong) share->min_rows, &hp_create_info, &internal_share);
my_free((uchar*) keydef, MYF(0));
DBUG_ASSERT(file == 0);
return (error);
}
void ha_heap::update_create_info(HA_CREATE_INFO *create_info)
{
table->file->info(HA_STATUS_AUTO);
if (!(create_info->used_fields & HA_CREATE_USED_AUTO))
create_info->auto_increment_value= stats.auto_increment_value;
}
void ha_heap::get_auto_increment(ulonglong offset, ulonglong increment,
ulonglong nb_desired_values,
ulonglong *first_value,
ulonglong *nb_reserved_values)
{
ha_heap::info(HA_STATUS_AUTO);
*first_value= stats.auto_increment_value;
/* such table has only table-level locking so reserves up to +inf */
*nb_reserved_values= ULONGLONG_MAX;
}
bool ha_heap::check_if_incompatible_data(HA_CREATE_INFO *info,
uint table_changes)
{
/* Check that auto_increment value was not changed */
if ((info->used_fields & HA_CREATE_USED_AUTO &&
info->auto_increment_value != 0) ||
table_changes == IS_EQUAL_NO ||
table_changes & IS_EQUAL_PACK_LENGTH) // Not implemented yet
return COMPATIBLE_DATA_NO;
return COMPATIBLE_DATA_YES;
}
struct st_mysql_storage_engine heap_storage_engine=
{ MYSQL_HANDLERTON_INTERFACE_VERSION };
mysql_declare_plugin(heap)
{
MYSQL_STORAGE_ENGINE_PLUGIN,
&heap_storage_engine,
"MEMORY",
"MySQL AB",
"Hash based, stored in memory, useful for temporary tables",
PLUGIN_LICENSE_GPL,
heap_init,
NULL,
0x0100, /* 1.0 */
NULL, /* status variables */
NULL, /* system variables */
NULL /* config options */
}
mysql_declare_plugin_end;