mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 12:02:42 +01:00
11241 lines
323 KiB
C++
11241 lines
323 KiB
C++
/* Copyright (c) 2000, 2014, Oracle and/or its affiliates.
|
||
Copyright (c) 2009, 2019, MariaDB Corporation
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; version 2 of the License.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
|
||
|
||
|
||
/* A lexical scanner on a temporary buffer with a yacc interface */
|
||
|
||
#define MYSQL_LEX 1
|
||
#include "mariadb.h"
|
||
#include "sql_priv.h"
|
||
#include "sql_class.h" // sql_lex.h: SQLCOM_END
|
||
#include "sql_lex.h"
|
||
#include "sql_parse.h" // add_to_list
|
||
#include "item_create.h"
|
||
#include <m_ctype.h>
|
||
#include <hash.h>
|
||
#include "sp_head.h"
|
||
#include "sp.h"
|
||
#include "sql_select.h"
|
||
#include "sql_cte.h"
|
||
#include "sql_signal.h"
|
||
#include "sql_truncate.h" // Sql_cmd_truncate_table
|
||
#include "sql_admin.h" // Sql_cmd_analyze/Check..._table
|
||
#include "sql_partition.h"
|
||
#include "sql_partition_admin.h" // Sql_cmd_alter_table_*_part
|
||
#include "event_parse_data.h"
|
||
|
||
void LEX::parse_error(uint err_number)
|
||
{
|
||
thd->parse_error(err_number);
|
||
}
|
||
|
||
|
||
/**
|
||
LEX_STRING constant for null-string to be used in parser and other places.
|
||
*/
|
||
const LEX_STRING empty_lex_str= {(char *) "", 0};
|
||
const LEX_CSTRING null_clex_str= {NULL, 0};
|
||
const LEX_CSTRING empty_clex_str= {"", 0};
|
||
const LEX_CSTRING star_clex_str= {"*", 1};
|
||
const LEX_CSTRING param_clex_str= {"?", 1};
|
||
|
||
|
||
/**
|
||
Helper action for a case expression statement (the expr in 'CASE expr').
|
||
This helper is used for 'searched' cases only.
|
||
@param lex the parser lex context
|
||
@param expr the parsed expression
|
||
@return 0 on success
|
||
*/
|
||
|
||
int sp_expr_lex::case_stmt_action_expr()
|
||
{
|
||
int case_expr_id= spcont->register_case_expr();
|
||
sp_instr_set_case_expr *i;
|
||
|
||
if (spcont->push_case_expr_id(case_expr_id))
|
||
return 1;
|
||
|
||
i= new (thd->mem_root)
|
||
sp_instr_set_case_expr(sphead->instructions(), spcont, case_expr_id,
|
||
get_item(), this);
|
||
|
||
sphead->add_cont_backpatch(i);
|
||
return sphead->add_instr(i);
|
||
}
|
||
|
||
/**
|
||
Helper action for a case when condition.
|
||
This helper is used for both 'simple' and 'searched' cases.
|
||
@param lex the parser lex context
|
||
@param when the parsed expression for the WHEN clause
|
||
@param simple true for simple cases, false for searched cases
|
||
*/
|
||
|
||
int sp_expr_lex::case_stmt_action_when(bool simple)
|
||
{
|
||
uint ip= sphead->instructions();
|
||
sp_instr_jump_if_not *i;
|
||
Item_case_expr *var;
|
||
Item *expr;
|
||
|
||
if (simple)
|
||
{
|
||
var= new (thd->mem_root)
|
||
Item_case_expr(thd, spcont->get_current_case_expr_id());
|
||
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
if (var)
|
||
{
|
||
var->m_sp= sphead;
|
||
}
|
||
#endif
|
||
|
||
expr= new (thd->mem_root) Item_func_eq(thd, var, get_item());
|
||
i= new (thd->mem_root) sp_instr_jump_if_not(ip, spcont, expr, this);
|
||
}
|
||
else
|
||
i= new (thd->mem_root) sp_instr_jump_if_not(ip, spcont, get_item(), this);
|
||
|
||
/*
|
||
BACKPATCH: Registering forward jump from
|
||
"case_stmt_action_when" to "case_stmt_action_then"
|
||
(jump_if_not from instruction 2 to 5, 5 to 8 ... in the example)
|
||
*/
|
||
|
||
return
|
||
!MY_TEST(i) ||
|
||
sphead->push_backpatch(thd, i, spcont->push_label(thd, &empty_clex_str, 0)) ||
|
||
sphead->add_cont_backpatch(i) ||
|
||
sphead->add_instr(i);
|
||
}
|
||
|
||
/**
|
||
Helper action for a case then statements.
|
||
This helper is used for both 'simple' and 'searched' cases.
|
||
@param lex the parser lex context
|
||
*/
|
||
|
||
int LEX::case_stmt_action_then()
|
||
{
|
||
uint ip= sphead->instructions();
|
||
sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(ip, spcont);
|
||
if (!MY_TEST(i) || sphead->add_instr(i))
|
||
return 1;
|
||
|
||
/*
|
||
BACKPATCH: Resolving forward jump from
|
||
"case_stmt_action_when" to "case_stmt_action_then"
|
||
(jump_if_not from instruction 2 to 5, 5 to 8 ... in the example)
|
||
*/
|
||
|
||
sphead->backpatch(spcont->pop_label());
|
||
|
||
/*
|
||
BACKPATCH: Registering forward jump from
|
||
"case_stmt_action_then" to after END CASE
|
||
(jump from instruction 4 to 12, 7 to 12 ... in the example)
|
||
*/
|
||
|
||
return sphead->push_backpatch(thd, i, spcont->last_label());
|
||
}
|
||
|
||
|
||
/**
|
||
Helper action for a SET statement.
|
||
Used to push a system variable into the assignment list.
|
||
|
||
@param tmp the system variable with base name
|
||
@param var_type the scope of the variable
|
||
@param val the value being assigned to the variable
|
||
|
||
@return TRUE if error, FALSE otherwise.
|
||
*/
|
||
|
||
bool
|
||
LEX::set_system_variable(enum enum_var_type var_type,
|
||
sys_var *sysvar, const Lex_ident_sys_st *base_name,
|
||
Item *val)
|
||
{
|
||
set_var *setvar;
|
||
|
||
/* No AUTOCOMMIT from a stored function or trigger. */
|
||
if (spcont && sysvar == Sys_autocommit_ptr)
|
||
sphead->m_flags|= sp_head::HAS_SET_AUTOCOMMIT_STMT;
|
||
|
||
if (val && val->type() == Item::FIELD_ITEM &&
|
||
((Item_field*)val)->table_name.str)
|
||
{
|
||
my_error(ER_WRONG_TYPE_FOR_VAR, MYF(0), sysvar->name.str);
|
||
return TRUE;
|
||
}
|
||
|
||
if (!(setvar= new (thd->mem_root) set_var(thd, var_type, sysvar,
|
||
base_name, val)))
|
||
return TRUE;
|
||
|
||
return var_list.push_back(setvar, thd->mem_root);
|
||
}
|
||
|
||
|
||
/**
|
||
Helper action for a SET statement.
|
||
Used to SET a field of NEW row.
|
||
|
||
@param name the field name
|
||
@param val the value being assigned to the row
|
||
|
||
@return TRUE if error, FALSE otherwise.
|
||
*/
|
||
|
||
bool LEX::set_trigger_new_row(const LEX_CSTRING *name, Item *val)
|
||
{
|
||
Item_trigger_field *trg_fld;
|
||
sp_instr_set_trigger_field *sp_fld;
|
||
|
||
/* QQ: Shouldn't this be field's default value ? */
|
||
if (! val)
|
||
val= new (thd->mem_root) Item_null(thd);
|
||
|
||
DBUG_ASSERT(trg_chistics.action_time == TRG_ACTION_BEFORE &&
|
||
(trg_chistics.event == TRG_EVENT_INSERT ||
|
||
trg_chistics.event == TRG_EVENT_UPDATE));
|
||
|
||
trg_fld= new (thd->mem_root)
|
||
Item_trigger_field(thd, current_context(),
|
||
Item_trigger_field::NEW_ROW,
|
||
*name, UPDATE_ACL, FALSE);
|
||
|
||
if (unlikely(trg_fld == NULL))
|
||
return TRUE;
|
||
|
||
sp_fld= new (thd->mem_root)
|
||
sp_instr_set_trigger_field(sphead->instructions(),
|
||
spcont, trg_fld, val, this);
|
||
|
||
if (unlikely(sp_fld == NULL))
|
||
return TRUE;
|
||
|
||
/*
|
||
Let us add this item to list of all Item_trigger_field
|
||
objects in trigger.
|
||
*/
|
||
trg_table_fields.link_in_list(trg_fld, &trg_fld->next_trg_field);
|
||
|
||
return sphead->add_instr(sp_fld);
|
||
}
|
||
|
||
|
||
/**
|
||
Create an object to represent a SP variable in the Item-hierarchy.
|
||
|
||
@param name The SP variable name.
|
||
@param spvar The SP variable (optional).
|
||
@param start_in_q Start position of the SP variable name in the query.
|
||
@param end_in_q End position of the SP variable name in the query.
|
||
|
||
@remark If spvar is not specified, the name is used to search for the
|
||
variable in the parse-time context. If the variable does not
|
||
exist, a error is set and NULL is returned to the caller.
|
||
|
||
@return An Item_splocal object representing the SP variable, or NULL on error.
|
||
*/
|
||
Item_splocal*
|
||
LEX::create_item_for_sp_var(const Lex_ident_cli_st *cname, sp_variable *spvar)
|
||
{
|
||
const Sp_rcontext_handler *rh;
|
||
Item_splocal *item;
|
||
const char *start_in_q= cname->pos();
|
||
const char *end_in_q= cname->end();
|
||
uint pos_in_q, len_in_q;
|
||
Lex_ident_sys name(thd, cname);
|
||
|
||
if (name.is_null())
|
||
return NULL; // EOM
|
||
|
||
/* If necessary, look for the variable. */
|
||
if (spcont && !spvar)
|
||
spvar= find_variable(&name, &rh);
|
||
|
||
if (!spvar)
|
||
{
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), name.str);
|
||
return NULL;
|
||
}
|
||
|
||
DBUG_ASSERT(spcont && spvar);
|
||
|
||
/* Position and length of the SP variable name in the query. */
|
||
pos_in_q= (uint)(start_in_q - sphead->m_tmp_query);
|
||
len_in_q= (uint)(end_in_q - start_in_q);
|
||
|
||
item= new (thd->mem_root)
|
||
Item_splocal(thd, rh, &name, spvar->offset, spvar->type_handler(),
|
||
pos_in_q, len_in_q);
|
||
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
if (item)
|
||
item->m_sp= sphead;
|
||
#endif
|
||
|
||
return item;
|
||
}
|
||
|
||
|
||
/**
|
||
Helper to resolve the SQL:2003 Syntax exception 1) in <in predicate>.
|
||
See SQL:2003, Part 2, section 8.4 <in predicate>, Note 184, page 383.
|
||
This function returns the proper item for the SQL expression
|
||
<code>left [NOT] IN ( expr )</code>
|
||
@param thd the current thread
|
||
@param left the in predicand
|
||
@param equal true for IN predicates, false for NOT IN predicates
|
||
@param expr first and only expression of the in value list
|
||
@return an expression representing the IN predicate.
|
||
*/
|
||
Item* handle_sql2003_note184_exception(THD *thd, Item* left, bool equal,
|
||
Item *expr)
|
||
{
|
||
/*
|
||
Relevant references for this issue:
|
||
- SQL:2003, Part 2, section 8.4 <in predicate>, page 383,
|
||
- SQL:2003, Part 2, section 7.2 <row value expression>, page 296,
|
||
- SQL:2003, Part 2, section 6.3 <value expression primary>, page 174,
|
||
- SQL:2003, Part 2, section 7.15 <subquery>, page 370,
|
||
- SQL:2003 Feature F561, "Full value expressions".
|
||
|
||
The exception in SQL:2003 Note 184 means:
|
||
Item_singlerow_subselect, which corresponds to a <scalar subquery>,
|
||
should be re-interpreted as an Item_in_subselect, which corresponds
|
||
to a <table subquery> when used inside an <in predicate>.
|
||
|
||
Our reading of Note 184 is reccursive, so that all:
|
||
- IN (( <subquery> ))
|
||
- IN ((( <subquery> )))
|
||
- IN '('^N <subquery> ')'^N
|
||
- etc
|
||
should be interpreted as a <table subquery>, no matter how deep in the
|
||
expression the <subquery> is.
|
||
*/
|
||
|
||
Item *result;
|
||
|
||
DBUG_ENTER("handle_sql2003_note184_exception");
|
||
|
||
if (expr->type() == Item::SUBSELECT_ITEM)
|
||
{
|
||
Item_subselect *expr2 = (Item_subselect*) expr;
|
||
|
||
if (expr2->substype() == Item_subselect::SINGLEROW_SUBS)
|
||
{
|
||
Item_singlerow_subselect *expr3 = (Item_singlerow_subselect*) expr2;
|
||
st_select_lex *subselect;
|
||
|
||
/*
|
||
Implement the mandated change, by altering the semantic tree:
|
||
left IN Item_singlerow_subselect(subselect)
|
||
is modified to
|
||
left IN (subselect)
|
||
which is represented as
|
||
Item_in_subselect(left, subselect)
|
||
*/
|
||
subselect= expr3->invalidate_and_restore_select_lex();
|
||
result= new (thd->mem_root) Item_in_subselect(thd, left, subselect);
|
||
|
||
if (! equal)
|
||
result = negate_expression(thd, result);
|
||
|
||
DBUG_RETURN(result);
|
||
}
|
||
}
|
||
|
||
if (equal)
|
||
result= new (thd->mem_root) Item_func_eq(thd, left, expr);
|
||
else
|
||
result= new (thd->mem_root) Item_func_ne(thd, left, expr);
|
||
|
||
DBUG_RETURN(result);
|
||
}
|
||
|
||
/**
|
||
Create a separate LEX for each assignment if in SP.
|
||
|
||
If we are in SP we want have own LEX for each assignment.
|
||
This is mostly because it is hard for several sp_instr_set
|
||
and sp_instr_set_trigger instructions share one LEX.
|
||
(Well, it is theoretically possible but adds some extra
|
||
overhead on preparation for execution stage and IMO less
|
||
robust).
|
||
|
||
QQ: May be we should simply prohibit group assignments in SP?
|
||
|
||
@see sp_create_assignment_instr
|
||
|
||
@param thd Thread context
|
||
@param pos The position in the raw SQL buffer
|
||
*/
|
||
|
||
|
||
bool sp_create_assignment_lex(THD *thd, const char *pos)
|
||
{
|
||
if (thd->lex->sphead)
|
||
{
|
||
sp_lex_local *new_lex;
|
||
if (!(new_lex= new (thd->mem_root) sp_lex_set_var(thd, thd->lex)) ||
|
||
new_lex->main_select_push())
|
||
return true;
|
||
new_lex->sphead->m_tmp_query= pos;
|
||
return thd->lex->sphead->reset_lex(thd, new_lex);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
Create a SP instruction for a SET assignment.
|
||
|
||
@see sp_create_assignment_lex
|
||
|
||
@param thd - Thread context
|
||
@param no_lookahead - True if the parser has no lookahead
|
||
@param need_set_keyword - if a SET statement "SET a=10",
|
||
or a direct assignment overwise "a:=10"
|
||
@return false if success, true otherwise.
|
||
*/
|
||
|
||
bool sp_create_assignment_instr(THD *thd, bool no_lookahead,
|
||
bool need_set_keyword)
|
||
{
|
||
LEX *lex= thd->lex;
|
||
|
||
if (lex->sphead)
|
||
{
|
||
if (!lex->var_list.is_empty())
|
||
{
|
||
/*
|
||
- Every variable assignment from the same SET command, e.g.:
|
||
SET @var1=expr1, @var2=expr2;
|
||
produce each own sp_create_assignment_instr() call
|
||
lex->var_list.elements is 1 in this case.
|
||
- This query:
|
||
SET TRANSACTION READ ONLY, ISOLATION LEVEL SERIALIZABLE;
|
||
in translated to:
|
||
SET tx_read_only=1, tx_isolation=ISO_SERIALIZABLE;
|
||
but produces a single sp_create_assignment_instr() call
|
||
which includes the query fragment covering both options.
|
||
*/
|
||
DBUG_ASSERT(lex->var_list.elements >= 1 && lex->var_list.elements <= 2);
|
||
/*
|
||
sql_mode=ORACLE's direct assignment of a global variable
|
||
is not possible by the grammar.
|
||
*/
|
||
DBUG_ASSERT(lex->option_type != OPT_GLOBAL || need_set_keyword);
|
||
/*
|
||
We have assignment to user or system variable or
|
||
option setting, so we should construct sp_instr_stmt
|
||
for it.
|
||
*/
|
||
Lex_input_stream *lip= &thd->m_parser_state->m_lip;
|
||
|
||
/*
|
||
Extract the query statement from the tokenizer. The
|
||
end is either lip->ptr, if there was no lookahead,
|
||
lip->tok_end otherwise.
|
||
*/
|
||
static const LEX_CSTRING setlc= { STRING_WITH_LEN("SET ") };
|
||
static const LEX_CSTRING setgl= { STRING_WITH_LEN("SET GLOBAL ") };
|
||
const char *qend= no_lookahead ? lip->get_ptr() : lip->get_tok_end();
|
||
Lex_cstring qbuf(lex->sphead->m_tmp_query, qend);
|
||
if (lex->new_sp_instr_stmt(thd,
|
||
lex->option_type == OPT_GLOBAL ? setgl :
|
||
need_set_keyword ? setlc :
|
||
null_clex_str,
|
||
qbuf))
|
||
return true;
|
||
}
|
||
lex->pop_select();
|
||
if (lex->check_main_unit_semantics())
|
||
{
|
||
/*
|
||
"lex" can be referrenced by:
|
||
- sp_instr_set SET a= expr;
|
||
- sp_instr_set_row_field SET r.a= expr;
|
||
- sp_instr_stmt (just generated above) SET @a= expr;
|
||
In this case, "lex" is fully owned by sp_instr_xxx and it will
|
||
be deleted by the destructor ~sp_instr_xxx().
|
||
So we should remove "lex" from the stack sp_head::m_lex,
|
||
to avoid double free.
|
||
Note, in case "lex" is not owned by any sp_instr_xxx,
|
||
it's also safe to remove it from the stack right now.
|
||
So we can remove it unconditionally, without testing lex->sp_lex_in_use.
|
||
*/
|
||
lex->sphead->restore_lex(thd);
|
||
return true;
|
||
}
|
||
enum_var_type inner_option_type= lex->option_type;
|
||
if (lex->sphead->restore_lex(thd))
|
||
return true;
|
||
/* Copy option_type to outer lex in case it has changed. */
|
||
thd->lex->option_type= inner_option_type;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
void LEX::add_key_to_list(LEX_CSTRING *field_name,
|
||
enum Key::Keytype type, bool check_exists)
|
||
{
|
||
Key *key;
|
||
MEM_ROOT *mem_root= thd->mem_root;
|
||
key= new (mem_root)
|
||
Key(type, &null_clex_str, HA_KEY_ALG_UNDEF, false,
|
||
DDL_options(check_exists ?
|
||
DDL_options::OPT_IF_NOT_EXISTS :
|
||
DDL_options::OPT_NONE));
|
||
key->columns.push_back(new (mem_root) Key_part_spec(field_name, 0),
|
||
mem_root);
|
||
alter_info.key_list.push_back(key, mem_root);
|
||
}
|
||
|
||
|
||
bool LEX::add_alter_list(const char *name, Virtual_column_info *expr,
|
||
bool exists)
|
||
{
|
||
MEM_ROOT *mem_root= thd->mem_root;
|
||
Alter_column *ac= new (mem_root) Alter_column(name, expr, exists);
|
||
if (unlikely(ac == NULL))
|
||
return true;
|
||
alter_info.alter_list.push_back(ac, mem_root);
|
||
alter_info.flags|= ALTER_CHANGE_COLUMN_DEFAULT;
|
||
return false;
|
||
}
|
||
|
||
|
||
void LEX::init_last_field(Column_definition *field,
|
||
const LEX_CSTRING *field_name,
|
||
const CHARSET_INFO *cs)
|
||
{
|
||
last_field= field;
|
||
|
||
field->field_name= *field_name;
|
||
|
||
/* reset LEX fields that are used in Create_field::set_and_check() */
|
||
charset= cs;
|
||
}
|
||
|
||
|
||
bool LEX::set_bincmp(CHARSET_INFO *cs, bool bin)
|
||
{
|
||
/*
|
||
if charset is NULL - we're parsing a field declaration.
|
||
we cannot call find_bin_collation for a field here, because actual
|
||
field charset is determined in get_sql_field_charset() much later.
|
||
so we only set a flag.
|
||
*/
|
||
if (!charset)
|
||
{
|
||
charset= cs;
|
||
last_field->flags|= bin ? BINCMP_FLAG : 0;
|
||
return false;
|
||
}
|
||
|
||
charset= bin ? find_bin_collation(cs ? cs : charset)
|
||
: cs ? cs : charset;
|
||
return charset == NULL;
|
||
}
|
||
|
||
|
||
Virtual_column_info *add_virtual_expression(THD *thd, Item *expr)
|
||
{
|
||
Virtual_column_info *v= new (thd->mem_root) Virtual_column_info();
|
||
if (unlikely(!v))
|
||
return 0;
|
||
v->expr= expr;
|
||
v->utf8= 0; /* connection charset */
|
||
return v;
|
||
}
|
||
|
||
|
||
|
||
/**
|
||
@note The order of the elements of this array must correspond to
|
||
the order of elements in enum_binlog_stmt_unsafe.
|
||
*/
|
||
const int
|
||
Query_tables_list::binlog_stmt_unsafe_errcode[BINLOG_STMT_UNSAFE_COUNT] =
|
||
{
|
||
ER_BINLOG_UNSAFE_LIMIT,
|
||
ER_BINLOG_UNSAFE_INSERT_DELAYED,
|
||
ER_BINLOG_UNSAFE_SYSTEM_TABLE,
|
||
ER_BINLOG_UNSAFE_AUTOINC_COLUMNS,
|
||
ER_BINLOG_UNSAFE_UDF,
|
||
ER_BINLOG_UNSAFE_SYSTEM_VARIABLE,
|
||
ER_BINLOG_UNSAFE_SYSTEM_FUNCTION,
|
||
ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS,
|
||
ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE,
|
||
ER_BINLOG_UNSAFE_MIXED_STATEMENT,
|
||
ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT,
|
||
ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE,
|
||
ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT,
|
||
ER_BINLOG_UNSAFE_REPLACE_SELECT,
|
||
ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT,
|
||
ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT,
|
||
ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC,
|
||
ER_BINLOG_UNSAFE_UPDATE_IGNORE,
|
||
ER_BINLOG_UNSAFE_INSERT_TWO_KEYS,
|
||
ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST
|
||
};
|
||
|
||
|
||
/* Longest standard keyword name */
|
||
|
||
#define TOCK_NAME_LENGTH 24
|
||
|
||
/*
|
||
The following data is based on the latin1 character set, and is only
|
||
used when comparing keywords
|
||
*/
|
||
|
||
static uchar to_upper_lex[]=
|
||
{
|
||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
||
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
||
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
|
||
96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,123,124,125,126,127,
|
||
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,
|
||
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,
|
||
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,
|
||
192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,
|
||
208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,
|
||
192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,
|
||
208,209,210,211,212,213,214,247,216,217,218,219,220,221,222,255
|
||
};
|
||
|
||
/*
|
||
Names of the index hints (for error messages). Keep in sync with
|
||
index_hint_type
|
||
*/
|
||
|
||
const char * index_hint_type_name[] =
|
||
{
|
||
"IGNORE INDEX",
|
||
"USE INDEX",
|
||
"FORCE INDEX"
|
||
};
|
||
|
||
inline int lex_casecmp(const char *s, const char *t, uint len)
|
||
{
|
||
while (len-- != 0 &&
|
||
to_upper_lex[(uchar) *s++] == to_upper_lex[(uchar) *t++]) ;
|
||
return (int) len+1;
|
||
}
|
||
|
||
#include <lex_hash.h>
|
||
|
||
|
||
void lex_init(void)
|
||
{
|
||
uint i;
|
||
DBUG_ENTER("lex_init");
|
||
for (i=0 ; i < array_elements(symbols) ; i++)
|
||
symbols[i].length=(uchar) strlen(symbols[i].name);
|
||
for (i=0 ; i < array_elements(sql_functions) ; i++)
|
||
sql_functions[i].length=(uchar) strlen(sql_functions[i].name);
|
||
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
|
||
void lex_free(void)
|
||
{ // Call this when daemon ends
|
||
DBUG_ENTER("lex_free");
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
/**
|
||
Initialize lex object for use in fix_fields and parsing.
|
||
|
||
SYNOPSIS
|
||
init_lex_with_single_table()
|
||
@param thd The thread object
|
||
@param table The table object
|
||
@return Operation status
|
||
@retval TRUE An error occurred, memory allocation error
|
||
@retval FALSE Ok
|
||
|
||
DESCRIPTION
|
||
This function is used to initialize a lex object on the
|
||
stack for use by fix_fields and for parsing. In order to
|
||
work properly it also needs to initialize the
|
||
Name_resolution_context object of the lexer.
|
||
Finally it needs to set a couple of variables to ensure
|
||
proper functioning of fix_fields.
|
||
*/
|
||
|
||
int
|
||
init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex)
|
||
{
|
||
TABLE_LIST *table_list;
|
||
Table_ident *table_ident;
|
||
SELECT_LEX *select_lex= lex->first_select_lex();
|
||
Name_resolution_context *context= &select_lex->context;
|
||
/*
|
||
We will call the parser to create a part_info struct based on the
|
||
partition string stored in the frm file.
|
||
We will use a local lex object for this purpose. However we also
|
||
need to set the Name_resolution_object for this lex object. We
|
||
do this by using add_table_to_list where we add the table that
|
||
we're working with to the Name_resolution_context.
|
||
*/
|
||
thd->lex= lex;
|
||
lex_start(thd);
|
||
context->init();
|
||
if (unlikely((!(table_ident= new Table_ident(thd,
|
||
&table->s->db,
|
||
&table->s->table_name,
|
||
TRUE)))) ||
|
||
(unlikely(!(table_list= select_lex->add_table_to_list(thd,
|
||
table_ident,
|
||
NULL,
|
||
0)))))
|
||
return TRUE;
|
||
context->resolve_in_table_list_only(table_list);
|
||
lex->use_only_table_context= TRUE;
|
||
lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_VCOL_EXPR;
|
||
select_lex->cur_pos_in_select_list= UNDEF_POS;
|
||
table->map= 1; //To ensure correct calculation of const item
|
||
table_list->table= table;
|
||
table_list->cacheable_table= false;
|
||
lex->create_last_non_select_table= table_list;
|
||
return FALSE;
|
||
}
|
||
|
||
/**
|
||
End use of local lex with single table
|
||
|
||
SYNOPSIS
|
||
end_lex_with_single_table()
|
||
@param thd The thread object
|
||
@param table The table object
|
||
@param old_lex The real lex object connected to THD
|
||
|
||
DESCRIPTION
|
||
This function restores the real lex object after calling
|
||
init_lex_with_single_table and also restores some table
|
||
variables temporarily set.
|
||
*/
|
||
|
||
void
|
||
end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex)
|
||
{
|
||
LEX *lex= thd->lex;
|
||
table->map= 0;
|
||
table->get_fields_in_item_tree= FALSE;
|
||
lex_end(lex);
|
||
thd->lex= old_lex;
|
||
}
|
||
|
||
|
||
void
|
||
st_parsing_options::reset()
|
||
{
|
||
allows_variable= TRUE;
|
||
}
|
||
|
||
|
||
/**
|
||
Perform initialization of Lex_input_stream instance.
|
||
|
||
Basically, a buffer for pre-processed query. This buffer should be large
|
||
enough to keep multi-statement query. The allocation is done once in
|
||
Lex_input_stream::init() in order to prevent memory pollution when
|
||
the server is processing large multi-statement queries.
|
||
*/
|
||
|
||
bool Lex_input_stream::init(THD *thd,
|
||
char* buff,
|
||
size_t length)
|
||
{
|
||
DBUG_EXECUTE_IF("bug42064_simulate_oom",
|
||
DBUG_SET("+d,simulate_out_of_memory"););
|
||
|
||
m_cpp_buf= (char*) thd->alloc(length + 1);
|
||
|
||
DBUG_EXECUTE_IF("bug42064_simulate_oom",
|
||
DBUG_SET("-d,bug42064_simulate_oom"););
|
||
|
||
if (m_cpp_buf == NULL)
|
||
return true;
|
||
|
||
m_thd= thd;
|
||
reset(buff, length);
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
Prepare Lex_input_stream instance state for use for handling next SQL statement.
|
||
|
||
It should be called between two statements in a multi-statement query.
|
||
The operation resets the input stream to the beginning-of-parse state,
|
||
but does not reallocate m_cpp_buf.
|
||
*/
|
||
|
||
void
|
||
Lex_input_stream::reset(char *buffer, size_t length)
|
||
{
|
||
yylineno= 1;
|
||
lookahead_token= -1;
|
||
lookahead_yylval= NULL;
|
||
m_ptr= buffer;
|
||
m_tok_start= NULL;
|
||
m_tok_end= NULL;
|
||
m_end_of_query= buffer + length;
|
||
m_tok_start_prev= NULL;
|
||
m_buf= buffer;
|
||
m_buf_length= length;
|
||
m_echo= TRUE;
|
||
m_cpp_tok_start= NULL;
|
||
m_cpp_tok_start_prev= NULL;
|
||
m_cpp_tok_end= NULL;
|
||
m_body_utf8= NULL;
|
||
m_cpp_utf8_processed_ptr= NULL;
|
||
next_state= MY_LEX_START;
|
||
found_semicolon= NULL;
|
||
ignore_space= MY_TEST(m_thd->variables.sql_mode & MODE_IGNORE_SPACE);
|
||
stmt_prepare_mode= FALSE;
|
||
multi_statements= TRUE;
|
||
in_comment=NO_COMMENT;
|
||
m_underscore_cs= NULL;
|
||
m_cpp_ptr= m_cpp_buf;
|
||
}
|
||
|
||
|
||
/**
|
||
The operation is called from the parser in order to
|
||
1) designate the intention to have utf8 body;
|
||
1) Indicate to the lexer that we will need a utf8 representation of this
|
||
statement;
|
||
2) Determine the beginning of the body.
|
||
|
||
@param thd Thread context.
|
||
@param begin_ptr Pointer to the start of the body in the pre-processed
|
||
buffer.
|
||
*/
|
||
|
||
void Lex_input_stream::body_utf8_start(THD *thd, const char *begin_ptr)
|
||
{
|
||
DBUG_ASSERT(begin_ptr);
|
||
DBUG_ASSERT(m_cpp_buf <= begin_ptr && begin_ptr <= m_cpp_buf + m_buf_length);
|
||
|
||
size_t body_utf8_length= get_body_utf8_maximum_length(thd);
|
||
|
||
m_body_utf8= (char *) thd->alloc(body_utf8_length + 1);
|
||
m_body_utf8_ptr= m_body_utf8;
|
||
*m_body_utf8_ptr= 0;
|
||
|
||
m_cpp_utf8_processed_ptr= begin_ptr;
|
||
}
|
||
|
||
|
||
size_t Lex_input_stream::get_body_utf8_maximum_length(THD *thd)
|
||
{
|
||
/*
|
||
String literals can grow during escaping:
|
||
1a. Character string '<TAB>' can grow to '\t', 3 bytes to 4 bytes growth.
|
||
1b. Character string '1000 times <TAB>' grows from
|
||
1002 to 2002 bytes (including quotes), which gives a little bit
|
||
less than 2 times growth.
|
||
"2" should be a reasonable multiplier that safely covers escaping needs.
|
||
*/
|
||
return (m_buf_length / thd->variables.character_set_client->mbminlen) *
|
||
my_charset_utf8mb3_bin.mbmaxlen * 2/*for escaping*/;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief The operation appends unprocessed part of pre-processed buffer till
|
||
the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to end_ptr.
|
||
|
||
The idea is that some tokens in the pre-processed buffer (like character
|
||
set introducers) should be skipped.
|
||
|
||
Example:
|
||
CPP buffer: SELECT 'str1', _latin1 'str2';
|
||
m_cpp_utf8_processed_ptr -- points at the "SELECT ...";
|
||
In order to skip "_latin1", the following call should be made:
|
||
body_utf8_append(<pointer to "_latin1 ...">, <pointer to " 'str2'...">)
|
||
|
||
@param ptr Pointer in the pre-processed buffer, which specifies the
|
||
end of the chunk, which should be appended to the utf8
|
||
body.
|
||
@param end_ptr Pointer in the pre-processed buffer, to which
|
||
m_cpp_utf8_processed_ptr will be set in the end of the
|
||
operation.
|
||
*/
|
||
|
||
void Lex_input_stream::body_utf8_append(const char *ptr,
|
||
const char *end_ptr)
|
||
{
|
||
DBUG_ASSERT(m_cpp_buf <= ptr && ptr <= m_cpp_buf + m_buf_length);
|
||
DBUG_ASSERT(m_cpp_buf <= end_ptr && end_ptr <= m_cpp_buf + m_buf_length);
|
||
|
||
if (!m_body_utf8)
|
||
return;
|
||
|
||
if (m_cpp_utf8_processed_ptr >= ptr)
|
||
return;
|
||
|
||
size_t bytes_to_copy= ptr - m_cpp_utf8_processed_ptr;
|
||
|
||
memcpy(m_body_utf8_ptr, m_cpp_utf8_processed_ptr, bytes_to_copy);
|
||
m_body_utf8_ptr += bytes_to_copy;
|
||
*m_body_utf8_ptr= 0;
|
||
|
||
m_cpp_utf8_processed_ptr= end_ptr;
|
||
}
|
||
|
||
/**
|
||
The operation appends unprocessed part of the pre-processed buffer till
|
||
the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to ptr.
|
||
|
||
@param ptr Pointer in the pre-processed buffer, which specifies the end
|
||
of the chunk, which should be appended to the utf8 body.
|
||
*/
|
||
|
||
void Lex_input_stream::body_utf8_append(const char *ptr)
|
||
{
|
||
body_utf8_append(ptr, ptr);
|
||
}
|
||
|
||
/**
|
||
The operation converts the specified text literal to the utf8 and appends
|
||
the result to the utf8-body.
|
||
|
||
@param thd Thread context.
|
||
@param txt Text literal.
|
||
@param txt_cs Character set of the text literal.
|
||
@param end_ptr Pointer in the pre-processed buffer, to which
|
||
m_cpp_utf8_processed_ptr will be set in the end of the
|
||
operation.
|
||
*/
|
||
|
||
void
|
||
Lex_input_stream::body_utf8_append_ident(THD *thd,
|
||
const Lex_string_with_metadata_st *txt,
|
||
const char *end_ptr)
|
||
{
|
||
if (!m_cpp_utf8_processed_ptr)
|
||
return;
|
||
|
||
LEX_CSTRING utf_txt;
|
||
thd->make_text_string_sys(&utf_txt, txt); // QQ: check return value?
|
||
|
||
/* NOTE: utf_txt.length is in bytes, not in symbols. */
|
||
memcpy(m_body_utf8_ptr, utf_txt.str, utf_txt.length);
|
||
m_body_utf8_ptr += utf_txt.length;
|
||
*m_body_utf8_ptr= 0;
|
||
|
||
m_cpp_utf8_processed_ptr= end_ptr;
|
||
}
|
||
|
||
|
||
|
||
|
||
extern "C" {
|
||
|
||
/**
|
||
Escape a character. Consequently puts "escape" and "wc" characters into
|
||
the destination utf8 string.
|
||
@param cs - the character set (utf8)
|
||
@param escape - the escape character (backslash, single quote, double quote)
|
||
@param wc - the character to be escaped
|
||
@param str - the destination string
|
||
@param end - the end of the destination string
|
||
@returns - a code according to the wc_mb() convension.
|
||
*/
|
||
int my_wc_mb_utf8mb3_with_escape(CHARSET_INFO *cs, my_wc_t escape, my_wc_t wc,
|
||
uchar *str, uchar *end)
|
||
{
|
||
DBUG_ASSERT(escape > 0);
|
||
if (str + 1 >= end)
|
||
return MY_CS_TOOSMALL2; // Not enough space, need at least two bytes.
|
||
*str= (uchar)escape;
|
||
int cnvres= my_charset_utf8mb3_handler.wc_mb(cs, wc, str + 1, end);
|
||
if (cnvres > 0)
|
||
return cnvres + 1; // The character was normally put
|
||
if (cnvres == MY_CS_ILUNI)
|
||
return MY_CS_ILUNI; // Could not encode "wc" (e.g. non-BMP character)
|
||
DBUG_ASSERT(cnvres <= MY_CS_TOOSMALL);
|
||
return cnvres - 1; // Not enough space
|
||
}
|
||
|
||
|
||
/**
|
||
Optionally escape a character.
|
||
If "escape" is non-zero, then both "escape" and "wc" are put to
|
||
the destination string. Otherwise, only "wc" is put.
|
||
@param cs - the character set (utf8)
|
||
@param wc - the character to be optionally escaped
|
||
@param escape - the escape character, or 0
|
||
@param ewc - the escaped replacement of "wc" (e.g. 't' for '\t')
|
||
@param str - the destination string
|
||
@param end - the end of the destination string
|
||
@returns - a code according to the wc_mb() conversion.
|
||
*/
|
||
int my_wc_mb_utf8mb3_opt_escape(CHARSET_INFO *cs,
|
||
my_wc_t wc, my_wc_t escape, my_wc_t ewc,
|
||
uchar *str, uchar *end)
|
||
{
|
||
return escape ? my_wc_mb_utf8mb3_with_escape(cs, escape, ewc, str, end) :
|
||
my_charset_utf8mb3_handler.wc_mb(cs, wc, str, end);
|
||
}
|
||
|
||
/**
|
||
Encode a character with optional backlash escaping and quote escaping.
|
||
Quote marks are escaped using another quote mark.
|
||
Additionally, if "escape" is non-zero, then special characters are
|
||
also escaped using "escape".
|
||
Otherwise (if "escape" is zero, e.g. in case of MODE_NO_BACKSLASH_ESCAPES),
|
||
then special characters are not escaped and handled as normal characters.
|
||
|
||
@param cs - the character set (utf8)
|
||
@param wc - the character to be encoded
|
||
@param str - the destination string
|
||
@param end - the end of the destination string
|
||
@param sep - the string delimiter (e.g. ' or ")
|
||
@param escape - the escape character (backslash, or 0)
|
||
@returns - a code according to the wc_mb() convension.
|
||
*/
|
||
int my_wc_mb_utf8mb3_escape(CHARSET_INFO *cs, my_wc_t wc,
|
||
uchar *str, uchar *end,
|
||
my_wc_t sep, my_wc_t escape)
|
||
{
|
||
DBUG_ASSERT(escape == 0 || escape == '\\');
|
||
DBUG_ASSERT(sep == '"' || sep == '\'');
|
||
switch (wc) {
|
||
case 0: return my_wc_mb_utf8mb3_opt_escape(cs, wc, escape, '0', str, end);
|
||
case '\t': return my_wc_mb_utf8mb3_opt_escape(cs, wc, escape, 't', str, end);
|
||
case '\r': return my_wc_mb_utf8mb3_opt_escape(cs, wc, escape, 'r', str, end);
|
||
case '\n': return my_wc_mb_utf8mb3_opt_escape(cs, wc, escape, 'n', str, end);
|
||
case '\032': return my_wc_mb_utf8mb3_opt_escape(cs, wc, escape, 'Z', str, end);
|
||
case '\'':
|
||
case '\"':
|
||
if (wc == sep)
|
||
return my_wc_mb_utf8mb3_with_escape(cs, wc, wc, str, end);
|
||
}
|
||
return my_charset_utf8mb3_handler.wc_mb(cs, wc, str, end); // No escaping needed
|
||
}
|
||
|
||
|
||
/** wc_mb() compatible routines for all sql_mode and delimiter combinations */
|
||
int my_wc_mb_utf8mb3_escape_single_quote_and_backslash(CHARSET_INFO *cs,
|
||
my_wc_t wc,
|
||
uchar *str, uchar *end)
|
||
{
|
||
return my_wc_mb_utf8mb3_escape(cs, wc, str, end, '\'', '\\');
|
||
}
|
||
|
||
|
||
int my_wc_mb_utf8mb3_escape_double_quote_and_backslash(CHARSET_INFO *cs,
|
||
my_wc_t wc,
|
||
uchar *str, uchar *end)
|
||
{
|
||
return my_wc_mb_utf8mb3_escape(cs, wc, str, end, '"', '\\');
|
||
}
|
||
|
||
|
||
int my_wc_mb_utf8mb3_escape_single_quote(CHARSET_INFO *cs, my_wc_t wc,
|
||
uchar *str, uchar *end)
|
||
{
|
||
return my_wc_mb_utf8mb3_escape(cs, wc, str, end, '\'', 0);
|
||
}
|
||
|
||
|
||
int my_wc_mb_utf8mb3_escape_double_quote(CHARSET_INFO *cs, my_wc_t wc,
|
||
uchar *str, uchar *end)
|
||
{
|
||
return my_wc_mb_utf8mb3_escape(cs, wc, str, end, '"', 0);
|
||
}
|
||
|
||
}; // End of extern "C"
|
||
|
||
|
||
/**
|
||
Get an escaping function, depending on the current sql_mode and the
|
||
string separator.
|
||
*/
|
||
my_charset_conv_wc_mb
|
||
Lex_input_stream::get_escape_func(THD *thd, my_wc_t sep) const
|
||
{
|
||
return thd->backslash_escapes() ?
|
||
(sep == '"' ? my_wc_mb_utf8mb3_escape_double_quote_and_backslash:
|
||
my_wc_mb_utf8mb3_escape_single_quote_and_backslash) :
|
||
(sep == '"' ? my_wc_mb_utf8mb3_escape_double_quote:
|
||
my_wc_mb_utf8mb3_escape_single_quote);
|
||
}
|
||
|
||
|
||
/**
|
||
Append a text literal to the end of m_body_utf8.
|
||
The string is escaped according to the current sql_mode and the
|
||
string delimiter (e.g. ' or ").
|
||
|
||
@param thd - current THD
|
||
@param txt - the string to be appended to m_body_utf8.
|
||
Note, the string must be already unescaped.
|
||
@param cs - the character set of the string
|
||
@param end_ptr - m_cpp_utf8_processed_ptr will be set to this value
|
||
(see body_utf8_append_ident for details)
|
||
@param sep - the string delimiter (single or double quote)
|
||
*/
|
||
void Lex_input_stream::body_utf8_append_escape(THD *thd,
|
||
const LEX_CSTRING *txt,
|
||
CHARSET_INFO *cs,
|
||
const char *end_ptr,
|
||
my_wc_t sep)
|
||
{
|
||
DBUG_ASSERT(sep == '\'' || sep == '"');
|
||
if (!m_cpp_utf8_processed_ptr)
|
||
return;
|
||
uint errors;
|
||
/**
|
||
We previously alloced m_body_utf8 to be able to store the query with all
|
||
strings properly escaped. See get_body_utf8_maximum_length().
|
||
So here we have guaranteedly enough space to append any string literal
|
||
with escaping. Passing txt->length*2 as "available space" is always safe.
|
||
For better safety purposes we could calculate get_body_utf8_maximum_length()
|
||
every time we append a string, but this would affect performance negatively,
|
||
so let's check that we don't get beyond the allocated buffer in
|
||
debug build only.
