mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 03:52:35 +01:00
dee11f9633
- Fix Histogram::point_selectivity() to work in the case where the passed value_pos=0 (or 1) and the first (or the last) bucket in the histogram has zero value-range (i.e one value).
508 lines
13 KiB
C++
508 lines
13 KiB
C++
/* Copyright 2006-2008 MySQL AB, 2008 Sun Microsystems, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
#ifndef SQL_STATISTICS_H
|
|
#define SQL_STATISTICS_H
|
|
|
|
typedef
|
|
enum enum_use_stat_tables_mode
|
|
{
|
|
NEVER,
|
|
COMPLEMENTARY,
|
|
PEFERABLY,
|
|
} Use_stat_tables_mode;
|
|
|
|
typedef
|
|
enum enum_histogram_type
|
|
{
|
|
SINGLE_PREC_HB,
|
|
DOUBLE_PREC_HB
|
|
} Histogram_type;
|
|
|
|
enum enum_stat_tables
|
|
{
|
|
TABLE_STAT,
|
|
COLUMN_STAT,
|
|
INDEX_STAT,
|
|
};
|
|
|
|
|
|
/*
|
|
These enumeration types comprise the dictionary of three
|
|
statistical tables table_stat, column_stat and index_stat
|
|
as they defined in ../scripts/mysql_system_tables.sql.
|
|
|
|
It would be nice if the declarations of these types were
|
|
generated automatically by the table definitions.
|
|
*/
|
|
|
|
enum enum_table_stat_col
|
|
{
|
|
TABLE_STAT_DB_NAME,
|
|
TABLE_STAT_TABLE_NAME,
|
|
TABLE_STAT_CARDINALITY
|
|
};
|
|
|
|
enum enum_column_stat_col
|
|
{
|
|
COLUMN_STAT_DB_NAME,
|
|
COLUMN_STAT_TABLE_NAME,
|
|
COLUMN_STAT_COLUMN_NAME,
|
|
COLUMN_STAT_MIN_VALUE,
|
|
COLUMN_STAT_MAX_VALUE,
|
|
COLUMN_STAT_NULLS_RATIO,
|
|
COLUMN_STAT_AVG_LENGTH,
|
|
COLUMN_STAT_AVG_FREQUENCY,
|
|
COLUMN_STAT_HIST_SIZE,
|
|
COLUMN_STAT_HIST_TYPE,
|
|
COLUMN_STAT_HISTOGRAM
|
|
};
|
|
|
|
enum enum_index_stat_col
|
|
{
|
|
INDEX_STAT_DB_NAME,
|
|
INDEX_STAT_TABLE_NAME,
|
|
INDEX_STAT_INDEX_NAME,
|
|
INDEX_STAT_PREFIX_ARITY,
|
|
INDEX_STAT_AVG_FREQUENCY
|
|
};
|
|
|
|
inline
|
|
Use_stat_tables_mode get_use_stat_tables_mode(THD *thd)
|
|
{
|
|
return (Use_stat_tables_mode) (thd->variables.use_stat_tables);
|
|
}
|
|
|
|
int read_statistics_for_tables_if_needed(THD *thd, TABLE_LIST *tables);
|
|
int collect_statistics_for_table(THD *thd, TABLE *table);
|
|
int alloc_statistics_for_table_share(THD* thd, TABLE_SHARE *share,
|
|
bool is_safe);
|
|
int alloc_statistics_for_table(THD *thd, TABLE *table);
|
|
int update_statistics_for_table(THD *thd, TABLE *table);
|
|
int delete_statistics_for_table(THD *thd, LEX_STRING *db, LEX_STRING *tab);
|
|
int delete_statistics_for_column(THD *thd, TABLE *tab, Field *col);
|
|
int delete_statistics_for_index(THD *thd, TABLE *tab, KEY *key_info,
|
|
bool ext_prefixes_only);
|
|
int rename_table_in_stat_tables(THD *thd, LEX_STRING *db, LEX_STRING *tab,
|
|
LEX_STRING *new_db, LEX_STRING *new_tab);
|
|
int rename_column_in_stat_tables(THD *thd, TABLE *tab, Field *col,
|
|
const char *new_name);
|
|
void set_statistics_for_table(THD *thd, TABLE *table);
|
|
|
|
double get_column_avg_frequency(Field * field);
|
|
|
|
double get_column_range_cardinality(Field *field,
|
|
key_range *min_endp,
|
|
key_range *max_endp,
|
|
uint range_flag);
|
|
|
|
class Histogram
|
|
{
|
|
|
|
private:
|
|
Histogram_type type;