|
||
*/
|
||
DBUG_ASSERT(m_body_utf8 + get_body_utf8_maximum_length(thd) >=
|
||
m_body_utf8_ptr + txt->length * 2);
|
||
uint32 cnv_length= my_convert_using_func(m_body_utf8_ptr, txt->length * 2,
|
||
&my_charset_utf8mb3_general_ci,
|
||
get_escape_func(thd, sep),
|
||
txt->str, txt->length,
|
||
cs, cs->cset->mb_wc,
|
||
&errors);
|
||
m_body_utf8_ptr+= cnv_length;
|
||
*m_body_utf8_ptr= 0;
|
||
m_cpp_utf8_processed_ptr= end_ptr;
|
||
}
|
||
|
||
|
||
void Lex_input_stream::add_digest_token(uint token, LEX_YYSTYPE yylval)
|
||
{
|
||
if (m_digest != NULL)
|
||
{
|
||
m_digest= digest_add_token(m_digest, token, yylval);
|
||
}
|
||
}
|
||
|
||
void Lex_input_stream::reduce_digest_token(uint token_left, uint token_right)
|
||
{
|
||
if (m_digest != NULL)
|
||
{
|
||
m_digest= digest_reduce_token(m_digest, token_left, token_right);
|
||
}
|
||
}
|
||
|
||
/**
|
||
lex starting operations for builtin select collected together
|
||
*/
|
||
|
||
void SELECT_LEX::lex_start(LEX *plex)
|
||
{
|
||
SELECT_LEX_UNIT *unit= &plex->unit;
|
||
/* 'parent_lex' is used in init_query() so it must be before it. */
|
||
parent_lex= plex;
|
||
init_query();
|
||
master= unit;
|
||
prev= &unit->slave;
|
||
link_next= slave= next= 0;
|
||
link_prev= (st_select_lex_node**)&(plex->all_selects_list);
|
||
DBUG_ASSERT(!group_list_ptrs);
|
||
select_number= 1;
|
||
in_sum_expr=0;
|
||
ftfunc_list_alloc.empty();
|
||
ftfunc_list= &ftfunc_list_alloc;
|
||
group_list.empty();
|
||
order_list.empty();
|
||
gorder_list.empty();
|
||
}
|
||
|
||
void lex_start(THD *thd)
|
||
{
|
||
DBUG_ENTER("lex_start");
|
||
thd->lex->start(thd);
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
|
||
/*
|
||
This is called before every query that is to be parsed.
|
||
Because of this, it's critical to not do too much things here.
|
||
(We already do too much here)
|
||
*/
|
||
|
||
void LEX::start(THD *thd_arg)
|
||
{
|
||
DBUG_ENTER("LEX::start");
|
||
DBUG_PRINT("info", ("This: %p thd_arg->lex: %p", this, thd_arg->lex));
|
||
|
||
thd= unit.thd= thd_arg;
|
||
stmt_lex= this; // default, should be rewritten for VIEWs And CTEs
|
||
|
||
DBUG_ASSERT(!explain);
|
||
|
||
builtin_select.lex_start(this);
|
||
lex_options= 0;
|
||
context_stack.empty();
|
||
//empty select_stack
|
||
select_stack_top= 0;
|
||
unit.init_query();
|
||
current_select_number= 0;
|
||
curr_with_clause= 0;
|
||
with_clauses_list= 0;
|
||
with_clauses_list_last_next= &with_clauses_list;
|
||
clone_spec_offset= 0;
|
||
create_view= NULL;
|
||
field_list.empty();
|
||
value_list.empty();
|
||
update_list.empty();
|
||
set_var_list.empty();
|
||
param_list.empty();
|
||
view_list.empty();
|
||
with_persistent_for_clause= FALSE;
|
||
column_list= NULL;
|
||
index_list= NULL;
|
||
prepared_stmt.lex_start();
|
||
auxiliary_table_list.empty();
|
||
unit.next= unit.master= unit.link_next= unit.return_to= 0;
|
||
unit.prev= unit.link_prev= 0;
|
||
unit.slave= current_select= all_selects_list= &builtin_select;
|
||
sql_cache= LEX::SQL_CACHE_UNSPECIFIED;
|
||
describe= 0;
|
||
analyze_stmt= 0;
|
||
explain_json= false;
|
||
context_analysis_only= 0;
|
||
derived_tables= 0;
|
||
safe_to_cache_query= 1;
|
||
parsing_options.reset();
|
||
empty_field_list_on_rset= 0;
|
||
part_info= 0;
|
||
m_sql_cmd= NULL;
|
||
duplicates= DUP_ERROR;
|
||
ignore= 0;
|
||
spname= NULL;
|
||
spcont= NULL;
|
||
proc_list.first= 0;
|
||
escape_used= FALSE;
|
||
default_used= FALSE;
|
||
query_tables= 0;
|
||
reset_query_tables_list(FALSE);
|
||
clause_that_disallows_subselect= NULL;
|
||
selects_allow_into= FALSE;
|
||
selects_allow_procedure= FALSE;
|
||
use_only_table_context= FALSE;
|
||
parse_vcol_expr= FALSE;
|
||
check_exists= FALSE;
|
||
create_info.lex_start();
|
||
verbose= 0;
|
||
|
||
name= null_clex_str;
|
||
event_parse_data= NULL;
|
||
profile_options= PROFILE_NONE;
|
||
nest_level= 0;
|
||
builtin_select.nest_level_base= &unit;
|
||
allow_sum_func.clear_all();
|
||
in_sum_func= NULL;
|
||
|
||
used_tables= 0;
|
||
table_type= TABLE_TYPE_UNKNOWN;
|
||
reset_slave_info.all= false;
|
||
limit_rows_examined= 0;
|
||
limit_rows_examined_cnt= ULONGLONG_MAX;
|
||
var_list.empty();
|
||
stmt_var_list.empty();
|
||
proc_list.elements=0;
|
||
|
||
save_group_list.empty();
|
||
save_order_list.empty();
|
||
win_ref= NULL;
|
||
win_frame= NULL;
|
||
frame_top_bound= NULL;
|
||
frame_bottom_bound= NULL;
|
||
win_spec= NULL;
|
||
|
||
vers_conditions.empty();
|
||
period_conditions.empty();
|
||
|
||
is_lex_started= TRUE;
|
||
|
||
next_is_main= FALSE;
|
||
next_is_down= FALSE;
|
||
|
||
wild= 0;
|
||
exchange= 0;
|
||
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
void lex_end(LEX *lex)
|
||
{
|
||
DBUG_ENTER("lex_end");
|
||
DBUG_PRINT("enter", ("lex: %p", lex));
|
||
|
||
lex_end_stage1(lex);
|
||
lex_end_stage2(lex);
|
||
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
void lex_end_stage1(LEX *lex)
|
||
{
|
||
DBUG_ENTER("lex_end_stage1");
|
||
|
||
/* release used plugins */
|
||
if (lex->plugins.elements) /* No function call and no mutex if no plugins. */
|
||
{
|
||
plugin_unlock_list(0, (plugin_ref*)lex->plugins.buffer,
|
||
lex->plugins.elements);
|
||
}
|
||
reset_dynamic(&lex->plugins);
|
||
|
||
if (lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE)
|
||
{
|
||
/*
|
||
Don't delete lex->sphead, it'll be needed for EXECUTE.
|
||
Note that of all statements that populate lex->sphead
|
||
only SQLCOM_COMPOUND can be PREPAREd
|
||
*/
|
||
DBUG_ASSERT(lex->sphead == 0 || lex->sql_command == SQLCOM_COMPOUND);
|
||
}
|
||
else
|
||
{
|
||
sp_head::destroy(lex->sphead);
|
||
lex->sphead= NULL;
|
||
}
|
||
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
/*
|
||
MASTER INFO parameters (or state) is normally cleared towards the end
|
||
of a statement. But in case of PS, the state needs to be preserved during
|
||
its lifetime and should only be cleared on PS close or deallocation.
|
||
*/
|
||
void lex_end_stage2(LEX *lex)
|
||
{
|
||
DBUG_ENTER("lex_end_stage2");
|
||
|
||
/* Reset LEX_MASTER_INFO */
|
||
lex->mi.reset(lex->sql_command == SQLCOM_CHANGE_MASTER);
|
||
delete_dynamic(&lex->delete_gtid_domain);
|
||
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
Yacc_state::~Yacc_state()
|
||
{
|
||
if (yacc_yyss)
|
||
{
|
||
my_free(yacc_yyss);
|
||
my_free(yacc_yyvs);
|
||
}
|
||
}
|
||
|
||
int Lex_input_stream::find_keyword(Lex_ident_cli_st *kwd,
|
||
uint len, bool function)
|
||
{
|
||
const char *tok= m_tok_start;
|
||
|
||
SYMBOL *symbol= get_hash_symbol(tok, len, function);
|
||
if (symbol)
|
||
{
|
||
kwd->set_keyword(tok, len);
|
||
DBUG_ASSERT(tok >= get_buf());
|
||
DBUG_ASSERT(tok < get_end_of_query());
|
||
|
||
if (m_thd->variables.sql_mode & MODE_ORACLE)
|
||
{
|
||
switch (symbol->tok) {
|
||
case BEGIN_MARIADB_SYM: return BEGIN_ORACLE_SYM;
|
||
case BLOB_MARIADB_SYM: return BLOB_ORACLE_SYM;
|
||
case BODY_MARIADB_SYM: return BODY_ORACLE_SYM;
|
||
case CLOB_MARIADB_SYM: return CLOB_ORACLE_SYM;
|
||
case CONTINUE_MARIADB_SYM: return CONTINUE_ORACLE_SYM;
|
||
case DECLARE_MARIADB_SYM: return DECLARE_ORACLE_SYM;
|
||
case DECODE_MARIADB_SYM: return DECODE_ORACLE_SYM;
|
||
case ELSEIF_MARIADB_SYM: return ELSEIF_ORACLE_SYM;
|
||
case ELSIF_MARIADB_SYM: return ELSIF_ORACLE_SYM;
|
||
case EXCEPTION_MARIADB_SYM: return EXCEPTION_ORACLE_SYM;
|
||
case EXIT_MARIADB_SYM: return EXIT_ORACLE_SYM;
|
||
case GOTO_MARIADB_SYM: return GOTO_ORACLE_SYM;
|
||
case NUMBER_MARIADB_SYM: return NUMBER_ORACLE_SYM;
|
||
case OTHERS_MARIADB_SYM: return OTHERS_ORACLE_SYM;
|
||
case PACKAGE_MARIADB_SYM: return PACKAGE_ORACLE_SYM;
|
||
case RAISE_MARIADB_SYM: return RAISE_ORACLE_SYM;
|
||
case RAW_MARIADB_SYM: return RAW_ORACLE_SYM;
|
||
case RETURN_MARIADB_SYM: return RETURN_ORACLE_SYM;
|
||
case ROWTYPE_MARIADB_SYM: return ROWTYPE_ORACLE_SYM;
|
||
case VARCHAR2_MARIADB_SYM: return VARCHAR2_ORACLE_SYM;
|
||
}
|
||
}
|
||
|
||
if ((symbol->tok == NOT_SYM) &&
|
||
(m_thd->variables.sql_mode & MODE_HIGH_NOT_PRECEDENCE))
|
||
return NOT2_SYM;
|
||
if ((symbol->tok == OR2_SYM) &&
|
||
(m_thd->variables.sql_mode & MODE_PIPES_AS_CONCAT))
|
||
{
|
||
return (m_thd->variables.sql_mode & MODE_ORACLE) ?
|
||
ORACLE_CONCAT_SYM : MYSQL_CONCAT_SYM;
|
||
}
|
||
|
||
return symbol->tok;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
Check if name is a keyword
|
||
|
||
SYNOPSIS
|
||
is_keyword()
|
||
name checked name (must not be empty)
|
||
len length of checked name
|
||
|
||
RETURN VALUES
|
||
0 name is a keyword
|
||
1 name isn't a keyword
|
||
*/
|
||
|
||
bool is_keyword(const char *name, uint len)
|
||
{
|
||
DBUG_ASSERT(len != 0);
|
||
return get_hash_symbol(name,len,0)!=0;
|
||
}
|
||
|
||
/**
|
||
Check if name is a sql function
|
||
|
||
@param name checked name
|
||
|
||
@return is this a native function or not
|
||
@retval 0 name is a function
|
||
@retval 1 name isn't a function
|
||
*/
|
||
|
||
bool is_lex_native_function(const LEX_CSTRING *name)
|
||
{
|
||
DBUG_ASSERT(name != NULL);
|
||
return (get_hash_symbol(name->str, (uint) name->length, 1) != 0);
|
||
}
|
||
|
||
|
||
bool is_native_function(THD *thd, const LEX_CSTRING *name)
|
||
{
|
||
if (find_native_function_builder(thd, name))
|
||
return true;
|
||
|
||
if (is_lex_native_function(name))
|
||
return true;
|
||
|
||
if (Type_handler::handler_by_name(thd, *name))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
bool is_native_function_with_warn(THD *thd, const LEX_CSTRING *name)
|
||
{
|
||
if (!is_native_function(thd, name))
|
||
return false;
|
||
/*
|
||
This warning will be printed when
|
||
[1] A client query is parsed,
|
||
[2] A stored function is loaded by db_load_routine.
|
||
Printing the warning for [2] is intentional, to cover the
|
||
following scenario:
|
||
- A user define a SF 'foo' using MySQL 5.N
|
||
- An application uses select foo(), and works.
|
||
- MySQL 5.{N+1} defines a new native function 'foo', as
|
||
part of a new feature.
|
||
- MySQL 5.{N+1} documentation is updated, and should mention
|
||
that there is a potential incompatible change in case of
|
||
existing stored function named 'foo'.
|
||
- The user deploys 5.{N+1}. At this point, 'select foo()'
|
||
means something different, and the user code is most likely
|
||
broken (it's only safe if the code is 'select db.foo()').
|
||
With a warning printed when the SF is loaded (which has to
|
||
occur before the call), the warning will provide a hint
|
||
explaining the root cause of a later failure of 'select foo()'.
|
||
With no warning printed, the user code will fail with no
|
||
apparent reason.
|
||
Printing a warning each time db_load_routine is executed for
|
||
an ambiguous function is annoying, since that can happen a lot,
|
||
but in practice should not happen unless there *are* name
|
||
collisions.
|
||
If a collision exists, it should not be silenced but fixed.
|
||
*/
|
||
push_warning_printf(thd,
|
||
Sql_condition::WARN_LEVEL_NOTE,
|
||
ER_NATIVE_FCT_NAME_COLLISION,
|
||
ER_THD(thd, ER_NATIVE_FCT_NAME_COLLISION),
|
||
name->str);
|
||
return true;
|
||
}
|
||
|
||
|
||
/* make a copy of token before ptr and set yytoklen */
|
||
|
||
LEX_CSTRING Lex_input_stream::get_token(uint skip, uint length)
|
||
{
|
||
LEX_CSTRING tmp;
|
||
yyUnget(); // ptr points now after last token char
|
||
tmp.length= length;
|
||
tmp.str= m_thd->strmake(m_tok_start + skip, tmp.length);
|
||
|
||
m_cpp_text_start= m_cpp_tok_start + skip;
|
||
m_cpp_text_end= m_cpp_text_start + tmp.length;
|
||
|
||
return tmp;
|
||
}
|
||
|
||
|
||
static size_t
|
||
my_unescape(CHARSET_INFO *cs, char *to, const char *str, const char *end,
|
||
int sep, bool backslash_escapes)
|
||
{
|
||
char *start= to;
|
||
for ( ; str != end ; str++)
|
||
{
|
||
#ifdef USE_MB
|
||
int l;
|
||
if (use_mb(cs) && (l= my_ismbchar(cs, str, end)))
|
||
{
|
||
while (l--)
|
||
*to++ = *str++;
|
||
str--;
|
||
continue;
|
||
}
|
||
#endif
|
||
if (backslash_escapes && *str == '\\' && str + 1 != end)
|
||
{
|
||
switch(*++str) {
|
||
case 'n':
|
||
*to++='\n';
|
||
break;
|
||
case 't':
|
||
*to++= '\t';
|
||
break;
|
||
case 'r':
|
||
*to++ = '\r';
|
||
break;
|
||
case 'b':
|
||
*to++ = '\b';
|
||
break;
|
||
case '0':
|
||
*to++= 0; // Ascii null
|
||
break;
|
||
case 'Z': // ^Z must be escaped on Win32
|
||
*to++='\032';
|
||
break;
|
||
case '_':
|
||
case '%':
|
||
*to++= '\\'; // remember prefix for wildcard
|
||
/* Fall through */
|
||
default:
|
||
*to++= *str;
|
||
break;
|
||
}
|
||
}
|
||
else if (*str == sep)
|
||
*to++= *str++; // Two ' or "
|
||
else
|
||
*to++ = *str;
|
||
}
|
||
*to= 0;
|
||
return to - start;
|
||
}
|
||
|
||
|
||
size_t
|
||
Lex_input_stream::unescape(CHARSET_INFO *cs, char *to,
|
||
const char *str, const char *end,
|
||
int sep)
|
||
{
|
||
return my_unescape(cs, to, str, end, sep, m_thd->backslash_escapes());
|
||
}
|
||
|
||
|
||
/*
|
||
Return an unescaped text literal without quotes
|
||
Fix sometimes to do only one scan of the string
|
||
*/
|
||
|
||
bool Lex_input_stream::get_text(Lex_string_with_metadata_st *dst, uint sep,
|
||
int pre_skip, int post_skip)
|
||
{
|
||
uchar c;
|
||
uint found_escape=0;
|
||
CHARSET_INFO *cs= m_thd->charset();
|
||
bool is_8bit= false;
|
||
|
||
while (! eof())
|
||
{
|
||
c= yyGet();
|
||
if (c & 0x80)
|
||
is_8bit= true;
|
||
#ifdef USE_MB
|
||
{
|
||
int l;
|
||
if (use_mb(cs) &&
|
||
(l = my_ismbchar(cs,
|
||
get_ptr() -1,
|
||
get_end_of_query()))) {
|
||
skip_binary(l-1);
|
||
continue;
|
||
}
|
||
}
|
||
#endif
|
||
if (c == '\\' &&
|
||
!(m_thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES))
|
||
{ // Escaped character
|
||
found_escape=1;
|
||
if (eof())
|
||
return true;
|
||
yySkip();
|
||
}
|
||
else if (c == sep)
|
||
{
|
||
if (c == yyGet()) // Check if two separators in a row
|
||
{
|
||
found_escape=1; // duplicate. Remember for delete
|
||
continue;
|
||
}
|
||
else
|
||
yyUnget();
|
||
|
||
/* Found end. Unescape and return string */
|
||
const char *str, *end;
|
||
char *to;
|
||
|
||
str= m_tok_start;
|
||
end= get_ptr();
|
||
/* Extract the text from the token */
|
||
str += pre_skip;
|
||
end -= post_skip;
|
||
DBUG_ASSERT(end >= str);
|
||
|
||
if (!(to= (char*) m_thd->alloc((uint) (end - str) + 1)))
|
||
{
|
||
dst->set(&empty_clex_str, 0, '\0');
|
||
return true; // Sql_alloc has set error flag
|
||
}
|
||
|
||
m_cpp_text_start= m_cpp_tok_start + pre_skip;
|
||
m_cpp_text_end= get_cpp_ptr() - post_skip;
|
||
|
||
if (!found_escape)
|
||
{
|
||
size_t len= (end - str);
|
||
memcpy(to, str, len);
|
||
to[len]= '\0';
|
||
dst->set(to, len, is_8bit, '\0');
|
||
}
|
||
else
|
||
{
|
||
size_t len= unescape(cs, to, str, end, sep);
|
||
dst->set(to, len, is_8bit, '\0');
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
return true; // unexpected end of query
|
||
}
|
||
|
||
|
||
/*
|
||
** Calc type of integer; long integer, longlong integer or real.
|
||
** Returns smallest type that match the string.
|
||
** When using unsigned long long values the result is converted to a real
|
||
** because else they will be unexpected sign changes because all calculation
|
||
** is done with longlong or double.
|
||
*/
|
||
|
||
static const char *long_str="2147483647";
|
||
static const uint long_len=10;
|
||
static const char *signed_long_str="-2147483648";
|
||
static const char *longlong_str="9223372036854775807";
|
||
static const uint longlong_len=19;
|
||
static const char *signed_longlong_str="-9223372036854775808";
|
||
static const uint signed_longlong_len=19;
|
||
static const char *unsigned_longlong_str="18446744073709551615";
|
||
static const uint unsigned_longlong_len=20;
|
||
|
||
static inline uint int_token(const char *str,uint length)
|
||
{
|
||
if (length < long_len) // quick normal case
|
||
return NUM;
|
||
bool neg=0;
|
||
|
||
if (*str == '+') // Remove sign and pre-zeros
|
||
{
|
||
str++; length--;
|
||
}
|
||
else if (*str == '-')
|
||
{
|
||
str++; length--;
|
||
neg=1;
|
||
}
|
||
while (*str == '0' && length)
|
||
{
|
||
str++; length --;
|
||
}
|
||
if (length < long_len)
|
||
return NUM;
|
||
|
||
uint smaller,bigger;
|
||
const char *cmp;
|
||
if (neg)
|
||
{
|
||
if (length == long_len)
|
||
{
|
||
cmp= signed_long_str + 1;
|
||
smaller= NUM; // If <= signed_long_str
|
||
bigger= LONG_NUM; // If >= signed_long_str
|
||
}
|
||
else if (length < signed_longlong_len)
|
||
return LONG_NUM;
|
||
else if (length > signed_longlong_len)
|
||
return DECIMAL_NUM;
|
||
else
|
||
{
|
||
cmp= signed_longlong_str + 1;
|
||
smaller= LONG_NUM; // If <= signed_longlong_str
|
||
bigger=DECIMAL_NUM;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (length == long_len)
|
||
{
|
||
cmp= long_str;
|
||
smaller=NUM;
|
||
bigger=LONG_NUM;
|
||
}
|
||
else if (length < longlong_len)
|
||
return LONG_NUM;
|
||
else if (length > longlong_len)
|
||
{
|
||
if (length > unsigned_longlong_len)
|
||
return DECIMAL_NUM;
|
||
cmp=unsigned_longlong_str;
|
||
smaller=ULONGLONG_NUM;
|
||
bigger=DECIMAL_NUM;
|
||
}
|
||
else
|
||
{
|
||
cmp=longlong_str;
|
||
smaller=LONG_NUM;
|
||
bigger= ULONGLONG_NUM;
|
||
}
|
||
}
|
||
while (*cmp && *cmp++ == *str++) ;
|
||
return ((uchar) str[-1] <= (uchar) cmp[-1]) ? smaller : bigger;
|
||
}
|
||
|
||
|
||
/**
|
||
Given a stream that is advanced to the first contained character in
|
||
an open comment, consume the comment. Optionally, if we are allowed,
|
||
recurse so that we understand comments within this current comment.
|
||
|
||
At this level, we do not support version-condition comments. We might
|
||
have been called with having just passed one in the stream, though. In
|
||
that case, we probably want to tolerate mundane comments inside. Thus,
|
||
the case for recursion.
|
||
|
||
@retval Whether EOF reached before comment is closed.
|
||
*/
|
||
bool Lex_input_stream::consume_comment(int remaining_recursions_permitted)
|
||
{
|
||
uchar c;
|
||
while (!eof())
|
||
{
|
||
c= yyGet();
|
||
|
||
if (remaining_recursions_permitted > 0)
|
||
{
|
||
if ((c == '/') && (yyPeek() == '*'))
|
||
{
|
||
yySkip(); // Eat asterisk
|
||
consume_comment(remaining_recursions_permitted - 1);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (c == '*')
|
||
{
|
||
if (yyPeek() == '/')
|
||
{
|
||
yySkip(); // Eat slash
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (c == '\n')
|
||
yylineno++;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/*
|
||
MYSQLlex remember the following states from the following MYSQLlex()
|
||
|
||
@param yylval [out] semantic value of the token being parsed (yylval)
|
||
@param thd THD
|
||
|
||
- MY_LEX_EOQ Found end of query
|
||
- MY_LEX_OPERATOR_OR_IDENT Last state was an ident, text or number
|
||
(which can't be followed by a signed number)
|
||
*/
|
||
|
||
int MYSQLlex(YYSTYPE *yylval, THD *thd)
|
||
{
|
||
return thd->m_parser_state->m_lip.lex_token(yylval, thd);
|
||
}
|
||
|
||
|
||
int ORAlex(YYSTYPE *yylval, THD *thd)
|
||
{
|
||
return thd->m_parser_state->m_lip.lex_token(yylval, thd);
|
||
}
|
||
|
||
|
||
int Lex_input_stream::lex_token(YYSTYPE *yylval, THD *thd)
|
||
{
|
||
int token;
|
||
const int left_paren= (int) '(';
|
||
|
||
if (lookahead_token >= 0)
|
||
{
|
||
/*
|
||
The next token was already parsed in advance,
|
||
return it.
|
||
*/
|
||
token= lookahead_token;
|
||
lookahead_token= -1;
|
||
*yylval= *(lookahead_yylval);
|
||
lookahead_yylval= NULL;
|
||
return token;
|
||
}
|
||
|
||
token= lex_one_token(yylval, thd);
|
||
add_digest_token(token, yylval);
|
||
|
||
SELECT_LEX *curr_sel= thd->lex->current_select;
|
||
|
||
switch(token) {
|
||
case WITH:
|
||
/*
|
||
Parsing 'WITH' 'ROLLUP' or 'WITH' 'CUBE' requires 2 look ups,
|
||
which makes the grammar LALR(2).
|
||
Replace by a single 'WITH_ROLLUP' or 'WITH_CUBE' token,
|
||
to transform the grammar into a LALR(1) grammar,
|
||
which sql_yacc.yy can process.
|
||
*/
|
||
token= lex_one_token(yylval, thd);
|
||
add_digest_token(token, yylval);
|
||
switch(token) {
|
||
case CUBE_SYM:
|
||
return WITH_CUBE_SYM;
|
||
case ROLLUP_SYM:
|
||
return WITH_ROLLUP_SYM;
|
||
case SYSTEM:
|
||
return WITH_SYSTEM_SYM;
|
||
default:
|
||
/*
|
||
Save the token following 'WITH'
|
||
*/
|
||
lookahead_yylval= yylval;
|
||
lookahead_token= token;
|
||
return WITH;
|
||
}
|
||
break;
|
||
case FOR_SYM:
|
||
/*
|
||
* Additional look-ahead to resolve doubtful cases like:
|
||
* SELECT ... FOR UPDATE
|
||
* SELECT ... FOR SYSTEM_TIME ... .
|
||
*/
|
||
token= lex_one_token(yylval, thd);
|
||
add_digest_token(token, yylval);
|
||
switch(token) {
|
||
case SYSTEM_TIME_SYM:
|
||
return FOR_SYSTEM_TIME_SYM;
|
||
default:
|
||
/*
|
||
Save the token following 'FOR_SYM'
|
||
*/
|
||
lookahead_yylval= yylval;
|
||
lookahead_token= token;
|
||
return FOR_SYM;
|
||
}
|
||
break;
|
||
case VALUES:
|
||
if (curr_sel &&
|
||
(curr_sel->parsing_place == BEFORE_OPT_LIST ||
|
||
curr_sel->parsing_place == AFTER_LIST))
|
||
{
|
||
curr_sel->parsing_place= NO_MATTER;
|
||
break;
|
||
}
|
||
if (curr_sel &&
|
||
(curr_sel->parsing_place == IN_UPDATE_ON_DUP_KEY ||
|
||
curr_sel->parsing_place == IN_PART_FUNC))
|
||
return VALUE_SYM;
|
||
token= lex_one_token(yylval, thd);
|
||
add_digest_token(token, yylval);
|
||
switch(token) {
|
||
case LESS_SYM:
|
||
return VALUES_LESS_SYM;
|
||
case IN_SYM:
|
||
return VALUES_IN_SYM;
|
||
default:
|
||
lookahead_yylval= yylval;
|
||
lookahead_token= token;
|
||
return VALUES;
|
||
}
|
||
case VALUE_SYM:
|
||
if (curr_sel &&
|
||
(curr_sel->parsing_place == BEFORE_OPT_LIST ||
|
||
curr_sel->parsing_place == AFTER_LIST))
|
||
{
|
||
curr_sel->parsing_place= NO_MATTER;
|
||
return VALUES;
|
||
}
|
||
break;
|
||
case PARTITION_SYM:
|
||
case SELECT_SYM:
|
||
case UNION_SYM:
|
||
if (curr_sel &&
|
||
(curr_sel->parsing_place == BEFORE_OPT_LIST ||
|
||
curr_sel->parsing_place == AFTER_LIST))
|
||
{
|
||
curr_sel->parsing_place= NO_MATTER;
|
||
}
|
||
break;
|
||
case left_paren:
|
||
if (!curr_sel ||
|
||
curr_sel->parsing_place != BEFORE_OPT_LIST)
|
||
return token;
|
||
token= lex_one_token(yylval, thd);
|
||
add_digest_token(token, yylval);
|
||
lookahead_yylval= yylval;
|
||
yylval= NULL;
|
||
lookahead_token= token;
|
||
curr_sel->parsing_place= NO_MATTER;
|
||
if (token == LIKE)
|
||
return LEFT_PAREN_LIKE;
|
||
if (token == WITH)
|
||
return LEFT_PAREN_WITH;
|
||
if (token != left_paren && token != SELECT_SYM && token != VALUES)
|
||
return LEFT_PAREN_ALT;
|
||
else
|
||
return left_paren;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return token;
|
||
}
|
||
|
||
|
||
int Lex_input_stream::lex_one_token(YYSTYPE *yylval, THD *thd)
|
||
{
|
||
uchar UNINIT_VAR(c);
|
||
bool comment_closed;
|
||
int tokval;
|
||
uint length;
|
||
enum my_lex_states state;
|
||
LEX *lex= thd->lex;
|
||
CHARSET_INFO *const cs= thd->charset();
|
||
const uchar *const state_map= cs->state_map;
|
||
const uchar *const ident_map= cs->ident_map;
|
||
|
||
start_token();
|
||
state= next_state;
|
||
next_state= MY_LEX_OPERATOR_OR_IDENT;
|
||
for (;;)
|
||
{
|
||
switch (state) {
|
||
case MY_LEX_OPERATOR_OR_IDENT: // Next is operator or keyword
|
||
case MY_LEX_START: // Start of token
|
||
// Skip starting whitespace
|
||
while(state_map[c= yyPeek()] == MY_LEX_SKIP)
|
||
{
|
||
if (c == '\n')
|
||
yylineno++;
|
||
|
||
yySkip();
|
||
}
|
||
|
||
/* Start of real token */
|
||
restart_token();
|
||
c= yyGet();
|
||
state= (enum my_lex_states) state_map[c];
|
||
break;
|
||
case MY_LEX_ESCAPE:
|
||
if (!eof() && yyGet() == 'N')
|
||
{ // Allow \N as shortcut for NULL
|
||
yylval->lex_str.str= (char*) "\\N";
|
||
yylval->lex_str.length= 2;
|
||
return NULL_SYM;
|
||
}
|
||
/* Fall through */
|
||
case MY_LEX_CHAR: // Unknown or single char token
|
||
if (c == '%' && (m_thd->variables.sql_mode & MODE_ORACLE))
|
||
{
|
||
next_state= MY_LEX_START;
|
||
return PERCENT_ORACLE_SYM;
|
||
}
|
||
if (c == '[' && (m_thd->variables.sql_mode & MODE_MSSQL))
|
||
return scan_ident_delimited(thd, &yylval->ident_cli, ']');
|
||
/* Fall through */
|
||
case MY_LEX_SKIP: // This should not happen
|
||
if (c != ')')
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
yylval->kwd.set_keyword(m_tok_start, 1);
|
||
return((int) c);
|
||
|
||
case MY_LEX_MINUS_OR_COMMENT:
|
||
if (yyPeek() == '-' &&
|
||
(my_isspace(cs,yyPeekn(1)) ||
|
||
my_iscntrl(cs,yyPeekn(1))))
|
||
{
|
||
state=MY_LEX_COMMENT;
|
||
break;
|
||
}
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
return((int) c);
|
||
|
||
case MY_LEX_PLACEHOLDER:
|
||
/*
|
||
Check for a placeholder: it should not precede a possible identifier
|
||
because of binlogging: when a placeholder is replaced with
|
||
its value in a query for the binlog, the query must stay
|
||
grammatically correct.
|
||
*/
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
if (stmt_prepare_mode && !ident_map[(uchar) yyPeek()])
|
||
return(PARAM_MARKER);
|
||
return((int) c);
|
||
|
||
case MY_LEX_COMMA:
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
/*
|
||
Warning:
|
||
This is a work around, to make the "remember_name" rule in
|
||
sql/sql_yacc.yy work properly.
|
||
The problem is that, when parsing "select expr1, expr2",
|
||
the code generated by bison executes the *pre* action
|
||
remember_name (see select_item) *before* actually parsing the
|
||
first token of expr2.
|
||
*/
|
||
restart_token();
|
||
return((int) c);
|
||
|
||
case MY_LEX_IDENT_OR_NCHAR:
|
||
{
|
||
uint sep;
|
||
if (yyPeek() != '\'')
|
||
{
|
||
state= MY_LEX_IDENT;
|
||
break;
|
||
}
|
||
/* Found N'string' */
|
||
yySkip(); // Skip '
|
||
if (get_text(&yylval->lex_string_with_metadata, (sep= yyGetLast()), 2, 1))
|
||
{
|
||
state= MY_LEX_CHAR; // Read char by char
|
||
break;
|
||
}
|
||
|
||
body_utf8_append(m_cpp_text_start);
|
||
body_utf8_append_escape(thd, &yylval->lex_string_with_metadata,
|
||
national_charset_info,
|
||
m_cpp_text_end, sep);
|
||
return(NCHAR_STRING);
|
||
}
|
||
case MY_LEX_IDENT_OR_HEX:
|
||
if (yyPeek() == '\'')
|
||
{ // Found x'hex-number'
|
||
state= MY_LEX_HEX_NUMBER;
|
||
break;
|
||
}
|
||
/* fall through */
|
||
case MY_LEX_IDENT_OR_BIN:
|
||
if (yyPeek() == '\'')
|
||
{ // Found b'bin-number'
|
||
state= MY_LEX_BIN_NUMBER;
|
||
break;
|
||
}
|
||
/* fall through */
|
||
case MY_LEX_IDENT:
|
||
{
|
||
tokval= scan_ident_middle(thd, &yylval->ident_cli,
|
||
&yylval->charset, &state);
|
||
if (!tokval)
|
||
continue;
|
||
if (tokval == UNDERSCORE_CHARSET)
|
||
m_underscore_cs= yylval->charset;
|
||
return tokval;
|
||
}
|
||
|
||
case MY_LEX_IDENT_SEP: // Found ident and now '.'
|
||
yylval->lex_str.str= (char*) get_ptr();
|
||
yylval->lex_str.length= 1;
|
||
c= yyGet(); // should be '.'
|
||
next_state= MY_LEX_IDENT_START; // Next is ident (not keyword)
|
||
if (!ident_map[(uchar) yyPeek()]) // Probably ` or "
|
||
next_state= MY_LEX_START;
|
||
return((int) c);
|
||
|
||
case MY_LEX_NUMBER_IDENT: // number or ident which num-start
|
||
if (yyGetLast() == '0')
|
||
{
|
||
c= yyGet();
|
||
if (c == 'x')
|
||
{
|
||
while (my_isxdigit(cs, (c = yyGet()))) ;
|
||
if ((yyLength() >= 3) && !ident_map[c])
|
||
{
|
||
/* skip '0x' */
|
||
yylval->lex_str= get_token(2, yyLength() - 2);
|
||
return (HEX_NUM);
|
||
}
|
||
yyUnget();
|
||
state= MY_LEX_IDENT_START;
|
||
break;
|
||
}
|
||
else if (c == 'b')
|
||
{
|
||
while ((c= yyGet()) == '0' || c == '1')
|
||
;
|
||
if ((yyLength() >= 3) && !ident_map[c])
|
||
{
|
||
/* Skip '0b' */
|
||
yylval->lex_str= get_token(2, yyLength() - 2);
|
||
return (BIN_NUM);
|
||
}
|
||
yyUnget();
|
||
state= MY_LEX_IDENT_START;
|
||
break;
|
||
}
|
||
yyUnget();
|
||
}
|
||
|
||
while (my_isdigit(cs, (c= yyGet()))) ;
|
||
if (!ident_map[c])
|
||
{ // Can't be identifier
|
||
state=MY_LEX_INT_OR_REAL;
|
||
break;
|
||
}
|
||
if (c == 'e' || c == 'E')
|
||
{
|
||
// The following test is written this way to allow numbers of type 1e1
|
||
if (my_isdigit(cs, yyPeek()) ||
|
||
(c=(yyGet())) == '+' || c == '-')
|
||
{ // Allow 1E+10
|
||
if (my_isdigit(cs, yyPeek())) // Number must have digit after sign
|
||
{
|
||
yySkip();
|
||
while (my_isdigit(cs, yyGet())) ;
|
||
yylval->lex_str= get_token(0, yyLength());
|
||
return(FLOAT_NUM);
|
||
}
|
||
}
|
||
/*
|
||
We've found:
|
||
- A sequence of digits
|
||
- Followed by 'e' or 'E'
|
||
- Followed by some byte XX which is not a known mantissa start,
|
||
and it's known to be a valid identifier part.
|
||
XX can be either a 8bit identifier character, or a multi-byte head.
|
||
*/
|
||
yyUnget();
|
||
return scan_ident_start(thd, &yylval->ident_cli);
|
||
}
|
||
/*
|
||
We've found:
|
||
- A sequence of digits
|
||
- Followed by some character XX, which is neither 'e' nor 'E',
|
||
and it's known to be a valid identifier part.
|
||
XX can be a 8bit identifier character, or a multi-byte head.
|
||
*/
|
||
yyUnget();
|
||
return scan_ident_start(thd, &yylval->ident_cli);
|
||
|
||
case MY_LEX_IDENT_START: // We come here after '.'
|
||
return scan_ident_start(thd, &yylval->ident_cli);
|
||
|
||
case MY_LEX_USER_VARIABLE_DELIMITER: // Found quote char
|
||
return scan_ident_delimited(thd, &yylval->ident_cli, m_tok_start[0]);
|
||
|
||
case MY_LEX_INT_OR_REAL: // Complete int or incomplete real
|
||
if (c != '.' || yyPeek() == '.')
|
||
{
|
||
/*
|
||
Found a complete integer number:
|
||
- the number is either not followed by a dot at all, or
|
||
- the number is followed by a double dot as in: FOR i IN 1..10
|
||
*/
|
||
yylval->lex_str= get_token(0, yyLength());
|
||
return int_token(yylval->lex_str.str, (uint) yylval->lex_str.length);
|
||
}
|
||
// fall through
|
||
case MY_LEX_REAL: // Incomplete real number
|
||
while (my_isdigit(cs, c= yyGet())) ;
|
||
|
||
if (c == 'e' || c == 'E')
|
||
{
|
||
c= yyGet();
|
||
if (c == '-' || c == '+')
|
||
c= yyGet(); // Skip sign
|
||
if (!my_isdigit(cs, c))
|
||
{ // No digit after sign
|
||
state= MY_LEX_CHAR;
|
||
break;
|
||
}
|
||
while (my_isdigit(cs, yyGet())) ;
|
||
yylval->lex_str= get_token(0, yyLength());
|
||
return(FLOAT_NUM);
|
||
}
|
||
yylval->lex_str= get_token(0, yyLength());
|
||
return(DECIMAL_NUM);
|
||
|
||
case MY_LEX_HEX_NUMBER: // Found x'hexstring'
|
||
yySkip(); // Accept opening '
|
||
while (my_isxdigit(cs, (c= yyGet()))) ;
|
||
if (c != '\'')
|
||
return(ABORT_SYM); // Illegal hex constant
|
||
yySkip(); // Accept closing '
|
||
length= yyLength(); // Length of hexnum+3
|
||
if ((length % 2) == 0)
|
||
return(ABORT_SYM); // odd number of hex digits
|
||
yylval->lex_str= get_token(2, // skip x'
|
||
length - 3); // don't count x' and last '
|
||
return HEX_STRING;
|
||
|
||
case MY_LEX_BIN_NUMBER: // Found b'bin-string'
|
||
yySkip(); // Accept opening '
|
||
while ((c= yyGet()) == '0' || c == '1')
|
||
;
|
||
if (c != '\'')
|
||
return(ABORT_SYM); // Illegal hex constant
|
||
yySkip(); // Accept closing '
|
||
length= yyLength(); // Length of bin-num + 3
|
||
yylval->lex_str= get_token(2, // skip b'
|
||
length - 3); // don't count b' and last '
|
||
return (BIN_NUM);
|
||
|
||
case MY_LEX_CMP_OP: // Incomplete comparison operator
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP ||
|
||
state_map[(uchar) yyPeek()] == MY_LEX_LONG_CMP_OP)
|
||
{
|
||
yySkip();
|
||
if ((tokval= find_keyword(&yylval->kwd, 2, 0)))
|
||
return(tokval);
|
||
yyUnget();
|
||
}
|
||
return(c);
|
||
|
||
case MY_LEX_LONG_CMP_OP: // Incomplete comparison operator
|
||
next_state= MY_LEX_START;
|
||
if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP ||
|
||
state_map[(uchar) yyPeek()] == MY_LEX_LONG_CMP_OP)
|
||
{
|
||
yySkip();
|
||
if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP)
|
||
{
|
||
yySkip();
|
||
if ((tokval= find_keyword(&yylval->kwd, 3, 0)))
|
||
return(tokval);
|
||
yyUnget();
|
||
}
|
||
if ((tokval= find_keyword(&yylval->kwd, 2, 0)))
|
||
return(tokval);
|
||
yyUnget();
|
||
}
|
||
return(c);
|
||
|
||
case MY_LEX_BOOL:
|
||
if (c != yyPeek())
|
||
{
|
||
state= MY_LEX_CHAR;
|
||
break;
|
||
}
|
||
yySkip();
|
||
tokval= find_keyword(&yylval->kwd, 2, 0); // Is a bool operator
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
return(tokval);
|
||
|
||
case MY_LEX_STRING_OR_DELIMITER:
|
||
if (thd->variables.sql_mode & MODE_ANSI_QUOTES)
|
||
{
|
||
state= MY_LEX_USER_VARIABLE_DELIMITER;
|
||
break;
|
||
}
|
||
/* " used for strings */
|
||
/* fall through */
|
||
case MY_LEX_STRING: // Incomplete text string
|
||
{
|
||
uint sep;
|
||
if (get_text(&yylval->lex_string_with_metadata, (sep= yyGetLast()), 1, 1))
|
||
{
|
||
state= MY_LEX_CHAR; // Read char by char
|
||
break;
|
||
}
|
||
CHARSET_INFO *strcs= m_underscore_cs ? m_underscore_cs : cs;
|
||
body_utf8_append(m_cpp_text_start);
|
||
|
||
body_utf8_append_escape(thd, &yylval->lex_string_with_metadata,
|
||
strcs, m_cpp_text_end, sep);
|
||
m_underscore_cs= NULL;
|
||
return(TEXT_STRING);
|
||
}
|
||
case MY_LEX_COMMENT: // Comment
|
||
lex->lex_options|= OPTION_LEX_FOUND_COMMENT;
|
||
while ((c= yyGet()) != '\n' && c) ;
|
||
yyUnget(); // Safety against eof
|
||
state= MY_LEX_START; // Try again
|
||
break;
|
||
case MY_LEX_LONG_COMMENT: // Long C comment?
|
||
if (yyPeek() != '*')
|
||
{
|
||
state= MY_LEX_CHAR; // Probable division
|
||
break;
|
||
}
|
||
lex->lex_options|= OPTION_LEX_FOUND_COMMENT;
|
||
/* Reject '/' '*', since we might need to turn off the echo */
|
||
yyUnget();
|
||
|
||
save_in_comment_state();
|
||
|
||
if (yyPeekn(2) == '!' ||
|
||
(yyPeekn(2) == 'M' && yyPeekn(3) == '!'))
|
||
{
|
||
bool maria_comment_syntax= yyPeekn(2) == 'M';
|
||
in_comment= DISCARD_COMMENT;
|
||
/* Accept '/' '*' '!', but do not keep this marker. */
|
||
set_echo(FALSE);
|
||
yySkipn(maria_comment_syntax ? 4 : 3);
|
||
|
||
/*
|
||
The special comment format is very strict:
|
||
'/' '*' '!', followed by an optional 'M' and exactly
|
||
1-2 digits (major), 2 digits (minor), then 2 digits (dot).
|
||
32302 -> 3.23.02
|
||
50032 -> 5.0.32
|
||
50114 -> 5.1.14
|
||
100000 -> 10.0.0
|
||
*/
|
||
if ( my_isdigit(cs, yyPeekn(0))
|
||
&& my_isdigit(cs, yyPeekn(1))
|
||
&& my_isdigit(cs, yyPeekn(2))
|
||
&& my_isdigit(cs, yyPeekn(3))
|
||
&& my_isdigit(cs, yyPeekn(4))
|
||
)
|
||
{
|
||
ulong version;
|
||
uint length= 5;
|
||
char *end_ptr= (char*) get_ptr() + length;
|
||
int error;
|
||
if (my_isdigit(cs, yyPeekn(5)))
|
||
{
|
||
end_ptr++; // 6 digit number
|
||
length++;
|
||
}
|
||
|
||
version= (ulong) my_strtoll10(get_ptr(), &end_ptr, &error);
|
||
|
||
/*
|
||
MySQL-5.7 has new features and might have new SQL syntax that
|
||
MariaDB-10.0 does not understand. Ignore all versioned comments
|
||
with MySQL versions in the range 50700-999999, but
|
||
do not ignore MariaDB specific comments for the same versions.
|
||
*/
|
||
if (version <= MYSQL_VERSION_ID &&
|
||
(version < 50700 || version > 99999 || maria_comment_syntax))
|
||
{
|
||
/* Accept 'M' 'm' 'm' 'd' 'd' */
|
||
yySkipn(length);
|
||
/* Expand the content of the special comment as real code */
|
||
set_echo(TRUE);
|
||
state=MY_LEX_START;
|
||
break; /* Do not treat contents as a comment. */
|
||
}
|
||
else
|
||
{
|
||
#ifdef WITH_WSREP
|
||
if (WSREP(thd) && version == 99997 && wsrep_thd_is_local(thd))
|
||
{
|
||
WSREP_DEBUG("consistency check: %s", thd->query());
|
||
thd->wsrep_consistency_check= CONSISTENCY_CHECK_DECLARED;
|
||
yySkipn(5);
|
||
set_echo(TRUE);
|
||
state= MY_LEX_START;
|
||
break; /* Do not treat contents as a comment. */
|
||
}
|
||
#endif /* WITH_WSREP */
|
||
/*
|
||
Patch and skip the conditional comment to avoid it
|
||
being propagated infinitely (eg. to a slave).
|
||
*/
|
||
char *pcom= yyUnput(' ');
|
||
comment_closed= ! consume_comment(1);
|
||
if (! comment_closed)
|
||
{
|
||
*pcom= '!';
|
||
}
|
||
/* version allowed to have one level of comment inside. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Not a version comment. */
|
||
state=MY_LEX_START;
|
||
set_echo(TRUE);
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
in_comment= PRESERVE_COMMENT;
|
||
yySkip(); // Accept /
|
||
yySkip(); // Accept *
|
||
comment_closed= ! consume_comment(0);
|
||
/* regular comments can have zero comments inside. */
|
||
}
|
||
/*
|
||
Discard:
|
||
- regular '/' '*' comments,
|
||
- special comments '/' '*' '!' for a future version,
|
||
by scanning until we find a closing '*' '/' marker.
|
||
|
||
Nesting regular comments isn't allowed. The first
|
||
'*' '/' returns the parser to the previous state.
|
||
|
||
/#!VERSI oned containing /# regular #/ is allowed #/
|
||
|
||
Inside one versioned comment, another versioned comment
|
||
is treated as a regular discardable comment. It gets
|
||
no special parsing.
|
||
*/
|
||
|
||
/* Unbalanced comments with a missing '*' '/' are a syntax error */
|
||
if (! comment_closed)
|
||
return (ABORT_SYM);
|
||
state = MY_LEX_START; // Try again
|
||
restore_in_comment_state();
|
||
break;
|
||
case MY_LEX_END_LONG_COMMENT:
|
||
if ((in_comment != NO_COMMENT) && yyPeek() == '/')
|
||
{
|
||
/* Reject '*' '/' */
|
||
yyUnget();
|
||
/* Accept '*' '/', with the proper echo */
|
||
set_echo(in_comment == PRESERVE_COMMENT);
|
||
yySkipn(2);
|
||
/* And start recording the tokens again */
|
||
set_echo(TRUE);
|
||
in_comment= NO_COMMENT;
|
||
state=MY_LEX_START;
|
||
}
|
||
else
|
||
state= MY_LEX_CHAR; // Return '*'
|
||
break;
|
||
case MY_LEX_SET_VAR: // Check if ':='
|
||
if (yyPeek() != '=')
|
||
{
|
||
next_state= MY_LEX_START;
|
||
if (m_thd->variables.sql_mode & MODE_ORACLE)
|
||
{
|
||
yylval->kwd.set_keyword(m_tok_start, 1);
|
||
return COLON_ORACLE_SYM;
|
||
}
|
||
return (int) ':';
|
||
}
|
||
yySkip();
|
||
return (SET_VAR);
|
||
case MY_LEX_SEMICOLON: // optional line terminator
|
||
state= MY_LEX_CHAR; // Return ';'
|
||
break;
|
||
case MY_LEX_EOL:
|
||
if (eof())
|
||
{
|
||
yyUnget(); // Reject the last '\0'
|
||
set_echo(FALSE);
|
||
yySkip();
|
||
set_echo(TRUE);
|
||
/* Unbalanced comments with a missing '*' '/' are a syntax error */
|
||
if (in_comment != NO_COMMENT)
|
||
return (ABORT_SYM);
|
||
next_state= MY_LEX_END; // Mark for next loop
|
||
return(END_OF_INPUT);
|
||
}
|
||
state=MY_LEX_CHAR;
|
||
break;
|
||
case MY_LEX_END:
|
||
next_state= MY_LEX_END;
|
||
return(0); // We found end of input last time
|
||
|
||
/* Actually real shouldn't start with . but allow them anyhow */
|
||
case MY_LEX_REAL_OR_POINT:
|
||
if (my_isdigit(cs, (c= yyPeek())))
|
||
state = MY_LEX_REAL; // Real
|
||
else if (c == '.')
|
||
{
|
||
yySkip();
|
||
return DOT_DOT_SYM;
|
||
}
|
||
else
|
||
{
|
||
state= MY_LEX_IDENT_SEP; // return '.'
|
||
yyUnget(); // Put back '.'
|
||
}
|
||
break;
|
||
case MY_LEX_USER_END: // end '@' of user@hostname
|
||
switch (state_map[(uchar) yyPeek()]) {
|
||
case MY_LEX_STRING:
|
||
case MY_LEX_USER_VARIABLE_DELIMITER:
|
||
case MY_LEX_STRING_OR_DELIMITER:
|
||
break;
|
||
case MY_LEX_USER_END:
|
||
next_state= MY_LEX_SYSTEM_VAR;
|
||
break;
|
||
default:
|
||
next_state= MY_LEX_HOSTNAME;
|
||
break;
|
||
}
|
||
yylval->lex_str.str= (char*) get_ptr() - 1;
|
||
yylval->lex_str.length= 1;
|
||
return((int) '@');
|
||
case MY_LEX_HOSTNAME: // end '@' of user@hostname
|
||
for (c= yyGet() ;
|
||
my_isalnum(cs, c) || c == '.' || c == '_' || c == '$';
|
||
c= yyGet()) ;
|
||
yylval->lex_str= get_token(0, yyLength());
|
||
return(LEX_HOSTNAME);
|
||
case MY_LEX_SYSTEM_VAR:
|
||
yylval->lex_str.str= (char*) get_ptr();
|
||
yylval->lex_str.length= 1;
|
||
yySkip(); // Skip '@'
|
||
next_state= (state_map[(uchar) yyPeek()] ==
|
||
MY_LEX_USER_VARIABLE_DELIMITER ?
|
||
MY_LEX_OPERATOR_OR_IDENT :
|
||
MY_LEX_IDENT_OR_KEYWORD);
|
||
return((int) '@');
|
||
case MY_LEX_IDENT_OR_KEYWORD:
|
||
/*
|
||
We come here when we have found two '@' in a row.
|
||
We should now be able to handle:
|
||
[(global | local | session) .]variable_name
|
||
*/
|
||
return scan_ident_sysvar(thd, &yylval->ident_cli);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
bool Lex_input_stream::get_7bit_or_8bit_ident(THD *thd, uchar *last_char)
|
||
{
|
||
uchar c;
|
||
CHARSET_INFO *const cs= thd->charset();
|
||
const uchar *const ident_map= cs->ident_map;
|
||
bool is_8bit= false;
|
||
for ( ; ident_map[c= yyGet()]; )
|
||
{
|
||
if (c & 0x80)
|
||
is_8bit= true; // will convert
|
||
}
|
||
*last_char= c;
|
||
return is_8bit;
|
||
}
|
||
|
||
|
||
int Lex_input_stream::scan_ident_sysvar(THD *thd, Lex_ident_cli_st *str)
|
||
{
|
||
uchar last_char;
|
||
uint length;
|
||
int tokval;
|
||
bool is_8bit;
|
||
DBUG_ASSERT(m_tok_start == m_ptr);
|
||
|
||
is_8bit= get_7bit_or_8bit_ident(thd, &last_char);
|
||
|
||
if (last_char == '.')
|
||
next_state= MY_LEX_IDENT_SEP;
|
||
if (!(length= yyLength()))
|
||
return ABORT_SYM; // Names must be nonempty.
|
||
if ((tokval= find_keyword(str, length, 0)))
|
||
{
|
||
yyUnget(); // Put back 'c'
|
||
return tokval; // Was keyword
|
||
}
|
||
|
||
yyUnget(); // ptr points now after last token char
|
||
str->set_ident(m_tok_start, length, is_8bit);
|
||
|
||
m_cpp_text_start= m_cpp_tok_start;
|
||
m_cpp_text_end= m_cpp_text_start + length;
|
||
body_utf8_append(m_cpp_text_start);
|
||
body_utf8_append_ident(thd, str, m_cpp_text_end);
|
||
|
||
return is_8bit ? IDENT_QUOTED : IDENT;
|
||
}
|
||
|
||
|
||
/*
|
||
We can come here if different parsing stages:
|
||
- In an identifier chain:
|
||
SELECT t1.cccc FROM t1;
|
||
(when the "cccc" part starts)
|
||
In this case both m_tok_start and m_ptr point to "cccc".
|
||
- When a sequence of digits has changed to something else,
|
||
therefore the token becomes an identifier rather than a number:
|
||
SELECT 12345_6 FROM t1;
|
||
In this case m_tok_start points to the entire "12345_678",
|
||
while m_ptr points to "678".
|
||
*/
|
||
int Lex_input_stream::scan_ident_start(THD *thd, Lex_ident_cli_st *str)
|
||
{
|
||
uchar c;
|
||
bool is_8bit;
|
||
CHARSET_INFO *const cs= thd->charset();
|
||
const uchar *const ident_map= cs->ident_map;
|
||
DBUG_ASSERT(m_tok_start <= m_ptr);
|
||
|
||
if (use_mb(cs))
|
||
{
|
||
is_8bit= true;
|
||
while (ident_map[c= yyGet()])
|
||
{
|
||
int char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query());
|
||
if (char_length <= 0)
|
||
break;
|
||
skip_binary(char_length - 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
is_8bit= get_7bit_or_8bit_ident(thd, &c);
|
||
}
|
||
if (c == '.' && ident_map[(uchar) yyPeek()])
|
||
next_state= MY_LEX_IDENT_SEP;// Next is '.'
|
||
|
||
uint length= yyLength();
|
||
yyUnget(); // ptr points now after last token char
|
||
str->set_ident(m_tok_start, length, is_8bit);
|
||
m_cpp_text_start= m_cpp_tok_start;
|
||
m_cpp_text_end= m_cpp_text_start + length;
|
||
body_utf8_append(m_cpp_text_start);
|
||
body_utf8_append_ident(thd, str, m_cpp_text_end);
|
||
return is_8bit ? IDENT_QUOTED : IDENT;
|
||
}
|
||
|
||
|
||
int Lex_input_stream::scan_ident_middle(THD *thd, Lex_ident_cli_st *str,
|
||
CHARSET_INFO **introducer,
|
||
my_lex_states *st)
|
||
{
|
||
CHARSET_INFO *const cs= thd->charset();
|
||
const uchar *const ident_map= cs->ident_map;
|
||
const uchar *const state_map= cs->state_map;
|
||
const char *start;
|
||
uint length;
|
||
uchar c;
|
||
bool is_8bit;
|
||
bool resolve_introducer= true;
|
||
DBUG_ASSERT(m_ptr == m_tok_start + 1); // m_ptr points to the second byte
|
||
|
||
if (use_mb(cs))
|
||
{
|
||
is_8bit= true;
|
||
int char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query());
|
||
if (char_length <= 0)
|
||
{
|
||
*st= MY_LEX_CHAR;
|
||
return 0;
|
||
}
|
||
skip_binary(char_length - 1);
|
||
|
||
while (ident_map[c= yyGet()])
|
||
{
|
||
char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query());
|
||
if (char_length <= 0)
|
||
break;
|
||
if (char_length > 1 || (c & 0x80))
|
||
resolve_introducer= false;
|
||
skip_binary(char_length - 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
is_8bit= get_7bit_or_8bit_ident(thd, &c) || (m_tok_start[0] & 0x80);
|
||
resolve_introducer= !is_8bit;
|
||
}
|
||
length= yyLength();
|
||
start= get_ptr();
|
||
if (ignore_space)
|
||
{
|
||
/*
|
||
If we find a space then this can't be an identifier. We notice this
|
||
below by checking start != lex->ptr.
|
||
*/
|
||
for (; state_map[(uchar) c] == MY_LEX_SKIP ; c= yyGet())
|
||
{
|
||
if (c == '\n')
|
||
yylineno++;
|
||
}
|
||
}
|
||
if (start == get_ptr() && c == '.' && ident_map[(uchar) yyPeek()])
|
||
next_state= MY_LEX_IDENT_SEP;
|
||
else
|
||
{ // '(' must follow directly if function
|
||
int tokval;
|
||
yyUnget();
|
||
if ((tokval= find_keyword(str, length, c == '(')))
|
||
{
|
||
next_state= MY_LEX_START; // Allow signed numbers
|
||
return(tokval); // Was keyword
|
||
}
|
||
yySkip(); // next state does a unget
|
||
}
|
||
|
||
/*
|
||
Note: "SELECT _bla AS 'alias'"
|
||
_bla should be considered as a IDENT if charset haven't been found.
|
||
So we don't use MYF(MY_WME) with get_charset_by_csname to avoid
|
||
producing an error.
|
||
*/
|
||
DBUG_ASSERT(length > 0);
|
||
if (resolve_introducer && m_tok_start[0] == '_')
|
||
{
|
||
|
||
yyUnget(); // ptr points now after last token char
|
||
str->set_ident(m_tok_start, length, false);
|
||
|
||
m_cpp_text_start= m_cpp_tok_start;
|
||
m_cpp_text_end= m_cpp_text_start + length;
|
||
body_utf8_append(m_cpp_text_start, m_cpp_tok_start + length);
|
||
ErrConvString csname(str->str + 1, str->length - 1, &my_charset_bin);
|
||
CHARSET_INFO *cs= get_charset_by_csname(csname.ptr(),
|
||
MY_CS_PRIMARY, MYF(0));
|
||
if (cs)
|
||
{
|
||
*introducer= cs;
|
||
return UNDERSCORE_CHARSET;
|
||
}
|
||
return IDENT;
|
||
}
|
||
|
||
yyUnget(); // ptr points now after last token char
|
||
str->set_ident(m_tok_start, length, is_8bit);
|
||
m_cpp_text_start= m_cpp_tok_start;
|
||
m_cpp_text_end= m_cpp_text_start + length;
|
||
body_utf8_append(m_cpp_text_start);
|
||
body_utf8_append_ident(thd, str, m_cpp_text_end);
|
||
return is_8bit ? IDENT_QUOTED : IDENT;
|
||
}
|
||
|
||
|
||
int Lex_input_stream::scan_ident_delimited(THD *thd,
|
||
Lex_ident_cli_st *str,
|
||
uchar quote_char)
|
||
{
|
||
CHARSET_INFO *const cs= thd->charset();
|
||
uint double_quotes= 0;
|
||
uchar c;
|
||
DBUG_ASSERT(m_ptr == m_tok_start + 1);
|
||
|
||
while ((c= yyGet()))
|
||
{
|
||
int var_length= my_charlen(cs, get_ptr() - 1, get_end_of_query());
|
||
if (var_length == 1)
|
||
{
|
||
if (c == quote_char)
|
||
{
|
||
if (yyPeek() != quote_char)
|
||
break;
|
||
c= yyGet();
|
||
double_quotes++;
|
||
continue;
|
||
}
|
||
}
|
||
else if (var_length > 1)
|
||
{
|
||
skip_binary(var_length - 1);
|
||
}
|
||
}
|
||
|
||
str->set_ident_quoted(m_tok_start + 1, yyLength() - 1, true, quote_char);
|
||
yyUnget(); // ptr points now after last token char
|
||
|
||
m_cpp_text_start= m_cpp_tok_start + 1;
|
||
m_cpp_text_end= m_cpp_text_start + str->length;
|
||
|
||
if (c == quote_char)
|
||
yySkip(); // Skip end `
|
||
next_state= MY_LEX_START;
|
||
body_utf8_append(m_cpp_text_start);
|
||
// QQQ: shouldn't it add unescaped version ????
|
||
body_utf8_append_ident(thd, str, m_cpp_text_end);
|
||
return IDENT_QUOTED;
|
||
}
|
||
|
||
|
||
void trim_whitespace(CHARSET_INFO *cs, LEX_CSTRING *str, size_t * prefix_length)
|
||
{
|
||
/*
|
||
TODO:
|
||
This code assumes that there are no multi-bytes characters
|
||
that can be considered white-space.
|
||
*/
|
||
|
||
size_t plen= 0;
|
||
while ((str->length > 0) && (my_isspace(cs, str->str[0])))
|
||
{
|
||
plen++;
|
||
str->length --;
|
||
str->str ++;
|
||
}
|
||
if (prefix_length)
|
||
*prefix_length= plen;
|
||
/*
|
||
FIXME:
|
||
Also, parsing backward is not safe with multi bytes characters
|
||
*/
|
||
while ((str->length > 0) && (my_isspace(cs, str->str[str->length-1])))
|
||
{
|
||
str->length --;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
st_select_lex structures initialisations
|
||
*/
|
||
|
||
void st_select_lex_node::init_query_common()
|
||
{
|
||
options= 0;
|
||
set_linkage(UNSPECIFIED_TYPE);
|
||
distinct= TRUE;
|
||
no_table_names_allowed= 0;
|
||
uncacheable= 0;
|
||
}
|
||
|
||
void st_select_lex_unit::init_query()
|
||
{
|
||
init_query_common();
|
||
set_linkage(GLOBAL_OPTIONS_TYPE);
|
||
lim.set_unlimited();
|
||
union_distinct= 0;
|
||
prepared= optimized= optimized_2= executed= 0;
|
||
bag_set_op_optimized= 0;
|
||
optimize_started= 0;
|
||
item= 0;
|
||
union_result= 0;
|
||
table= 0;
|
||
fake_select_lex= 0;
|
||
saved_fake_select_lex= 0;
|
||
cleaned= 0;
|
||
item_list.empty();
|
||
describe= 0;
|
||
found_rows_for_union= 0;
|
||
derived= 0;
|
||
is_view= false;
|
||
with_clause= 0;
|
||
with_element= 0;
|
||
columns_are_renamed= false;
|
||
with_wrapped_tvc= false;
|
||
have_except_all_or_intersect_all= false;
|
||
}
|
||
|
||
void st_select_lex::init_query()
|
||
{
|
||
init_query_common();
|
||
table_list.empty();
|
||
top_join_list.empty();
|
||
join_list= &top_join_list;
|
||
embedding= 0;
|
||
leaf_tables_prep.empty();
|
||
leaf_tables.empty();
|
||
item_list.empty();
|
||
min_max_opt_list.empty();
|
||
join= 0;
|
||
having= prep_having= where= prep_where= 0;
|
||
cond_pushed_into_where= cond_pushed_into_having= 0;
|
||
attach_to_conds.empty();
|
||
olap= UNSPECIFIED_OLAP_TYPE;
|
||
having_fix_field= 0;
|
||
having_fix_field_for_pushed_cond= 0;
|
||
context.select_lex= this;
|
||
context.init();
|
||
cond_count= between_count= with_wild= 0;
|
||
max_equal_elems= 0;
|
||
ref_pointer_array.reset();
|
||
select_n_where_fields= 0;
|
||
select_n_reserved= 0;
|
||
select_n_having_items= 0;
|
||
n_sum_items= 0;
|
||
n_child_sum_items= 0;
|
||
hidden_bit_fields= 0;
|
||
subquery_in_having= explicit_limit= 0;
|
||
is_item_list_lookup= 0;
|
||
changed_elements= 0;
|
||
first_natural_join_processing= 1;
|
||
first_cond_optimization= 1;
|
||
parsing_place= NO_MATTER;
|
||
save_parsing_place= NO_MATTER;
|
||
exclude_from_table_unique_test= no_wrap_view_item= FALSE;
|
||
nest_level= 0;
|
||
link_next= 0;
|
||
prep_leaf_list_state= UNINIT;
|
||
have_merged_subqueries= FALSE;
|
||
bzero((char*) expr_cache_may_be_used, sizeof(expr_cache_may_be_used));
|
||
select_list_tables= 0;
|
||
m_non_agg_field_used= false;
|
||
m_agg_func_used= false;
|
||
m_custom_agg_func_used= false;
|
||
window_specs.empty();
|
||
window_funcs.empty();
|
||
tvc= 0;
|
||
in_tvc= false;
|
||
versioned_tables= 0;
|
||
pushdown_select= 0;
|
||
}
|
||
|
||
void st_select_lex::init_select()
|
||
{
|
||
sj_nests.empty();
|
||
sj_subselects.empty();
|
||
group_list.empty();
|
||
if (group_list_ptrs)
|
||
group_list_ptrs->clear();
|
||
type= 0;
|
||
db= null_clex_str;
|
||
having= 0;
|
||
table_join_options= 0;
|
||
in_sum_expr= with_wild= 0;
|
||
options= 0;
|
||
ftfunc_list_alloc.empty();
|
||
inner_sum_func_list= 0;
|
||
ftfunc_list= &ftfunc_list_alloc;
|
||
order_list.empty();
|
||
/* Set limit and offset to default values */
|
||
select_limit= 0; /* denotes the default limit = HA_POS_ERROR */
|
||
offset_limit= 0; /* denotes the default offset = 0 */
|
||
is_set_query_expr_tail= false;
|
||
with_sum_func= 0;
|
||
with_all_modifier= 0;
|
||
is_correlated= 0;
|
||
cur_pos_in_select_list= UNDEF_POS;
|
||
cond_value= having_value= Item::COND_UNDEF;
|
||
inner_refs_list.empty();
|
||
insert_tables= 0;
|
||
merged_into= 0;
|
||
m_non_agg_field_used= false;
|
||
m_agg_func_used= false;
|
||
m_custom_agg_func_used= false;
|
||
name_visibility_map.clear_all();
|
||
with_dep= 0;
|
||
join= 0;
|
||
lock_type= TL_READ_DEFAULT;
|
||
tvc= 0;
|
||
in_funcs.empty();
|
||
curr_tvc_name= 0;
|
||
in_tvc= false;
|
||
versioned_tables= 0;
|
||
nest_flags= 0;
|
||
}
|
||
|
||
/*
|
||
st_select_lex structures linking
|
||
*/
|
||
|
||
/* include on level down */
|
||
void st_select_lex_node::include_down(st_select_lex_node *upper)
|
||
{
|
||
if ((next= upper->slave))
|
||
next->prev= &next;
|
||
prev= &upper->slave;
|
||
upper->slave= this;
|
||
master= upper;
|
||
slave= 0;
|
||
}
|
||
|
||
|
||
void st_select_lex_node::add_slave(st_select_lex_node *slave_arg)
|
||
{
|
||
for (; slave; slave= slave->next)
|
||
if (slave == slave_arg)
|
||
return;
|
||
|
||
if (slave)
|
||
{
|
||
st_select_lex_node *slave_arg_slave= slave_arg->slave;
|
||
/* Insert in the front of list of slaves if any. */
|
||
slave_arg->include_neighbour(slave);
|
||
/* include_neighbour() sets slave_arg->slave=0, restore it. */
|
||
slave_arg->slave= slave_arg_slave;
|
||
/* Count on include_neighbour() setting the master. */
|
||
DBUG_ASSERT(slave_arg->master == this);
|
||
}
|
||
else
|
||
{
|
||
slave= slave_arg;
|
||
slave_arg->master= this;
|
||
}
|
||
}
|
||
|
||
void st_select_lex_node::link_chain_down(st_select_lex_node *first)
|
||
{
|
||
st_select_lex_node *last_node;
|
||
st_select_lex_node *node= first;
|
||
do
|
||
{
|
||
last_node= node;
|
||
node->master= this;
|
||
node= node->next;
|
||
} while (node);
|
||
if ((last_node->next= slave))
|
||
{
|
||
slave->prev= &last_node->next;
|
||
}
|
||
first->prev= &slave;
|
||
slave= first;
|
||
}
|
||
|
||
/*
|
||
include on level down (but do not link)
|
||
|
||
SYNOPSYS
|
||
st_select_lex_node::include_standalone()
|
||
upper - reference on node underr which this node should be included
|
||
ref - references on reference on this node
|
||
*/
|
||
void st_select_lex_node::include_standalone(st_select_lex_node *upper,
|
||
st_select_lex_node **ref)
|
||
{
|
||
next= 0;
|
||
prev= ref;
|
||
master= upper;
|
||
slave= 0;
|
||
}
|
||
|
||
/* include neighbour (on same level) */
|
||
void st_select_lex_node::include_neighbour(st_select_lex_node *before)
|
||
{
|
||
if ((next= before->next))
|
||
next->prev= &next;
|
||
prev= &before->next;
|
||
before->next= this;
|
||
master= before->master;
|
||
slave= 0;
|
||
}
|
||
|
||
/* including in global SELECT_LEX list */
|
||
void st_select_lex_node::include_global(st_select_lex_node **plink)
|
||
{
|
||
if ((link_next= *plink))
|
||
link_next->link_prev= &link_next;
|
||
link_prev= plink;
|
||
*plink= this;
|
||
}
|
||
|
||
//excluding from global list (internal function)
|
||
void st_select_lex_node::fast_exclude()
|
||
{
|
||
if (link_prev)
|
||
{
|
||
if ((*link_prev= link_next))
|
||
link_next->link_prev= link_prev;
|
||
}
|
||
// Remove slave structure
|
||
for (; slave; slave= slave->next)
|
||
slave->fast_exclude();
|
||
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Insert a new chain of nodes into another chain before a particular link
|
||
|
||
@param in/out
|
||
ptr_pos_to_insert the address of the chain pointer pointing to the link
|
||
before which the subchain has to be inserted
|
||
@param
|
||
end_chain_node the last link of the subchain to be inserted
|
||
|
||
@details
|
||
The method inserts the chain of nodes starting from this node and ending
|
||
with the node nd_chain_node into another chain of nodes before the node
|
||
pointed to by *ptr_pos_to_insert.
|
||
It is assumed that ptr_pos_to_insert belongs to the chain where we insert.
|
||
So it must be updated.
|
||
|
||
@retval
|
||
The method returns the pointer to the first link of the inserted chain
|
||
*/
|
||
|
||
st_select_lex_node *st_select_lex_node:: insert_chain_before(
|
||
st_select_lex_node **ptr_pos_to_insert,
|
||
st_select_lex_node *end_chain_node)
|
||
{
|
||
end_chain_node->link_next= *ptr_pos_to_insert;
|
||
(*ptr_pos_to_insert)->link_prev= &end_chain_node->link_next;
|
||
this->link_prev= ptr_pos_to_insert;
|
||
return this;
|
||
}
|
||
|
||
|
||
/*
|
||
Detach the node from its master and attach it to a new master
|
||
*/
|
||
|
||
void st_select_lex_node::move_as_slave(st_select_lex_node *new_master)
|
||
{
|
||
exclude_from_tree();
|
||
if (new_master->slave)
|
||
{
|
||
st_select_lex_node *curr= new_master->slave;
|
||
for ( ; curr->next ; curr= curr->next) ;
|
||
prev= &curr->next;
|
||
}
|
||
else
|
||
prev= &new_master->slave;
|
||
*prev= this;
|
||
next= 0;
|
||
master= new_master;
|
||
}
|
||
|
||
|
||
/*
|
||
Exclude a node from the tree lex structure, but leave it in the global
|
||
list of nodes.
|
||
*/
|
||
|
||
void st_select_lex_node::exclude_from_tree()
|
||
{
|
||
if ((*prev= next))
|
||
next->prev= prev;
|
||
}
|
||
|
||
|
||
/*
|
||
Exclude select_lex structure (except first (first select can't be
|
||
deleted, because it is most upper select))
|
||
*/
|
||
void st_select_lex_node::exclude()
|
||
{
|
||
/* exclude from global list */
|
||
fast_exclude();
|
||
/* exclude from other structures */
|
||
exclude_from_tree();
|
||
/*
|
||
We do not need following statements, because prev pointer of first
|
||
list element point to master->slave
|
||
if (master->slave == this)
|
||
master->slave= next;
|
||
*/
|
||
}
|
||
|
||
|
||
/*
|
||
Exclude level of current unit from tree of SELECTs
|
||
|
||
SYNOPSYS
|
||
st_select_lex_unit::exclude_level()
|
||
|
||
NOTE: units which belong to current will be brought up on level of
|
||
currernt unit
|
||
*/
|
||
void st_select_lex_unit::exclude_level()
|
||
{
|
||
SELECT_LEX_UNIT *units= 0, **units_last= &units;
|
||
for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
||
{
|
||
// unlink current level from global SELECTs list
|
||
if (sl->link_prev && (*sl->link_prev= sl->link_next))
|
||
sl->link_next->link_prev= sl->link_prev;
|
||
|
||
// bring up underlay levels
|
||
SELECT_LEX_UNIT **last= 0;
|
||
for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit())
|
||
{
|
||
u->master= master;
|
||
last= (SELECT_LEX_UNIT**)&(u->next);
|
||
}
|
||
if (last)
|
||
{
|
||
(*units_last)= sl->first_inner_unit();
|
||
units_last= last;
|
||
}
|
||
}
|
||
if (units)
|
||
{
|
||
// include brought up levels in place of current
|
||
(*prev)= units;
|
||
(*units_last)= (SELECT_LEX_UNIT*)next;
|
||
if (next)
|
||
next->prev= (SELECT_LEX_NODE**)units_last;
|
||
units->prev= prev;
|
||
}
|
||
else
|
||
{
|
||
// exclude currect unit from list of nodes
|
||
(*prev)= next;
|
||
if (next)
|
||
next->prev= prev;
|
||
}
|
||
// Mark it excluded
|
||
prev= NULL;
|
||
}
|
||
|
||
|
||
#if 0
|
||
/*
|
||
Exclude subtree of current unit from tree of SELECTs
|
||
|
||
SYNOPSYS
|
||
st_select_lex_unit::exclude_tree()
|
||
*/
|
||
void st_select_lex_unit::exclude_tree()
|
||
{
|
||
for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
||
{
|
||
// unlink current level from global SELECTs list
|
||
if (sl->link_prev && (*sl->link_prev= sl->link_next))
|
||
sl->link_next->link_prev= sl->link_prev;
|
||
|
||
// unlink underlay levels
|
||
for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit())
|
||
{
|
||
u->exclude_level();
|
||
}
|
||
}
|
||
// exclude currect unit from list of nodes
|
||
(*prev)= next;
|
||
if (next)
|
||
next->prev= prev;
|
||
}
|
||
#endif
|
||
|
||
|
||
/*
|
||
st_select_lex_node::mark_as_dependent mark all st_select_lex struct from
|
||
this to 'last' as dependent
|
||
|
||
SYNOPSIS
|
||
last - pointer to last st_select_lex struct, before which all
|
||
st_select_lex have to be marked as dependent
|
||
|
||
NOTE
|
||
'last' should be reachable from this st_select_lex_node
|
||
*/
|
||
|
||
bool st_select_lex::mark_as_dependent(THD *thd, st_select_lex *last,
|
||
Item *dependency)
|
||
{
|
||
|
||
DBUG_ASSERT(this != last);
|
||
|
||
/*
|
||
Mark all selects from resolved to 1 before select where was
|
||
found table as depended (of select where was found table)
|
||
*/
|
||
SELECT_LEX *s= this;
|
||
do
|
||
{
|
||
if (!(s->uncacheable & UNCACHEABLE_DEPENDENT_GENERATED))
|
||
{
|
||
// Select is dependent of outer select
|
||
s->uncacheable= (s->uncacheable & ~UNCACHEABLE_UNITED) |
|
||
UNCACHEABLE_DEPENDENT_GENERATED;
|
||
SELECT_LEX_UNIT *munit= s->master_unit();
|
||
munit->uncacheable= (munit->uncacheable & ~UNCACHEABLE_UNITED) |
|
||
UNCACHEABLE_DEPENDENT_GENERATED;
|
||
for (SELECT_LEX *sl= munit->first_select(); sl ; sl= sl->next_select())
|
||
{
|
||
if (sl != s &&
|
||
!(sl->uncacheable & (UNCACHEABLE_DEPENDENT_GENERATED |
|
||
UNCACHEABLE_UNITED)))
|
||
sl->uncacheable|= UNCACHEABLE_UNITED;
|
||
}
|
||
}
|
||
|
||
Item_subselect *subquery_expr= s->master_unit()->item;
|
||
if (subquery_expr && subquery_expr->mark_as_dependent(thd, last,
|
||
dependency))
|
||
return TRUE;
|
||
} while ((s= s->outer_select()) != last && s != 0);
|
||
is_correlated= TRUE;
|
||
this->master_unit()->item->is_correlated= TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
/*
|
||
prohibit using LIMIT clause
|
||
*/
|
||
bool st_select_lex::test_limit()
|
||
{
|
||
if (select_limit != 0)
|
||
{
|
||
my_error(ER_NOT_SUPPORTED_YET, MYF(0),
|
||
"LIMIT & IN/ALL/ANY/SOME subquery");
|
||
return(1);
|
||
}
|
||
return(0);
|
||
}
|
||
|
||
|
||
|
||
st_select_lex* st_select_lex_unit::outer_select()
|
||
{
|
||
return (st_select_lex*) master;
|
||
}
|
||
|
||
|
||
ha_rows st_select_lex::get_offset()
|
||
{
|
||
ulonglong val= 0;
|
||
|
||
if (offset_limit)
|
||
{
|
||
// see comment for st_select_lex::get_limit()
|
||
bool err= offset_limit->fix_fields_if_needed(master_unit()->thd, NULL);
|
||
DBUG_ASSERT(!err);
|
||
val= err ? HA_POS_ERROR : offset_limit->val_uint();
|
||
}
|
||
|
||
return (ha_rows)val;
|
||
}
|
||
|
||
|
||
ha_rows st_select_lex::get_limit()
|
||
{
|
||
ulonglong val= HA_POS_ERROR;
|
||
|
||
if (select_limit)
|
||
{
|
||
/*
|
||
fix_fields() has not been called for select_limit. That's due to the
|
||
historical reasons -- this item could be only of type Item_int, and
|
||
Item_int does not require fix_fields(). Thus, fix_fields() was never
|
||
called for select_limit.
|
||
|
||
Some time ago, Item_splocal was also allowed for LIMIT / OFFSET clauses.
|
||
However, the fix_fields() behavior was not updated, which led to a crash
|
||
in some cases.
|
||
|
||
There is no single place where to call fix_fields() for LIMIT / OFFSET
|
||
items during the fix-fields-phase. Thus, for the sake of readability,
|
||
it was decided to do it here, on the evaluation phase (which is a
|
||
violation of design, but we chose the lesser of two evils).
|
||
|
||
We can call fix_fields() here, because select_limit can be of two
|
||
types only: Item_int and Item_splocal. Item_int::fix_fields() is trivial,
|
||
and Item_splocal::fix_fields() (or rather Item_sp_variable::fix_fields())
|
||
has the following properties:
|
||
1) it does not affect other items;
|
||
2) it does not fail.
|
||
|
||
Nevertheless DBUG_ASSERT was added to catch future changes in
|
||
fix_fields() implementation. Also added runtime check against a result
|
||
of fix_fields() in order to handle error condition in non-debug build.
|
||
*/
|
||
bool err= select_limit->fix_fields_if_needed(master_unit()->thd, NULL);
|
||
DBUG_ASSERT(!err);
|
||
val= err ? HA_POS_ERROR : select_limit->val_uint();
|
||
}
|
||
|
||
return (ha_rows)val;
|
||
}
|
||
|
||
|
||
bool st_select_lex::add_order_to_list(THD *thd, Item *item, bool asc)
|
||
{
|
||
return add_to_list(thd, order_list, item, asc);
|
||
}
|
||
|
||
|
||
bool st_select_lex::add_gorder_to_list(THD *thd, Item *item, bool asc)
|
||
{
|
||
return add_to_list(thd, gorder_list, item, asc);
|
||
}
|
||
|
||
|
||
bool st_select_lex::add_item_to_list(THD *thd, Item *item)
|
||
{
|
||
DBUG_ENTER("st_select_lex::add_item_to_list");
|
||
DBUG_PRINT("info", ("Item: %p", item));
|
||
DBUG_RETURN(item_list.push_back(item, thd->mem_root));
|
||
}
|
||
|
||
|
||
bool st_select_lex::add_group_to_list(THD *thd, Item *item, bool asc)
|
||
{
|
||
return add_to_list(thd, group_list, item, asc);
|
||
}
|
||
|
||
|
||
bool st_select_lex::add_ftfunc_to_list(THD *thd, Item_func_match *func)
|
||
{
|
||
return !func || ftfunc_list->push_back(func, thd->mem_root); // end of memory?
|
||
}
|
||
|
||
|
||
st_select_lex* st_select_lex::outer_select()
|
||
{
|
||
return (st_select_lex*) master->get_master();
|
||
}
|
||
|
||
|
||
bool st_select_lex::inc_in_sum_expr()
|
||
{
|
||
in_sum_expr++;
|
||
return 0;
|
||
}
|
||
|
||
|
||
uint st_select_lex::get_in_sum_expr()
|
||
{
|
||
return in_sum_expr;
|
||
}
|
||
|
||
|
||
TABLE_LIST* st_select_lex::get_table_list()
|
||
{
|
||
return table_list.first;
|
||
}
|
||
|
||
List<Item>* st_select_lex::get_item_list()
|
||
{
|
||
return &item_list;
|
||
}
|
||
|
||
ulong st_select_lex::get_table_join_options()
|
||
{
|
||
return table_join_options;
|
||
}
|
||
|
||
|
||
bool st_select_lex::setup_ref_array(THD *thd, uint order_group_num)
|
||
{
|
||
|
||
if (!((options & SELECT_DISTINCT) && !group_list.elements))
|
||
hidden_bit_fields= 0;
|
||
|
||
// find_order_in_list() may need some extra space, so multiply by two.
|
||
order_group_num*= 2;
|
||
|
||
/*
|
||
We have to create array in prepared statement memory if it is a
|
||
prepared statement
|
||
*/
|
||
Query_arena *arena= thd->stmt_arena;
|
||
const uint n_elems= (n_sum_items +
|
||
n_child_sum_items +
|
||
item_list.elements +
|
||
select_n_reserved +
|
||
select_n_having_items +
|
||
select_n_where_fields +
|
||
order_group_num +
|
||
hidden_bit_fields) * 5;
|
||
if (!ref_pointer_array.is_null())
|
||
{
|
||
/*
|
||
We need to take 'n_sum_items' into account when allocating the array,
|
||
and this may actually increase during the optimization phase due to
|
||
MIN/MAX rewrite in Item_in_subselect::single_value_transformer.
|
||
In the usual case we can reuse the array from the prepare phase.
|
||
If we need a bigger array, we must allocate a new one.
|
||
*/
|
||
if (ref_pointer_array.size() >= n_elems)
|
||
return false;
|
||
}
|
||
Item **array= static_cast<Item**>(arena->alloc(sizeof(Item*) * n_elems));
|
||
if (likely(array != NULL))
|
||
ref_pointer_array= Ref_ptr_array(array, n_elems);
|
||
|
||
return array == NULL;
|
||
}
|
||
|
||
|
||
void st_select_lex_unit::print(String *str, enum_query_type query_type)
|
||
{
|
||
if (with_clause)
|
||
with_clause->print(str, query_type);
|
||
for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
||
{
|
||
if (sl != first_select())
|
||
{
|
||
switch (sl->linkage)
|
||
{
|
||
default:
|
||
DBUG_ASSERT(0);
|
||
/* fall through */
|
||
case UNION_TYPE:
|
||
str->append(STRING_WITH_LEN(" union "));
|
||
break;
|
||
case INTERSECT_TYPE:
|
||
str->append(STRING_WITH_LEN(" intersect "));
|
||
break;
|
||
case EXCEPT_TYPE:
|
||
str->append(STRING_WITH_LEN(" except "));
|
||
break;
|
||
}
|
||
if (!sl->distinct)
|
||
str->append(STRING_WITH_LEN("all "));
|
||
}
|
||
if (sl->braces)
|
||
str->append('(');
|
||
sl->print(thd, str, query_type);
|
||
if (sl->braces)
|
||
str->append(')');
|
||
}
|
||
if (fake_select_lex)
|
||
{
|
||
if (fake_select_lex->order_list.elements)
|
||
{
|
||
str->append(STRING_WITH_LEN(" order by "));
|
||
fake_select_lex->print_order(str,
|
||
fake_select_lex->order_list.first,
|
||
query_type);
|
||
}
|
||
fake_select_lex->print_limit(thd, str, query_type);
|
||
}
|
||
else if (saved_fake_select_lex)
|
||
saved_fake_select_lex->print_limit(thd, str, query_type);
|
||
}
|
||
|
||
|
||
void st_select_lex::print_order(String *str,
|
||
ORDER *order,
|
||
enum_query_type query_type)
|
||
{
|
||
for (; order; order= order->next)
|
||
{
|
||
if (order->counter_used)
|
||
{
|
||
char buffer[20];
|
||
size_t length= my_snprintf(buffer, 20, "%d", order->counter);
|
||
str->append(buffer, (uint) length);
|
||
}
|
||
else
|
||
{
|
||
/* replace numeric reference with equivalent for ORDER constant */
|
||
if (order->item[0]->is_order_clause_position())
|
||
{
|
||
/* make it expression instead of integer constant */
|
||
str->append(STRING_WITH_LEN("''"));
|
||
}
|
||
else
|
||
(*order->item)->print(str, query_type);
|
||
}
|
||
if (order->direction == ORDER::ORDER_DESC)
|
||
str->append(STRING_WITH_LEN(" desc"));
|
||
if (order->next)
|
||
str->append(',');
|
||
}
|
||
}
|
||
|
||
|
||
void st_select_lex::print_limit(THD *thd,
|
||
String *str,
|
||
enum_query_type query_type)
|
||
{
|
||
SELECT_LEX_UNIT *unit= master_unit();
|
||
Item_subselect *item= unit->item;
|
||
|
||
if (item && unit->global_parameters() == this)
|
||
{
|
||
Item_subselect::subs_type subs_type= item->substype();
|
||
if (subs_type == Item_subselect::IN_SUBS ||
|
||
subs_type == Item_subselect::ALL_SUBS)
|
||
{
|
||
return;
|
||
}
|
||
}
|
||
if (explicit_limit && select_limit)
|
||
{
|
||
str->append(STRING_WITH_LEN(" limit "));
|
||
if (offset_limit)
|
||
{
|
||
offset_limit->print(str, query_type);
|
||
str->append(',');
|
||
}
|
||
select_limit->print(str, query_type);
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
@brief Restore the LEX and THD in case of a parse error.
|
||
|
||
This is a clean up call that is invoked by the Bison generated
|
||
parser before returning an error from MYSQLparse. If your
|
||
semantic actions manipulate with the global thread state (which
|
||
is a very bad practice and should not normally be employed) and
|
||
need a clean-up in case of error, and you can not use %destructor
|
||
rule in the grammar file itself, this function should be used
|
||
to implement the clean up.
|
||
*/
|
||
|
||
void LEX::cleanup_lex_after_parse_error(THD *thd)
|
||
{
|
||
/*
|
||
Delete sphead for the side effect of restoring of the original
|
||
LEX state, thd->lex, thd->mem_root and thd->free_list if they
|
||
were replaced when parsing stored procedure statements. We
|
||
will never use sphead object after a parse error, so it's okay
|
||
to delete it only for the sake of the side effect.