|
|
uint8 size; /* Size of values array, in bytes */
|
|
uchar *values;
|
|
|
|
uint prec_factor()
|
|
{
|
|
switch (type) {
|
|
case SINGLE_PREC_HB:
|
|
return ((uint) (1 << 8) - 1);
|
|
case DOUBLE_PREC_HB:
|
|
return ((uint) (1 << 16) - 1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
public:
|
|
uint get_width()
|
|
{
|
|
switch (type) {
|
|
case SINGLE_PREC_HB:
|
|
return size;
|
|
case DOUBLE_PREC_HB:
|
|
return size / 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
uint get_value(uint i)
|
|
{
|
|
DBUG_ASSERT(i < get_width());
|
|
switch (type) {
|
|
case SINGLE_PREC_HB:
|
|
return (uint) (((uint8 *) values)[i]);
|
|
case DOUBLE_PREC_HB:
|
|
return (uint) (((uint16 *) values)[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
/* Find the bucket which value 'pos' falls into. */
|
|
uint find_bucket(double pos, bool first)
|
|
{
|
|
uint val= (uint) (pos * prec_factor());
|
|
int lp= 0;
|
|
int rp= get_width() - 1;
|
|
int d= get_width() / 2;
|
|
uint i= lp + d;
|
|
for ( ; d; d= (rp - lp) / 2, i= lp + d)
|
|
{
|
|
if (val == get_value(i))
|
|
break;
|
|
if (val < get_value(i))
|
|
rp= i;
|
|
else if (val > get_value(i + 1))
|
|
lp= i + 1;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (val > get_value(i))
|
|
i++;
|
|
|
|
if (val == get_value(i))
|
|
{
|
|
if (first)
|
|
{
|
|
while(i && val == get_value(i - 1))
|
|
i--;
|
|
}
|
|
else
|
|
{
|
|
while(i + 1 < get_width() && val == get_value(i + 1))
|
|
i++;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
public:
|
|
|
|
uint get_size() { return (uint) size; }
|
|
|
|
Histogram_type get_type() { return type; }
|
|
|
|
uchar *get_values() { return (uchar *) values; }
|
|
|
|
void set_size (ulonglong sz) { size= (uint8) sz; }
|
|
|
|
void set_type (Histogram_type t) { type= t; }
|
|
|
|
void set_values (uchar *vals) { values= (uchar *) vals; }
|
|
|
|
bool is_available() { return get_size() > 0 && get_values(); }
|
|
|
|
void set_value(uint i, double val)
|
|
{
|
|
switch (type) {
|
|
case SINGLE_PREC_HB:
|
|
((uint8 *) values)[i]= (uint8) (val * prec_factor());
|
|
return;
|
|
case DOUBLE_PREC_HB:
|
|
((uint16 *) values)[i]= (uint16) (val * prec_factor());
|
|
return;
|
|
}
|
|
}
|
|
|
|
void set_prev_value(uint i)
|
|
{
|
|
switch (type) {
|
|
case SINGLE_PREC_HB:
|
|
((uint8 *) values)[i]= ((uint8 *) values)[i-1];
|
|
return;
|
|
case DOUBLE_PREC_HB:
|
|
((uint16 *) values)[i]= ((uint16 *) values)[i-1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
double range_selectivity(double min_pos, double max_pos)
|
|
{
|
|
double sel;
|
|
double bucket_sel= 1.0/(get_width() + 1);
|
|
uint min= find_bucket(min_pos, TRUE);
|
|
uint max= find_bucket(max_pos, FALSE);
|
|
sel= bucket_sel * (max - min + 1);
|
|
return sel;
|
|
}
|
|
|
|
|
|
/*
|
|
Estimate selectivity of "col=const" using a histogram
|
|
|
|
@param pos Position of the "const" between column's min_value and
|
|
max_value. This is a number in [0..1] range.
|
|
@param avg_sel Average selectivity of condition "col=const" in this table.
|
|
It is calcuated as (#non_null_values / #distinct_values).