|
||
TODO: make this functionality explicit in sp_head class.
|
||
Sic: we must nullify the member of the main lex, not the
|
||
current one that will be thrown away
|
||
*/
|
||
if (thd->lex->sphead)
|
||
{
|
||
sp_package *pkg;
|
||
thd->lex->sphead->restore_thd_mem_root(thd);
|
||
if ((pkg= thd->lex->sphead->m_parent))
|
||
{
|
||
/*
|
||
If a syntax error happened inside a package routine definition,
|
||
then thd->lex points to the routine sublex. We need to restore to
|
||
the top level LEX.
|
||
*/
|
||
DBUG_ASSERT(pkg->m_top_level_lex);
|
||
DBUG_ASSERT(pkg == pkg->m_top_level_lex->sphead);
|
||
pkg->restore_thd_mem_root(thd);
|
||
LEX *top= pkg->m_top_level_lex;
|
||
sp_package::destroy(pkg);
|
||
thd->lex= top;
|
||
thd->lex->sphead= NULL;
|
||
}
|
||
else
|
||
{
|
||
sp_head::destroy(thd->lex->sphead);
|
||
thd->lex->sphead= NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
Initialize (or reset) Query_tables_list object.
|
||
|
||
SYNOPSIS
|
||
reset_query_tables_list()
|
||
init TRUE - we should perform full initialization of object with
|
||
allocating needed memory
|
||
FALSE - object is already initialized so we should only reset
|
||
its state so it can be used for parsing/processing
|
||
of new statement
|
||
|
||
DESCRIPTION
|
||
This method initializes Query_tables_list so it can be used as part
|
||
of LEX object for parsing/processing of statement. One can also use
|
||
this method to reset state of already initialized Query_tables_list
|
||
so it can be used for processing of new statement.
|
||
*/
|
||
|
||
void Query_tables_list::reset_query_tables_list(bool init)
|
||
{
|
||
sql_command= SQLCOM_END;
|
||
if (!init && query_tables)
|
||
{
|
||
TABLE_LIST *table= query_tables;
|
||
for (;;)
|
||
{
|
||
delete table->view;
|
||
if (query_tables_last == &table->next_global ||
|
||
!(table= table->next_global))
|
||
break;
|
||
}
|
||
}
|
||
query_tables= 0;
|
||
query_tables_last= &query_tables;
|
||
query_tables_own_last= 0;
|
||
if (init)
|
||
{
|
||
/*
|
||
We delay real initialization of hash (and therefore related
|
||
memory allocation) until first insertion into this hash.
|
||
*/
|
||
my_hash_clear(&sroutines);
|
||
}
|
||
else if (sroutines.records)
|
||
{
|
||
/* Non-zero sroutines.records means that hash was initialized. */
|
||
my_hash_reset(&sroutines);
|
||
}
|
||
sroutines_list.empty();
|
||
sroutines_list_own_last= sroutines_list.next;
|
||
sroutines_list_own_elements= 0;
|
||
binlog_stmt_flags= 0;
|
||
stmt_accessed_table_flag= 0;
|
||
}
|
||
|
||
|
||
/*
|
||
Destroy Query_tables_list object with freeing all resources used by it.
|
||
|
||
SYNOPSIS
|
||
destroy_query_tables_list()
|
||
*/
|
||
|
||
void Query_tables_list::destroy_query_tables_list()
|
||
{
|
||
my_hash_free(&sroutines);
|
||
}
|
||
|
||
|
||
/*
|
||
Initialize LEX object.
|
||
|
||
SYNOPSIS
|
||
LEX::LEX()
|
||
|
||
NOTE
|
||
LEX object initialized with this constructor can be used as part of
|
||
THD object for which one can safely call open_tables(), lock_tables()
|
||
and close_thread_tables() functions. But it is not yet ready for
|
||
statement parsing. On should use lex_start() function to prepare LEX
|
||
for this.
|
||
*/
|
||
|
||
LEX::LEX()
|
||
: explain(NULL), result(0), part_info(NULL), arena_for_set_stmt(0), mem_root_for_set_stmt(0),
|
||
option_type(OPT_DEFAULT), context_analysis_only(0), sphead(0),
|
||
default_used(0), is_lex_started(0), limit_rows_examined_cnt(ULONGLONG_MAX)
|
||
{
|
||
|
||
init_dynamic_array2(&plugins, sizeof(plugin_ref), plugins_static_buffer,
|
||
INITIAL_LEX_PLUGIN_LIST_SIZE,
|
||
INITIAL_LEX_PLUGIN_LIST_SIZE, 0);
|
||
reset_query_tables_list(TRUE);
|
||
mi.init();
|
||
init_dynamic_array2(&delete_gtid_domain, sizeof(uint32),
|
||
gtid_domain_static_buffer,
|
||
initial_gtid_domain_buffer_size,
|
||
initial_gtid_domain_buffer_size, 0);
|
||
unit.slave= &builtin_select;
|
||
}
|
||
|
||
|
||
/*
|
||
Check whether the merging algorithm can be used on this VIEW
|
||
|
||
SYNOPSIS
|
||
LEX::can_be_merged()
|
||
|
||
DESCRIPTION
|
||
We can apply merge algorithm if it is single SELECT view with
|
||
subqueries only in WHERE clause (we do not count SELECTs of underlying
|
||
views, and second level subqueries) and we have not grpouping, ordering,
|
||
HAVING clause, aggregate functions, DISTINCT clause, LIMIT clause and
|
||
several underlying tables.
|
||
|
||
RETURN
|
||
FALSE - only temporary table algorithm can be used
|
||
TRUE - merge algorithm can be used
|
||
*/
|
||
|
||
bool LEX::can_be_merged()
|
||
{
|
||
// TODO: do not forget implement case when select_lex.table_list.elements==0
|
||
|
||
/* find non VIEW subqueries/unions */
|
||
bool selects_allow_merge= (first_select_lex()->next_select() == 0 &&
|
||
!(first_select_lex()->uncacheable &
|
||
UNCACHEABLE_RAND));
|
||
if (selects_allow_merge)
|
||
{
|
||
for (SELECT_LEX_UNIT *tmp_unit= first_select_lex()->first_inner_unit();
|
||
tmp_unit;
|
||
tmp_unit= tmp_unit->next_unit())
|
||
{
|
||
if (tmp_unit->first_select()->parent_lex == this &&
|
||
(tmp_unit->item != 0 &&
|
||
(tmp_unit->item->place() != IN_WHERE &&
|
||
tmp_unit->item->place() != IN_ON &&
|
||
tmp_unit->item->place() != SELECT_LIST)))
|
||
{
|
||
selects_allow_merge= 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return (selects_allow_merge &&
|
||
first_select_lex()->group_list.elements == 0 &&
|
||
first_select_lex()->having == 0 &&
|
||
first_select_lex()->with_sum_func == 0 &&
|
||
first_select_lex()->table_list.elements >= 1 &&
|
||
!(first_select_lex()->options & SELECT_DISTINCT) &&
|
||
first_select_lex()->select_limit == 0);
|
||
}
|
||
|
||
|
||
/*
|
||
check if command can use VIEW with MERGE algorithm (for top VIEWs)
|
||
|
||
SYNOPSIS
|
||
LEX::can_use_merged()
|
||
|
||
DESCRIPTION
|
||
Only listed here commands can use merge algorithm in top level
|
||
SELECT_LEX (for subqueries will be used merge algorithm if
|
||
LEX::can_not_use_merged() is not TRUE).
|
||
|
||
RETURN
|
||
FALSE - command can't use merged VIEWs
|
||
TRUE - VIEWs with MERGE algorithms can be used
|
||
*/
|
||
|
||
bool LEX::can_use_merged()
|
||
{
|
||
switch (sql_command)
|
||
{
|
||
case SQLCOM_SELECT:
|
||
case SQLCOM_CREATE_TABLE:
|
||
case SQLCOM_UPDATE:
|
||
case SQLCOM_UPDATE_MULTI:
|
||
case SQLCOM_DELETE:
|
||
case SQLCOM_DELETE_MULTI:
|
||
case SQLCOM_INSERT:
|
||
case SQLCOM_INSERT_SELECT:
|
||
case SQLCOM_REPLACE:
|
||
case SQLCOM_REPLACE_SELECT:
|
||
case SQLCOM_LOAD:
|
||
return TRUE;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/*
|
||
Check if command can't use merged views in any part of command
|
||
|
||
SYNOPSIS
|
||
LEX::can_not_use_merged()
|
||
|
||
DESCRIPTION
|
||
Temporary table algorithm will be used on all SELECT levels for queries
|
||
listed here (see also LEX::can_use_merged()).
|
||
|
||
RETURN
|
||
FALSE - command can't use merged VIEWs
|
||
TRUE - VIEWs with MERGE algorithms can be used
|
||
*/
|
||
|
||
bool LEX::can_not_use_merged()
|
||
{
|
||
switch (sql_command)
|
||
{
|
||
case SQLCOM_CREATE_VIEW:
|
||
case SQLCOM_SHOW_CREATE:
|
||
/*
|
||
SQLCOM_SHOW_FIELDS is necessary to make
|
||
information schema tables working correctly with views.
|
||
see get_schema_tables_result function
|
||
*/
|
||
case SQLCOM_SHOW_FIELDS:
|
||
return TRUE;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/*
|
||
Detect that we need only table structure of derived table/view
|
||
|
||
SYNOPSIS
|
||
only_view_structure()
|
||
|
||
RETURN
|
||
TRUE yes, we need only structure
|
||
FALSE no, we need data
|
||
*/
|
||
|
||
bool LEX::only_view_structure()
|
||
{
|
||
switch (sql_command) {
|
||
case SQLCOM_SHOW_CREATE:
|
||
case SQLCOM_SHOW_TABLES:
|
||
case SQLCOM_SHOW_FIELDS:
|
||
case SQLCOM_REVOKE_ALL:
|
||
case SQLCOM_REVOKE:
|
||
case SQLCOM_GRANT:
|
||
case SQLCOM_CREATE_VIEW:
|
||
return TRUE;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
Should Items_ident be printed correctly
|
||
|
||
SYNOPSIS
|
||
need_correct_ident()
|
||
|
||
RETURN
|
||
TRUE yes, we need only structure
|
||
FALSE no, we need data
|
||
*/
|
||
|
||
|
||
bool LEX::need_correct_ident()
|
||
{
|
||
switch(sql_command)
|
||
{
|
||
case SQLCOM_SHOW_CREATE:
|
||
case SQLCOM_SHOW_TABLES:
|
||
case SQLCOM_CREATE_VIEW:
|
||
return TRUE;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/*
|
||
Get effective type of CHECK OPTION for given view
|
||
|
||
SYNOPSIS
|
||
get_effective_with_check()
|
||
view given view
|
||
|
||
NOTE
|
||
It have not sense to set CHECK OPTION for SELECT satement or subqueries,
|
||
so we do not.
|
||
|
||
RETURN
|
||
VIEW_CHECK_NONE no need CHECK OPTION
|
||
VIEW_CHECK_LOCAL CHECK OPTION LOCAL
|
||
VIEW_CHECK_CASCADED CHECK OPTION CASCADED
|
||
*/
|
||
|
||
uint8 LEX::get_effective_with_check(TABLE_LIST *view)
|
||
{
|
||
if (view->select_lex->master_unit() == &unit &&
|
||
which_check_option_applicable())
|
||
return (uint8)view->with_check;
|
||
return VIEW_CHECK_NONE;
|
||
}
|
||
|
||
|
||
/**
|
||
This method should be called only during parsing.
|
||
It is aware of compound statements (stored routine bodies)
|
||
and will initialize the destination with the default
|
||
database of the stored routine, rather than the default
|
||
database of the connection it is parsed in.
|
||
E.g. if one has no current database selected, or current database
|
||
set to 'bar' and then issues:
|
||
|
||
CREATE PROCEDURE foo.p1() BEGIN SELECT * FROM t1 END//
|
||
|
||
t1 is meant to refer to foo.t1, not to bar.t1.
|
||
|
||
This method is needed to support this rule.
|
||
|
||
@return TRUE in case of error (parsing should be aborted, FALSE in
|
||
case of success
|
||
*/
|
||
|
||
bool LEX::copy_db_to(LEX_CSTRING *to)
|
||
{
|
||
if (sphead && sphead->m_name.str)
|
||
{
|
||
DBUG_ASSERT(sphead->m_db.str && sphead->m_db.length);
|
||
/*
|
||
It is safe to assign the string by-pointer, both sphead and
|
||
its statements reside in the same memory root.
|
||
*/
|
||
*to= sphead->m_db;
|
||
return FALSE;
|
||
}
|
||
return thd->copy_db_to(to);
|
||
}
|
||
|
||
/**
|
||
Initialize offset and limit counters.
|
||
|
||
@param sl SELECT_LEX to get offset and limit from.
|
||
*/
|
||
|
||
void st_select_lex_unit::set_limit(st_select_lex *sl)
|
||
{
|
||
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
|
||
|
||
lim.set_limit(sl->get_limit(), sl->get_offset());
|
||
}
|
||
|
||
|
||
/**
|
||
Decide if a temporary table is needed for the UNION.
|
||
|
||
@retval true A temporary table is needed.
|
||
@retval false A temporary table is not needed.
|
||
*/
|
||
|
||
bool st_select_lex_unit::union_needs_tmp_table()
|
||
{
|
||
if (with_element && with_element->is_recursive)
|
||
return true;
|
||
if (!with_wrapped_tvc)
|
||
{
|
||
for (st_select_lex *sl= first_select(); sl; sl=sl->next_select())
|
||
{
|
||
if (sl->tvc && sl->tvc->to_be_wrapped_as_with_tail())
|
||
{
|
||
with_wrapped_tvc= true;
|
||
break;
|
||
}
|
||
if (sl != first_select() && sl->linkage != UNION_TYPE)
|
||
return true;
|
||
}
|
||
}
|
||
if (with_wrapped_tvc)
|
||
return true;
|
||
return union_distinct != NULL ||
|
||
global_parameters()->order_list.elements != 0 ||
|
||
thd->lex->sql_command == SQLCOM_INSERT_SELECT ||
|
||
thd->lex->sql_command == SQLCOM_REPLACE_SELECT;
|
||
}
|
||
|
||
/**
|
||
@brief Set the initial purpose of this TABLE_LIST object in the list of used
|
||
tables.
|
||
|
||
We need to track this information on table-by-table basis, since when this
|
||
table becomes an element of the pre-locked list, it's impossible to identify
|
||
which SQL sub-statement it has been originally used in.
|
||
|
||
E.g.:
|
||
|
||
User request: SELECT * FROM t1 WHERE f1();
|
||
FUNCTION f1(): DELETE FROM t2; RETURN 1;
|
||
BEFORE DELETE trigger on t2: INSERT INTO t3 VALUES (old.a);
|
||
|
||
For this user request, the pre-locked list will contain t1, t2, t3
|
||
table elements, each needed for different DML.
|
||
|
||
The trigger event map is updated to reflect INSERT, UPDATE, DELETE,
|
||
REPLACE, LOAD DATA, CREATE TABLE .. SELECT, CREATE TABLE ..
|
||
REPLACE SELECT statements, and additionally ON DUPLICATE KEY UPDATE
|
||
clause.
|
||
*/
|
||
|
||
void LEX::set_trg_event_type_for_tables()
|
||
{
|
||
uint8 new_trg_event_map= 0;
|
||
DBUG_ENTER("LEX::set_trg_event_type_for_tables");
|
||
|
||
/*
|
||
Some auxiliary operations
|
||
(e.g. GRANT processing) create TABLE_LIST instances outside
|
||
the parser. Additionally, some commands (e.g. OPTIMIZE) change
|
||
the lock type for a table only after parsing is done. Luckily,
|
||
these do not fire triggers and do not need to pre-load them.
|
||
For these TABLE_LISTs set_trg_event_type is never called, and
|
||
trg_event_map is always empty. That means that the pre-locking
|
||
algorithm will ignore triggers defined on these tables, if
|
||
any, and the execution will either fail with an assert in
|
||
sql_trigger.cc or with an error that a used table was not
|
||
pre-locked, in case of a production build.
|
||
|
||
TODO: this usage pattern creates unnecessary module dependencies
|
||
and should be rewritten to go through the parser.
|
||
Table list instances created outside the parser in most cases
|
||
refer to mysql.* system tables. It is not allowed to have
|
||
a trigger on a system table, but keeping track of
|
||
initialization provides extra safety in case this limitation
|
||
is circumvented.
|
||
*/
|
||
|
||
switch (sql_command) {
|
||
case SQLCOM_LOCK_TABLES:
|
||
/*
|
||
On a LOCK TABLE, all triggers must be pre-loaded for this TABLE_LIST
|
||
when opening an associated TABLE.
|
||
*/
|
||
new_trg_event_map= trg2bit(TRG_EVENT_INSERT) | trg2bit(TRG_EVENT_UPDATE) |
|
||
trg2bit(TRG_EVENT_DELETE);
|
||
break;
|
||
/*
|
||
Basic INSERT. If there is an additional ON DUPLIATE KEY UPDATE
|
||
clause, it will be handled later in this method.
|
||
*/
|
||
case SQLCOM_INSERT: /* fall through */
|
||
case SQLCOM_INSERT_SELECT:
|
||
/*
|
||
LOAD DATA ... INFILE is expected to fire BEFORE/AFTER INSERT
|
||
triggers.
|
||
If the statement also has REPLACE clause, it will be
|
||
handled later in this method.
|
||
*/
|
||
case SQLCOM_LOAD: /* fall through */
|
||
/*
|
||
REPLACE is semantically equivalent to INSERT. In case
|
||
of a primary or unique key conflict, it deletes the old
|
||
record and inserts a new one. So we also may need to
|
||
fire ON DELETE triggers. This functionality is handled
|
||
later in this method.
|
||
*/
|
||
case SQLCOM_REPLACE: /* fall through */
|
||
case SQLCOM_REPLACE_SELECT:
|
||
/*
|
||
CREATE TABLE ... SELECT defaults to INSERT if the table or
|
||
view already exists. REPLACE option of CREATE TABLE ...
|
||
REPLACE SELECT is handled later in this method.
|
||
*/
|
||
case SQLCOM_CREATE_TABLE:
|
||
case SQLCOM_CREATE_SEQUENCE:
|
||
new_trg_event_map|= trg2bit(TRG_EVENT_INSERT);
|
||
break;
|
||
/* Basic update and multi-update */
|
||
case SQLCOM_UPDATE: /* fall through */
|
||
case SQLCOM_UPDATE_MULTI:
|
||
new_trg_event_map|= trg2bit(TRG_EVENT_UPDATE);
|
||
break;
|
||
/* Basic delete and multi-delete */
|
||
case SQLCOM_DELETE: /* fall through */
|
||
case SQLCOM_DELETE_MULTI:
|
||
new_trg_event_map|= trg2bit(TRG_EVENT_DELETE);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (duplicates) {
|
||
case DUP_UPDATE:
|
||
new_trg_event_map|= trg2bit(TRG_EVENT_UPDATE);
|
||
break;
|
||
case DUP_REPLACE:
|
||
new_trg_event_map|= trg2bit(TRG_EVENT_DELETE);
|
||
break;
|
||
case DUP_ERROR:
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (period_conditions.is_set())
|
||
{
|
||
switch (sql_command)
|
||
{
|
||
case SQLCOM_DELETE:
|
||
case SQLCOM_UPDATE:
|
||
case SQLCOM_REPLACE:
|
||
new_trg_event_map |= trg2bit(TRG_EVENT_INSERT);
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
Do not iterate over sub-selects, only the tables in the outermost
|
||
SELECT_LEX can be modified, if any.
|
||
*/
|
||
TABLE_LIST *tables= first_select_lex()->get_table_list();
|
||
|
||
while (tables)
|
||
{
|
||
/*
|
||
This is a fast check to filter out statements that do
|
||
not change data, or tables on the right side, in case of
|
||
INSERT .. SELECT, CREATE TABLE .. SELECT and so on.
|
||
Here we also filter out OPTIMIZE statement and non-updateable
|
||
views, for which lock_type is TL_UNLOCK or TL_READ after
|
||
parsing.
|
||
*/
|
||
if (static_cast<int>(tables->lock_type) >=
|
||
static_cast<int>(TL_WRITE_ALLOW_WRITE))
|
||
tables->trg_event_map= new_trg_event_map;
|
||
tables= tables->next_local;
|
||
}
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
|
||
/*
|
||
Unlink the first table from the global table list and the first table from
|
||
outer select (lex->select_lex) local list
|
||
|
||
SYNOPSIS
|
||
unlink_first_table()
|
||
link_to_local Set to 1 if caller should link this table to local list
|
||
|
||
NOTES
|
||
We assume that first tables in both lists is the same table or the local
|
||
list is empty.
|
||
|
||
RETURN
|
||
0 If 'query_tables' == 0
|
||
unlinked table
|
||
In this case link_to_local is set.
|
||
|
||
*/
|
||
TABLE_LIST *LEX::unlink_first_table(bool *link_to_local)
|
||
{
|
||
TABLE_LIST *first;
|
||
if ((first= query_tables))
|
||
{
|
||
/*
|
||
Exclude from global table list
|
||
*/
|
||
if ((query_tables= query_tables->next_global))
|
||
query_tables->prev_global= &query_tables;
|
||
else
|
||
query_tables_last= &query_tables;
|
||
first->next_global= 0;
|
||
|
||
/*
|
||
and from local list if it is not empty
|
||
*/
|
||
if ((*link_to_local= MY_TEST(first_select_lex()->table_list.first)))
|
||
{
|
||
first_select_lex()->context.table_list=
|
||
first_select_lex()->context.first_name_resolution_table=
|
||
first->next_local;
|
||
first_select_lex()->table_list.first= first->next_local;
|
||
first_select_lex()->table_list.elements--; //safety
|
||
first->next_local= 0;
|
||
/*
|
||
Ensure that the global list has the same first table as the local
|
||
list.
|
||
*/
|
||
first_lists_tables_same();
|
||
}
|
||
}
|
||
return first;
|
||
}
|
||
|
||
|
||
/*
|
||
Bring first local table of first most outer select to first place in global
|
||
table list
|
||
|
||
SYNOPSYS
|
||
LEX::first_lists_tables_same()
|
||
|
||
NOTES
|
||
In many cases (for example, usual INSERT/DELETE/...) the first table of
|
||
main SELECT_LEX have special meaning => check that it is the first table
|
||
in global list and re-link to be first in the global list if it is
|
||
necessary. We need such re-linking only for queries with sub-queries in
|
||
the select list, as only in this case tables of sub-queries will go to
|
||
the global list first.
|
||
*/
|
||
|
||
void LEX::first_lists_tables_same()
|
||
{
|
||
TABLE_LIST *first_table= first_select_lex()->table_list.first;
|
||
if (query_tables != first_table && first_table != 0)
|
||
{
|
||
TABLE_LIST *next;
|
||
if (query_tables_last == &first_table->next_global)
|
||
query_tables_last= first_table->prev_global;
|
||
|
||
if (query_tables_own_last == &first_table->next_global)
|
||
query_tables_own_last= first_table->prev_global;
|
||
|
||
if ((next= *first_table->prev_global= first_table->next_global))
|
||
next->prev_global= first_table->prev_global;
|
||
/* include in new place */
|
||
first_table->next_global= query_tables;
|
||
/*
|
||
We are sure that query_tables is not 0, because first_table was not
|
||
first table in the global list => we can use
|
||
query_tables->prev_global without check of query_tables
|
||
*/
|
||
query_tables->prev_global= &first_table->next_global;
|
||
first_table->prev_global= &query_tables;
|
||
query_tables= first_table;
|
||
}
|
||
}
|
||
|
||
void LEX::fix_first_select_number()
|
||
{
|
||
SELECT_LEX *first= first_select_lex();
|
||
if (first && first->select_number != 1)
|
||
{
|
||
uint num= first->select_number;
|
||
for (SELECT_LEX *sel= all_selects_list;
|
||
sel;
|
||
sel= sel->next_select_in_list())
|
||
{
|
||
if (sel->select_number < num)
|
||
sel->select_number++;
|
||
}
|
||
first->select_number= 1;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
Link table back that was unlinked with unlink_first_table()
|
||
|
||
SYNOPSIS
|
||
link_first_table_back()
|
||
link_to_local do we need link this table to local
|
||
|
||
RETURN
|
||
global list
|
||
*/
|
||
|
||
void LEX::link_first_table_back(TABLE_LIST *first,
|
||
bool link_to_local)
|
||
{
|
||
if (first)
|
||
{
|
||
if ((first->next_global= query_tables))
|
||
query_tables->prev_global= &first->next_global;
|
||
else
|
||
query_tables_last= &first->next_global;
|
||
query_tables= first;
|
||
|
||
if (link_to_local)
|
||
{
|
||
first->next_local= first_select_lex()->table_list.first;
|
||
first_select_lex()->context.table_list= first;
|
||
first_select_lex()->table_list.first= first;
|
||
first_select_lex()->table_list.elements++; //safety
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
cleanup lex for case when we open table by table for processing
|
||
|
||
SYNOPSIS
|
||
LEX::cleanup_after_one_table_open()
|
||
|
||
NOTE
|
||
This method is mostly responsible for cleaning up of selects lists and
|
||
derived tables state. To rollback changes in Query_tables_list one has
|
||
to call Query_tables_list::reset_query_tables_list(FALSE).
|
||
*/
|
||
|
||
void LEX::cleanup_after_one_table_open()
|
||
{
|
||
/*
|
||
thd->lex->derived_tables & additional units may be set if we open
|
||
a view. It is necessary to clear thd->lex->derived_tables flag
|
||
to prevent processing of derived tables during next open_and_lock_tables
|
||
if next table is a real table and cleanup & remove underlying units
|
||
NOTE: all units will be connected to thd->lex->select_lex, because we
|
||
have not UNION on most upper level.
|
||
*/
|
||
if (all_selects_list != first_select_lex())
|
||
{
|
||
derived_tables= 0;
|
||
first_select_lex()->exclude_from_table_unique_test= false;
|
||
/* cleunup underlying units (units of VIEW) */
|
||
for (SELECT_LEX_UNIT *un= first_select_lex()->first_inner_unit();
|
||
un;
|
||
un= un->next_unit())
|
||
un->cleanup();
|
||
/* reduce all selects list to default state */
|
||
all_selects_list= first_select_lex();
|
||
/* remove underlying units (units of VIEW) subtree */
|
||
first_select_lex()->cut_subtree();
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
Save current state of Query_tables_list for this LEX, and prepare it
|
||
for processing of new statemnt.
|
||
|
||
SYNOPSIS
|
||
reset_n_backup_query_tables_list()
|
||
backup Pointer to Query_tables_list instance to be used for backup
|
||
*/
|
||
|
||
void LEX::reset_n_backup_query_tables_list(Query_tables_list *backup)
|
||
{
|
||
backup->set_query_tables_list(this);
|
||
/*
|
||
We have to perform full initialization here since otherwise we
|
||
will damage backed up state.
|
||
*/
|
||
this->reset_query_tables_list(TRUE);
|
||
}
|
||
|
||
|
||
/*
|
||
Restore state of Query_tables_list for this LEX from backup.
|
||
|
||
SYNOPSIS
|
||
restore_backup_query_tables_list()
|
||
backup Pointer to Query_tables_list instance used for backup
|
||
*/
|
||
|
||
void LEX::restore_backup_query_tables_list(Query_tables_list *backup)
|
||
{
|
||
this->destroy_query_tables_list();
|
||
this->set_query_tables_list(backup);
|
||
}
|
||
|
||
|
||
/*
|
||
Checks for usage of routines and/or tables in a parsed statement
|
||
|
||
SYNOPSIS
|
||
LEX:table_or_sp_used()
|
||
|
||
RETURN
|
||
FALSE No routines and tables used
|
||
TRUE Either or both routines and tables are used.
|
||
*/
|
||
|
||
bool LEX::table_or_sp_used()
|
||
{
|
||
DBUG_ENTER("table_or_sp_used");
|
||
|
||
if (sroutines.records || query_tables)
|
||
DBUG_RETURN(TRUE);
|
||
|
||
DBUG_RETURN(FALSE);
|
||
}
|
||
|
||
|
||
/*
|
||
Do end-of-prepare fixup for list of tables and their merge-VIEWed tables
|
||
|
||
SYNOPSIS
|
||
fix_prepare_info_in_table_list()
|
||
thd Thread handle
|
||
tbl List of tables to process
|
||
|
||
DESCRIPTION
|
||
Perform end-end-of prepare fixup for list of tables, if any of the tables
|
||
is a merge-algorithm VIEW, recursively fix up its underlying tables as
|
||
well.
|
||
|
||
*/
|
||
|
||
static void fix_prepare_info_in_table_list(THD *thd, TABLE_LIST *tbl)
|
||
{
|
||
for (; tbl; tbl= tbl->next_local)
|
||
{
|
||
if (tbl->on_expr && !tbl->prep_on_expr)
|
||
{
|
||
thd->check_and_register_item_tree(&tbl->prep_on_expr, &tbl->on_expr);
|
||
tbl->on_expr= tbl->on_expr->copy_andor_structure(thd);
|
||
}
|
||
if (tbl->is_view_or_derived() && tbl->is_merged_derived())
|
||
{
|
||
SELECT_LEX *sel= tbl->get_single_select();
|
||
fix_prepare_info_in_table_list(thd, sel->get_table_list());
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
Save WHERE/HAVING/ON clauses and replace them with disposable copies
|
||
|
||
SYNOPSIS
|
||
st_select_lex::fix_prepare_information
|
||
thd thread handler
|
||
conds in/out pointer to WHERE condition to be met at execution
|
||
having_conds in/out pointer to HAVING condition to be met at execution
|
||
|
||
DESCRIPTION
|
||
The passed WHERE and HAVING are to be saved for the future executions.
|
||
This function saves it, and returns a copy which can be thrashed during
|
||
this execution of the statement. By saving/thrashing here we mean only
|
||
We also save the chain of ORDER::next in group_list, in case
|
||
the list is modified by remove_const().
|
||
AND/OR trees.
|
||
The function also calls fix_prepare_info_in_table_list that saves all
|
||
ON expressions.
|
||
*/
|
||
|
||
void st_select_lex::fix_prepare_information(THD *thd, Item **conds,
|
||
Item **having_conds)
|
||
{
|
||
DBUG_ENTER("st_select_lex::fix_prepare_information");
|
||
if (!thd->stmt_arena->is_conventional() &&
|
||
!(changed_elements & TOUCHED_SEL_COND))
|
||
{
|
||
Query_arena_stmt on_stmt_arena(thd);
|
||
changed_elements|= TOUCHED_SEL_COND;
|
||
if (group_list.first)
|
||
{
|
||
if (!group_list_ptrs)
|
||
{
|
||
void *mem= thd->stmt_arena->alloc(sizeof(Group_list_ptrs));
|
||
group_list_ptrs= new (mem) Group_list_ptrs(thd->stmt_arena->mem_root);
|
||
}
|
||
group_list_ptrs->reserve(group_list.elements);
|
||
for (ORDER *order= group_list.first; order; order= order->next)
|
||
{
|
||
group_list_ptrs->push_back(order);
|
||
}
|
||
}
|
||
if (*conds)
|
||
{
|
||
thd->check_and_register_item_tree(&prep_where, conds);
|
||
*conds= where= prep_where->copy_andor_structure(thd);
|
||
}
|
||
if (*having_conds)
|
||
{
|
||
thd->check_and_register_item_tree(&prep_having, having_conds);
|
||
*having_conds= having= prep_having->copy_andor_structure(thd);
|
||
}
|
||
fix_prepare_info_in_table_list(thd, table_list.first);
|
||
}
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
|
||
/*
|
||
There are st_select_lex::add_table_to_list &
|
||
st_select_lex::set_lock_for_tables are in sql_parse.cc
|
||
|
||
st_select_lex::print is in sql_select.cc
|
||
|
||
st_select_lex_unit::prepare, st_select_lex_unit::exec,
|
||
st_select_lex_unit::cleanup, st_select_lex_unit::reinit_exec_mechanism,
|
||
st_select_lex_unit::change_result
|
||
are in sql_union.cc
|
||
*/
|
||
|
||
/*
|
||
Sets the kind of hints to be added by the calls to add_index_hint().
|
||
|
||
SYNOPSIS
|
||
set_index_hint_type()
|
||
type_arg The kind of hints to be added from now on.
|
||
clause The clause to use for hints to be added from now on.
|
||
|
||
DESCRIPTION
|
||
Used in filling up the tagged hints list.
|
||
This list is filled by first setting the kind of the hint as a
|
||
context variable and then adding hints of the current kind.
|
||
Then the context variable index_hint_type can be reset to the
|
||
next hint type.
|
||
*/
|
||
void st_select_lex::set_index_hint_type(enum index_hint_type type_arg,
|
||
index_clause_map clause)
|
||
{
|
||
current_index_hint_type= type_arg;
|
||
current_index_hint_clause= clause;
|
||
}
|
||
|
||
|
||
/*
|
||
Makes an array to store index usage hints (ADD/FORCE/IGNORE INDEX).
|
||
|
||
SYNOPSIS
|
||
alloc_index_hints()
|
||
thd current thread.
|
||
*/
|
||
|
||
void st_select_lex::alloc_index_hints (THD *thd)
|
||
{
|
||
index_hints= new (thd->mem_root) List<Index_hint>();
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
adds an element to the array storing index usage hints
|
||
(ADD/FORCE/IGNORE INDEX).
|
||
|
||
SYNOPSIS
|
||
add_index_hint()
|
||
thd current thread.
|
||
str name of the index.
|
||
length number of characters in str.
|
||
|
||
RETURN VALUE
|
||
0 on success, non-zero otherwise
|
||
*/
|
||
bool st_select_lex::add_index_hint (THD *thd, const char *str, size_t length)
|
||
{
|
||
return index_hints->push_front(new (thd->mem_root)
|
||
Index_hint(current_index_hint_type,
|
||
current_index_hint_clause,
|
||
str, length), thd->mem_root);
|
||
}
|
||
|
||
|
||
/**
|
||
Optimize all subqueries that have not been flattened into semi-joins.
|
||
|
||
@details
|
||
This functionality is a method of SELECT_LEX instead of JOIN because
|
||
SQL statements as DELETE/UPDATE do not have a corresponding JOIN object.
|
||
|
||
@see JOIN::optimize_unflattened_subqueries
|
||
|
||
@param const_only Restrict subquery optimization to constant subqueries
|
||
|
||
@return Operation status
|
||
@retval FALSE success.
|
||
@retval TRUE error occurred.
|
||
*/
|
||
|
||
bool st_select_lex::optimize_unflattened_subqueries(bool const_only)
|
||
{
|
||
SELECT_LEX_UNIT *next_unit= NULL;
|
||
for (SELECT_LEX_UNIT *un= first_inner_unit();
|
||
un;
|
||
un= next_unit ? next_unit : un->next_unit())
|
||
{
|
||
Item_subselect *subquery_predicate= un->item;
|
||
next_unit= NULL;
|
||
|
||
if (subquery_predicate)
|
||
{
|
||
if (!subquery_predicate->fixed)
|
||
{
|
||
/*
|
||
This subquery was excluded as part of some expression so it is
|
||
invisible from all prepared expression.
|
||
*/
|
||
next_unit= un->next_unit();
|
||
un->exclude_level();
|
||
if (next_unit)
|
||
continue;
|
||
break;
|
||
}
|
||
if (subquery_predicate->substype() == Item_subselect::IN_SUBS)
|
||
{
|
||
Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate;
|
||
if (in_subs->is_jtbm_merged)
|
||
continue;
|
||
}
|
||
|
||
if (const_only && !subquery_predicate->const_item())
|
||
{
|
||
/* Skip non-constant subqueries if the caller asked so. */
|
||
continue;
|
||
}
|
||
|
||
bool empty_union_result= true;
|
||
bool is_correlated_unit= false;
|
||
bool first= true;
|
||
bool union_plan_saved= false;
|
||
/*
|
||
If the subquery is a UNION, optimize all the subqueries in the UNION. If
|
||
there is no UNION, then the loop will execute once for the subquery.
|
||
*/
|
||
for (SELECT_LEX *sl= un->first_select(); sl; sl= sl->next_select())
|
||
{
|
||
JOIN *inner_join= sl->join;
|
||
if (first)
|
||
first= false;
|
||
else
|
||
{
|
||
if (!union_plan_saved)
|
||
{
|
||
union_plan_saved= true;
|
||
if (un->save_union_explain(un->thd->lex->explain))
|
||
return true; /* Failure */
|
||
}
|
||
}
|
||
if (!inner_join)
|
||
continue;
|
||
SELECT_LEX *save_select= un->thd->lex->current_select;
|
||
ulonglong save_options;
|
||
int res;
|
||
/* We need only 1 row to determine existence */
|
||
un->set_limit(un->global_parameters());
|
||
un->thd->lex->current_select= sl;
|
||
save_options= inner_join->select_options;
|
||
if (options & SELECT_DESCRIBE)
|
||
{
|
||
/* Optimize the subquery in the context of EXPLAIN. */
|
||
sl->set_explain_type(FALSE);
|
||
sl->options|= SELECT_DESCRIBE;
|
||
inner_join->select_options|= SELECT_DESCRIBE;
|
||
}
|
||
res= inner_join->optimize();
|
||
if (!inner_join->cleaned)
|
||
sl->update_used_tables();
|
||
sl->update_correlated_cache();
|
||
is_correlated_unit|= sl->is_correlated;
|
||
inner_join->select_options= save_options;
|
||
un->thd->lex->current_select= save_select;
|
||
|
||
Explain_query *eq;
|
||
if ((eq= inner_join->thd->lex->explain))
|
||
{
|
||
Explain_select *expl_sel;
|
||
if ((expl_sel= eq->get_select(inner_join->select_lex->select_number)))
|
||
{
|
||
sl->set_explain_type(TRUE);
|
||
expl_sel->select_type= sl->type;
|
||
}
|
||
}
|
||
|
||
if (empty_union_result)
|
||
{
|
||
/*
|
||
If at least one subquery in a union is non-empty, the UNION result
|
||
is non-empty. If there is no UNION, the only subquery is non-empy.
|
||
*/
|
||
empty_union_result= inner_join->empty_result();
|
||
}
|
||
if (res)
|
||
return TRUE;
|
||
}
|
||
if (empty_union_result)
|
||
subquery_predicate->no_rows_in_result();
|
||
if (!is_correlated_unit)
|
||
un->uncacheable&= ~UNCACHEABLE_DEPENDENT;
|
||
subquery_predicate->is_correlated= is_correlated_unit;
|
||
}
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
|
||
/**
|
||
@brief Process all derived tables/views of the SELECT.
|
||
|
||
@param lex LEX of this thread
|
||
@param phase phases to run derived tables/views through
|
||
|
||
@details
|
||
This function runs specified 'phases' on all tables from the
|
||
table_list of this select.
|
||
|
||
@return FALSE ok.
|
||
@return TRUE an error occur.
|
||
*/
|
||
|
||
bool st_select_lex::handle_derived(LEX *lex, uint phases)
|
||
{
|
||
return lex->handle_list_of_derived(table_list.first, phases);
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Returns first unoccupied table map and table number
|
||
|
||
@param map [out] return found map
|
||
@param tablenr [out] return found tablenr
|
||
|
||
@details
|
||
Returns first unoccupied table map and table number in this select.
|
||
Map and table are returned in *'map' and *'tablenr' accordingly.
|
||
|
||
@retrun TRUE no free table map/table number
|
||
@return FALSE found free table map/table number
|
||
*/
|
||
|
||
bool st_select_lex::get_free_table_map(table_map *map, uint *tablenr)
|
||
{
|
||
*map= 0;
|
||
*tablenr= 0;
|
||
TABLE_LIST *tl;
|
||
List_iterator<TABLE_LIST> ti(leaf_tables);
|
||
while ((tl= ti++))
|
||
{
|
||
if (tl->table->map > *map)
|
||
*map= tl->table->map;
|
||
if (tl->table->tablenr > *tablenr)
|
||
*tablenr= tl->table->tablenr;
|
||
}
|
||
(*map)<<= 1;
|
||
(*tablenr)++;
|
||
if (*tablenr >= MAX_TABLES)
|
||
return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Append given table to the leaf_tables list.
|
||
|
||
@param link Offset to which list in table structure to use
|
||
@param table Table to append
|
||
|
||
@details
|
||
Append given 'table' to the leaf_tables list using the 'link' offset.
|
||
If the 'table' is linked with other tables through next_leaf/next_local
|
||
chains then whole list will be appended.
|
||
*/
|
||
|
||
void st_select_lex::append_table_to_list(TABLE_LIST *TABLE_LIST::*link,
|
||
TABLE_LIST *table)
|
||
{
|
||
TABLE_LIST *tl;
|
||
for (tl= leaf_tables.head(); tl->*link; tl= tl->*link) ;
|
||
tl->*link= table;
|
||
}
|
||
|
||
|
||
/*
|
||
@brief
|
||
Replace given table from the leaf_tables list for a list of tables
|
||
|
||
@param table Table to replace
|
||
@param list List to substititute the table for
|
||
|
||
@details
|
||
Replace 'table' from the leaf_tables list for a list of tables 'tbl_list'.
|
||
*/
|
||
|
||
void st_select_lex::replace_leaf_table(TABLE_LIST *table, List<TABLE_LIST> &tbl_list)
|
||
{
|
||
TABLE_LIST *tl;
|
||
List_iterator<TABLE_LIST> ti(leaf_tables);
|
||
while ((tl= ti++))
|
||
{
|
||
if (tl == table)
|
||
{
|
||
ti.replace(tbl_list);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Assigns new table maps to tables in the leaf_tables list
|
||
|
||
@param derived Derived table to take initial table map from
|
||
@param map table map to begin with
|
||
@param tablenr table number to begin with
|
||
@param parent_lex new parent select_lex
|
||
|
||
@details
|
||
Assign new table maps/table numbers to all tables in the leaf_tables list.
|
||
'map'/'tablenr' are used for the first table and shifted to left/
|
||
increased for each consequent table in the leaf_tables list.
|
||
If the 'derived' table is given then it's table map/number is used for the
|
||
first table in the list and 'map'/'tablenr' are used for the second and
|
||
all consequent tables.
|
||
The 'parent_lex' is set as the new parent select_lex for all tables in the
|
||
list.
|
||
*/
|
||
|
||
void st_select_lex::remap_tables(TABLE_LIST *derived, table_map map,
|
||
uint tablenr, SELECT_LEX *parent_lex)
|
||
{
|
||
bool first_table= TRUE;
|
||
TABLE_LIST *tl;
|
||
table_map first_map;
|
||
uint first_tablenr;
|
||
|
||
if (derived && derived->table)
|
||
{
|
||
first_map= derived->table->map;
|
||
first_tablenr= derived->table->tablenr;
|
||
}
|
||
else
|
||
{
|
||
first_map= map;
|
||
map<<= 1;
|
||
first_tablenr= tablenr++;
|
||
}
|
||
/*
|
||
Assign table bit/table number.
|
||
To the first table of the subselect the table bit/tablenr of the
|
||
derived table is assigned. The rest of tables are getting bits
|
||
sequentially, starting from the provided table map/tablenr.
|
||
*/
|
||
List_iterator<TABLE_LIST> ti(leaf_tables);
|
||
while ((tl= ti++))
|
||
{
|
||
if (first_table)
|
||
{
|
||
first_table= FALSE;
|
||
tl->table->set_table_map(first_map, first_tablenr);
|
||
}
|
||
else
|
||
{
|
||
tl->table->set_table_map(map, tablenr);
|
||
tablenr++;
|
||
map<<= 1;
|
||
}
|
||
SELECT_LEX *old_sl= tl->select_lex;
|
||
tl->select_lex= parent_lex;
|
||
for(TABLE_LIST *emb= tl->embedding;
|
||
emb && emb->select_lex == old_sl;
|
||
emb= emb->embedding)
|
||
emb->select_lex= parent_lex;
|
||
}
|
||
}
|
||
|
||
/**
|
||
@brief
|
||
Merge a subquery into this select.
|
||
|
||
@param derived derived table of the subquery to be merged
|
||
@param subq_select select_lex of the subquery
|
||
@param map table map for assigning to merged tables from subquery
|
||
@param table_no table number for assigning to merged tables from subquery
|
||
|
||
@details
|
||
This function merges a subquery into its parent select. In short the
|
||
merge operation appends the subquery FROM table list to the parent's
|
||
FROM table list. In more details:
|
||
.) the top_join_list of the subquery is wrapped into a join_nest
|
||
and attached to 'derived'
|
||
.) subquery's leaf_tables list is merged with the leaf_tables
|
||
list of this select_lex
|
||
.) the table maps and table numbers of the tables merged from
|
||
the subquery are adjusted to reflect their new binding to
|
||
this select
|
||
|
||
@return TRUE an error occur
|
||
@return FALSE ok
|
||
*/
|
||
|
||
bool SELECT_LEX::merge_subquery(THD *thd, TABLE_LIST *derived,
|
||
SELECT_LEX *subq_select,
|
||
uint table_no, table_map map)
|
||
{
|
||
derived->wrap_into_nested_join(subq_select->top_join_list);
|
||
|
||
ftfunc_list->append(subq_select->ftfunc_list);
|
||
if (join ||
|
||
thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
|
||
thd->lex->sql_command == SQLCOM_DELETE_MULTI)
|
||
{
|
||
List_iterator_fast<Item_in_subselect> li(subq_select->sj_subselects);
|
||
Item_in_subselect *in_subq;
|
||
while ((in_subq= li++))
|
||
{
|
||
sj_subselects.push_back(in_subq, thd->mem_root);
|
||
if (in_subq->emb_on_expr_nest == NO_JOIN_NEST)
|
||
in_subq->emb_on_expr_nest= derived;
|
||
}
|
||
|
||
uint cnt= sizeof(expr_cache_may_be_used)/sizeof(bool);
|
||
for (uint i= 0; i < cnt; i++)
|
||
{
|
||
if (subq_select->expr_cache_may_be_used[i])
|
||
expr_cache_may_be_used[i]= true;
|
||
}
|
||
|
||
List_iterator_fast<Item_func_in> it(subq_select->in_funcs);
|
||
Item_func_in *in_func;
|
||
while ((in_func= it++))
|
||
{
|
||
in_funcs.push_back(in_func, thd->mem_root);
|
||
if (in_func->emb_on_expr_nest == NO_JOIN_NEST)
|
||
in_func->emb_on_expr_nest= derived;
|
||
}
|
||
}
|
||
|
||
/* Walk through child's tables and adjust table map, tablenr,
|
||
* parent_lex */
|
||
subq_select->remap_tables(derived, map, table_no, this);
|
||
subq_select->merged_into= this;
|
||
|
||
replace_leaf_table(derived, subq_select->leaf_tables);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Mark tables from the leaf_tables list as belong to a derived table.
|
||
|
||
@param derived tables will be marked as belonging to this derived
|
||
|
||
@details
|
||
Run through the leaf_list and mark all tables as belonging to the 'derived'.
|
||
*/
|
||
|
||
void SELECT_LEX::mark_as_belong_to_derived(TABLE_LIST *derived)
|
||
{
|
||
/* Mark tables as belonging to this DT */
|
||
TABLE_LIST *tl;
|
||
List_iterator<TABLE_LIST> ti(leaf_tables);
|
||
while ((tl= ti++))
|
||
tl->belong_to_derived= derived;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Update used_tables cache for this select
|
||
|
||
@details
|
||
This function updates used_tables cache of ON expressions of all tables
|
||
in the leaf_tables list and of the conds expression (if any).
|
||
*/
|
||
|
||
void SELECT_LEX::update_used_tables()
|
||
{
|
||
TABLE_LIST *tl;
|
||
List_iterator<TABLE_LIST> ti(leaf_tables);
|
||
|
||
while ((tl= ti++))
|
||
{
|
||
if (tl->table && !tl->is_view_or_derived())
|
||
{
|
||
TABLE_LIST *embedding= tl->embedding;
|
||
for (embedding= tl->embedding; embedding; embedding=embedding->embedding)
|
||
{
|
||
if (embedding->is_view_or_derived())
|
||
{
|
||
DBUG_ASSERT(embedding->is_merged_derived());
|
||
TABLE *tab= tl->table;
|
||
tab->covering_keys= tab->s->keys_for_keyread;
|
||
tab->covering_keys.intersect(tab->keys_in_use_for_query);
|
||
/*
|
||
View/derived was merged. Need to recalculate read_set
|
||
bitmaps here. For example:
|
||
CREATE VIEW v1 AS SELECT f1,f2,f3 FROM t1;
|
||
SELECT f1 FROM v1;
|
||
Initially, the view definition will put all f1,f2,f3 in the
|
||
read_set for t1. But after the view is merged, only f1 should
|
||
be in the read_set.
|
||
*/
|
||
bitmap_clear_all(tab->read_set);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
ti.rewind();
|
||
while ((tl= ti++))
|
||
{
|
||
TABLE_LIST *embedding= tl;
|
||
do
|
||
{
|
||
bool maybe_null;
|
||
if ((maybe_null= MY_TEST(embedding->outer_join)))
|
||
{
|
||
tl->table->maybe_null= maybe_null;
|
||
break;
|
||
}
|
||
}
|
||
while ((embedding= embedding->embedding));
|
||
if (tl->on_expr)
|
||
{
|
||
tl->on_expr->update_used_tables();
|
||
tl->on_expr->walk(&Item::eval_not_null_tables, 0, NULL);
|
||
}
|
||
/*
|
||
- There is no need to check sj_on_expr, because merged semi-joins inject
|
||
sj_on_expr into the parent's WHERE clase.
|
||
- For non-merged semi-joins (aka JTBMs), we need to check their
|
||
left_expr. There is no need to check the rest of the subselect, we know
|
||
it is uncorrelated and so cannot refer to any tables in this select.
|
||
*/
|
||
if (tl->jtbm_subselect)
|
||
{
|
||
Item *left_expr= tl->jtbm_subselect->left_expr;
|
||
left_expr->walk(&Item::update_table_bitmaps_processor, FALSE, NULL);
|
||
}
|
||
|
||
embedding= tl->embedding;
|
||
while (embedding)
|
||
{
|
||
if (embedding->on_expr &&
|
||
embedding->nested_join->join_list.head() == tl)
|
||
{
|
||
embedding->on_expr->update_used_tables();
|
||
embedding->on_expr->walk(&Item::eval_not_null_tables, 0, NULL);
|
||
}
|
||
tl= embedding;
|
||
embedding= tl->embedding;
|
||
}
|
||
}
|
||
|
||
if (join->conds)
|
||
{
|
||
join->conds->update_used_tables();
|
||
join->conds->walk(&Item::eval_not_null_tables, 0, NULL);
|
||
}
|
||
if (join->having)
|
||
{
|
||
join->having->update_used_tables();
|
||
}
|
||
|
||
Item *item;
|
||
List_iterator_fast<Item> it(join->all_fields);
|
||
select_list_tables= 0;
|
||
while ((item= it++))
|
||
{
|
||
item->update_used_tables();
|
||
select_list_tables|= item->used_tables();
|
||
}
|
||
Item_outer_ref *ref;
|
||
List_iterator_fast<Item_outer_ref> ref_it(inner_refs_list);
|
||
while ((ref= ref_it++))
|
||
{
|
||
item= ref->outer_ref;
|
||
item->update_used_tables();
|
||
}
|
||
for (ORDER *order= group_list.first; order; order= order->next)
|
||
(*order->item)->update_used_tables();
|
||
if (!master_unit()->is_unit_op() ||
|
||
master_unit()->global_parameters() != this)
|
||
{
|
||
for (ORDER *order= order_list.first; order; order= order->next)
|
||
(*order->item)->update_used_tables();
|
||
}
|
||
join->result->update_used_tables();
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Update is_correlated cache for this select
|
||
|
||
@details
|
||
*/
|
||
|
||
void st_select_lex::update_correlated_cache()
|
||
{
|
||
TABLE_LIST *tl;
|
||
List_iterator<TABLE_LIST> ti(leaf_tables);
|
||
|
||
is_correlated= false;
|
||
|
||
while ((tl= ti++))
|
||
{
|
||
// is_correlated|= tl->is_with_table_recursive_reference();
|
||
if (tl->on_expr)
|
||
is_correlated|= MY_TEST(tl->on_expr->used_tables() & OUTER_REF_TABLE_BIT);
|
||
for (TABLE_LIST *embedding= tl->embedding ; embedding ;
|
||
embedding= embedding->embedding)
|
||
{
|
||
if (embedding->on_expr)
|
||
is_correlated|= MY_TEST(embedding->on_expr->used_tables() &
|
||
OUTER_REF_TABLE_BIT);
|
||
}
|
||
}
|
||
|
||
if (join->conds)
|
||
is_correlated|= MY_TEST(join->conds->used_tables() & OUTER_REF_TABLE_BIT);
|
||
|
||
is_correlated|= join->having_is_correlated;
|
||
|
||
if (join->having)
|
||
is_correlated|= MY_TEST(join->having->used_tables() & OUTER_REF_TABLE_BIT);
|
||
|
||
if (join->tmp_having)
|
||
is_correlated|= MY_TEST(join->tmp_having->used_tables() &
|
||
OUTER_REF_TABLE_BIT);
|
||
|
||
Item *item;
|
||
List_iterator_fast<Item> it(join->fields_list);
|
||
while ((item= it++))
|
||
is_correlated|= MY_TEST(item->used_tables() & OUTER_REF_TABLE_BIT);
|
||
|
||
for (ORDER *order= group_list.first; order; order= order->next)
|
||
is_correlated|= MY_TEST((*order->item)->used_tables() &
|
||
OUTER_REF_TABLE_BIT);
|
||
|
||
if (!master_unit()->is_unit_op())
|
||
{
|
||
for (ORDER *order= order_list.first; order; order= order->next)
|
||
is_correlated|= MY_TEST((*order->item)->used_tables() &
|
||
OUTER_REF_TABLE_BIT);
|
||
}
|
||
|
||
if (!is_correlated)
|
||
uncacheable&= ~UNCACHEABLE_DEPENDENT;
|
||
}
|
||
|
||
|
||
/**
|
||
Set the EXPLAIN type for this subquery.
|
||
|
||
@param on_the_fly TRUE<=> We're running a SHOW EXPLAIN command, so we must
|
||
not change any variables
|
||
*/
|
||
|
||
void st_select_lex::set_explain_type(bool on_the_fly)
|
||
{
|
||
bool is_primary= FALSE;
|
||
if (next_select())
|
||
is_primary= TRUE;
|
||
|
||
if (!is_primary && first_inner_unit())
|
||
{
|
||
/*
|
||
If there is at least one materialized derived|view then it's a PRIMARY select.
|
||
Otherwise, all derived tables/views were merged and this select is a SIMPLE one.
|
||
*/
|
||
for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit())
|
||
{
|
||
if ((!un->derived || un->derived->is_materialized_derived()))
|
||
{
|
||
is_primary= TRUE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (on_the_fly && !is_primary && have_merged_subqueries)
|
||
is_primary= TRUE;
|
||
|
||
SELECT_LEX *first= master_unit()->first_select();
|
||
/* drop UNCACHEABLE_EXPLAIN, because it is for internal usage only */
|
||
uint8 is_uncacheable= (uncacheable & ~UNCACHEABLE_EXPLAIN);
|
||
|
||
bool using_materialization= FALSE;
|
||
Item_subselect *parent_item;
|
||
if ((parent_item= master_unit()->item) &&
|
||
parent_item->substype() == Item_subselect::IN_SUBS)
|
||
{
|
||
Item_in_subselect *in_subs= (Item_in_subselect*)parent_item;
|
||
/*
|
||
Surprisingly, in_subs->is_set_strategy() can return FALSE here,
|
||
even for the last invocation of this function for the select.
|
||
*/
|
||
if (in_subs->test_strategy(SUBS_MATERIALIZATION))
|
||
using_materialization= TRUE;
|
||
}
|
||
|
||
if (master_unit()->thd->lex->first_select_lex() == this)
|
||
{
|
||
if (pushdown_select)
|
||
type= pushed_select_text;
|
||
else
|
||
type= is_primary ? "PRIMARY" : "SIMPLE";
|
||
}
|
||
else
|
||
{
|
||
if (this == first)
|
||
{
|
||
/* If we're a direct child of a UNION, we're the first sibling there */
|
||
if (linkage == DERIVED_TABLE_TYPE)
|
||
{
|
||
bool is_pushed_master_unit= master_unit()->derived &&
|
||
master_unit()->derived->pushdown_derived;
|
||
if (is_pushed_master_unit)
|
||
type= pushed_derived_text;
|
||
else if (is_uncacheable & UNCACHEABLE_DEPENDENT)
|
||
type= "LATERAL DERIVED";
|
||
else
|
||
type= "DERIVED";
|
||
}
|
||
else if (using_materialization)
|
||
type= "MATERIALIZED";
|
||
else
|
||
{
|
||
if (is_uncacheable & UNCACHEABLE_DEPENDENT)
|
||
type= "DEPENDENT SUBQUERY";
|
||
else
|
||
{
|
||
type= is_uncacheable? "UNCACHEABLE SUBQUERY" :
|
||
"SUBQUERY";
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (linkage)
|
||
{
|
||
case INTERSECT_TYPE:
|
||
type= "INTERSECT";
|
||
break;
|
||
case EXCEPT_TYPE:
|
||
type= "EXCEPT";
|
||
break;
|
||
default:
|
||
/* This a non-first sibling in UNION */
|
||
if (is_uncacheable & UNCACHEABLE_DEPENDENT)
|
||
type= "DEPENDENT UNION";
|
||
else if (using_materialization)
|
||
type= "MATERIALIZED UNION";
|
||
else
|
||
{
|
||
type= is_uncacheable ? "UNCACHEABLE UNION": "UNION";
|
||
if (this == master_unit()->fake_select_lex)
|
||
type= unit_operation_text[master_unit()->common_op()];
|
||
/*
|
||
join below may be =NULL when this functions is called at an early
|
||
stage. It will be later called again and we will set the correct
|
||
value.
|
||
*/
|
||
if (join)
|
||
{
|
||
bool uses_cte= false;
|
||
for (JOIN_TAB *tab= first_linear_tab(join, WITHOUT_BUSH_ROOTS,
|
||
WITH_CONST_TABLES);
|
||
tab;
|
||
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
|
||
{
|
||
/*
|
||
pos_in_table_list=NULL for e.g. post-join aggregation JOIN_TABs.
|
||
*/
|
||
if (tab->table && tab->table->pos_in_table_list &&
|
||
tab->table->pos_in_table_list->with &&
|
||
tab->table->pos_in_table_list->with->is_recursive)
|
||
{
|
||
uses_cte= true;
|
||
break;
|
||
}
|
||
}
|
||
if (uses_cte)
|
||
type= "RECURSIVE UNION";
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!on_the_fly)
|
||
options|= SELECT_DESCRIBE;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Increase estimated number of records for a derived table/view
|
||
|
||
@param records number of records to increase estimate by
|
||
|
||
@details
|
||
This function increases estimated number of records by the 'records'
|
||
for the derived table to which this select belongs to.
|
||
*/
|
||
|
||
void SELECT_LEX::increase_derived_records(ha_rows records)
|
||
{
|
||
SELECT_LEX_UNIT *unit= master_unit();
|
||
DBUG_ASSERT(unit->derived);
|
||
|
||
if (unit->with_element && unit->with_element->is_recursive)
|
||
{
|
||
st_select_lex *first_recursive= unit->with_element->first_recursive;
|
||
st_select_lex *sl= unit->first_select();
|
||
for ( ; sl != first_recursive; sl= sl->next_select())
|
||
{
|
||
if (sl == this)
|
||
break;
|
||
}
|
||
if (sl == first_recursive)
|
||
return;
|
||
}
|
||
|
||
select_result *result= unit->result;
|
||
switch (linkage)
|
||
{
|
||
case INTERSECT_TYPE:
|
||
// result of intersect can't be more then one of components
|
||
set_if_smaller(result->est_records, records);
|
||
case EXCEPT_TYPE:
|
||
// in worse case none of record will be removed
|
||
break;
|
||
default:
|
||
// usual UNION
|
||
if (HA_ROWS_MAX - records > result->est_records)
|
||
result->est_records+= records;
|
||
else
|
||
result->est_records= HA_ROWS_MAX;
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Mark select's derived table as a const one.
|
||
|
||
@param empty Whether select has an empty result set
|
||
|
||
@details
|
||
Mark derived table/view of this select as a constant one (to
|
||
materialize it at the optimization phase) unless this select belongs to a
|
||
union. Estimated number of rows is incremented if this select has non empty
|
||
result set.
|
||
*/
|
||
|
||
void SELECT_LEX::mark_const_derived(bool empty)
|
||
{
|
||
TABLE_LIST *derived= master_unit()->derived;
|
||
/* join == NULL in DELETE ... RETURNING */
|
||
if (!(join && join->thd->lex->describe) && derived)
|
||
{
|
||
if (!empty)
|
||
increase_derived_records(1);
|
||
if (!master_unit()->is_unit_op() && !derived->is_merged_derived() &&
|
||
!(join && join->with_two_phase_optimization))
|
||
derived->fill_me= TRUE;
|
||
}
|
||
}
|
||
|
||
|
||
bool st_select_lex::save_leaf_tables(THD *thd)
|
||
{
|
||
Query_arena *arena, backup;
|
||
arena= thd->activate_stmt_arena_if_needed(&backup);
|
||
|
||
List_iterator_fast<TABLE_LIST> li(leaf_tables);
|
||
TABLE_LIST *table;
|
||
while ((table= li++))
|
||
{
|
||
if (leaf_tables_exec.push_back(table, thd->mem_root))
|
||
return 1;
|
||
table->tablenr_exec= table->get_tablenr();
|
||
table->map_exec= table->get_map();
|
||
if (join && (join->select_options & SELECT_DESCRIBE))
|
||
table->maybe_null_exec= 0;
|
||
else
|
||
table->maybe_null_exec= table->table? table->table->maybe_null: 0;
|
||
}
|
||
if (arena)
|
||
thd->restore_active_arena(arena, &backup);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
bool LEX::save_prep_leaf_tables()
|
||
{
|
||
if (!thd->save_prep_leaf_list)
|
||
return FALSE;
|
||
|
||
Query_arena *arena= thd->stmt_arena, backup;
|
||
arena= thd->activate_stmt_arena_if_needed(&backup);
|
||
//It is used for DETETE/UPDATE so top level has only one SELECT
|
||
DBUG_ASSERT(first_select_lex()->next_select() == NULL);
|
||
bool res= first_select_lex()->save_prep_leaf_tables(thd);
|
||
|
||
if (arena)
|
||
thd->restore_active_arena(arena, &backup);
|
||
|
||
if (res)
|
||
return TRUE;
|
||
|
||
thd->save_prep_leaf_list= FALSE;
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
bool st_select_lex::save_prep_leaf_tables(THD *thd)
|
||
{
|
||
List_iterator_fast<TABLE_LIST> li(leaf_tables);
|
||
TABLE_LIST *table;
|
||
|
||
/*
|
||
Check that the SELECT_LEX was really prepared and so tables are setup.
|
||
|
||
It can be subquery in SET clause of UPDATE which was not prepared yet, so
|
||
its tables are not yet setup and ready for storing.
|
||
*/
|
||
if (prep_leaf_list_state != READY)
|
||
return FALSE;
|
||
|
||
while ((table= li++))
|
||
{
|
||
if (leaf_tables_prep.push_back(table))
|
||
return TRUE;
|
||
}
|
||
prep_leaf_list_state= SAVED;
|
||
for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit())
|
||
{
|
||
for (SELECT_LEX *sl= u->first_select(); sl; sl= sl->next_select())
|
||
{
|
||
if (sl->save_prep_leaf_tables(thd))
|
||
return TRUE;
|
||
}
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/*
|
||
Return true if this select_lex has been converted into a semi-join nest
|
||
within 'ancestor'.
|
||
|
||
We need a loop to check this because there could be several nested
|
||
subselects, like
|
||
|
||
SELECT ... FROM grand_parent
|
||
WHERE expr1 IN (SELECT ... FROM parent
|
||
WHERE expr2 IN ( SELECT ... FROM child)
|
||
|
||
which were converted into:
|
||
|
||
SELECT ...
|
||
FROM grand_parent SEMI_JOIN (parent JOIN child)
|
||
WHERE
|
||
expr1 AND expr2
|
||
|
||
In this case, both parent and child selects were merged into the parent.
|
||
*/
|
||
|
||
bool st_select_lex::is_merged_child_of(st_select_lex *ancestor)
|
||
{
|
||
bool all_merged= TRUE;
|
||
for (SELECT_LEX *sl= this; sl && sl!=ancestor;
|
||
sl=sl->outer_select())
|
||
{
|
||
Item *subs= sl->master_unit()->item;
|
||
if (subs && subs->type() == Item::SUBSELECT_ITEM &&
|
||
((Item_subselect*)subs)->substype() == Item_subselect::IN_SUBS &&
|
||
((Item_in_subselect*)subs)->test_strategy(SUBS_SEMI_JOIN))
|
||
{
|
||
continue;
|
||
}
|
||
|
||
if (sl->master_unit()->derived &&
|
||
sl->master_unit()->derived->is_merged_derived())
|
||
{
|
||
continue;
|
||
}
|
||
all_merged= FALSE;
|
||
break;
|
||
}
|
||
return all_merged;
|
||
}
|
||
|
||
/*
|
||
This is used by SHOW EXPLAIN. It assuses query plan has been already
|
||
collected into QPF structures and we only need to print it out.
|
||
*/
|
||
|
||
int LEX::print_explain(select_result_sink *output, uint8 explain_flags,
|
||
bool is_analyze, bool *printed_anything)
|
||
{
|
||
int res;
|
||
if (explain && explain->have_query_plan())
|
||
{
|
||
res= explain->print_explain(output, explain_flags, is_analyze);
|
||
*printed_anything= true;
|
||
}
|
||
else
|
||
{
|
||
res= 0;
|
||
*printed_anything= false;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
|
||
/**
|
||
Allocates and set arena for SET STATEMENT old values.
|
||
|
||
@param backup where to save backup of arena.
|
||
|
||
@retval 1 Error
|
||
@retval 0 OK
|
||
*/
|
||
|
||
bool LEX::set_arena_for_set_stmt(Query_arena *backup)
|
||
{
|
||
DBUG_ENTER("LEX::set_arena_for_set_stmt");
|
||
DBUG_ASSERT(arena_for_set_stmt== 0);
|
||
if (!mem_root_for_set_stmt)
|
||
{
|
||
mem_root_for_set_stmt= new MEM_ROOT();
|
||
if (unlikely(!(mem_root_for_set_stmt)))
|
||
DBUG_RETURN(1);
|
||
init_sql_alloc(mem_root_for_set_stmt, "set_stmt",
|
||
ALLOC_ROOT_SET, ALLOC_ROOT_SET, MYF(MY_THREAD_SPECIFIC));
|
||
}
|
||
if (unlikely(!(arena_for_set_stmt= new(mem_root_for_set_stmt)
|
||
Query_arena_memroot(mem_root_for_set_stmt,
|
||
Query_arena::STMT_INITIALIZED))))
|
||
DBUG_RETURN(1);
|
||
DBUG_PRINT("info", ("mem_root: %p arena: %p",
|
||
mem_root_for_set_stmt,
|
||
arena_for_set_stmt));
|
||
thd->set_n_backup_active_arena(arena_for_set_stmt, backup);
|
||
DBUG_RETURN(0);
|
||
}
|
||
|
||
|
||
void LEX::reset_arena_for_set_stmt(Query_arena *backup)
|
||
{
|
||
DBUG_ENTER("LEX::reset_arena_for_set_stmt");
|
||
DBUG_ASSERT(arena_for_set_stmt);
|
||
thd->restore_active_arena(arena_for_set_stmt, backup);
|
||
DBUG_PRINT("info", ("mem_root: %p arena: %p",
|
||
arena_for_set_stmt->mem_root,
|
||
arena_for_set_stmt));
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
|
||
void LEX::free_arena_for_set_stmt()
|
||
{
|
||
DBUG_ENTER("LEX::free_arena_for_set_stmt");
|
||
if (!arena_for_set_stmt)
|
||
return;
|
||
DBUG_PRINT("info", ("mem_root: %p arena: %p",
|
||
arena_for_set_stmt->mem_root,
|
||
arena_for_set_stmt));
|
||
arena_for_set_stmt->free_items();
|
||
delete(arena_for_set_stmt);
|
||
free_root(mem_root_for_set_stmt, MYF(MY_KEEP_PREALLOC));
|
||
arena_for_set_stmt= 0;
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
void LEX::restore_set_statement_var()
|
||
{
|
||
DBUG_ENTER("LEX::restore_set_statement_var");
|
||
if (!old_var_list.is_empty())
|
||
{
|
||
DBUG_PRINT("info", ("vars: %d", old_var_list.elements));
|
||
sql_set_variables(thd, &old_var_list, false);
|
||
old_var_list.empty();
|
||
free_arena_for_set_stmt();
|
||
}
|
||
DBUG_ASSERT(!is_arena_for_set_stmt());
|
||
DBUG_VOID_RETURN;
|
||
}
|
||
|
||
unit_common_op st_select_lex_unit::common_op()
|
||
{
|
||
SELECT_LEX *first= first_select();
|
||
bool first_op= TRUE;
|
||
unit_common_op operation= OP_MIX; // if no op
|
||
for (SELECT_LEX *sl= first; sl; sl= sl->next_select())
|
||
{
|
||
if (sl != first)
|
||
{
|
||
unit_common_op op;
|
||
switch (sl->linkage)
|
||
{
|
||
case INTERSECT_TYPE:
|
||
op= OP_INTERSECT;
|
||
break;
|
||
case EXCEPT_TYPE:
|
||
op= OP_EXCEPT;
|
||
break;
|
||
default:
|
||
op= OP_UNION;
|
||
break;
|
||
}
|
||
if (first_op)
|
||
{
|
||
operation= op;
|
||
first_op= FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (operation != op)
|
||
operation= OP_MIX;
|
||
}
|
||
}
|
||
}
|
||
return operation;
|
||
}
|
||
/*
|
||
Save explain structures of a UNION. The only variable member is whether the
|
||
union has "Using filesort".
|
||
|
||
There is also save_union_explain_part2() function, which is called before we read
|
||
UNION's output.
|
||
|
||
The reason for it is examples like this:
|
||
|
||
SELECT col1 FROM t1 UNION SELECT col2 FROM t2 ORDER BY (select ... from t3 ...)
|
||
|
||
Here, the (select ... from t3 ...) subquery must be a child of UNION's
|
||
st_select_lex. However, it is not connected as child until a very late
|
||
stage in execution.
|
||
*/
|
||
|
||
int st_select_lex_unit::save_union_explain(Explain_query *output)
|
||
{
|
||
SELECT_LEX *first= first_select();
|
||
|
||
if (output->get_union(first->select_number))
|
||
return 0; /* Already added */
|
||
|
||
Explain_union *eu=
|
||
new (output->mem_root) Explain_union(output->mem_root,
|
||
thd->lex->analyze_stmt);
|
||
if (unlikely(!eu))
|
||
return 0;
|
||
|
||
if (with_element && with_element->is_recursive)
|
||
eu->is_recursive_cte= true;
|
||
|
||
if (derived)
|
||
eu->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
|
||
/*
|
||
Note: Non-merged semi-joins cannot be made out of UNIONs currently, so we
|
||
dont ever set EXPLAIN_NODE_NON_MERGED_SJ.
|
||
*/
|
||
for (SELECT_LEX *sl= first; sl; sl= sl->next_select())
|
||
eu->add_select(sl->select_number);
|
||
|
||
eu->fake_select_type= unit_operation_text[eu->operation= common_op()];
|
||
eu->using_filesort= MY_TEST(global_parameters()->order_list.first);
|
||
eu->using_tmp= union_needs_tmp_table();
|
||
|
||
// Save the UNION node
|
||
output->add_node(eu);
|
||
|
||
if (eu->get_select_id() == 1)
|
||
output->query_plan_ready();
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
@see st_select_lex_unit::save_union_explain
|
||
*/
|
||
|
||
int st_select_lex_unit::save_union_explain_part2(Explain_query *output)
|
||
{
|
||
Explain_union *eu= output->get_union(first_select()->select_number);
|
||
if (fake_select_lex)
|
||
{
|
||
for (SELECT_LEX_UNIT *unit= fake_select_lex->first_inner_unit();
|
||
unit; unit= unit->next_unit())
|
||
{
|
||
if (unit->explainable())
|
||
eu->add_child(unit->first_select()->select_number);
|
||
}
|
||
fake_select_lex->join->explain= &eu->fake_select_lex_explain;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/**
|
||
A routine used by the parser to decide whether we are specifying a full
|
||
partitioning or if only partitions to add or to split.
|
||
|
||
@note This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it
|
||
is used from the sql parser that doesn't have any ifdef's
|
||
|
||
@retval TRUE Yes, it is part of a management partition command
|
||
@retval FALSE No, not a management partition command
|
||
*/
|
||
|
||
bool LEX::is_partition_management() const
|
||
{
|
||
return (sql_command == SQLCOM_ALTER_TABLE &&
|
||
(alter_info.partition_flags == ALTER_PARTITION_ADD ||
|
||
alter_info.partition_flags == ALTER_PARTITION_REORGANIZE));
|
||
}
|
||
|
||
|
||
/**
|
||
Exclude last added SELECT_LEX (current) in the UNIT and return pointer in it
|
||
(previous become currect)
|
||
|
||
@return detached SELECT_LEX or NULL in case of error
|
||
*/
|
||
|
||
SELECT_LEX *LEX::exclude_last_select()
|
||
{
|
||
return exclude_not_first_select(current_select);
|
||
}
|
||
|
||
SELECT_LEX *LEX::exclude_not_first_select(SELECT_LEX *exclude)
|
||
{
|
||
DBUG_ENTER("LEX::exclude_not_first_select");
|
||
DBUG_PRINT("enter", ("exclude %p #%u", exclude, exclude->select_number));
|
||
SELECT_LEX_UNIT *unit= exclude->master_unit();
|
||
SELECT_LEX *sl;
|
||
DBUG_ASSERT(unit->first_select() != exclude);
|
||
/* we should go through the list to correctly set current_select */
|
||
for(sl= unit->first_select();
|
||
sl->next_select() && sl->next_select() != exclude;
|
||
sl= sl->next_select());
|
||
DBUG_PRINT("info", ("excl: %p unit: %p prev: %p", exclude, unit, sl));
|
||
if (!sl)
|
||
DBUG_RETURN(NULL);
|
||
DBUG_ASSERT(&sl->next == exclude->prev);
|
||
|
||
exclude->prev= NULL;
|
||
|
||
current_select= sl;
|
||
DBUG_RETURN(exclude);
|
||
}
|
||
|
||
|
||
SELECT_LEX_UNIT *LEX::alloc_unit()
|
||
{
|
||
SELECT_LEX_UNIT *unit;
|
||
DBUG_ENTER("LEX::alloc_unit");
|
||
if (!(unit= new (thd->mem_root) SELECT_LEX_UNIT()))
|
||
DBUG_RETURN(NULL);
|
||
|
||
unit->init_query();
|
||
/* TODO: reentrant problem */
|
||
unit->thd= thd;
|
||
unit->link_next= 0;
|
||
unit->link_prev= 0;
|
||
/* TODO: remove return_to */
|
||
unit->return_to= NULL;
|
||
DBUG_RETURN(unit);
|
||
}
|
||
|
||
|
||
SELECT_LEX *LEX::alloc_select(bool select)
|
||
{
|
||
SELECT_LEX *select_lex;
|
||
DBUG_ENTER("LEX::alloc_select");
|
||
if (!(select_lex= new (thd->mem_root) SELECT_LEX()))
|
||
DBUG_RETURN(NULL);
|
||
DBUG_PRINT("info", ("Allocate select: %p #%u statement lex: %p",
|
||
select_lex, thd->lex->stmt_lex->current_select_number,
|
||
thd->lex->stmt_lex));
|
||
/*
|
||
TODO: move following init to constructor when we get rid of builtin
|
||
select
|
||
*/
|
||
select_lex->select_number= ++thd->lex->stmt_lex->current_select_number;
|
||
select_lex->parent_lex= this; /* Used in init_query. */
|
||
select_lex->init_query();
|
||
if (select)
|
||
select_lex->init_select();
|
||
select_lex->nest_level_base= &this->unit;
|
||
select_lex->include_global((st_select_lex_node**)&all_selects_list);
|
||
select_lex->context.resolve_in_select_list= TRUE;
|
||
DBUG_RETURN(select_lex);
|
||
}
|
||
|
||
SELECT_LEX_UNIT *
|
||
LEX::create_unit(SELECT_LEX *first_sel)
|
||
{
|
||
SELECT_LEX_UNIT *unit;
|
||
DBUG_ENTER("LEX::create_unit");
|
||
|
||
unit = first_sel->master_unit();
|
||
|
||
if (!unit && !(unit= alloc_unit()))
|
||
DBUG_RETURN(NULL);
|
||
|
||
unit->register_select_chain(first_sel);
|
||
if (first_sel->next_select())
|
||
{
|
||
unit->reset_distinct();
|
||
DBUG_ASSERT(!unit->fake_select_lex);
|
||
if (unit->add_fake_select_lex(thd))
|
||
DBUG_RETURN(NULL);
|
||
}
|
||
DBUG_RETURN(unit);
|
||
}
|
||
|
||
SELECT_LEX_UNIT *
|
||
SELECT_LEX::attach_selects_chain(SELECT_LEX *first_sel,
|
||
Name_resolution_context *context)
|
||
{
|
||
SELECT_LEX_UNIT *unit;
|
||
DBUG_ENTER("SELECT_LEX::attach_select_chain");
|
||
|
||
if (!(unit= parent_lex->alloc_unit()))
|
||
DBUG_RETURN(NULL);
|
||
|
||
unit->register_select_chain(first_sel);
|
||
register_unit(unit, context);
|
||
if (first_sel->next_select())
|
||
{
|
||
unit->reset_distinct();
|
||
DBUG_ASSERT(!unit->fake_select_lex);
|
||
if (unit->add_fake_select_lex(parent_lex->thd))
|
||
DBUG_RETURN(NULL);
|
||
}
|
||
|
||
DBUG_RETURN(unit);
|
||
}
|
||
|
||
SELECT_LEX *
|
||
LEX::wrap_unit_into_derived(SELECT_LEX_UNIT *unit)
|
||
{
|
||
SELECT_LEX *wrapping_sel;
|
||
Table_ident *ti;
|
||
DBUG_ENTER("LEX::wrap_unit_into_derived");
|
||
|
||
if (!(wrapping_sel= alloc_select(TRUE)))
|
||
DBUG_RETURN(NULL);
|
||
Name_resolution_context *context= &wrapping_sel->context;
|
||
context->init();
|
||
wrapping_sel->automatic_brackets= FALSE;
|
||
wrapping_sel->mark_as_unit_nest();
|
||
wrapping_sel->register_unit(unit, context);
|
||
|
||
/* stuff dummy SELECT * FROM (...) */
|
||
|
||
if (push_select(wrapping_sel)) // for Items & TABLE_LIST
|
||
DBUG_RETURN(NULL);
|
||
|
||
/* add SELECT list*/
|
||
{
|
||
Item *item= new (thd->mem_root) Item_field(thd, context, star_clex_str);
|
||
if (item == NULL)
|
||
goto err;
|
||
if (add_item_to_list(thd, item))
|
||
goto err;
|
||
(wrapping_sel->with_wild)++;
|
||
}
|
||
|
||
unit->first_select()->set_linkage(DERIVED_TABLE_TYPE);
|
||
|
||
ti= new (thd->mem_root) Table_ident(unit);
|
||
if (ti == NULL)
|
||
goto err;
|
||
{
|
||
TABLE_LIST *table_list;
|
||
LEX_CSTRING alias;
|
||
if (wrapping_sel->make_unique_derived_name(thd, &alias))
|
||
goto err;
|
||
|
||
if (!(table_list= wrapping_sel->add_table_to_list(thd, ti, &alias,
|
||
0, TL_READ,
|
||
MDL_SHARED_READ)))
|
||
goto err;
|
||
|
||
context->resolve_in_table_list_only(table_list);
|
||
wrapping_sel->add_joined_table(table_list);
|
||
}
|
||
|
||
pop_select();
|
||
|
||
derived_tables|= DERIVED_SUBQUERY;
|
||
|
||
DBUG_RETURN(wrapping_sel);
|
||
|
||
err:
|
||
pop_select();
|
||
DBUG_RETURN(NULL);
|
||
}
|
||
|
||
SELECT_LEX *LEX::wrap_select_chain_into_derived(SELECT_LEX *sel)
|
||
{
|
||
SELECT_LEX *dummy_select;
|
||
SELECT_LEX_UNIT *unit;
|
||
Table_ident *ti;
|
||
DBUG_ENTER("LEX::wrap_select_chain_into_derived");
|
||
|
||
if (!(dummy_select= alloc_select(TRUE)))
|
||
DBUG_RETURN(NULL);
|
||
Name_resolution_context *context= &dummy_select->context;
|
||
dummy_select->automatic_brackets= FALSE;
|
||
sel->distinct= TRUE; // First select has not this attribute (safety)
|
||
|
||
if (!(unit= dummy_select->attach_selects_chain(sel, context)))
|
||
DBUG_RETURN(NULL);
|
||
|
||
/* stuff dummy SELECT * FROM (...) */
|
||
|
||
if (push_select(dummy_select)) // for Items & TABLE_LIST
|
||
DBUG_RETURN(NULL);
|
||
|
||
/* add SELECT list*/
|
||
{
|
||
Item *item= new (thd->mem_root) Item_field(thd, context, star_clex_str);
|
||
if (item == NULL)
|
||
goto err;
|
||
if (add_item_to_list(thd, item))
|
||
goto err;
|
||
(dummy_select->with_wild)++;
|
||
}
|
||
|
||
sel->set_linkage(DERIVED_TABLE_TYPE);
|
||
|
||
ti= new (thd->mem_root) Table_ident(unit);
|
||
if (ti == NULL)
|
||
goto err;
|
||
{
|
||
TABLE_LIST *table_list;
|
||
LEX_CSTRING alias;
|
||
if (dummy_select->make_unique_derived_name(thd, &alias))
|
||
goto err;
|
||
|
||
if (!(table_list= dummy_select->add_table_to_list(thd, ti, &alias,
|
||
0, TL_READ,
|
||
MDL_SHARED_READ)))
|
||
goto err;
|
||
|
||
context->resolve_in_table_list_only(table_list);
|
||
dummy_select->add_joined_table(table_list);
|
||
}
|
||
|
||
pop_select();
|
||
|
||
derived_tables|= DERIVED_SUBQUERY;
|
||
|
||
DBUG_RETURN(dummy_select);
|
||
|
||
err:
|
||
pop_select();
|
||
DBUG_RETURN(NULL);
|
||
}
|
||
|
||
bool LEX::push_context(Name_resolution_context *context)
|
||
{
|
||
DBUG_ENTER("LEX::push_context");
|
||
DBUG_PRINT("info", ("Context: %p Select: %p (%d)",
|
||
context, context->select_lex,
|
||
(context->select_lex ?
|
||
context->select_lex->select_number:
|
||
0)));
|
||
bool res= context_stack.push_front(context, thd->mem_root);
|
||
DBUG_RETURN(res);
|
||
}
|
||
|
||
|
||
Name_resolution_context *LEX::pop_context()
|
||
{
|
||
DBUG_ENTER("LEX::pop_context");
|
||
Name_resolution_context *context= context_stack.pop();
|
||
DBUG_PRINT("info", ("Context: %p Select: %p (%d)",
|
||
context, context->select_lex,
|
||
(context->select_lex ?
|
||
context->select_lex->select_number:
|
||
0)));
|
||
DBUG_RETURN(context);
|
||
}
|
||
|
||
|
||
SELECT_LEX *LEX::create_priority_nest(SELECT_LEX *first_in_nest)
|
||
{
|
||
DBUG_ENTER("LEX::create_priority_nest");
|
||
DBUG_ASSERT(first_in_nest->first_nested);
|
||
enum sub_select_type wr_unit_type= first_in_nest->get_linkage();
|
||
bool wr_distinct= first_in_nest->distinct;
|
||
SELECT_LEX *attach_to= first_in_nest->first_nested;
|
||
attach_to->cut_next();
|
||
SELECT_LEX *wrapper= wrap_select_chain_into_derived(first_in_nest);
|
||
if (wrapper)
|
||
{
|
||
first_in_nest->first_nested= NULL;
|
||
wrapper->set_linkage_and_distinct(wr_unit_type, wr_distinct);
|
||
wrapper->first_nested= attach_to->first_nested;
|
||
wrapper->set_master_unit(attach_to->master_unit());
|
||
attach_to->link_neighbour(wrapper);
|
||
}
|
||
DBUG_RETURN(wrapper);
|
||
}
|
||
|
||
|
||
/**
|
||
Checks if we need finish "automatic brackets" mode
|
||
|
||
INTERSECT has higher priority then UNION and EXCEPT, so when it is need we
|
||
automatically create lower layer for INTERSECT (automatic brackets) and
|
||
here we check if we should return back one level up during parsing procedure.
|
||
*/
|
||
|
||
void LEX::check_automatic_up(enum sub_select_type type)
|
||
{
|
||
if (type != INTERSECT_TYPE &&
|
||
current_select->get_linkage() == INTERSECT_TYPE &&
|
||
current_select->outer_select() &&
|
||
current_select->outer_select()->automatic_brackets)
|
||
{
|
||
nest_level--;
|
||
current_select= current_select->outer_select();
|
||
}
|
||
}
|
||
|
||
|
||
sp_variable *LEX::sp_param_init(LEX_CSTRING *name)
|
||
{
|
||
if (spcont->find_variable(name, true))
|
||
{
|
||
my_error(ER_SP_DUP_PARAM, MYF(0), name->str);
|
||
return NULL;
|
||
}
|
||
sp_variable *spvar= spcont->add_variable(thd, name);
|
||
init_last_field(&spvar->field_def, name,
|
||
thd->variables.collation_database);
|
||
return spvar;
|
||
}
|
||
|
||
|
||
bool LEX::sp_param_fill_definition(sp_variable *spvar,
|
||
const Lex_field_type_st &def)
|
||
{
|
||
return
|
||
last_field->set_attributes(thd, def, charset,
|
||
COLUMN_DEFINITION_ROUTINE_PARAM) ||
|
||
sphead->fill_spvar_definition(thd, last_field, &spvar->name);
|
||
}
|
||
|
||
|
||
bool LEX::sf_return_fill_definition(const Lex_field_type_st &def)
|
||
{
|
||
return
|
||
last_field->set_attributes(thd, def, charset,
|
||
COLUMN_DEFINITION_FUNCTION_RETURN) ||
|
||
sphead->fill_field_definition(thd, last_field);
|
||
}
|
||
|
||
|
||
void LEX::set_stmt_init()
|
||
{
|
||
sql_command= SQLCOM_SET_OPTION;
|
||
mysql_init_select(this);
|
||
option_type= OPT_SESSION;
|
||
autocommit= 0;
|
||
var_list.empty();
|
||
};
|
||
|
||
|
||
/**
|
||
Find a local or a package body variable by name.
|
||
@param IN name - the variable name
|
||
@param OUT ctx - NULL, if the variable was not found,
|
||
or LEX::spcont (if a local variable was found)
|
||
or the package top level context
|
||
(if a package variable was found)
|
||
@param OUT handler - NULL, if the variable was not found,
|
||
or a pointer to rcontext handler
|
||
@retval - the variable (if found), or NULL otherwise.
|
||
*/
|
||
sp_variable *
|
||
LEX::find_variable(const LEX_CSTRING *name,
|
||
sp_pcontext **ctx,
|
||
const Sp_rcontext_handler **rh) const
|
||
{
|
||
sp_variable *spv;
|
||
if (spcont && (spv= spcont->find_variable(name, false)))
|
||
{
|
||
*ctx= spcont;
|
||
*rh= &sp_rcontext_handler_local;
|
||
return spv;
|
||
}
|
||
sp_package *pkg= sphead ? sphead->m_parent : NULL;
|
||
if (pkg && (spv= pkg->find_package_variable(name)))
|
||
{
|
||
*ctx= pkg->get_parse_context()->child_context(0);
|
||
*rh= &sp_rcontext_handler_package_body;
|
||
return spv;
|
||
}
|
||
*ctx= NULL;
|
||
*rh= NULL;
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static bool is_new(const char *str)
|
||
{
|
||
return (str[0] == 'n' || str[0] == 'N') &&
|
||
(str[1] == 'e' || str[1] == 'E') &&
|
||
(str[2] == 'w' || str[2] == 'W');
|
||
}
|
||
|
||
static bool is_old(const char *str)
|
||
{
|
||
return (str[0] == 'o' || str[0] == 'O') &&
|
||
(str[1] == 'l' || str[1] == 'L') &&
|
||
(str[2] == 'd' || str[2] == 'D');
|
||
}
|
||
|
||
|
||
bool LEX::is_trigger_new_or_old_reference(const LEX_CSTRING *name) const
|
||
{
|
||
// "name" is not necessarily NULL-terminated!