|
|
|
|
@return
|
|
Expected condition selectivity (a number between 0 and 1)
|
|
*/
|
|
|
|
double point_selectivity(double pos, double avg_sel)
|
|
{
|
|
double sel;
|
|
/* Find the bucket that contains the value 'pos'. */
|
|
uint min= find_bucket(pos, TRUE);
|
|
uint pos_value= (uint) (pos * prec_factor());
|
|
|
|
/* Find how many buckets this value occupies */
|
|
uint max= min;
|
|
while (max + 1 < get_width() && get_value(max + 1) == pos_value)
|
|
max++;
|
|
|
|
if (max > min)
|
|
{
|
|
/*
|
|
The value occupies multiple buckets. Use start_bucket ... end_bucket as
|
|
selectivity.
|
|
*/
|
|
double bucket_sel= 1.0/(get_width() + 1);
|
|
sel= bucket_sel * (max - min + 1);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The value 'pos' fits within one single histogram bucket.
|
|
|
|
Histogram buckets have the same numbers of rows, but they cover
|
|
different ranges of values.
|
|
|
|
We assume that values are uniformly distributed across the [0..1] value
|
|
range.
|
|
*/
|
|
|
|
/*
|
|
If all buckets covered value ranges of the same size, the width of
|
|
value range would be:
|
|
*/
|
|
double avg_bucket_width= 1.0 / (get_width() + 1);
|
|
|
|
/*
|
|
Let's see what is the width of value range that our bucket is covering.
|
|
(min==max currently. they are kept in the formula just in case we
|
|
will want to extend it to handle multi-bucket case)
|
|
*/
|
|
double inv_prec_factor= (double) 1.0 / prec_factor();
|
|
double current_bucket_width=
|
|
(max + 1 == get_width() ? 1.0 : (get_value(max) * inv_prec_factor)) -
|
|
(min == 0 ? 0.0 : (get_value(min-1) * inv_prec_factor));
|
|
|
|
if (current_bucket_width < 1e-16)
|
|
{
|
|
/*
|
|
A special case: we are at the first (or the last) bucket in the
|
|
histogram, the bucket's value range is a singlepoint [x,x], and
|
|
pos_value=0 (for the first bucket) or pos_value=1 (for the last).
|
|
*/
|
|
sel= avg_sel;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
So:
|
|
- each bucket has the same #rows
|
|
- values are unformly distributed across the [min_value,max_value] domain.
|
|
|
|
If a bucket has value range that's N times bigger then average, than
|
|
each value will have to have N times fewer rows than average.
|
|
*/
|
|
sel= avg_sel * avg_bucket_width / current_bucket_width;
|
|
}
|
|
|
|
/*
|
|
(Q: if we just follow this proportion we may end up in a situation
|
|
where number of different values we expect to find in this bucket
|
|
exceeds the number of rows that this histogram has in a bucket. Are
|
|
we ok with this or we would want to have certain caps?)
|
|
*/
|
|
}
|
|
return sel;
|
|
}
|
|
};
|
|
|
|
|
|
class Columns_statistics;
|
|
class Index_statistics;
|
|
|
|
static inline
|
|
int rename_table_in_stat_tables(THD *thd, const char *db, const char *tab,
|
|
const char *new_db, const char *new_tab)
|
|
{
|
|
LEX_STRING od= { const_cast<char*>(db), strlen(db) };
|
|
LEX_STRING ot= { const_cast<char*>(tab), strlen(tab) };
|
|
LEX_STRING nd= { const_cast<char*>(new_db), strlen(new_db) };
|
|
LEX_STRING nt= { const_cast<char*>(new_tab), strlen(new_tab) };
|
|
return rename_table_in_stat_tables(thd, &od, &ot, &nd, &nt);
|
|
}
|
|
|
|
|
|
/* Statistical data on a table */
|
|
|
|
class Table_statistics
|
|
{
|
|
|
|
public:
|
|
my_bool cardinality_is_null; /* TRUE if the cardinality is unknown */
|
|
ha_rows cardinality; /* Number of rows in the table */
|
|
uchar *min_max_record_buffers; /* Record buffers for min/max values */
|
|
Column_statistics *column_stats; /* Array of statistical data for columns */
|
|
Index_statistics *index_stats; /* Array of statistical data for indexes */
|
|
ulong *idx_avg_frequency; /* Array of records per key for index prefixes */
|
|
ulong total_hist_size; /* Total size of all histograms */
|
|
uchar *histograms; /* Sequence of histograms */
|
|
};
|
|
|
|
|
|
/* Statistical data on a column */
|
|
|
|
class Column_statistics
|
|
{
|
|
|
|
private:
|
|
static const uint Scale_factor_nulls_ratio= 100000;
|
|
static const uint Scale_factor_avg_length= 100000;
|
|
static const uint Scale_factor_avg_frequency= 100000;
|
|
|
|
public:
|
|
/*
|
|
Bitmap indicating what statistical characteristics
|
|
are available for the column
|
|
*/
|
|
uint32 column_stat_nulls;
|
|
|
|
/* Minimum value for the column */
|
|
Field *min_value;
|
|
/* Maximum value for the column */
|
|
Field *max_value;
|
|
|
|
private:
|
|
|
|
/*
|
|
The ratio Z/N multiplied by the scale factor Scale_factor_nulls_ratio,
|
|
where
|
|
N is the total number of rows,
|
|
Z is the number of nulls in the column
|
|
*/
|
|
ulong nulls_ratio;
|
|
|
|
/*
|
|
Average number of bytes occupied by the representation of a
|
|
value of the column in memory buffers such as join buffer
|
|
multiplied by the scale factor Scale_factor_avg_length.