|
||
return sphead && sphead->m_handler->type() == TYPE_ENUM_TRIGGER &&
|
||
name->length == 3 && (is_new(name->str) || is_old(name->str));
|
||
}
|
||
|
||
|
||
void LEX::sp_variable_declarations_init(THD *thd, int nvars)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable();
|
||
|
||
sphead->reset_lex(thd);
|
||
spcont->declare_var_boundary(nvars);
|
||
thd->lex->init_last_field(&spvar->field_def, &spvar->name,
|
||
thd->variables.collation_database);
|
||
}
|
||
|
||
|
||
bool LEX::sp_variable_declarations_set_default(THD *thd, int nvars,
|
||
Item *dflt_value_item)
|
||
{
|
||
if (!dflt_value_item &&
|
||
unlikely(!(dflt_value_item= new (thd->mem_root) Item_null(thd))))
|
||
return true;
|
||
|
||
for (uint i= 0 ; i < (uint) nvars ; i++)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i);
|
||
bool last= i + 1 == (uint) nvars;
|
||
spvar->default_value= dflt_value_item;
|
||
/* The last instruction is responsible for freeing LEX. */
|
||
sp_instr_set *is= new (this->thd->mem_root)
|
||
sp_instr_set(sphead->instructions(),
|
||
spcont, &sp_rcontext_handler_local,
|
||
spvar->offset, dflt_value_item,
|
||
this, last);
|
||
if (unlikely(is == NULL || sphead->add_instr(is)))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_variable_declarations_copy_type_finalize(THD *thd, int nvars,
|
||
const Column_definition &ref,
|
||
Row_definition_list *fields,
|
||
Item *default_value)
|
||
{
|
||
for (uint i= 0 ; i < (uint) nvars; i++)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i);
|
||
spvar->field_def.set_type(ref);
|
||
if (fields)
|
||
{
|
||
DBUG_ASSERT(ref.type_handler() == &type_handler_row);
|
||
spvar->field_def.set_row_field_definitions(fields);
|
||
}
|
||
spvar->field_def.field_name= spvar->name;
|
||
}
|
||
if (unlikely(sp_variable_declarations_set_default(thd, nvars,
|
||
default_value)))
|
||
return true;
|
||
spcont->declare_var_boundary(0);
|
||
return sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
bool LEX::sp_variable_declarations_finalize(THD *thd, int nvars,
|
||
const Column_definition *cdef,
|
||
Item *dflt_value_item)
|
||
{
|
||
DBUG_ASSERT(cdef);
|
||
Column_definition tmp(*cdef);
|
||
if (sphead->fill_spvar_definition(thd, &tmp))
|
||
return true;
|
||
return sp_variable_declarations_copy_type_finalize(thd, nvars, tmp, NULL,
|
||
dflt_value_item);
|
||
}
|
||
|
||
|
||
bool LEX::sp_variable_declarations_row_finalize(THD *thd, int nvars,
|
||
Row_definition_list *row,
|
||
Item *dflt_value_item)
|
||
{
|
||
DBUG_ASSERT(row);
|
||
/*
|
||
Prepare all row fields.
|
||
Note, we do it only one time outside of the below loop.
|
||
The converted list in "row" is further reused by all variable
|
||
declarations processed by the current call.
|
||
Example:
|
||
DECLARE
|
||
a, b, c ROW(x VARCHAR(10) CHARACTER SET utf8);
|
||
BEGIN
|
||
...
|
||
END;
|
||
*/
|
||
if (sphead->row_fill_field_definitions(thd, row))
|
||
return true;
|
||
|
||
for (uint i= 0 ; i < (uint) nvars ; i++)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i);
|
||
spvar->field_def.set_row_field_definitions(row);
|
||
if (sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name))
|
||
return true;
|
||
}
|
||
|
||
if (sp_variable_declarations_set_default(thd, nvars, dflt_value_item))
|
||
return true;
|
||
spcont->declare_var_boundary(0);
|
||
return sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
/**
|
||
Finalize a %ROWTYPE declaration, e.g.:
|
||
DECLARE a,b,c,d t1%ROWTYPE := ROW(1,2,3);
|
||
|
||
@param thd - the current thd
|
||
@param nvars - the number of variables in the declaration
|
||
@param ref - the table or cursor name (see comments below)
|
||
@param def - the default value, e.g., ROW(1,2,3), or NULL (no default).
|
||
*/
|
||
bool
|
||
LEX::sp_variable_declarations_rowtype_finalize(THD *thd, int nvars,
|
||
Qualified_column_ident *ref,
|
||
Item *def)
|
||
{
|
||
uint coffp;
|
||
const sp_pcursor *pcursor= ref->table.str && ref->db.str ? NULL :
|
||
spcont->find_cursor(&ref->m_column, &coffp,
|
||
false);
|
||
if (pcursor)
|
||
return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars,
|
||
coffp, def);
|
||
/*
|
||
When parsing a qualified identifier chain, the parser does not know yet
|
||
if it's going to be a qualified column name (for %TYPE),
|
||
or a qualified table name (for %ROWTYPE). So it collects the chain
|
||
into Qualified_column_ident.
|
||
Now we know that it was actually a qualified table name (%ROWTYPE).
|
||
Create a new Table_ident from Qualified_column_ident,
|
||
shifting fields as follows:
|
||
- ref->m_column becomes table_ref->table
|
||
- ref->table becomes table_ref->db
|
||
*/
|
||
return sp_variable_declarations_table_rowtype_finalize(thd, nvars,
|
||
ref->table,
|
||
ref->m_column,
|
||
def);
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_variable_declarations_table_rowtype_finalize(THD *thd, int nvars,
|
||
const LEX_CSTRING &db,
|
||
const LEX_CSTRING &table,
|
||
Item *def)
|
||
{
|
||
Table_ident *table_ref;
|
||
if (unlikely(!(table_ref=
|
||
new (thd->mem_root) Table_ident(thd, &db, &table, false))))
|
||
return true;
|
||
// Loop through all variables in the same declaration
|
||
for (uint i= 0 ; i < (uint) nvars; i++)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i);
|
||
spvar->field_def.set_table_rowtype_ref(table_ref);
|
||
sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name);
|
||
}
|
||
if (sp_variable_declarations_set_default(thd, nvars, def))
|
||
return true;
|
||
// Make sure sp_rcontext is created using the invoker security context:
|
||
sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS;
|
||
spcont->declare_var_boundary(0);
|
||
return sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_variable_declarations_cursor_rowtype_finalize(THD *thd, int nvars,
|
||
uint offset,
|
||
Item *def)
|
||
{
|
||
const sp_pcursor *pcursor= spcont->find_cursor(offset);
|
||
|
||
// Loop through all variables in the same declaration
|
||
for (uint i= 0 ; i < (uint) nvars; i++)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i);
|
||
|
||
spvar->field_def.set_cursor_rowtype_ref(offset);
|
||
sp_instr_cursor_copy_struct *instr=
|
||
new (thd->mem_root) sp_instr_cursor_copy_struct(sphead->instructions(),
|
||
spcont, offset,
|
||
pcursor->lex(),
|
||
spvar->offset);
|
||
if (instr == NULL || sphead->add_instr(instr))
|
||
return true;
|
||
|
||
sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name);
|
||
}
|
||
if (unlikely(sp_variable_declarations_set_default(thd, nvars, def)))
|
||
return true;
|
||
// Make sure sp_rcontext is created using the invoker security context:
|
||
sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS;
|
||
spcont->declare_var_boundary(0);
|
||
return sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
/*
|
||
Add declarations for table column and SP variable anchor types:
|
||
- DECLARE spvar1 TYPE OF db1.table1.column1;
|
||
- DECLARE spvar1 TYPE OF table1.column1;
|
||
- DECLARE spvar1 TYPE OF spvar0;
|
||
*/
|
||
bool
|
||
LEX::sp_variable_declarations_with_ref_finalize(THD *thd, int nvars,
|
||
Qualified_column_ident *ref,
|
||
Item *def)
|
||
{
|
||
return ref->db.length == 0 && ref->table.length == 0 ?
|
||
sp_variable_declarations_vartype_finalize(thd, nvars, ref->m_column, def) :
|
||
sp_variable_declarations_column_type_finalize(thd, nvars, ref, def);
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_variable_declarations_column_type_finalize(THD *thd, int nvars,
|
||
Qualified_column_ident *ref,
|
||
Item *def)
|
||
{
|
||
for (uint i= 0 ; i < (uint) nvars; i++)
|
||
{
|
||
sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i);
|
||
spvar->field_def.set_column_type_ref(ref);
|
||
spvar->field_def.field_name= spvar->name;
|
||
}
|
||
sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS;
|
||
if (sp_variable_declarations_set_default(thd, nvars, def))
|
||
return true;
|
||
spcont->declare_var_boundary(0);
|
||
return sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_variable_declarations_vartype_finalize(THD *thd, int nvars,
|
||
const LEX_CSTRING &ref,
|
||
Item *default_value)
|
||
{
|
||
sp_variable *t;
|
||
if (!spcont || !(t= spcont->find_variable(&ref, false)))
|
||
{
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), ref.str);
|
||
return true;
|
||
}
|
||
|
||
if (t->field_def.is_cursor_rowtype_ref())
|
||
{
|
||
uint offset= t->field_def.cursor_rowtype_offset();
|
||
return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars,
|
||
offset,
|
||
default_value);
|
||
}
|
||
|
||
if (t->field_def.is_column_type_ref())
|
||
{
|
||
Qualified_column_ident *tmp= t->field_def.column_type_ref();
|
||
return sp_variable_declarations_column_type_finalize(thd, nvars, tmp,
|
||
default_value);
|
||
}
|
||
|
||
if (t->field_def.is_table_rowtype_ref())
|
||
{
|
||
const Table_ident *tmp= t->field_def.table_rowtype_ref();
|
||
return sp_variable_declarations_table_rowtype_finalize(thd, nvars,
|
||
tmp->db,
|
||
tmp->table,
|
||
default_value);
|
||
}
|
||
|
||
// A reference to a scalar or a row variable with an explicit data type
|
||
return sp_variable_declarations_copy_type_finalize(thd, nvars,
|
||
t->field_def,
|
||
t->field_def.
|
||
row_field_definitions(),
|
||
default_value);
|
||
}
|
||
|
||
|
||
/**********************************************************************
|
||
The FOR LOOP statement
|
||
|
||
This syntax:
|
||
FOR i IN lower_bound .. upper_bound
|
||
LOOP
|
||
statements;
|
||
END LOOP;
|
||
|
||
is translated into:
|
||
|
||
DECLARE
|
||
i INT := lower_bound;
|
||
j INT := upper_bound;
|
||
BEGIN
|
||
WHILE i <= j
|
||
LOOP
|
||
statements;
|
||
i:= i + 1;
|
||
END LOOP;
|
||
END;
|
||
*/
|
||
|
||
|
||
sp_variable *LEX::sp_add_for_loop_variable(THD *thd, const LEX_CSTRING *name,
|
||
Item *value)
|
||
{
|
||
sp_variable *spvar= spcont->add_variable(thd, name);
|
||
spcont->declare_var_boundary(1);
|
||
spvar->field_def.field_name= spvar->name;
|
||
spvar->field_def.set_handler(&type_handler_slonglong);
|
||
type_handler_slonglong.Column_definition_prepare_stage2(&spvar->field_def,
|
||
NULL, HA_CAN_GEOMETRY);
|
||
if (!value && unlikely(!(value= new (thd->mem_root) Item_null(thd))))
|
||
return NULL;
|
||
|
||
spvar->default_value= value;
|
||
sp_instr_set *is= new (this->thd->mem_root)
|
||
sp_instr_set(sphead->instructions(),
|
||
spcont, &sp_rcontext_handler_local,
|
||
spvar->offset, value,
|
||
this, true);
|
||
if (unlikely(is == NULL || sphead->add_instr(is)))
|
||
return NULL;
|
||
spcont->declare_var_boundary(0);
|
||
return spvar;
|
||
}
|
||
|
||
|
||
bool LEX::sp_for_loop_implicit_cursor_statement(THD *thd,
|
||
Lex_for_loop_bounds_st *bounds,
|
||
sp_lex_cursor *cur)
|
||
{
|
||
Item *item;
|
||
DBUG_ASSERT(sphead);
|
||
LEX_CSTRING name= {STRING_WITH_LEN("[implicit_cursor]") };
|
||
if (sp_declare_cursor(thd, &name, cur, NULL, true))
|
||
return true;
|
||
DBUG_ASSERT(thd->lex == this);
|
||
if (unlikely(!(bounds->m_index=
|
||
new (thd->mem_root) sp_assignment_lex(thd, this))))
|
||
return true;
|
||
bounds->m_index->sp_lex_in_use= true;
|
||
sphead->reset_lex(thd, bounds->m_index);
|
||
DBUG_ASSERT(thd->lex != this);
|
||
/*
|
||
We pass NULL as Name_resolution_context here.
|
||
It's OK, fix_fields() will not be called for this Item_field created.
|
||
Item_field is only needed for LEX::sp_for_loop_cursor_declarations()
|
||
and is used to transfer the loop index variable name, "rec" in this example:
|
||
FOR rec IN (SELECT * FROM t1)
|
||
DO
|
||
SELECT rec.a, rec.b;
|
||
END FOR;
|
||
*/
|
||
if (!(item= new (thd->mem_root) Item_field(thd, NULL, name)))
|
||
return true;
|
||
bounds->m_index->set_item_and_free_list(item, NULL);
|
||
if (thd->lex->sphead->restore_lex(thd))
|
||
return true;
|
||
DBUG_ASSERT(thd->lex == this);
|
||
bounds->m_direction= 1;
|
||
bounds->m_target_bound= NULL;
|
||
bounds->m_implicit_cursor= true;
|
||
return false;
|
||
}
|
||
|
||
sp_variable *
|
||
LEX::sp_add_for_loop_cursor_variable(THD *thd,
|
||
const LEX_CSTRING *name,
|
||
const sp_pcursor *pcursor,
|
||
uint coffset,
|
||
sp_assignment_lex *param_lex,
|
||
Item_args *parameters)
|
||
{
|
||
sp_variable *spvar= spcont->add_variable(thd, name);
|
||
if (!spvar)
|
||
return NULL;
|
||
spcont->declare_var_boundary(1);
|
||
sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name);
|
||
if (unlikely(!(spvar->default_value= new (thd->mem_root) Item_null(thd))))
|
||
return NULL;
|
||
|
||
spvar->field_def.set_cursor_rowtype_ref(coffset);
|
||
|
||
if (unlikely(sphead->add_for_loop_open_cursor(thd, spcont, spvar, pcursor,
|
||
coffset,
|
||
param_lex, parameters)))
|
||
return NULL;
|
||
|
||
spcont->declare_var_boundary(0);
|
||
return spvar;
|
||
}
|
||
|
||
|
||
/**
|
||
Generate a code for a FOR loop condition:
|
||
- Make Item_splocal for the FOR loop index variable
|
||
- Make Item_splocal for the FOR loop upper bound variable
|
||
- Make a comparison function item on top of these two variables
|
||
*/
|
||
bool LEX::sp_for_loop_condition(THD *thd, const Lex_for_loop_st &loop)
|
||
{
|
||
Item_splocal *args[2];
|
||
for (uint i= 0 ; i < 2; i++)
|
||
{
|
||
sp_variable *src= i == 0 ? loop.m_index : loop.m_target_bound;
|
||
args[i]= new (thd->mem_root)
|
||
Item_splocal(thd, &sp_rcontext_handler_local,
|
||
&src->name, src->offset, src->type_handler());
|
||
if (unlikely(args[i] == NULL))
|
||
return true;
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
args[i]->m_sp= sphead;
|
||
#endif
|
||
}
|
||
|
||
Item *expr= loop.m_direction > 0 ?
|
||
(Item *) new (thd->mem_root) Item_func_le(thd, args[0], args[1]) :
|
||
(Item *) new (thd->mem_root) Item_func_ge(thd, args[0], args[1]);
|
||
return unlikely(!expr) || unlikely(sp_while_loop_expression(thd, expr));
|
||
}
|
||
|
||
|
||
/**
|
||
Generate the FOR LOOP condition code in its own lex
|
||
*/
|
||
bool LEX::sp_for_loop_intrange_condition_test(THD *thd,
|
||
const Lex_for_loop_st &loop)
|
||
{
|
||
spcont->set_for_loop(loop);
|
||
sphead->reset_lex(thd);
|
||
if (unlikely(thd->lex->sp_for_loop_condition(thd, loop)))
|
||
return true;
|
||
return thd->lex->sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
bool LEX::sp_for_loop_cursor_condition_test(THD *thd,
|
||
const Lex_for_loop_st &loop)
|
||
{
|
||
const LEX_CSTRING *cursor_name;
|
||
Item *expr;
|
||
spcont->set_for_loop(loop);
|
||
sphead->reset_lex(thd);
|
||
cursor_name= spcont->find_cursor(loop.m_cursor_offset);
|
||
DBUG_ASSERT(cursor_name);
|
||
if (unlikely(!(expr=
|
||
new (thd->mem_root)
|
||
Item_func_cursor_found(thd, cursor_name,
|
||
loop.m_cursor_offset))))
|
||
return true;
|
||
if (thd->lex->sp_while_loop_expression(thd, expr))
|
||
return true;
|
||
return thd->lex->sphead->restore_lex(thd);
|
||
}
|
||
|
||
|
||
bool LEX::sp_for_loop_intrange_declarations(THD *thd, Lex_for_loop_st *loop,
|
||
const LEX_CSTRING *index,
|
||
const Lex_for_loop_bounds_st &bounds)
|
||
{
|
||
Item *item;
|
||
if ((item= bounds.m_index->get_item())->type() == Item::FIELD_ITEM)
|
||
{
|
||
// We're here is the lower bound is unknown identifier
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), item->full_name());
|
||
return true;
|
||
}
|
||
if ((item= bounds.m_target_bound->get_item())->type() == Item::FIELD_ITEM)
|
||
{
|
||
// We're here is the upper bound is unknown identifier
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), item->full_name());
|
||
return true;
|
||
}
|
||
if (!(loop->m_index=
|
||
bounds.m_index->sp_add_for_loop_variable(thd, index,
|
||
bounds.m_index->get_item())))
|
||
return true;
|
||
if (unlikely(!(loop->m_target_bound=
|
||
bounds.m_target_bound->
|
||
sp_add_for_loop_target_bound(thd,
|
||
bounds.
|
||
m_target_bound->get_item()))))
|
||
return true;
|
||
loop->m_direction= bounds.m_direction;
|
||
loop->m_implicit_cursor= 0;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_for_loop_cursor_declarations(THD *thd,
|
||
Lex_for_loop_st *loop,
|
||
const LEX_CSTRING *index,
|
||
const Lex_for_loop_bounds_st &bounds)
|
||
{
|
||
Item *item= bounds.m_index->get_item();
|
||
Item_splocal *item_splocal;
|
||
Item_field *item_field;
|
||
Item_func_sp *item_func_sp= NULL;
|
||
LEX_CSTRING name;
|
||
uint coffs, param_count= 0;
|
||
const sp_pcursor *pcursor;
|
||
|
||
if ((item_splocal= item->get_item_splocal()))
|
||
name= item_splocal->m_name;
|
||
else if ((item_field= item->type() == Item::FIELD_ITEM ?
|
||
static_cast<Item_field *>(item) : NULL) &&
|
||
item_field->table_name.str == NULL)
|
||
name= item_field->field_name;
|
||
else if (item->type() == Item::FUNC_ITEM &&
|
||
static_cast<Item_func*>(item)->functype() == Item_func::FUNC_SP &&
|
||
!static_cast<Item_func_sp*>(item)->get_sp_name()->m_explicit_name)
|
||
{
|
||
/*
|
||
When a FOR LOOP for a cursor with parameters is parsed:
|
||
FOR index IN cursor(1,2,3) LOOP
|
||
statements;
|
||
END LOOP;
|
||
the parser scans "cursor(1,2,3)" using the "expr" rule,
|
||
so it thinks that cursor(1,2,3) is a stored function call.
|
||
It's not easy to implement this without using "expr" because
|
||
of grammar conflicts.
|
||
As a side effect, the Item_func_sp and its arguments in the parentheses
|
||
belong to the same LEX. This is different from an explicit
|
||
"OPEN cursor(1,2,3)" where every expression belongs to a separate LEX.
|
||
*/
|
||
item_func_sp= static_cast<Item_func_sp*>(item);
|
||
name= item_func_sp->get_sp_name()->m_name;
|
||
param_count= item_func_sp->argument_count();
|
||
}
|
||
else
|
||
{
|
||
thd->parse_error();
|
||
return true;
|
||
}
|
||
if (unlikely(!(pcursor= spcont->find_cursor_with_error(&name, &coffs,
|
||
false)) ||
|
||
pcursor->check_param_count_with_error(param_count)))
|
||
return true;
|
||
|
||
if (!(loop->m_index= sp_add_for_loop_cursor_variable(thd, index,
|
||
pcursor, coffs,
|
||
bounds.m_index,
|
||
item_func_sp)))
|
||
return true;
|
||
loop->m_target_bound= NULL;
|
||
loop->m_direction= bounds.m_direction;
|
||
loop->m_cursor_offset= coffs;
|
||
loop->m_implicit_cursor= bounds.m_implicit_cursor;
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
Generate a code for a FOR loop index increment
|
||
*/
|
||
bool LEX::sp_for_loop_increment(THD *thd, const Lex_for_loop_st &loop)
|
||
{
|
||
Item_splocal *splocal= new (thd->mem_root)
|
||
Item_splocal(thd, &sp_rcontext_handler_local,
|
||
&loop.m_index->name, loop.m_index->offset,
|
||
loop.m_index->type_handler());
|
||
if (unlikely(splocal == NULL))
|
||
return true;
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
splocal->m_sp= sphead;
|
||
#endif
|
||
Item_int *inc= new (thd->mem_root) Item_int(thd, loop.m_direction);
|
||
if (unlikely(!inc))
|
||
return true;
|
||
Item *expr= new (thd->mem_root) Item_func_plus(thd, splocal, inc);
|
||
if (unlikely(!expr) ||
|
||
unlikely(sphead->set_local_variable(thd, spcont,
|
||
&sp_rcontext_handler_local,
|
||
loop.m_index, expr, this, true)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_for_loop_intrange_finalize(THD *thd, const Lex_for_loop_st &loop)
|
||
{
|
||
sphead->reset_lex(thd);
|
||
|
||
// Generate FOR LOOP index increment in its own lex
|
||
DBUG_ASSERT(this != thd->lex);
|
||
if (unlikely(thd->lex->sp_for_loop_increment(thd, loop) ||
|
||
thd->lex->sphead->restore_lex(thd)))
|
||
return true;
|
||
|
||
// Generate a jump to the beginning of the loop
|
||
DBUG_ASSERT(this == thd->lex);
|
||
return sp_while_loop_finalize(thd);
|
||
}
|
||
|
||
|
||
bool LEX::sp_for_loop_cursor_finalize(THD *thd, const Lex_for_loop_st &loop)
|
||
{
|
||
sp_instr_cfetch *instr=
|
||
new (thd->mem_root) sp_instr_cfetch(sphead->instructions(),
|
||
spcont, loop.m_cursor_offset, false);
|
||
if (unlikely(instr == NULL) || unlikely(sphead->add_instr(instr)))
|
||
return true;
|
||
instr->add_to_varlist(loop.m_index);
|
||
// Generate a jump to the beginning of the loop
|
||
return sp_while_loop_finalize(thd);
|
||
}
|
||
|
||
bool LEX::sp_for_loop_outer_block_finalize(THD *thd,
|
||
const Lex_for_loop_st &loop)
|
||
{
|
||
Lex_spblock tmp;
|
||
tmp.curs= MY_TEST(loop.m_implicit_cursor);
|
||
if (unlikely(sp_block_finalize(thd, tmp))) // The outer DECLARE..BEGIN..END
|
||
return true;
|
||
if (!loop.is_for_loop_explicit_cursor())
|
||
return false;
|
||
/*
|
||
Explicit cursor FOR loop must close the cursor automatically.
|
||
Note, implicit cursor FOR loop does not need to close the cursor,
|
||
it's closed by sp_instr_cpop.
|
||
*/
|
||
sp_instr_cclose *ic= new (thd->mem_root)
|
||
sp_instr_cclose(sphead->instructions(), spcont,
|
||
loop.m_cursor_offset);
|
||
return ic == NULL || sphead->add_instr(ic);
|
||
}
|
||
|
||
/***************************************************************************/
|
||
|
||
bool LEX::sp_declare_cursor(THD *thd, const LEX_CSTRING *name,
|
||
sp_lex_cursor *cursor_stmt,
|
||
sp_pcontext *param_ctx, bool add_cpush_instr)
|
||
{
|
||
uint offp;
|
||
sp_instr_cpush *i;
|
||
|
||
if (spcont->find_cursor(name, &offp, true))
|
||
{
|
||
my_error(ER_SP_DUP_CURS, MYF(0), name->str);
|
||
return true;
|
||
}
|
||
|
||
if (unlikely(spcont->add_cursor(name, param_ctx, cursor_stmt)))
|
||
return true;
|
||
|
||
if (add_cpush_instr)
|
||
{
|
||
i= new (thd->mem_root)
|
||
sp_instr_cpush(sphead->instructions(), spcont, cursor_stmt,
|
||
spcont->current_cursor_count() - 1);
|
||
return unlikely(i == NULL) || unlikely(sphead->add_instr(i));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
Generate an SP code for an "OPEN cursor_name" statement.
|
||
@param thd
|
||
@param name - Name of the cursor
|
||
@param parameters - Cursor parameters, e.g. OPEN c(1,2,3)
|
||
@returns - false on success, true on error
|
||
*/
|
||
bool LEX::sp_open_cursor(THD *thd, const LEX_CSTRING *name,
|
||
List<sp_assignment_lex> *parameters)
|
||
{
|
||
uint offset;
|
||
const sp_pcursor *pcursor;
|
||
uint param_count= parameters ? parameters->elements : 0;
|
||
return !(pcursor= spcont->find_cursor_with_error(name, &offset, false)) ||
|
||
pcursor->check_param_count_with_error(param_count) ||
|
||
sphead->add_open_cursor(thd, spcont, offset,
|
||
pcursor->param_context(), parameters);
|
||
}
|
||
|
||
|
||
bool LEX::sp_handler_declaration_init(THD *thd, int type)
|
||
{
|
||
sp_handler *h= spcont->add_handler(thd, (sp_handler::enum_type) type);
|
||
|
||
spcont= spcont->push_context(thd, sp_pcontext::HANDLER_SCOPE);
|
||
|
||
sp_instr_hpush_jump *i=
|
||
new (thd->mem_root) sp_instr_hpush_jump(sphead->instructions(), spcont, h);
|
||
|
||
if (unlikely(i == NULL) || unlikely(sphead->add_instr(i)))
|
||
return true;
|
||
|
||
/* For continue handlers, mark end of handler scope. */
|
||
if (type == sp_handler::CONTINUE &&
|
||
unlikely(sphead->push_backpatch(thd, i, spcont->last_label())))
|
||
return true;
|
||
|
||
if (unlikely(sphead->push_backpatch(thd, i,
|
||
spcont->push_label(thd, &empty_clex_str,
|
||
0))))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_handler_declaration_finalize(THD *thd, int type)
|
||
{
|
||
sp_label *hlab= spcont->pop_label(); /* After this hdlr */
|
||
sp_instr_hreturn *i;
|
||
|
||
if (type == sp_handler::CONTINUE)
|
||
{
|
||
i= new (thd->mem_root) sp_instr_hreturn(sphead->instructions(), spcont);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)))
|
||
return true;
|
||
}
|
||
else
|
||
{ /* EXIT or UNDO handler, just jump to the end of the block */
|
||
i= new (thd->mem_root) sp_instr_hreturn(sphead->instructions(), spcont);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)) ||
|
||
unlikely(sphead->push_backpatch(thd, i, spcont->last_label()))) /* Block end */
|
||
return true;
|
||
}
|
||
sphead->backpatch(hlab);
|
||
spcont= spcont->pop_context();
|
||
return false;
|
||
}
|
||
|
||
|
||
void LEX::sp_block_init(THD *thd, const LEX_CSTRING *label)
|
||
{
|
||
spcont->push_label(thd, label, sphead->instructions(), sp_label::BEGIN);
|
||
spcont= spcont->push_context(thd, sp_pcontext::REGULAR_SCOPE);
|
||
}
|
||
|
||
|
||
bool LEX::sp_block_finalize(THD *thd, const Lex_spblock_st spblock,
|
||
class sp_label **splabel)
|
||
{
|
||
sp_head *sp= sphead;
|
||
sp_pcontext *ctx= spcont;
|
||
sp_instr *i;
|
||
|
||
sp->backpatch(ctx->last_label()); /* We always have a label */
|
||
if (spblock.hndlrs)
|
||
{
|
||
i= new (thd->mem_root)
|
||
sp_instr_hpop(sp->instructions(), ctx, spblock.hndlrs);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sp->add_instr(i)))
|
||
return true;
|
||
}
|
||
if (spblock.curs)
|
||
{
|
||
i= new (thd->mem_root)
|
||
sp_instr_cpop(sp->instructions(), ctx, spblock.curs);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sp->add_instr(i)))
|
||
return true;
|
||
}
|
||
spcont= ctx->pop_context();
|
||
*splabel= spcont->pop_label();
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_block_finalize(THD *thd, const Lex_spblock_st spblock,
|
||
const LEX_CSTRING *end_label)
|
||
{
|
||
sp_label *splabel;
|
||
if (unlikely(sp_block_finalize(thd, spblock, &splabel)))
|
||
return true;
|
||
if (unlikely(end_label->str &&
|
||
lex_string_cmp(system_charset_info,
|
||
end_label, &splabel->name) != 0))
|
||
{
|
||
my_error(ER_SP_LABEL_MISMATCH, MYF(0), end_label->str);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name)
|
||
{
|
||
sp_name *res;
|
||
LEX_CSTRING db;
|
||
if (unlikely(check_routine_name(name)) ||
|
||
unlikely(copy_db_to(&db)) ||
|
||
unlikely((!(res= new (thd->mem_root) sp_name(&db, name, false)))))
|
||
return NULL;
|
||
return res;
|
||
}
|
||
|
||
|
||
/**
|
||
When a package routine name is stored in memory in Database_qualified_name,
|
||
the dot character is used to delimit package name from the routine name,
|
||
e.g.:
|
||
m_db= 'test'; -- database 'test'
|
||
m_name= 'p1.p1'; -- package 'p1', routine 'p1'
|
||
See database_qualified_name::make_package_routine_name() for details.
|
||
Disallow package routine names with dots,
|
||
to avoid ambiguity when interpreting m_name='p1.p1.p1', between:
|
||
a. package 'p1.p1' + routine 'p1'
|
||
b. package 'p1' + routine 'p1.p1'
|
||
m_name='p1.p1.p1' will always mean (a).
|
||
*/
|
||
sp_name *LEX::make_sp_name_package_routine(THD *thd, const LEX_CSTRING *name)
|
||
{
|
||
sp_name *res= make_sp_name(thd, name);
|
||
if (likely(res) && unlikely(strchr(res->m_name.str, '.')))
|
||
{
|
||
my_error(ER_SP_WRONG_NAME, MYF(0), res->m_name.str);
|
||
res= NULL;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
|
||
sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name1,
|
||
const LEX_CSTRING *name2)
|
||
{
|
||
sp_name *res;
|
||
LEX_CSTRING norm_name1;
|
||
if (unlikely(!name1->str) ||
|
||
unlikely(!thd->make_lex_string(&norm_name1, name1->str,
|
||
name1->length)) ||
|
||
unlikely(check_db_name((LEX_STRING *) &norm_name1)))
|
||
{
|
||
my_error(ER_WRONG_DB_NAME, MYF(0), name1->str);
|
||
return NULL;
|
||
}
|
||
if (unlikely(check_routine_name(name2)) ||
|
||
unlikely(!(res= new (thd->mem_root) sp_name(&norm_name1, name2, true))))
|
||
return NULL;
|
||
return res;
|
||
}
|
||
|
||
|
||
sp_head *LEX::make_sp_head(THD *thd, const sp_name *name,
|
||
const Sp_handler *sph,
|
||
enum_sp_aggregate_type agg_type)
|
||
{
|
||
sp_package *package= get_sp_package();
|
||
sp_head *sp;
|
||
|
||
/* Order is important here: new - reset - init */
|
||
if (likely((sp= sp_head::create(package, sph, agg_type))))
|
||
{
|
||
sp->reset_thd_mem_root(thd);
|
||
sp->init(this);
|
||
if (name)
|
||
{
|
||
if (package)
|
||
sp->make_package_routine_name(sp->get_main_mem_root(),
|
||
package->m_db,
|
||
package->m_name,
|
||
name->m_name);
|
||
else
|
||
sp->init_sp_name(name);
|
||
sp->make_qname(sp->get_main_mem_root(), &sp->m_qname);
|
||
}
|
||
sphead= sp;
|
||
}
|
||
sp_chistics.init();
|
||
return sp;
|
||
}
|
||
|
||
|
||
sp_head *LEX::make_sp_head_no_recursive(THD *thd, const sp_name *name,
|
||
const Sp_handler *sph,
|
||
enum_sp_aggregate_type agg_type)
|
||
{
|
||
sp_package *package= thd->lex->get_sp_package();
|
||
/*
|
||
Sp_handler::sp_clone_and_link_routine() generates a standalone-alike
|
||
statement to clone package routines for recursion, e.g.:
|
||
CREATE PROCEDURE p1 AS BEGIN NULL; END;
|
||
Translate a standalone routine handler to the corresponding
|
||
package routine handler if we're cloning a package routine, e.g.:
|
||
sp_handler_procedure -> sp_handler_package_procedure
|
||
sp_handler_function -> sp_handler_package_function
|
||
*/
|
||
if (package && package->m_is_cloning_routine)
|
||
sph= sph->package_routine_handler();
|
||
if (!sphead ||
|
||
(package &&
|
||
(sph == &sp_handler_package_procedure ||
|
||
sph == &sp_handler_package_function)))
|
||
return make_sp_head(thd, name, sph, agg_type);
|
||
my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), sph->type_str());
|
||
return NULL;
|
||
}
|
||
|
||
|
||
bool LEX::sp_body_finalize_routine(THD *thd)
|
||
{
|
||
if (sphead->check_unresolved_goto())
|
||
return true;
|
||
sphead->set_stmt_end(thd);
|
||
sphead->restore_thd_mem_root(thd);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_body_finalize_procedure(THD *thd)
|
||
{
|
||
return sphead->check_group_aggregate_instructions_forbid() ||
|
||
sp_body_finalize_routine(thd);
|
||
}
|
||
|
||
|
||
bool LEX::sp_body_finalize_procedure_standalone(THD *thd,
|
||
const sp_name *end_name)
|
||
{
|
||
return sp_body_finalize_procedure(thd) ||
|
||
sphead->check_standalone_routine_end_name(end_name);
|
||
}
|
||
|
||
|
||
bool LEX::sp_body_finalize_function(THD *thd)
|
||
{
|
||
if (sphead->is_not_allowed_in_function("function") ||
|
||
sphead->check_group_aggregate_instructions_function())
|
||
return true;
|
||
if (!(sphead->m_flags & sp_head::HAS_RETURN))
|
||
{
|
||
my_error(ER_SP_NORETURN, MYF(0), ErrConvDQName(sphead).ptr());
|
||
return true;
|
||
}
|
||
if (sp_body_finalize_routine(thd))
|
||
return true;
|
||
(void) is_native_function_with_warn(thd, &sphead->m_name);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_body_finalize_trigger(THD *thd)
|
||
{
|
||
return sphead->is_not_allowed_in_function("trigger") ||
|
||
sp_body_finalize_procedure(thd);
|
||
}
|
||
|
||
|
||
bool LEX::sp_body_finalize_event(THD *thd)
|
||
{
|
||
event_parse_data->body_changed= true;
|
||
return sp_body_finalize_procedure(thd);
|
||
}
|
||
|
||
|
||
bool LEX::stmt_create_stored_function_finalize_standalone(const sp_name *end_name)
|
||
{
|
||
if (sphead->check_standalone_routine_end_name(end_name))
|
||
return true;
|
||
stmt_create_routine_finalize();
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_block_with_exceptions_finalize_declarations(THD *thd)
|
||
{
|
||
/*
|
||
[ DECLARE declarations ]
|
||
BEGIN executable_section
|
||
[ EXCEPTION exceptions ]
|
||
END
|
||
|
||
We are now at the "BEGIN" keyword.
|
||
We have collected all declarations, including DECLARE HANDLER directives.
|
||
But there will be possibly more handlers in the EXCEPTION section.
|
||
|
||
Generate a forward jump from the end of the DECLARE section to the
|
||
beginning of the EXCEPTION section, over the executable section.
|
||
*/
|
||
return sphead->add_instr_jump(thd, spcont);
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_block_with_exceptions_finalize_executable_section(THD *thd,
|
||
uint executable_section_ip)
|
||
{
|
||
/*
|
||
We're now at the end of "executable_section" of the block,
|
||
near the "EXCEPTION" or the "END" keyword.
|
||
Generate a jump to the END of the block over the EXCEPTION section.
|
||
*/
|
||
if (sphead->add_instr_jump_forward_with_backpatch(thd, spcont))
|
||
return true;
|
||
/*
|
||
Set the destination for the jump that we added in
|
||
sp_block_with_exceptions_finalize_declarations().
|
||
*/
|
||
sp_instr *instr= sphead->get_instr(executable_section_ip - 1);
|
||
instr->backpatch(sphead->instructions(), spcont);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool
|
||
LEX::sp_block_with_exceptions_finalize_exceptions(THD *thd,
|
||
uint executable_section_ip,
|
||
uint exception_count)
|
||
{
|
||
if (!exception_count)
|
||
{
|
||
/*
|
||
The jump from the end of DECLARE section to
|
||
the beginning of the EXCEPTION section that we added in
|
||
sp_block_with_exceptions_finalize_declarations() is useless
|
||
if there were no exceptions.
|
||
Replace it to "no operation".
|
||
*/
|
||
return sphead->replace_instr_to_nop(thd, executable_section_ip - 1);
|
||
}
|
||
/*
|
||
Generate a jump from the end of the EXCEPTION code
|
||
to the executable section.
|
||
*/
|
||
return sphead->add_instr_jump(thd, spcont, executable_section_ip);
|
||
}
|
||
|
||
|
||
bool LEX::sp_block_with_exceptions_add_empty(THD *thd)
|
||
{
|
||
uint ip= sphead->instructions();
|
||
return sp_block_with_exceptions_finalize_executable_section(thd, ip) ||
|
||
sp_block_with_exceptions_finalize_exceptions(thd, ip, 0);
|
||
}
|
||
|
||
|
||
bool LEX::sp_change_context(THD *thd, const sp_pcontext *ctx, bool exclusive)
|
||
{
|
||
uint n;
|
||
uint ip= sphead->instructions();
|
||
if ((n= spcont->diff_handlers(ctx, exclusive)))
|
||
{
|
||
sp_instr_hpop *hpop= new (thd->mem_root) sp_instr_hpop(ip++, spcont, n);
|
||
if (unlikely(hpop == NULL) || unlikely(sphead->add_instr(hpop)))
|
||
return true;
|
||
}
|
||
if ((n= spcont->diff_cursors(ctx, exclusive)))
|
||
{
|
||
sp_instr_cpop *cpop= new (thd->mem_root) sp_instr_cpop(ip++, spcont, n);
|
||
if (unlikely(cpop == NULL) || unlikely(sphead->add_instr(cpop)))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_leave_statement(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_label(label_name);
|
||
if (unlikely(!lab))
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "LEAVE", label_name->str);
|
||
return true;
|
||
}
|
||
return sp_exit_block(thd, lab, NULL);
|
||
}
|
||
|
||
bool LEX::sp_goto_statement(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_goto_label(label_name);
|
||
if (!lab || lab->ip == 0)
|
||
{
|
||
sp_label *delayedlabel;
|
||
if (!lab)
|
||
{
|
||
// Label not found --> add forward jump to an unknown label
|
||
spcont->push_goto_label(thd, label_name, 0, sp_label::GOTO);
|
||
delayedlabel= spcont->last_goto_label();
|
||
}
|
||
else
|
||
{
|
||
delayedlabel= lab;
|
||
}
|
||
return sphead->push_backpatch_goto(thd, spcont, delayedlabel);
|
||
}
|
||
else
|
||
{
|
||
// Label found (backward goto)
|
||
return sp_change_context(thd, lab->ctx, false) ||
|
||
sphead->add_instr_jump(thd, spcont, lab->ip); /* Jump back */
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool LEX::sp_push_goto_label(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_goto_label(label_name, false);
|
||
if (lab)
|
||
{
|
||
if (unlikely(lab->ip != 0))
|
||
{
|
||
my_error(ER_SP_LABEL_REDEFINE, MYF(0), label_name->str);
|
||
return true;
|
||
}
|
||
lab->ip= sphead->instructions();
|
||
|
||
sp_label *beginblocklabel= spcont->find_label(&empty_clex_str);
|
||
sphead->backpatch_goto(thd, lab, beginblocklabel);
|
||
}
|
||
else
|
||
{
|
||
spcont->push_goto_label(thd, label_name, sphead->instructions());
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool LEX::sp_exit_block(THD *thd, sp_label *lab)
|
||
{
|
||
/*
|
||
When jumping to a BEGIN-END block end, the target jump
|
||
points to the block hpop/cpop cleanup instructions,
|
||
so we should exclude the block context here.
|
||
When jumping to something else (i.e., SP_LAB_ITER),
|
||
there are no hpop/cpop at the jump destination,
|
||
so we should include the block context here for cleanup.
|
||
*/
|
||
bool exclusive= (lab->type == sp_label::BEGIN);
|
||
return sp_change_context(thd, lab->ctx, exclusive) ||
|
||
sphead->add_instr_jump_forward_with_backpatch(thd, spcont, lab);
|
||
}
|
||
|
||
|
||
bool LEX::sp_exit_block(THD *thd, sp_label *lab, Item *when)
|
||
{
|
||
if (!when)
|
||
return sp_exit_block(thd, lab);
|
||
|
||
DBUG_ASSERT(sphead == thd->lex->sphead);
|
||
DBUG_ASSERT(spcont == thd->lex->spcont);
|
||
sp_instr_jump_if_not *i= new (thd->mem_root)
|
||
sp_instr_jump_if_not(sphead->instructions(),
|
||
spcont,
|
||
when, this);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)) ||
|
||
unlikely(sp_exit_block(thd, lab)))
|
||
return true;
|
||
i->backpatch(sphead->instructions(), spcont);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_exit_statement(THD *thd, Item *item)
|
||
{
|
||
sp_label *lab= spcont->find_label_current_loop_start();
|
||
if (unlikely(!lab))
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "EXIT", "");
|
||
return true;
|
||
}
|
||
DBUG_ASSERT(lab->type == sp_label::ITERATION);
|
||
return sp_exit_block(thd, lab, item);
|
||
}
|
||
|
||
|
||
bool LEX::sp_exit_statement(THD *thd, const LEX_CSTRING *label_name, Item *item)
|
||
{
|
||
sp_label *lab= spcont->find_label(label_name);
|
||
if (unlikely(!lab || lab->type != sp_label::ITERATION))
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "EXIT", label_name->str);
|
||
return true;
|
||
}
|
||
return sp_exit_block(thd, lab, item);
|
||
}
|
||
|
||
|
||
bool LEX::sp_iterate_statement(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_label(label_name);
|
||
if (unlikely(!lab || lab->type != sp_label::ITERATION))
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "ITERATE", label_name->str);
|
||
return true;
|
||
}
|
||
return sp_continue_loop(thd, lab);
|
||
}
|
||
|
||
|
||
bool LEX::sp_continue_loop(THD *thd, sp_label *lab)
|
||
{
|
||
if (lab->ctx->for_loop().m_index)
|
||
{
|
||
// We're in a FOR loop, increment the index variable before backward jump
|
||
sphead->reset_lex(thd);
|
||
DBUG_ASSERT(this != thd->lex);
|
||
if (thd->lex->sp_for_loop_increment(thd, lab->ctx->for_loop()) ||
|
||
thd->lex->sphead->restore_lex(thd))
|
||
return true;
|
||
}
|
||
return sp_change_context(thd, lab->ctx, false) ||
|
||
sphead->add_instr_jump(thd, spcont, lab->ip); /* Jump back */
|
||
}
|
||
|
||
|
||
bool LEX::sp_continue_statement(THD *thd)
|
||
{
|
||
sp_label *lab= spcont->find_label_current_loop_start();
|
||
if (unlikely(!lab))
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE", "");
|
||
return true;
|
||
}
|
||
DBUG_ASSERT(lab->type == sp_label::ITERATION);
|
||
return sp_continue_loop(thd, lab);
|
||
}
|
||
|
||
|
||
bool LEX::sp_continue_statement(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_label(label_name);
|
||
if (!lab || lab->type != sp_label::ITERATION)
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE", label_name->str);
|
||
return true;
|
||
}
|
||
return sp_continue_loop(thd, lab);
|
||
}
|
||
|
||
|
||
bool LEX::sp_continue_loop(THD *thd, sp_label *lab, Item *when)
|
||
{
|
||
DBUG_ASSERT(when);
|
||
DBUG_ASSERT(sphead == thd->lex->sphead);
|
||
DBUG_ASSERT(spcont == thd->lex->spcont);
|
||
sp_instr_jump_if_not *i= new (thd->mem_root)
|
||
sp_instr_jump_if_not(sphead->instructions(),
|
||
spcont,
|
||
when, this);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)) ||
|
||
unlikely(sp_continue_loop(thd, lab)))
|
||
return true;
|
||
i->backpatch(sphead->instructions(), spcont);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool sp_expr_lex::sp_continue_when_statement(THD *thd)
|
||
{
|
||
sp_label *lab= spcont->find_label_current_loop_start();
|
||
if (unlikely(!lab))
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE", "");
|
||
return true;
|
||
}
|
||
DBUG_ASSERT(lab->type == sp_label::ITERATION);
|
||
return sp_continue_loop(thd, lab, get_item());
|
||
}
|
||
|
||
|
||
bool sp_expr_lex::sp_continue_when_statement(THD *thd,
|
||
const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_label(label_name);
|
||
if (!lab || lab->type != sp_label::ITERATION)
|
||
{
|
||
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE", label_name->str);
|
||
return true;
|
||
}
|
||
return sp_continue_loop(thd, lab, get_item());
|
||
}
|
||
|
||
|
||
bool LEX::maybe_start_compound_statement(THD *thd)
|
||
{
|
||
if (!sphead)
|
||
{
|
||
if (!make_sp_head(thd, NULL, &sp_handler_procedure, DEFAULT_AGGREGATE))
|
||
return true;
|
||
sphead->set_suid(SP_IS_NOT_SUID);
|
||
sphead->set_body_start(thd, thd->m_parser_state->m_lip.get_cpp_ptr());
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_push_loop_label(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->find_label(label_name);
|
||
if (lab)
|
||
{
|
||
my_error(ER_SP_LABEL_REDEFINE, MYF(0), label_name->str);
|
||
return true;
|
||
}
|
||
spcont->push_label(thd, label_name, sphead->instructions(),
|
||
sp_label::ITERATION);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_push_loop_empty_label(THD *thd)
|
||
{
|
||
if (maybe_start_compound_statement(thd))
|
||
return true;
|
||
/* Unlabeled controls get an empty label. */
|
||
spcont->push_label(thd, &empty_clex_str, sphead->instructions(),
|
||
sp_label::ITERATION);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_pop_loop_label(THD *thd, const LEX_CSTRING *label_name)
|
||
{
|
||
sp_label *lab= spcont->pop_label();
|
||
sphead->backpatch(lab);
|
||
if (label_name->str &&
|
||
lex_string_cmp(system_charset_info, label_name,
|
||
&lab->name) != 0)
|
||
{
|
||
my_error(ER_SP_LABEL_MISMATCH, MYF(0), label_name->str);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
void LEX::sp_pop_loop_empty_label(THD *thd)
|
||
{
|
||
sp_label *lab= spcont->pop_label();
|
||
sphead->backpatch(lab);
|
||
DBUG_ASSERT(lab->name.length == 0);
|
||
}
|
||
|
||
|
||
bool LEX::sp_while_loop_expression(THD *thd, Item *item)
|
||
{
|
||
sp_instr_jump_if_not *i= new (thd->mem_root)
|
||
sp_instr_jump_if_not(sphead->instructions(), spcont, item, this);
|
||
return (unlikely(i == NULL) ||
|
||
/* Jumping forward */
|
||
unlikely(sphead->push_backpatch(thd, i, spcont->last_label())) ||
|
||
unlikely(sphead->new_cont_backpatch(i)) ||
|
||
unlikely(sphead->add_instr(i)));
|
||
}
|
||
|
||
|
||
bool LEX::sp_while_loop_finalize(THD *thd)
|
||
{
|
||
sp_label *lab= spcont->last_label(); /* Jumping back */
|
||
sp_instr_jump *i= new (thd->mem_root)
|
||
sp_instr_jump(sphead->instructions(), spcont, lab->ip);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)))
|
||
return true;
|
||
sphead->do_cont_backpatch();
|
||
return false;
|
||
}
|
||
|
||
|
||
Item *LEX::create_and_link_Item_trigger_field(THD *thd,
|
||
const LEX_CSTRING *name,
|
||
bool new_row)
|
||
{
|
||
Item_trigger_field *trg_fld;
|
||
|
||
if (unlikely(trg_chistics.event == TRG_EVENT_INSERT && !new_row))
|
||
{
|
||
my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "OLD", "on INSERT");
|
||
return NULL;
|
||
}
|
||
|
||
if (unlikely(trg_chistics.event == TRG_EVENT_DELETE && new_row))
|
||
{
|
||
my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW", "on DELETE");
|
||
return NULL;
|
||
}
|
||
|
||
DBUG_ASSERT(!new_row ||
|
||
(trg_chistics.event == TRG_EVENT_INSERT ||
|
||
trg_chistics.event == TRG_EVENT_UPDATE));
|
||
|
||
const bool tmp_read_only=
|
||
!(new_row && trg_chistics.action_time == TRG_ACTION_BEFORE);
|
||
trg_fld= new (thd->mem_root)
|
||
Item_trigger_field(thd, current_context(),
|
||
new_row ?
|
||
Item_trigger_field::NEW_ROW:
|
||
Item_trigger_field::OLD_ROW,
|
||
*name, SELECT_ACL, tmp_read_only);
|
||
/*
|
||
Let us add this item to list of all Item_trigger_field objects
|
||
in trigger.
|
||
*/
|
||
if (likely(trg_fld))
|
||
trg_table_fields.link_in_list(trg_fld, &trg_fld->next_trg_field);
|
||
|
||
return trg_fld;
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_colon_ident_ident(THD *thd,
|
||
const Lex_ident_cli_st *ca,
|
||
const Lex_ident_cli_st *cb)
|
||
{
|
||
Lex_ident_sys a(thd, ca), b(thd, cb);
|
||
if (a.is_null() || b.is_null())
|
||
return NULL; // OEM
|
||
if (!is_trigger_new_or_old_reference(&a))
|
||
{
|
||
thd->parse_error();
|
||
return NULL;
|
||
}
|
||
bool new_row= (a.str[0] == 'N' || a.str[0] == 'n');
|
||
return create_and_link_Item_trigger_field(thd, &b, new_row);
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_plsql_cursor_attr(THD *thd, const LEX_CSTRING *name,
|
||
plsql_cursor_attr_t attr)
|
||
{
|
||
uint offset;
|
||
if (unlikely(!spcont || !spcont->find_cursor(name, &offset, false)))
|
||
{
|
||
my_error(ER_SP_CURSOR_MISMATCH, MYF(0), name->str);
|
||
return NULL;
|
||
}
|
||
switch (attr) {
|
||
case PLSQL_CURSOR_ATTR_ISOPEN:
|
||
return new (thd->mem_root) Item_func_cursor_isopen(thd, name, offset);
|
||
case PLSQL_CURSOR_ATTR_FOUND:
|
||
return new (thd->mem_root) Item_func_cursor_found(thd, name, offset);
|
||
case PLSQL_CURSOR_ATTR_NOTFOUND:
|
||
return new (thd->mem_root) Item_func_cursor_notfound(thd, name, offset);
|
||
case PLSQL_CURSOR_ATTR_ROWCOUNT:
|
||
return new (thd->mem_root) Item_func_cursor_rowcount(thd, name, offset);
|
||
}
|
||
DBUG_ASSERT(0);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_sysvar(THD *thd,
|
||
enum_var_type type,
|
||
const LEX_CSTRING *name,
|
||
const LEX_CSTRING *component)
|
||
|
||
{
|
||
Item *item;
|
||
DBUG_ASSERT(name->str);
|
||
/*
|
||
"SELECT @@global.global.variable" is not allowed
|
||
Note, "global" can come through TEXT_STRING_sys.
|
||
*/
|
||
if (component->str && unlikely(check_reserved_words(name)))
|
||
{
|
||
thd->parse_error();
|
||
return NULL;
|
||
}
|
||
if (unlikely(!(item= get_system_var(thd, type, name, component))))
|
||
return NULL;
|
||
if (!((Item_func_get_system_var*) item)->is_written_to_binlog())
|
||
set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_VARIABLE);
|
||
return item;
|
||
}
|
||
|
||
|
||
static bool param_push_or_clone(THD *thd, LEX *lex, Item_param *item)
|
||
{
|
||
return !lex->clone_spec_offset ?
|
||
lex->param_list.push_back(item, thd->mem_root) :
|
||
item->add_as_clone(thd);
|
||
}
|
||
|
||
|
||
Item_param *LEX::add_placeholder(THD *thd, const LEX_CSTRING *name,
|
||
const char *start, const char *end)
|
||
{
|
||
if (unlikely(!thd->m_parser_state->m_lip.stmt_prepare_mode))
|
||
{
|
||
thd->parse_error(ER_SYNTAX_ERROR, start);
|
||
return NULL;
|
||
}
|
||
if (unlikely(!parsing_options.allows_variable))
|
||
{
|
||
my_error(ER_VIEW_SELECT_VARIABLE, MYF(0));
|
||
return NULL;
|
||
}
|
||
Query_fragment pos(thd, sphead, start, end);
|
||
Item_param *item= new (thd->mem_root) Item_param(thd, name,
|
||
pos.pos(), pos.length());
|
||
if (unlikely(!item) || unlikely(param_push_or_clone(thd, this, item)))
|
||
{
|
||
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
||
return NULL;
|
||
}
|
||
return item;
|
||
}
|
||
|
||
|
||
bool LEX::add_signal_statement(THD *thd, const sp_condition_value *v)
|
||
{
|
||
Yacc_state *state= &thd->m_parser_state->m_yacc;
|
||
sql_command= SQLCOM_SIGNAL;
|
||
m_sql_cmd= new (thd->mem_root) Sql_cmd_signal(v, state->m_set_signal_info);
|
||
return m_sql_cmd == NULL;
|
||
}
|
||
|
||
|
||
bool LEX::add_resignal_statement(THD *thd, const sp_condition_value *v)
|
||
{
|
||
Yacc_state *state= &thd->m_parser_state->m_yacc;
|
||
sql_command= SQLCOM_RESIGNAL;
|
||
m_sql_cmd= new (thd->mem_root) Sql_cmd_resignal(v, state->m_set_signal_info);
|
||
return m_sql_cmd == NULL;
|
||
}
|
||
|
||
|
||
/*
|
||
Make an Item when an identifier is found in the FOR loop bounds:
|
||
FOR rec IN cursor
|
||
FOR var IN var1 .. xxx
|
||
FOR var IN row1.field1 .. xxx
|
||
When we parse the first expression after the "IN" keyword,
|
||
we don't know yet if it's a cursor name, or a scalar SP variable name,
|
||
or a field of a ROW SP variable. Here we create Item_field to remember
|
||
the fully qualified name. Later sp_for_loop_cursor_declarations()
|
||
detects how to treat this name properly.
|
||
*/
|
||
Item *LEX::create_item_for_loop_bound(THD *thd,
|
||
const LEX_CSTRING *a,
|
||
const LEX_CSTRING *b,
|
||
const LEX_CSTRING *c)
|
||
{
|
||
/*
|
||
Pass NULL as the name resolution context.
|
||
This is OK, fix_fields() won't be called for this Item_field.
|
||
*/
|
||
return new (thd->mem_root) Item_field(thd, NULL, *a, *b, *c);
|
||
}
|
||
|
||
|
||
bool LEX::check_expr_allows_fields_or_error(THD *thd, const char *name) const
|
||
{
|
||
if (select_stack_top > 0)
|
||
return false; // OK, fields are allowed
|
||
my_error(ER_BAD_FIELD_ERROR, MYF(0), name, thd->where);
|
||
return true; // Error, fields are not allowed
|
||
}
|
||
|
||
Item *LEX::create_item_ident_nospvar(THD *thd,
|
||
const Lex_ident_sys_st *a,
|
||
const Lex_ident_sys_st *b)
|
||
{
|
||
DBUG_ASSERT(this == thd->lex);
|
||
/*
|
||
FIXME This will work ok in simple_ident_nospvar case because
|
||
we can't meet simple_ident_nospvar in trigger now. But it
|
||
should be changed in future.
|
||
*/
|
||
if (is_trigger_new_or_old_reference(a))
|
||
{
|
||
bool new_row= (a->str[0]=='N' || a->str[0]=='n');
|
||
|
||
return create_and_link_Item_trigger_field(thd, b, new_row);
|
||
}
|
||
|
||
if (unlikely(current_select->no_table_names_allowed))
|
||
{
|
||
my_error(ER_TABLENAME_NOT_ALLOWED_HERE, MYF(0), a->str, thd->where);
|
||
return NULL;
|
||
}
|
||
|
||
if (current_select->parsing_place == FOR_LOOP_BOUND)
|
||
return create_item_for_loop_bound(thd, &null_clex_str, a, b);
|
||
|
||
return create_item_ident_field(thd, Lex_ident_sys(), *a, *b);
|
||
}
|
||
|
||
|
||
Item_splocal *LEX::create_item_spvar_row_field(THD *thd,
|
||
const Sp_rcontext_handler *rh,
|
||
const Lex_ident_sys *a,
|
||
const Lex_ident_sys *b,
|
||
sp_variable *spv,
|
||
const char *start,
|
||
const char *end)
|
||
{
|
||
if (unlikely(!parsing_options.allows_variable))
|
||
{
|
||
my_error(ER_VIEW_SELECT_VARIABLE, MYF(0));
|
||
return NULL;
|
||
}
|
||
|
||
Query_fragment pos(thd, sphead, start, end);
|
||
Item_splocal *item;
|
||
if (spv->field_def.is_table_rowtype_ref() ||
|
||
spv->field_def.is_cursor_rowtype_ref())
|
||
{
|
||
if (unlikely(!(item= new (thd->mem_root)
|
||
Item_splocal_row_field_by_name(thd, rh, a, b, spv->offset,
|
||
&type_handler_null,
|
||
pos.pos(), pos.length()))))
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
uint row_field_offset;
|
||
const Spvar_definition *def;
|
||
if (unlikely(!(def= spv->find_row_field(a, b, &row_field_offset))))
|
||
return NULL;
|
||
|
||
if (unlikely(!(item= new (thd->mem_root)
|
||
Item_splocal_row_field(thd, rh, a, b,
|
||
spv->offset, row_field_offset,
|
||
def->type_handler(),
|
||
pos.pos(), pos.length()))))
|
||
return NULL;
|
||
}
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
item->m_sp= sphead;
|
||
#endif
|
||
safe_to_cache_query=0;
|
||
return item;
|
||
}
|
||
|
||
|
||
my_var *LEX::create_outvar(THD *thd, const LEX_CSTRING *name)
|
||
{
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *spv;
|
||
if (likely((spv= find_variable(name, &rh))))
|
||
return result ? new (thd->mem_root)
|
||
my_var_sp(rh, name, spv->offset,
|
||
spv->type_handler(), sphead) :
|
||
NULL /* EXPLAIN */;
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), name->str);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
my_var *LEX::create_outvar(THD *thd,
|
||
const LEX_CSTRING *a,
|
||
const LEX_CSTRING *b)
|
||
{
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *t;
|
||
if (unlikely(!(t= find_variable(a, &rh))))
|
||
{
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), a->str);
|
||
return NULL;
|
||
}
|
||
uint row_field_offset;
|
||
if (!t->find_row_field(a, b, &row_field_offset))
|
||
return NULL;
|
||
return result ?
|
||
new (thd->mem_root) my_var_sp_row_field(rh, a, b, t->offset,
|
||
row_field_offset, sphead) :
|
||
NULL /* EXPLAIN */;
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_func_nextval(THD *thd, Table_ident *table_ident)
|
||
{
|
||
TABLE_LIST *table;
|
||
if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0,
|
||
TL_OPTION_SEQUENCE,
|
||
TL_WRITE_ALLOW_WRITE,
|
||
MDL_SHARED_WRITE))))
|
||
return NULL;
|
||
thd->lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION);
|
||
return new (thd->mem_root) Item_func_nextval(thd, table);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_func_lastval(THD *thd, Table_ident *table_ident)
|
||
{
|
||
TABLE_LIST *table;
|
||
if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0,
|
||
TL_OPTION_SEQUENCE,
|
||
TL_READ,
|
||
MDL_SHARED_READ))))
|
||
return NULL;
|
||
thd->lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION);
|
||
return new (thd->mem_root) Item_func_lastval(thd, table);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_func_nextval(THD *thd,
|
||
const LEX_CSTRING *db,
|
||
const LEX_CSTRING *name)
|
||
{
|
||
Table_ident *table_ident;
|
||
if (unlikely(!(table_ident=
|
||
new (thd->mem_root) Table_ident(thd, db, name, false))))
|
||
return NULL;
|
||
return create_item_func_nextval(thd, table_ident);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_func_lastval(THD *thd,
|
||
const LEX_CSTRING *db,
|
||
const LEX_CSTRING *name)
|
||
{
|
||
Table_ident *table_ident;
|
||
if (unlikely(!(table_ident=
|
||
new (thd->mem_root) Table_ident(thd, db, name, false))))
|
||
return NULL;
|
||
return create_item_func_lastval(thd, table_ident);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_func_setval(THD *thd, Table_ident *table_ident,
|
||
longlong nextval, ulonglong round,
|
||
bool is_used)
|
||
{
|
||
TABLE_LIST *table;
|
||
if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0,
|
||
TL_OPTION_SEQUENCE,
|
||
TL_WRITE_ALLOW_WRITE,
|
||
MDL_SHARED_WRITE))))
|
||
return NULL;
|
||
return new (thd->mem_root) Item_func_setval(thd, table, nextval, round,
|
||
is_used);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_ident(THD *thd,
|
||
const Lex_ident_cli_st *ca,
|
||
const Lex_ident_cli_st *cb)
|
||
{
|
||
const char *start= ca->pos();
|
||
const char *end= cb->end();
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *spv;
|
||
DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= start);
|
||
DBUG_ASSERT(start <= end);
|
||
DBUG_ASSERT(end <= thd->m_parser_state->m_lip.get_end_of_query());
|
||
Lex_ident_sys a(thd, ca), b(thd, cb);
|
||
if (a.is_null() || b.is_null())
|
||
return NULL; // OEM
|
||
if ((spv= find_variable(&a, &rh)) &&
|
||
(spv->field_def.is_row() ||
|
||
spv->field_def.is_table_rowtype_ref() ||
|
||
spv->field_def.is_cursor_rowtype_ref()))
|
||
return create_item_spvar_row_field(thd, rh, &a, &b, spv, start, end);
|
||
|
||
if ((thd->variables.sql_mode & MODE_ORACLE) && b.length == 7)
|
||
{
|
||
if (!my_strnncoll(system_charset_info,
|
||
(const uchar *) b.str, 7,
|
||
(const uchar *) "NEXTVAL", 7))
|
||
return create_item_func_nextval(thd, &null_clex_str, &a);
|
||
else if (!my_strnncoll(system_charset_info,
|
||
(const uchar *) b.str, 7,
|
||
(const uchar *) "CURRVAL", 7))
|
||
return create_item_func_lastval(thd, &null_clex_str, &a);
|
||
}
|
||
|
||
return create_item_ident_nospvar(thd, &a, &b);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_ident(THD *thd,
|
||
const Lex_ident_sys_st *a,
|
||
const Lex_ident_sys_st *b,
|
||
const Lex_ident_sys_st *c)
|
||
{
|
||
Lex_ident_sys_st schema= thd->client_capabilities & CLIENT_NO_SCHEMA ?
|
||
Lex_ident_sys() : *a;
|
||
if ((thd->variables.sql_mode & MODE_ORACLE) && c->length == 7)
|
||
{
|
||
if (!my_strnncoll(system_charset_info,
|
||
(const uchar *) c->str, 7,
|
||
(const uchar *) "NEXTVAL", 7))
|
||
return create_item_func_nextval(thd, a, b);
|
||
else if (!my_strnncoll(system_charset_info,
|
||
(const uchar *) c->str, 7,
|
||
(const uchar *) "CURRVAL", 7))
|
||
return create_item_func_lastval(thd, a, b);
|
||
}
|
||
|
||
if (current_select->no_table_names_allowed)
|
||
{
|
||
my_error(ER_TABLENAME_NOT_ALLOWED_HERE, MYF(0), b->str, thd->where);
|
||
return NULL;
|
||
}
|
||
|
||
if (current_select->parsing_place == FOR_LOOP_BOUND)
|
||
return create_item_for_loop_bound(thd, &null_clex_str, b, c);
|
||
|
||
return create_item_ident_field(thd, schema, *b, *c);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_limit(THD *thd, const Lex_ident_cli_st *ca)
|
||
{
|
||
DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= ca->pos());
|
||
DBUG_ASSERT(ca->pos() <= ca->end());
|
||
DBUG_ASSERT(ca->end() <= thd->m_parser_state->m_lip.get_end_of_query());
|
||
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *spv;
|
||
Lex_ident_sys sa(thd, ca);
|
||
if (sa.is_null())
|
||
return NULL; // EOM
|
||
if (!(spv= find_variable(&sa, &rh)))
|
||
{
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), sa.str);
|
||
return NULL;
|
||
}
|
||
|
||
Query_fragment pos(thd, sphead, ca->pos(), ca->end());
|
||
Item_splocal *item;
|
||
if (unlikely(!(item= new (thd->mem_root)
|
||
Item_splocal(thd, rh, &sa,
|
||
spv->offset, spv->type_handler(),
|
||
pos.pos(), pos.length()))))
|
||
return NULL;
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
item->m_sp= sphead;
|
||
#endif
|
||
safe_to_cache_query= 0;
|
||
|
||
if (!item->is_valid_limit_clause_variable_with_error())
|
||
return NULL;
|
||
|
||
item->limit_clause_param= true;
|
||
return item;
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_limit(THD *thd,
|
||
const Lex_ident_cli_st *ca,
|
||
const Lex_ident_cli_st *cb)
|
||
{
|
||
DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= ca->pos());
|
||
DBUG_ASSERT(ca->pos() <= cb->end());
|
||
DBUG_ASSERT(cb->end() <= thd->m_parser_state->m_lip.get_end_of_query());
|
||
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *spv;
|
||
Lex_ident_sys sa(thd, ca), sb(thd, cb);
|
||
if (unlikely(sa.is_null() || sb.is_null()))
|
||
return NULL; // EOM
|
||
if (!(spv= find_variable(&sa, &rh)))
|
||
{
|
||
my_error(ER_SP_UNDECLARED_VAR, MYF(0), sa.str);
|
||
return NULL;
|
||
}
|
||
// Qualified %TYPE variables are not possible
|
||
DBUG_ASSERT(!spv->field_def.column_type_ref());
|
||
Item_splocal *item;
|
||
if (unlikely(!(item= create_item_spvar_row_field(thd, rh, &sa, &sb, spv,
|
||
ca->pos(), cb->end()))))
|
||
return NULL;
|
||
if (!item->is_valid_limit_clause_variable_with_error())
|
||
return NULL;
|
||
item->limit_clause_param= true;
|
||
return item;
|
||
}
|
||
|
||
|
||
bool LEX::set_user_variable(THD *thd, const LEX_CSTRING *name, Item *val)
|
||
{
|
||
Item_func_set_user_var *item;
|
||
set_var_user *var;
|
||
if (unlikely(!(item= new (thd->mem_root) Item_func_set_user_var(thd, name,
|
||
val))) ||
|
||
unlikely(!(var= new (thd->mem_root) set_var_user(item))))
|
||
return true;
|
||
if (unlikely(var_list.push_back(var, thd->mem_root)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_ident_field(THD *thd,
|
||
const Lex_ident_sys_st &db,
|
||
const Lex_ident_sys_st &table,
|
||
const Lex_ident_sys_st &name)
|
||
{
|
||
if (check_expr_allows_fields_or_error(thd, name.str))
|
||
return NULL;
|
||
|
||
if (current_select->parsing_place != IN_HAVING ||
|
||
current_select->get_in_sum_expr() > 0)
|
||
return new (thd->mem_root) Item_field(thd, current_context(),
|
||
db, table, name);
|
||
|
||
return new (thd->mem_root) Item_ref(thd, current_context(),
|
||
db, table, name);
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_ident_sp(THD *thd, Lex_ident_sys_st *name,
|
||
const char *start,
|
||
const char *end)
|
||
{
|
||
DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= start);
|
||
DBUG_ASSERT(start <= end);
|
||
DBUG_ASSERT(end <= thd->m_parser_state->m_lip.get_end_of_query());
|
||
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *spv;
|
||
DBUG_ASSERT(spcont);
|
||
DBUG_ASSERT(sphead);
|
||
if ((spv= find_variable(name, &rh)))
|
||
{
|
||
/* We're compiling a stored procedure and found a variable */
|
||
if (!parsing_options.allows_variable)
|
||
{
|
||
my_error(ER_VIEW_SELECT_VARIABLE, MYF(0));
|
||
return NULL;
|
||
}
|
||
|
||
Query_fragment pos(thd, sphead, start, end);
|
||
Item_splocal *splocal= spv->field_def.is_column_type_ref() ?
|
||
new (thd->mem_root) Item_splocal_with_delayed_data_type(thd, rh, name,
|
||
spv->offset,
|
||
pos.pos(),
|
||
pos.length()) :
|
||
new (thd->mem_root) Item_splocal(thd, rh, name,
|
||
spv->offset, spv->type_handler(),
|
||
pos.pos(), pos.length());
|
||
if (unlikely(splocal == NULL))
|
||
return NULL;
|
||
#ifdef DBUG_ASSERT_EXISTS
|
||
splocal->m_sp= sphead;
|
||
#endif
|
||
safe_to_cache_query= 0;
|
||
return splocal;
|
||
}
|
||
|
||
if (thd->variables.sql_mode & MODE_ORACLE)
|
||
{
|
||
if (lex_string_eq(name, STRING_WITH_LEN("SQLCODE")))
|
||
return new (thd->mem_root) Item_func_sqlcode(thd);
|
||
if (lex_string_eq(name, STRING_WITH_LEN("SQLERRM")))
|
||
return new (thd->mem_root) Item_func_sqlerrm(thd);
|
||
}
|
||
|
||
if (current_select->parsing_place == FOR_LOOP_BOUND)
|
||
return create_item_for_loop_bound(thd, &null_clex_str, &null_clex_str,
|
||
name);
|
||
|
||
return create_item_ident_nosp(thd, name);
|
||
}
|
||
|
||
|
||
|
||
bool LEX::set_variable(const Lex_ident_sys_st *name, Item *item)
|
||
{
|
||
sp_pcontext *ctx;
|
||
const Sp_rcontext_handler *rh;
|
||
sp_variable *spv= find_variable(name, &ctx, &rh);
|
||
return spv ? sphead->set_local_variable(thd, ctx, rh, spv, item, this, true) :
|
||
set_system_variable(option_type, name, item);
|
||
}
|
||
|
||
|
||
/**
|
||
Generate instructions for:
|
||
SET x.y= expr;
|
||
*/
|
||
bool LEX::set_variable(const Lex_ident_sys_st *name1,
|
||
const Lex_ident_sys_st *name2,
|
||
Item *item)
|
||
{
|
||
const Sp_rcontext_handler *rh;
|
||
sp_pcontext *ctx;
|
||
sp_variable *spv;
|
||
if (spcont && (spv= find_variable(name1, &ctx, &rh)))
|
||
{
|
||
if (spv->field_def.is_table_rowtype_ref() ||
|
||
spv->field_def.is_cursor_rowtype_ref())
|
||
return sphead->set_local_variable_row_field_by_name(thd, ctx,
|
||
rh,
|
||
spv, name2,
|
||
item, this);
|
||
// A field of a ROW variable
|
||
uint row_field_offset;
|
||
return !spv->find_row_field(name1, name2, &row_field_offset) ||
|
||
sphead->set_local_variable_row_field(thd, ctx, rh,
|
||
spv, row_field_offset,
|
||
item, this);
|
||
}
|
||
|
||
if (is_trigger_new_or_old_reference(name1))
|
||
return set_trigger_field(name1, name2, item);
|
||
|
||
return set_system_variable(thd, option_type, name1, name2, item);
|
||
}
|
||
|
||
|
||
bool LEX::set_default_system_variable(enum_var_type var_type,
|
||
const Lex_ident_sys_st *name,
|
||
Item *val)
|
||
{
|
||
static Lex_ident_sys default_base_name= {STRING_WITH_LEN("default")};
|
||
sys_var *var= find_sys_var(thd, name->str, name->length);
|
||
if (!var)
|
||
return true;
|
||
if (unlikely(!var->is_struct()))
|
||
{
|
||
my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), name->str);
|
||
return true;
|
||
}
|
||
return set_system_variable(var_type, var, &default_base_name, val);
|
||
}
|
||
|
||
|
||
bool LEX::set_system_variable(enum_var_type var_type,
|
||
const Lex_ident_sys_st *name,
|
||
Item *val)
|
||
{
|
||
sys_var *var= find_sys_var(thd, name->str, name->length);
|
||
DBUG_ASSERT(thd->is_error() || var != NULL);
|
||
static Lex_ident_sys null_str;
|
||
return likely(var) ? set_system_variable(var_type, var, &null_str, val) : true;
|
||
}
|
||
|
||
|
||
bool LEX::set_system_variable(THD *thd, enum_var_type var_type,
|
||
const Lex_ident_sys_st *name1,
|
||
const Lex_ident_sys_st *name2,
|
||
Item *val)
|
||
{
|
||
sys_var *tmp;
|
||
if (unlikely(check_reserved_words(name1)) ||
|
||
unlikely(!(tmp= find_sys_var(thd, name2->str, name2->length, true))))
|
||
{
|
||
my_error(ER_UNKNOWN_STRUCTURED_VARIABLE, MYF(0),
|
||
(int) name1->length, name1->str);
|
||
return true;
|
||
}
|
||
if (unlikely(!tmp->is_struct()))
|
||
{
|
||
my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), name2->str);
|
||
return true;
|
||
}
|
||
return set_system_variable(var_type, tmp, name1, val);
|
||
}
|
||
|
||
|
||
bool LEX::set_trigger_field(const LEX_CSTRING *name1, const LEX_CSTRING *name2,
|
||
Item *val)
|
||
{
|
||
DBUG_ASSERT(is_trigger_new_or_old_reference(name1));
|
||
if (unlikely(name1->str[0]=='O' || name1->str[0]=='o'))
|
||
{
|
||
my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "OLD", "");
|
||
return true;
|
||
}
|
||
if (unlikely(trg_chistics.event == TRG_EVENT_DELETE))
|
||
{
|
||
my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW", "on DELETE");
|
||
return true;
|
||
}
|
||
if (unlikely(trg_chistics.action_time == TRG_ACTION_AFTER))
|
||
{
|
||
my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "NEW", "after ");
|
||
return true;
|
||
}
|
||
return set_trigger_new_row(name2, val);
|
||
}
|
||
|
||
|
||
#ifdef MYSQL_SERVER
|
||
uint binlog_unsafe_map[256];
|
||
|
||
#define UNSAFE(a, b, c) \
|
||
{ \
|
||
DBUG_PRINT("unsafe_mixed_statement", ("SETTING BASE VALUES: %s, %s, %02X", \
|
||
LEX::stmt_accessed_table_string(a), \
|
||
LEX::stmt_accessed_table_string(b), \
|
||
c)); \
|
||
unsafe_mixed_statement(a, b, c); \
|
||
}
|
||
|
||
/*
|
||
Sets the combination given by "a" and "b" and automatically combinations
|
||
given by other types of access, i.e. 2^(8 - 2), as unsafe.
|
||
|
||
It may happen a colision when automatically defining a combination as unsafe.
|
||
For that reason, a combination has its unsafe condition redefined only when
|
||
the new_condition is greater then the old. For instance,
|
||
|
||
. (BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY) is never overwritten by
|
||
. (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF).
|
||
*/
|
||
void unsafe_mixed_statement(LEX::enum_stmt_accessed_table a,
|
||
LEX::enum_stmt_accessed_table b, uint condition)
|
||
{
|
||
int type= 0;
|
||
int index= (1U << a) | (1U << b);
|
||
|
||
|
||
for (type= 0; type < 256; type++)
|
||
{
|
||
if ((type & index) == index)
|
||
{
|
||
binlog_unsafe_map[type] |= condition;
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
The BINLOG_* AND TRX_CACHE_* values can be combined by using '&' or '|',
|
||
which means that both conditions need to be satisfied or any of them is
|
||
enough. For example,
|
||
|
||
. BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY means that the statment is
|
||
unsafe when the option is on and trx-cache is not empty;
|
||
|
||
. BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF means the statement is unsafe
|
||
in all cases.
|
||
|
||
. TRX_CACHE_EMPTY | TRX_CACHE_NOT_EMPTY means the statement is unsafe
|
||
in all cases. Similar as above.
|
||
*/
|
||
void binlog_unsafe_map_init()
|
||
{
|
||
memset((void*) binlog_unsafe_map, 0, sizeof(uint) * 256);
|
||
|
||
/*
|
||
Classify a statement as unsafe when there is a mixed statement and an
|
||
on-going transaction at any point of the execution if:
|
||
|
||
1. The mixed statement is about to update a transactional table and
|
||
a non-transactional table.
|
||
|
||
2. The mixed statement is about to update a transactional table and
|
||
read from a non-transactional table.
|
||
|
||
3. The mixed statement is about to update a non-transactional table
|
||
and temporary transactional table.
|
||
|
||
4. The mixed statement is about to update a temporary transactional
|
||
table and read from a non-transactional table.
|
||
|
||
5. The mixed statement is about to update a transactional table and
|
||
a temporary non-transactional table.
|
||
|
||
6. The mixed statement is about to update a transactional table and
|
||
read from a temporary non-transactional table.
|
||
|
||
7. The mixed statement is about to update a temporary transactional
|
||
table and temporary non-transactional table.
|
||
|
||
8. The mixed statement is about to update a temporary transactional
|
||
table and read from a temporary non-transactional table.
|
||
|
||
After updating a transactional table if:
|
||
|
||
9. The mixed statement is about to update a non-transactional table
|
||
and read from a transactional table.
|
||
|
||
10. The mixed statement is about to update a non-transactional table
|
||
and read from a temporary transactional table.
|
||
|
||
11. The mixed statement is about to update a temporary non-transactional
|
||
table and read from a transactional table.
|
||
|
||
12. The mixed statement is about to update a temporary non-transactional
|
||
table and read from a temporary transactional table.
|
||
|
||
13. The mixed statement is about to update a temporary non-transactional
|
||
table and read from a non-transactional table.
|
||
|
||
The reason for this is that locks acquired may not protected a concurrent
|
||
transaction of interfering in the current execution and by consequence in
|
||
the result.
|
||
*/
|
||
/* Case 1. */
|
||
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
||
/* Case 2. */
|
||
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
||
/* Case 3. */
|
||
UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_WRITES_TEMP_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
||
/* Case 4. */
|
||
UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
|
||
/* Case 5. */
|
||
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON);
|
||
/* Case 6. */
|
||
UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON);
|
||
/* Case 7. */
|
||
UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON);
|
||
/* Case 8. */
|
||
UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON);
|
||
/* Case 9. */
|
||
UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE,
|
||
(BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY);
|
||
/* Case 10 */
|
||
UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE,
|
||
(BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY);
|
||
/* Case 11. */
|
||
UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY);
|
||
/* Case 12. */
|
||
UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE,
|
||
BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY);
|
||
/* Case 13. */
|
||
UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
|
||
BINLOG_DIRECT_OFF & TRX_CACHE_NOT_EMPTY);
|
||
}
|
||
#endif
|
||
|
||
|
||
/**
|
||
@brief
|
||
Collect fiels that are used in the GROUP BY of this st_select_lex
|
||
|
||
@param thd The thread handle
|
||
|
||
@details
|
||
This method looks through the fields that are used in the GROUP BY of this
|
||
st_select_lex and saves info on these fields.
|
||
*/
|
||
|
||
void st_select_lex::collect_grouping_fields_for_derived(THD *thd,
|
||
ORDER *grouping_list)
|
||
{
|
||
grouping_tmp_fields.empty();
|
||
List_iterator<Item> li(join->fields_list);
|
||
Item *item= li++;
|
||
for (uint i= 0; i < master_unit()->derived->table->s->fields;
|
||
i++, (item=li++))
|
||
{
|
||
for (ORDER *ord= grouping_list; ord; ord= ord->next)
|
||
{
|
||
if ((*ord->item)->eq((Item*)item, 0))
|
||
{
|
||
Field_pair *grouping_tmp_field=
|
||
new Field_pair(master_unit()->derived->table->field[i], item);
|
||
grouping_tmp_fields.push_back(grouping_tmp_field);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
Collect fields that are used in the GROUP BY of this SELECT
|
||
*/
|
||
|
||
bool st_select_lex::collect_grouping_fields(THD *thd)
|
||
{
|
||
grouping_tmp_fields.empty();
|
||
|
||
for (ORDER *ord= group_list.first; ord; ord= ord->next)
|
||
{
|
||
Item *item= *ord->item;
|
||
if (item->type() != Item::FIELD_ITEM &&
|
||
!(item->type() == Item::REF_ITEM &&
|
||
item->real_type() == Item::FIELD_ITEM &&
|
||
((((Item_ref *) item)->ref_type() == Item_ref::VIEW_REF) ||
|
||
(((Item_ref *) item)->ref_type() == Item_ref::REF))))
|
||
continue;
|
||
|
||
Field_pair *grouping_tmp_field=
|
||
new Field_pair(((Item_field *)item->real_item())->field, item);
|
||
if (grouping_tmp_fields.push_back(grouping_tmp_field, thd->mem_root))
|
||
return false;
|
||
}
|
||
if (grouping_tmp_fields.elements)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
For a condition check possibility of exraction a formula over grouping fields
|
||
|
||
@param thd The thread handle
|
||
@param cond The condition whose subformulas are to be analyzed
|
||
@param checker The checker callback function to be applied to the nodes
|
||
of the tree of the object
|
||
|
||
@details
|
||
This method traverses the AND-OR condition cond and for each subformula of
|
||
the condition it checks whether it can be usable for the extraction of a
|
||
condition over the grouping fields of this select. The method uses
|
||
the call-back parameter checker to check whether a primary formula
|
||
depends only on grouping fields.
|
||
The subformulas that are not usable are marked with the flag NO_EXTRACTION_FL.
|
||
The subformulas that can be entierly extracted are marked with the flag
|
||
FULL_EXTRACTION_FL.
|
||
@note
|
||
This method is called before any call of extract_cond_for_grouping_fields.
|
||
The flag NO_EXTRACTION_FL set in a subformula allows to avoid building clone
|
||
for the subformula when extracting the pushable condition.
|
||
The flag FULL_EXTRACTION_FL allows to delete later all top level conjuncts
|
||
from cond.
|
||
*/
|
||
|
||
void
|
||
st_select_lex::check_cond_extraction_for_grouping_fields(THD *thd, Item *cond)
|
||
{
|
||
if (cond->get_extraction_flag() == NO_EXTRACTION_FL)
|
||
return;
|
||
cond->clear_extraction_flag();
|
||
if (cond->type() == Item::COND_ITEM)
|
||
{
|
||
Item_cond_and *and_cond=
|
||
(((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) ?
|
||
((Item_cond_and*) cond) : 0;
|
||
|
||
List<Item> *arg_list= ((Item_cond*) cond)->argument_list();
|
||
List_iterator<Item> li(*arg_list);
|
||
uint count= 0; // to count items not containing NO_EXTRACTION_FL
|
||
uint count_full= 0; // to count items with FULL_EXTRACTION_FL
|
||
Item *item;
|
||
while ((item=li++))
|
||
{
|
||
check_cond_extraction_for_grouping_fields(thd, item);
|
||
if (item->get_extraction_flag() != NO_EXTRACTION_FL)
|
||
{
|
||
count++;
|
||
if (item->get_extraction_flag() == FULL_EXTRACTION_FL)
|
||
count_full++;
|
||
}
|
||
else if (!and_cond)
|
||
break;
|
||
}
|
||
if ((and_cond && count == 0) || item)
|
||
cond->set_extraction_flag(NO_EXTRACTION_FL);
|
||
if (count_full == arg_list->elements)
|
||
{
|
||
cond->set_extraction_flag(FULL_EXTRACTION_FL);
|
||
}
|
||
if (cond->get_extraction_flag() != 0)
|
||
{
|
||
li.rewind();
|
||
while ((item=li++))
|
||
item->clear_extraction_flag();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int fl= cond->excl_dep_on_grouping_fields(this) && !cond->is_expensive() ?
|
||
FULL_EXTRACTION_FL : NO_EXTRACTION_FL;
|
||
cond->set_extraction_flag(fl);
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Build condition extractable from the given one depended on grouping fields
|
||
|
||
@param thd The thread handle
|
||
@param cond The condition from which the condition depended
|
||
on grouping fields is to be extracted
|
||
@param no_top_clones If it's true then no clones for the top fully
|
||
extractable conjuncts are built
|
||
|
||
@details
|
||
For the given condition cond this method finds out what condition depended
|
||
only on the grouping fields can be extracted from cond. If such condition C
|
||
exists the method builds the item for it.
|
||
This method uses the flags NO_EXTRACTION_FL and FULL_EXTRACTION_FL set by the
|
||
preliminary call of st_select_lex::check_cond_extraction_for_grouping_fields
|
||
to figure out whether a subformula depends only on these fields or not.
|
||
@note
|
||
The built condition C is always implied by the condition cond
|
||
(cond => C). The method tries to build the least restictive such
|
||
condition (i.e. for any other condition C' such that cond => C'
|
||
we have C => C').
|
||
@note
|
||
The build item is not ready for usage: substitution for the field items
|
||
has to be done and it has to be re-fixed.