|
|
CHAR values are stripped of trailing spaces.
|
|
Flexible values are stripped of their length prefixes.
|
|
*/
|
|
ulong avg_length;
|
|
|
|
/*
|
|
The ratio N/D multiplied by the scale factor Scale_factor_avg_frequency,
|
|
where
|
|
N is the number of rows with not null value in the column,
|
|
D the number of distinct values among them
|
|
*/
|
|
ulong avg_frequency;
|
|
|
|
public:
|
|
|
|
Histogram histogram;
|
|
|
|
void set_all_nulls()
|
|
{
|
|
column_stat_nulls=
|
|
((1 << (COLUMN_STAT_HISTOGRAM-COLUMN_STAT_COLUMN_NAME))-1) <<
|
|
(COLUMN_STAT_COLUMN_NAME+1);
|
|
}
|
|
|
|
void set_not_null(uint stat_field_no)
|
|
{
|
|
column_stat_nulls&= ~(1 << stat_field_no);
|
|
}
|
|
|
|
bool is_null(uint stat_field_no)
|
|
{
|
|
return MY_TEST(column_stat_nulls & (1 << stat_field_no));
|
|
}
|
|
|
|
double get_nulls_ratio()
|
|
{
|
|
return (double) nulls_ratio / Scale_factor_nulls_ratio;
|
|
}
|
|
|
|
double get_avg_length()
|
|
{
|
|
return (double) avg_length / Scale_factor_avg_length;
|
|
}
|
|
|
|
double get_avg_frequency()
|
|
{
|
|
return (double) avg_frequency / Scale_factor_avg_frequency;
|
|
}
|
|
|
|
void set_nulls_ratio (double val)
|
|
{
|
|
nulls_ratio= (ulong) (val * Scale_factor_nulls_ratio);
|
|
}
|
|
|
|
void set_avg_length (double val)
|
|
{
|
|
avg_length= (ulong) (val * Scale_factor_avg_length);
|
|
}
|
|
|
|
void set_avg_frequency (double val)
|
|
{
|
|
avg_frequency= (ulong) (val * Scale_factor_avg_frequency);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/* Statistical data on an index prefixes */
|
|
|
|
class Index_statistics
|
|
{
|
|
|
|
private:
|
|
static const uint Scale_factor_avg_frequency= 100000;
|
|
/*
|
|
The k-th element of this array contains the ratio N/D
|
|
multiplied by the scale factor Scale_factor_avg_frequency,
|
|
where N is the number of index entries without nulls
|
|
in the first k components, and D is the number of distinct
|
|
k-component prefixes among them
|
|
*/
|
|
ulong *avg_frequency;
|
|
|
|
public:
|
|
|
|
void init_avg_frequency(ulong *ptr) { avg_frequency= ptr; }
|
|
|
|
bool avg_frequency_is_inited() { return avg_frequency != NULL; }
|
|
|
|
double get_avg_frequency(uint i)
|
|
{
|
|
return (double) avg_frequency[i] / Scale_factor_avg_frequency;
|
|
}
|
|
|
|
void set_avg_frequency(uint i, double val)
|
|
{
|
|
avg_frequency[i]= (ulong) (val * Scale_factor_avg_frequency);
|
|
}
|
|
|
|
};
|
|
|
|
#endif /* SQL_STATISTICS_H */
|