|
||
|
||
@retval
|
||
the built condition depended only on grouping fields if such a condition exists
|
||
NULL if there is no such a condition
|
||
*/
|
||
|
||
Item *st_select_lex::build_cond_for_grouping_fields(THD *thd, Item *cond,
|
||
bool no_top_clones)
|
||
{
|
||
if (cond->get_extraction_flag() == FULL_EXTRACTION_FL)
|
||
{
|
||
if (no_top_clones)
|
||
return cond;
|
||
cond->clear_extraction_flag();
|
||
return cond->build_clone(thd);
|
||
}
|
||
if (cond->type() == Item::COND_ITEM)
|
||
{
|
||
bool cond_and= false;
|
||
Item_cond *new_cond;
|
||
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
|
||
{
|
||
cond_and= true;
|
||
new_cond= new (thd->mem_root) Item_cond_and(thd);
|
||
}
|
||
else
|
||
new_cond= new (thd->mem_root) Item_cond_or(thd);
|
||
if (unlikely(!new_cond))
|
||
return 0;
|
||
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
|
||
Item *item;
|
||
while ((item=li++))
|
||
{
|
||
if (item->get_extraction_flag() == NO_EXTRACTION_FL)
|
||
{
|
||
DBUG_ASSERT(cond_and);
|
||
item->clear_extraction_flag();
|
||
continue;
|
||
}
|
||
Item *fix= build_cond_for_grouping_fields(thd, item,
|
||
no_top_clones & cond_and);
|
||
if (unlikely(!fix))
|
||
{
|
||
if (cond_and)
|
||
continue;
|
||
break;
|
||
}
|
||
new_cond->argument_list()->push_back(fix, thd->mem_root);
|
||
}
|
||
|
||
if (!cond_and && item)
|
||
{
|
||
while((item= li++))
|
||
item->clear_extraction_flag();
|
||
return 0;
|
||
}
|
||
switch (new_cond->argument_list()->elements)
|
||
{
|
||
case 0:
|
||
return 0;
|
||
case 1:
|
||
return new_cond->argument_list()->head();
|
||
default:
|
||
return new_cond;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
bool st_select_lex::set_nest_level(int new_nest_level)
|
||
{
|
||
DBUG_ENTER("st_select_lex::set_nest_level");
|
||
DBUG_PRINT("enter", ("select #%d %p nest level: %d",
|
||
select_number, this, new_nest_level));
|
||
if (new_nest_level > (int) MAX_SELECT_NESTING)
|
||
{
|
||
my_error(ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT, MYF(0));
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
nest_level= new_nest_level;
|
||
new_nest_level++;
|
||
for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit())
|
||
{
|
||
if (u->set_nest_level(new_nest_level))
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
DBUG_RETURN(FALSE);
|
||
}
|
||
|
||
bool st_select_lex_unit::set_nest_level(int new_nest_level)
|
||
{
|
||
DBUG_ENTER("st_select_lex_unit::set_nest_level");
|
||
for(SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
||
{
|
||
if (sl->set_nest_level(new_nest_level))
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
if (fake_select_lex &&
|
||
fake_select_lex->set_nest_level(new_nest_level))
|
||
DBUG_RETURN(TRUE);
|
||
DBUG_RETURN(FALSE);
|
||
}
|
||
|
||
|
||
bool st_select_lex::check_parameters(SELECT_LEX *main_select)
|
||
{
|
||
DBUG_ENTER("st_select_lex::check_parameters");
|
||
DBUG_PRINT("enter", ("select #%d %p nest level: %d",
|
||
select_number, this, nest_level));
|
||
|
||
|
||
if ((options & OPTION_PROCEDURE_CLAUSE) &&
|
||
(!parent_lex->selects_allow_procedure ||
|
||
next_select() != NULL ||
|
||
this != master_unit()->first_select() ||
|
||
nest_level != 0))
|
||
{
|
||
my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "PROCEDURE");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
|
||
if ((options & SELECT_HIGH_PRIORITY) && this != main_select)
|
||
{
|
||
my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "HIGH_PRIORITY");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
if ((options & OPTION_BUFFER_RESULT) && this != main_select)
|
||
{
|
||
my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_BUFFER_RESULT");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
if ((options & OPTION_FOUND_ROWS) && this != main_select)
|
||
{
|
||
my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_CALC_FOUND_ROWS");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
if (options & OPTION_NO_QUERY_CACHE)
|
||
{
|
||
/*
|
||
Allow this flag only on the first top-level SELECT statement, if
|
||
SQL_CACHE wasn't specified.
|
||
*/
|
||
if (this != main_select)
|
||
{
|
||
my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_NO_CACHE");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
if (parent_lex->sql_cache == LEX::SQL_CACHE)
|
||
{
|
||
my_error(ER_WRONG_USAGE, MYF(0), "SQL_CACHE", "SQL_NO_CACHE");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
parent_lex->safe_to_cache_query=0;
|
||
parent_lex->sql_cache= LEX::SQL_NO_CACHE;
|
||
}
|
||
if (options & OPTION_TO_QUERY_CACHE)
|
||
{
|
||
/*
|
||
Allow this flag only on the first top-level SELECT statement, if
|
||
SQL_NO_CACHE wasn't specified.
|
||
*/
|
||
if (this != main_select)
|
||
{
|
||
my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_CACHE");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
if (parent_lex->sql_cache == LEX::SQL_NO_CACHE)
|
||
{
|
||
my_error(ER_WRONG_USAGE, MYF(0), "SQL_NO_CACHE", "SQL_CACHE");
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
parent_lex->safe_to_cache_query=1;
|
||
parent_lex->sql_cache= LEX::SQL_CACHE;
|
||
}
|
||
|
||
for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit())
|
||
{
|
||
if (u->check_parameters(main_select))
|
||
DBUG_RETURN(TRUE);
|
||
}
|
||
DBUG_RETURN(FALSE);
|
||
}
|
||
|
||
|
||
bool st_select_lex_unit::check_parameters(SELECT_LEX *main_select)
|
||
{
|
||
for(SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
|
||
{
|
||
if (sl->check_parameters(main_select))
|
||
return TRUE;
|
||
}
|
||
return fake_select_lex && fake_select_lex->check_parameters(main_select);
|
||
}
|
||
|
||
|
||
bool LEX::check_main_unit_semantics()
|
||
{
|
||
if (unit.set_nest_level(0) ||
|
||
unit.check_parameters(first_select_lex()))
|
||
return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
int set_statement_var_if_exists(THD *thd, const char *var_name,
|
||
size_t var_name_length, ulonglong value)
|
||
{
|
||
sys_var *sysvar;
|
||
if (unlikely(thd->lex->sql_command == SQLCOM_CREATE_VIEW))
|
||
{
|
||
my_error(ER_VIEW_SELECT_CLAUSE, MYF(0), "[NO]WAIT");
|
||
return 1;
|
||
}
|
||
if (unlikely(thd->lex->sphead))
|
||
{
|
||
my_error(ER_SP_BADSTATEMENT, MYF(0), "[NO]WAIT");
|
||
return 1;
|
||
}
|
||
if ((sysvar= find_sys_var(thd, var_name, var_name_length, true)))
|
||
{
|
||
Item *item= new (thd->mem_root) Item_uint(thd, value);
|
||
set_var *var= new (thd->mem_root) set_var(thd, OPT_SESSION, sysvar,
|
||
&null_clex_str, item);
|
||
|
||
if (unlikely(!item) || unlikely(!var) ||
|
||
unlikely(thd->lex->stmt_var_list.push_back(var, thd->mem_root)))
|
||
{
|
||
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
bool LEX::sp_add_cfetch(THD *thd, const LEX_CSTRING *name)
|
||
{
|
||
uint offset;
|
||
sp_instr_cfetch *i;
|
||
|
||
if (!spcont->find_cursor(name, &offset, false))
|
||
{
|
||
my_error(ER_SP_CURSOR_MISMATCH, MYF(0), name->str);
|
||
return true;
|
||
}
|
||
i= new (thd->mem_root)
|
||
sp_instr_cfetch(sphead->instructions(), spcont, offset,
|
||
!(thd->variables.sql_mode & MODE_ORACLE));
|
||
if (unlikely(i == NULL) || unlikely(sphead->add_instr(i)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_add_agg_cfetch()
|
||
{
|
||
sphead->m_flags|= sp_head::HAS_AGGREGATE_INSTR;
|
||
sp_instr_agg_cfetch *i=
|
||
new (thd->mem_root) sp_instr_agg_cfetch(sphead->instructions(), spcont);
|
||
return i == NULL || sphead->add_instr(i);
|
||
}
|
||
|
||
|
||
bool LEX::create_or_alter_view_finalize(THD *thd, Table_ident *table_ident)
|
||
{
|
||
sql_command= SQLCOM_CREATE_VIEW;
|
||
/* first table in list is target VIEW name */
|
||
if (!first_select_lex()->add_table_to_list(thd, table_ident, NULL,
|
||
TL_OPTION_UPDATING,
|
||
TL_IGNORE,
|
||
MDL_EXCLUSIVE))
|
||
return true;
|
||
query_tables->open_strategy= TABLE_LIST::OPEN_STUB;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::add_alter_view(THD *thd, uint16 algorithm,
|
||
enum_view_suid suid,
|
||
Table_ident *table_ident)
|
||
{
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_BADSTATEMENT, MYF(0), "ALTER VIEW");
|
||
return true;
|
||
}
|
||
if (unlikely(!(create_view= new (thd->mem_root)
|
||
Create_view_info(VIEW_ALTER, algorithm, suid))))
|
||
return true;
|
||
return create_or_alter_view_finalize(thd, table_ident);
|
||
}
|
||
|
||
|
||
bool LEX::add_create_view(THD *thd, DDL_options_st ddl,
|
||
uint16 algorithm, enum_view_suid suid,
|
||
Table_ident *table_ident)
|
||
{
|
||
if (unlikely(set_create_options_with_check(ddl)))
|
||
return true;
|
||
if (unlikely(!(create_view= new (thd->mem_root)
|
||
Create_view_info(ddl.or_replace() ?
|
||
VIEW_CREATE_OR_REPLACE :
|
||
VIEW_CREATE_NEW,
|
||
algorithm, suid))))
|
||
return true;
|
||
return create_or_alter_view_finalize(thd, table_ident);
|
||
}
|
||
|
||
|
||
bool LEX::call_statement_start(THD *thd, sp_name *name)
|
||
{
|
||
Database_qualified_name pkgname(&null_clex_str, &null_clex_str);
|
||
const Sp_handler *sph= &sp_handler_procedure;
|
||
sql_command= SQLCOM_CALL;
|
||
value_list.empty();
|
||
if (unlikely(sph->sp_resolve_package_routine(thd, thd->lex->sphead,
|
||
name, &sph, &pkgname)))
|
||
return true;
|
||
if (unlikely(!(m_sql_cmd= new (thd->mem_root) Sql_cmd_call(name, sph))))
|
||
return true;
|
||
sph->add_used_routine(this, thd, name);
|
||
if (pkgname.m_name.length)
|
||
sp_handler_package_body.add_used_routine(this, thd, &pkgname);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::call_statement_start(THD *thd, const Lex_ident_sys_st *name)
|
||
{
|
||
sp_name *spname= make_sp_name(thd, name);
|
||
return unlikely(!spname) || call_statement_start(thd, spname);
|
||
}
|
||
|
||
|
||
bool LEX::call_statement_start(THD *thd, const Lex_ident_sys_st *name1,
|
||
const Lex_ident_sys_st *name2)
|
||
{
|
||
sp_name *spname= make_sp_name(thd, name1, name2);
|
||
return unlikely(!spname) || call_statement_start(thd, spname);
|
||
}
|
||
|
||
|
||
sp_package *LEX::get_sp_package() const
|
||
{
|
||
return sphead ? sphead->get_package() : NULL;
|
||
}
|
||
|
||
|
||
sp_package *LEX::create_package_start(THD *thd,
|
||
enum_sql_command command,
|
||
const Sp_handler *sph,
|
||
const sp_name *name_arg,
|
||
DDL_options_st options)
|
||
{
|
||
sp_package *pkg;
|
||
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), sph->type_str());
|
||
return NULL;
|
||
}
|
||
if (unlikely(set_command_with_check(command, options)))
|
||
return NULL;
|
||
if (sph->type() == TYPE_ENUM_PACKAGE_BODY)
|
||
{
|
||
/*
|
||
If we start parsing a "CREATE PACKAGE BODY", we need to load
|
||
the corresponding "CREATE PACKAGE", for the following reasons:
|
||
1. "CREATE PACKAGE BODY" is allowed only if "CREATE PACKAGE"
|
||
was done earlier for the same package name.
|
||
So if "CREATE PACKAGE" does not exist, we throw an error here.
|
||
2. When parsing "CREATE PACKAGE BODY", we need to know all package
|
||
public and private routine names, to translate procedure and
|
||
function calls correctly.
|
||
For example, this statement inside a package routine:
|
||
CALL p;
|
||
can be translated to:
|
||
CALL db.pkg.p; -- p is a known (public or private) package routine
|
||
CALL db.p; -- p is not a known package routine
|
||
*/
|
||
sp_head *spec;
|
||
int ret= sp_handler_package_spec.
|
||
sp_cache_routine_reentrant(thd, name_arg, &spec);
|
||
if (unlikely(!spec))
|
||
{
|
||
if (!ret)
|
||
my_error(ER_SP_DOES_NOT_EXIST, MYF(0),
|
||
"PACKAGE", ErrConvDQName(name_arg).ptr());
|
||
return 0;
|
||
}
|
||
}
|
||
if (unlikely(!(pkg= sp_package::create(this, name_arg, sph))))
|
||
return NULL;
|
||
pkg->reset_thd_mem_root(thd);
|
||
pkg->init(this);
|
||
pkg->make_qname(pkg->get_main_mem_root(), &pkg->m_qname);
|
||
sphead= pkg;
|
||
return pkg;
|
||
}
|
||
|
||
|
||
bool LEX::create_package_finalize(THD *thd,
|
||
const sp_name *name,
|
||
const sp_name *name2,
|
||
const char *body_start,
|
||
const char *body_end)
|
||
{
|
||
if (name2 &&
|
||
(name2->m_explicit_name != name->m_explicit_name ||
|
||
strcmp(name2->m_db.str, name->m_db.str) ||
|
||
!Sp_handler::eq_routine_name(name2->m_name, name->m_name)))
|
||
{
|
||
bool exp= name2->m_explicit_name || name->m_explicit_name;
|
||
my_error(ER_END_IDENTIFIER_DOES_NOT_MATCH, MYF(0),
|
||
exp ? ErrConvDQName(name2).ptr() : name2->m_name.str,
|
||
exp ? ErrConvDQName(name).ptr() : name->m_name.str);
|
||
return true;
|
||
}
|
||
// TODO: reuse code in LEX::create_package_finalize and sp_head::set_stmt_end
|
||
sphead->m_body.length= body_end - body_start;
|
||
if (unlikely(!(sphead->m_body.str= thd->strmake(body_start,
|
||
sphead->m_body.length))))
|
||
return true;
|
||
|
||
size_t not_used;
|
||
Lex_input_stream *lip= & thd->m_parser_state->m_lip;
|
||
sphead->m_defstr.length= lip->get_cpp_ptr() - lip->get_cpp_buf();
|
||
sphead->m_defstr.str= thd->strmake(lip->get_cpp_buf(), sphead->m_defstr.length);
|
||
trim_whitespace(thd->charset(), &sphead->m_defstr, ¬_used);
|
||
|
||
sphead->restore_thd_mem_root(thd);
|
||
sp_package *pkg= sphead->get_package();
|
||
DBUG_ASSERT(pkg);
|
||
return sphead->check_group_aggregate_instructions_forbid() ||
|
||
pkg->validate_after_parser(thd);
|
||
}
|
||
|
||
|
||
bool LEX::add_grant_command(THD *thd, enum_sql_command sql_command_arg,
|
||
stored_procedure_type type_arg)
|
||
{
|
||
if (columns.elements)
|
||
{
|
||
thd->parse_error();
|
||
return true;
|
||
}
|
||
sql_command= sql_command_arg,
|
||
type= type_arg;
|
||
return false;
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_func_substr(THD *thd, Item *a, Item *b, Item *c)
|
||
{
|
||
return (thd->variables.sql_mode & MODE_ORACLE) ?
|
||
new (thd->mem_root) Item_func_substr_oracle(thd, a, b, c) :
|
||
new (thd->mem_root) Item_func_substr(thd, a, b, c);
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_func_substr(THD *thd, Item *a, Item *b)
|
||
{
|
||
return (thd->variables.sql_mode & MODE_ORACLE) ?
|
||
new (thd->mem_root) Item_func_substr_oracle(thd, a, b) :
|
||
new (thd->mem_root) Item_func_substr(thd, a, b);
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_func_replace(THD *thd,
|
||
Item *org,
|
||
Item *find,
|
||
Item *replace)
|
||
{
|
||
return (thd->variables.sql_mode & MODE_ORACLE) ?
|
||
new (thd->mem_root) Item_func_replace_oracle(thd, org, find, replace) :
|
||
new (thd->mem_root) Item_func_replace(thd, org, find, replace);
|
||
}
|
||
|
||
|
||
bool SELECT_LEX::vers_push_field(THD *thd, TABLE_LIST *table,
|
||
const LEX_CSTRING field_name)
|
||
{
|
||
DBUG_ASSERT(field_name.str);
|
||
Item_field *fld= new (thd->mem_root) Item_field(thd, &context,
|
||
table->db,
|
||
table->alias,
|
||
field_name);
|
||
if (unlikely(!fld) || unlikely(item_list.push_back(fld)))
|
||
return true;
|
||
|
||
if (thd->lex->view_list.elements)
|
||
{
|
||
LEX_CSTRING *l;
|
||
if (unlikely(!(l= thd->make_clex_string(field_name.str,
|
||
field_name.length))) ||
|
||
unlikely(thd->lex->view_list.push_back(l)))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
Item *Lex_trim_st::make_item_func_trim_std(THD *thd) const
|
||
{
|
||
if (m_remove)
|
||
{
|
||
switch (m_spec) {
|
||
case TRIM_BOTH:
|
||
return new (thd->mem_root) Item_func_trim(thd, m_source, m_remove);
|
||
case TRIM_LEADING:
|
||
return new (thd->mem_root) Item_func_ltrim(thd, m_source, m_remove);
|
||
case TRIM_TRAILING:
|
||
return new (thd->mem_root) Item_func_rtrim(thd, m_source, m_remove);
|
||
}
|
||
}
|
||
|
||
switch (m_spec) {
|
||
case TRIM_BOTH:
|
||
return new (thd->mem_root) Item_func_trim(thd, m_source);
|
||
case TRIM_LEADING:
|
||
return new (thd->mem_root) Item_func_ltrim(thd, m_source);
|
||
case TRIM_TRAILING:
|
||
return new (thd->mem_root) Item_func_rtrim(thd, m_source);
|
||
}
|
||
DBUG_ASSERT(0);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
Item *Lex_trim_st::make_item_func_trim_oracle(THD *thd) const
|
||
{
|
||
if (m_remove)
|
||
{
|
||
switch (m_spec) {
|
||
case TRIM_BOTH:
|
||
return new (thd->mem_root) Item_func_trim_oracle(thd, m_source, m_remove);
|
||
case TRIM_LEADING:
|
||
return new (thd->mem_root) Item_func_ltrim_oracle(thd, m_source, m_remove);
|
||
case TRIM_TRAILING:
|
||
return new (thd->mem_root) Item_func_rtrim_oracle(thd, m_source, m_remove);
|
||
}
|
||
}
|
||
|
||
switch (m_spec) {
|
||
case TRIM_BOTH:
|
||
return new (thd->mem_root) Item_func_trim_oracle(thd, m_source);
|
||
case TRIM_LEADING:
|
||
return new (thd->mem_root) Item_func_ltrim_oracle(thd, m_source);
|
||
case TRIM_TRAILING:
|
||
return new (thd->mem_root) Item_func_rtrim_oracle(thd, m_source);
|
||
}
|
||
DBUG_ASSERT(0);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
Item *Lex_trim_st::make_item_func_trim(THD *thd) const
|
||
{
|
||
return (thd->variables.sql_mode & MODE_ORACLE) ?
|
||
make_item_func_trim_oracle(thd) :
|
||
make_item_func_trim_std(thd);
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_func_call_generic(THD *thd, Lex_ident_cli_st *cdb,
|
||
Lex_ident_cli_st *cname, List<Item> *args)
|
||
{
|
||
Lex_ident_sys db(thd, cdb), name(thd, cname);
|
||
if (db.is_null() || name.is_null())
|
||
return NULL; // EOM
|
||
/*
|
||
The following in practice calls:
|
||
<code>Create_sp_func::create()</code>
|
||
and builds a stored function.
|
||
|
||
However, it's important to maintain the interface between the
|
||
parser and the implementation in item_create.cc clean,
|
||
since this will change with WL#2128 (SQL PATH):
|
||
- INFORMATION_SCHEMA.version() is the SQL 99 syntax for the native
|
||
function version(),
|
||
- MySQL.version() is the SQL 2003 syntax for the native function
|
||
version() (a vendor can specify any schema).
|
||
*/
|
||
|
||
if (!name.str || check_db_name((LEX_STRING*) static_cast<LEX_CSTRING*>(&db)))
|
||
{
|
||
my_error(ER_WRONG_DB_NAME, MYF(0), db.str);
|
||
return NULL;
|
||
}
|
||
if (check_routine_name(&name))
|
||
return NULL;
|
||
|
||
Create_qfunc *builder= find_qualified_function_builder(thd);
|
||
DBUG_ASSERT(builder);
|
||
return builder->create_with_db(thd, &db, &name, true, args);
|
||
}
|
||
|
||
|
||
Item *LEX::make_item_func_call_native_or_parse_error(THD *thd,
|
||
Lex_ident_cli_st &name,
|
||
List<Item> *args)
|
||
{
|
||
Create_func *builder= find_native_function_builder(thd, &name);
|
||
DBUG_EXECUTE_IF("make_item_func_call_native_simulate_not_found",
|
||
builder= NULL;);
|
||
if (builder)
|
||
return builder->create_func(thd, &name, args);
|
||
thd->parse_error(ER_SYNTAX_ERROR, name.end());
|
||
return NULL;
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_qualified_asterisk(THD *thd,
|
||
const Lex_ident_sys_st *name)
|
||
{
|
||
Item *item;
|
||
if (!(item= new (thd->mem_root) Item_field(thd, current_context(),
|
||
null_clex_str, *name,
|
||
star_clex_str)))
|
||
return NULL;
|
||
current_select->with_wild++;
|
||
return item;
|
||
}
|
||
|
||
|
||
Item *LEX::create_item_qualified_asterisk(THD *thd,
|
||
const Lex_ident_sys_st *a,
|
||
const Lex_ident_sys_st *b)
|
||
{
|
||
Item *item;
|
||
Lex_ident_sys_st schema= thd->client_capabilities & CLIENT_NO_SCHEMA ?
|
||
Lex_ident_sys() : *a;
|
||
if (!(item= new (thd->mem_root) Item_field(thd, current_context(),
|
||
schema, *b, star_clex_str)))
|
||
return NULL;
|
||
current_select->with_wild++;
|
||
return item;
|
||
}
|
||
|
||
|
||
bool Lex_ident_sys_st::copy_ident_cli(THD *thd, const Lex_ident_cli_st *str)
|
||
{
|
||
return thd->to_ident_sys_alloc(this, str);
|
||
}
|
||
|
||
bool Lex_ident_sys_st::copy_keyword(THD *thd, const Lex_ident_cli_st *str)
|
||
{
|
||
return thd->make_lex_string(static_cast<LEX_CSTRING*>(this),
|
||
str->str, str->length) == NULL;
|
||
}
|
||
|
||
bool Lex_ident_sys_st::copy_or_convert(THD *thd,
|
||
const Lex_ident_cli_st *src,
|
||
CHARSET_INFO *cs)
|
||
{
|
||
if (!src->is_8bit())
|
||
return copy_keyword(thd, src); // 7bit string makes a wellformed identifier
|
||
return convert(thd, src, cs);
|
||
}
|
||
|
||
|
||
bool Lex_ident_sys_st::copy_sys(THD *thd, const LEX_CSTRING *src)
|
||
{
|
||
if (thd->check_string_for_wellformedness(src->str, src->length,
|
||
system_charset_info))
|
||
return true;
|
||
return thd->make_lex_string(this, src->str, src->length) == NULL;
|
||
}
|
||
|
||
|
||
bool Lex_ident_sys_st::convert(THD *thd,
|
||
const LEX_CSTRING *src, CHARSET_INFO *cs)
|
||
{
|
||
LEX_STRING tmp;
|
||
if (thd->convert_with_error(system_charset_info, &tmp, cs,
|
||
src->str, src->length))
|
||
return true;
|
||
str= tmp.str;
|
||
length= tmp.length;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool Lex_ident_sys_st::to_size_number(ulonglong *to) const
|
||
{
|
||
ulonglong number;
|
||
uint text_shift_number= 0;
|
||
longlong prefix_number;
|
||
const char *start_ptr= str;
|
||
size_t str_len= length;
|
||
const char *end_ptr= start_ptr + str_len;
|
||
int error;
|
||
prefix_number= my_strtoll10(start_ptr, (char**) &end_ptr, &error);
|
||
if (likely((start_ptr + str_len - 1) == end_ptr))
|
||
{
|
||
switch (end_ptr[0])
|
||
{
|
||
case 'g':
|
||
case 'G': text_shift_number+=30; break;
|
||
case 'm':
|
||
case 'M': text_shift_number+=20; break;
|
||
case 'k':
|
||
case 'K': text_shift_number+=10; break;
|
||
default:
|
||
my_error(ER_WRONG_SIZE_NUMBER, MYF(0));
|
||
return true;
|
||
}
|
||
if (unlikely(prefix_number >> 31))
|
||
{
|
||
my_error(ER_SIZE_OVERFLOW_ERROR, MYF(0));
|
||
return true;
|
||
}
|
||
number= prefix_number << text_shift_number;
|
||
}
|
||
else
|
||
{
|
||
my_error(ER_WRONG_SIZE_NUMBER, MYF(0));
|
||
return true;
|
||
}
|
||
*to= number;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::part_values_current(THD *thd)
|
||
{
|
||
partition_element *elem= part_info->curr_part_elem;
|
||
if (!is_partition_management())
|
||
{
|
||
if (unlikely(part_info->part_type != VERSIONING_PARTITION))
|
||
{
|
||
my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME");
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
DBUG_ASSERT(create_last_non_select_table);
|
||
DBUG_ASSERT(create_last_non_select_table->table_name.str);
|
||
// FIXME: other ALTER commands?
|
||
my_error(ER_VERS_WRONG_PARTS, MYF(0),
|
||
create_last_non_select_table->table_name.str);
|
||
return true;
|
||
}
|
||
elem->type= partition_element::CURRENT;
|
||
DBUG_ASSERT(part_info->vers_info);
|
||
part_info->vers_info->now_part= elem;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::part_values_history(THD *thd)
|
||
{
|
||
partition_element *elem= part_info->curr_part_elem;
|
||
if (!is_partition_management())
|
||
{
|
||
if (unlikely(part_info->part_type != VERSIONING_PARTITION))
|
||
{
|
||
my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME");
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
part_info->vers_init_info(thd);
|
||
elem->id= UINT_MAX32;
|
||
}
|
||
DBUG_ASSERT(part_info->vers_info);
|
||
if (unlikely(part_info->vers_info->now_part))
|
||
{
|
||
DBUG_ASSERT(create_last_non_select_table);
|
||
DBUG_ASSERT(create_last_non_select_table->table_name.str);
|
||
my_error(ER_VERS_WRONG_PARTS, MYF(0),
|
||
create_last_non_select_table->table_name.str);
|
||
return true;
|
||
}
|
||
elem->type= partition_element::HISTORY;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::last_field_generated_always_as_row_start_or_end(Lex_ident *p,
|
||
const char *type,
|
||
uint flag)
|
||
{
|
||
if (unlikely(p->str))
|
||
{
|
||
my_error(ER_VERS_DUPLICATE_ROW_START_END, MYF(0), type,
|
||
last_field->field_name.str);
|
||
return true;
|
||
}
|
||
last_field->flags|= (flag | NOT_NULL_FLAG);
|
||
DBUG_ASSERT(p);
|
||
*p= last_field->field_name;
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
bool LEX::last_field_generated_always_as_row_start()
|
||
{
|
||
Vers_parse_info &info= vers_get_info();
|
||
Lex_ident *p= &info.as_row.start;
|
||
return last_field_generated_always_as_row_start_or_end(p, "START",
|
||
VERS_SYS_START_FLAG);
|
||
}
|
||
|
||
|
||
bool LEX::last_field_generated_always_as_row_end()
|
||
{
|
||
Vers_parse_info &info= vers_get_info();
|
||
Lex_ident *p= &info.as_row.end;
|
||
return last_field_generated_always_as_row_start_or_end(p, "END",
|
||
VERS_SYS_END_FLAG);
|
||
}
|
||
|
||
|
||
void st_select_lex_unit::reset_distinct()
|
||
{
|
||
union_distinct= NULL;
|
||
for(SELECT_LEX *sl= first_select()->next_select();
|
||
sl;
|
||
sl= sl->next_select())
|
||
{
|
||
if (sl->distinct)
|
||
{
|
||
union_distinct= sl;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void st_select_lex_unit::fix_distinct()
|
||
{
|
||
if (union_distinct && this != union_distinct->master_unit())
|
||
reset_distinct();
|
||
}
|
||
|
||
|
||
void st_select_lex_unit::register_select_chain(SELECT_LEX *first_sel)
|
||
{
|
||
DBUG_ASSERT(first_sel != 0);
|
||
slave= first_sel;
|
||
first_sel->prev= &slave;
|
||
for(SELECT_LEX *sel=first_sel; sel; sel= sel->next_select())
|
||
{
|
||
sel->master= (st_select_lex_node *)this;
|
||
uncacheable|= sel->uncacheable;
|
||
}
|
||
}
|
||
|
||
|
||
void st_select_lex::register_unit(SELECT_LEX_UNIT *unit,
|
||
Name_resolution_context *outer_context)
|
||
{
|
||
if ((unit->next= slave))
|
||
slave->prev= &unit->next;
|
||
unit->prev= &slave;
|
||
slave= unit;
|
||
unit->master= this;
|
||
uncacheable|= unit->uncacheable;
|
||
|
||
for(SELECT_LEX *sel= unit->first_select();sel; sel= sel->next_select())
|
||
{
|
||
sel->context.outer_context= outer_context;
|
||
}
|
||
}
|
||
|
||
|
||
void st_select_lex::add_statistics(SELECT_LEX_UNIT *unit)
|
||
{
|
||
for (;
|
||
unit;
|
||
unit= unit->next_unit())
|
||
for(SELECT_LEX *child= unit->first_select();
|
||
child;
|
||
child= child->next_select())
|
||
{
|
||
/*
|
||
A subselect can add fields to an outer select.
|
||
Reserve space for them.
|
||
*/
|
||
select_n_where_fields+= child->select_n_where_fields;
|
||
/*
|
||
Aggregate functions in having clause may add fields
|
||
to an outer select. Count them also.
|
||
*/
|
||
select_n_having_items+= child->select_n_having_items;
|
||
}
|
||
}
|
||
|
||
|
||
bool LEX::main_select_push()
|
||
{
|
||
DBUG_ENTER("LEX::main_select_push");
|
||
current_select_number= 1;
|
||
builtin_select.select_number= 1;
|
||
if (push_select(&builtin_select))
|
||
DBUG_RETURN(TRUE);
|
||
DBUG_RETURN(FALSE);
|
||
}
|
||
|
||
void Lex_select_lock::set_to(SELECT_LEX *sel)
|
||
{
|
||
if (defined_lock)
|
||
{
|
||
if (sel->master_unit() &&
|
||
sel == sel->master_unit()->fake_select_lex)
|
||
sel->master_unit()->set_lock_to_the_last_select(*this);
|
||
else
|
||
{
|
||
sel->parent_lex->safe_to_cache_query= 0;
|
||
if (update_lock)
|
||
{
|
||
sel->lock_type= TL_WRITE;
|
||
sel->set_lock_for_tables(TL_WRITE, false);
|
||
}
|
||
else
|
||
{
|
||
sel->lock_type= TL_READ_WITH_SHARED_LOCKS;
|
||
sel->set_lock_for_tables(TL_READ_WITH_SHARED_LOCKS, false);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bool Lex_order_limit_lock::set_to(SELECT_LEX *sel)
|
||
{
|
||
/*TODO: lock */
|
||
//if (lock.defined_lock && sel == sel->master_unit()->fake_select_lex)
|
||
// return TRUE;
|
||
if (lock.defined_timeout)
|
||
{
|
||
THD *thd= sel->parent_lex->thd;
|
||
if (set_statement_var_if_exists(thd,
|
||
C_STRING_WITH_LEN("lock_wait_timeout"),
|
||
lock.timeout) ||
|
||
set_statement_var_if_exists(thd,
|
||
C_STRING_WITH_LEN("innodb_lock_wait_timeout"),
|
||
lock.timeout))
|
||
return TRUE;
|
||
}
|
||
lock.set_to(sel);
|
||
sel->explicit_limit= limit.explicit_limit;
|
||
sel->select_limit= limit.select_limit;
|
||
sel->offset_limit= limit.offset_limit;
|
||
if (order_list)
|
||
{
|
||
if (sel->get_linkage() != GLOBAL_OPTIONS_TYPE &&
|
||
sel->olap != UNSPECIFIED_OLAP_TYPE &&
|
||
(sel->get_linkage() != UNION_TYPE || sel->braces))
|
||
{
|
||
my_error(ER_WRONG_USAGE, MYF(0),
|
||
"CUBE/ROLLUP", "ORDER BY");
|
||
return TRUE;
|
||
}
|
||
sel->order_list= *(order_list);
|
||
}
|
||
sel->is_set_query_expr_tail= true;
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static void change_item_list_context(List<Item> *list,
|
||
Name_resolution_context *context)
|
||
{
|
||
List_iterator_fast<Item> it (*list);
|
||
Item *item;
|
||
while((item= it++))
|
||
{
|
||
item->walk(&Item::change_context_processor, FALSE, (void *)context);
|
||
}
|
||
}
|
||
|
||
|
||
bool LEX::insert_select_hack(SELECT_LEX *sel)
|
||
{
|
||
DBUG_ENTER("LEX::insert_select_hack");
|
||
|
||
DBUG_ASSERT(first_select_lex() == &builtin_select);
|
||
DBUG_ASSERT(sel != NULL);
|
||
|
||
DBUG_ASSERT(builtin_select.first_inner_unit() == NULL);
|
||
|
||
if (builtin_select.link_prev)
|
||
{
|
||
if ((*builtin_select.link_prev= builtin_select.link_next))
|
||
((st_select_lex *)builtin_select.link_next)->link_prev=
|
||
builtin_select.link_prev;
|
||
builtin_select.link_prev= NULL; // indicator of removal
|
||
}
|
||
|
||
if (set_main_unit(sel->master_unit()))
|
||
return true;
|
||
|
||
DBUG_ASSERT(builtin_select.table_list.elements == 1);
|
||
TABLE_LIST *insert_table= builtin_select.table_list.first;
|
||
|
||
if (!(insert_table->next_local= sel->table_list.first))
|
||
{
|
||
sel->table_list.next= &insert_table->next_local;
|
||
}
|
||
sel->table_list.first= insert_table;
|
||
sel->table_list.elements++;
|
||
insert_table->select_lex= sel;
|
||
|
||
sel->context.first_name_resolution_table= insert_table;
|
||
builtin_select.context= sel->context;
|
||
change_item_list_context(&field_list, &sel->context);
|
||
|
||
if (sel->tvc && !sel->next_select() &&
|
||
(sql_command == SQLCOM_INSERT_SELECT ||
|
||
sql_command == SQLCOM_REPLACE_SELECT))
|
||
{
|
||
DBUG_PRINT("info", ("'Usual' INSERT detected"));
|
||
many_values= sel->tvc->lists_of_values;
|
||
sel->options= sel->tvc->select_options;
|
||
sel->tvc= NULL;
|
||
if (sql_command == SQLCOM_INSERT_SELECT)
|
||
sql_command= SQLCOM_INSERT;
|
||
else
|
||
sql_command= SQLCOM_REPLACE;
|
||
}
|
||
|
||
|
||
for (SELECT_LEX *sel= all_selects_list;
|
||
sel;
|
||
sel= sel->next_select_in_list())
|
||
{
|
||
if (sel->select_number != 1)
|
||
sel->select_number--;
|
||
};
|
||
|
||
DBUG_RETURN(FALSE);
|
||
}
|
||
|
||
|
||
/**
|
||
Create an Item_singlerow_subselect for a query expression.
|
||
*/
|
||
|
||
Item *LEX::create_item_query_expression(THD *thd,
|
||
st_select_lex_unit *unit)
|
||
{
|
||
if (clause_that_disallows_subselect)
|
||
{
|
||
my_error(ER_SUBQUERIES_NOT_SUPPORTED, MYF(0),
|
||
clause_that_disallows_subselect);
|
||
return NULL;
|
||
}
|
||
|
||
// Add the subtree of subquery to the current SELECT_LEX
|
||
SELECT_LEX *curr_sel= select_stack_head();
|
||
DBUG_ASSERT(current_select == curr_sel);
|
||
if (!curr_sel)
|
||
{
|
||
curr_sel= &builtin_select;
|
||
curr_sel->register_unit(unit, &curr_sel->context);
|
||
curr_sel->add_statistics(unit);
|
||
}
|
||
|
||
return new (thd->mem_root)
|
||
Item_singlerow_subselect(thd, unit->first_select());
|
||
}
|
||
|
||
|
||
SELECT_LEX_UNIT *LEX::parsed_select_expr_start(SELECT_LEX *s1, SELECT_LEX *s2,
|
||
enum sub_select_type unit_type,
|
||
bool distinct)
|
||
{
|
||
SELECT_LEX_UNIT *res;
|
||
SELECT_LEX *sel1;
|
||
SELECT_LEX *sel2;
|
||
if (!s1->next_select())
|
||
sel1= s1;
|
||
else
|
||
{
|
||
sel1= wrap_unit_into_derived(s1->master_unit());
|
||
if (!sel1)
|
||
return NULL;
|
||
}
|
||
if (!s2->next_select())
|
||
sel2= s2;
|
||
else
|
||
{
|
||
sel2= wrap_unit_into_derived(s2->master_unit());
|
||
if (!sel2)
|
||
return NULL;
|
||
}
|
||
sel1->link_neighbour(sel2);
|
||
sel2->set_linkage_and_distinct(unit_type, distinct);
|
||
sel2->first_nested= sel1->first_nested= sel1;
|
||
res= create_unit(sel1);
|
||
if (res == NULL)
|
||
return NULL;
|
||
res->pre_last_parse= sel1;
|
||
push_select(res->fake_select_lex);
|
||
return res;
|
||
}
|
||
|
||
|
||
SELECT_LEX_UNIT *LEX::parsed_select_expr_cont(SELECT_LEX_UNIT *unit,
|
||
SELECT_LEX *s2,
|
||
enum sub_select_type unit_type,
|
||
bool distinct, bool oracle)
|
||
{
|
||
DBUG_ASSERT(!s2->next_select());
|
||
SELECT_LEX *sel1= s2;
|
||
SELECT_LEX *last= unit->pre_last_parse->next_select();
|
||
|
||
int cmp= oracle? 0 : cmp_unit_op(unit_type, last->get_linkage());
|
||
if (cmp == 0)
|
||
{
|
||
sel1->first_nested= last->first_nested;
|
||
}
|
||
else if (cmp > 0)
|
||
{
|
||
last->first_nested= unit->pre_last_parse;
|
||
sel1->first_nested= last;
|
||
}
|
||
else /* cmp < 0 */
|
||
{
|
||
SELECT_LEX *first_in_nest= last->first_nested;
|
||
if (first_in_nest->first_nested != first_in_nest)
|
||
{
|
||
/* There is a priority jump starting from first_in_nest */
|
||
if ((last= create_priority_nest(first_in_nest)) == NULL)
|
||
return NULL;
|
||
unit->fix_distinct();
|
||
}
|
||
sel1->first_nested= last->first_nested;
|
||
}
|
||
last->link_neighbour(sel1);
|
||
sel1->set_master_unit(unit);
|
||
sel1->set_linkage_and_distinct(unit_type, distinct);
|
||
unit->pre_last_parse= last;
|
||
return unit;
|
||
}
|
||
|
||
|
||
/**
|
||
Add primary expression as the next term in a given query expression body
|
||
pruducing a new query expression body
|
||
*/
|
||
|
||
SELECT_LEX_UNIT *
|
||
LEX::add_primary_to_query_expression_body(SELECT_LEX_UNIT *unit,
|
||
SELECT_LEX *sel,
|
||
enum sub_select_type unit_type,
|
||
bool distinct,
|
||
bool oracle)
|
||
{
|
||
SELECT_LEX *sel2= sel;
|
||
if (sel->master_unit() && sel->master_unit()->first_select()->next_select())
|
||
{
|
||
sel2= wrap_unit_into_derived(sel->master_unit());
|
||
if (!sel2)
|
||
return NULL;
|
||
}
|
||
SELECT_LEX *sel1= unit->first_select();
|
||
if (!sel1->next_select())
|
||
unit= parsed_select_expr_start(sel1, sel2, unit_type, distinct);
|
||
else
|
||
unit= parsed_select_expr_cont(unit, sel2, unit_type, distinct, oracle);
|
||
return unit;
|
||
}
|
||
|
||
|
||
SELECT_LEX_UNIT *
|
||
LEX::add_primary_to_query_expression_body(SELECT_LEX_UNIT *unit,
|
||
SELECT_LEX *sel,
|
||
enum sub_select_type unit_type,
|
||
bool distinct)
|
||
{
|
||
return
|
||
add_primary_to_query_expression_body(unit, sel, unit_type, distinct,
|
||
thd->variables.sql_mode & MODE_ORACLE);
|
||
}
|
||
|
||
/**
|
||
Add query primary to a parenthesized query primary
|
||
pruducing a new query expression body
|
||
*/
|
||
|
||
SELECT_LEX_UNIT *
|
||
LEX::add_primary_to_query_expression_body_ext_parens(
|
||
SELECT_LEX_UNIT *unit,
|
||
SELECT_LEX *sel,
|
||
enum sub_select_type unit_type,
|
||
bool distinct)
|
||
{
|
||
SELECT_LEX *sel1= unit->first_select();
|
||
if (unit->first_select()->next_select())
|
||
{
|
||
sel1= wrap_unit_into_derived(unit);
|
||
if (!sel1)
|
||
return NULL;
|
||
if (!create_unit(sel1))
|
||
return NULL;
|
||
}
|
||
SELECT_LEX *sel2= sel;
|
||
if (sel->master_unit() && sel->master_unit()->first_select()->next_select())
|
||
{
|
||
sel2= wrap_unit_into_derived(sel->master_unit());
|
||
if (!sel2)
|
||
return NULL;
|
||
}
|
||
unit= parsed_select_expr_start(sel1, sel2, unit_type, distinct);
|
||
return unit;
|
||
}
|
||
|
||
|
||
/**
|
||
Process multi-operand query expression body
|
||
*/
|
||
|
||
bool LEX::parsed_multi_operand_query_expression_body(SELECT_LEX_UNIT *unit)
|
||
{
|
||
SELECT_LEX *first_in_nest=
|
||
unit->pre_last_parse->next_select()->first_nested;
|
||
if (first_in_nest->first_nested != first_in_nest)
|
||
{
|
||
/* There is a priority jump starting from first_in_nest */
|
||
if (create_priority_nest(first_in_nest) == NULL)
|
||
return true;
|
||
unit->fix_distinct();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
Add non-empty tail to a query expression body
|
||
*/
|
||
|
||
SELECT_LEX_UNIT *LEX::add_tail_to_query_expression_body(SELECT_LEX_UNIT *unit,
|
||
Lex_order_limit_lock *l)
|
||
{
|
||
DBUG_ASSERT(l != NULL);
|
||
pop_select();
|
||
SELECT_LEX *sel= unit->first_select()->next_select() ? unit->fake_select_lex :
|
||
unit->first_select();
|
||
l->set_to(sel);
|
||
return unit;
|
||
}
|
||
|
||
|
||
/**
|
||
Add non-empty tail to a parenthesized query primary
|
||
*/
|
||
|
||
SELECT_LEX_UNIT *
|
||
LEX::add_tail_to_query_expression_body_ext_parens(SELECT_LEX_UNIT *unit,
|
||
Lex_order_limit_lock *l)
|
||
{
|
||
SELECT_LEX *sel= unit->first_select()->next_select() ? unit->fake_select_lex :
|
||
unit->first_select();
|
||
|
||
DBUG_ASSERT(l != NULL);
|
||
|
||
pop_select();
|
||
if (sel->is_set_query_expr_tail)
|
||
{
|
||
if (!l->order_list && !sel->explicit_limit)
|
||
l->order_list= &sel->order_list;
|
||
else
|
||
{
|
||
if (!unit)
|
||
return NULL;
|
||
sel= wrap_unit_into_derived(unit);
|
||
if (!sel)
|
||
return NULL;
|
||
if (!create_unit(sel))
|
||
return NULL;
|
||
}
|
||
}
|
||
l->set_to(sel);
|
||
return sel->master_unit();
|
||
}
|
||
|
||
|
||
/**
|
||
Process subselect parsing
|
||
*/
|
||
|
||
SELECT_LEX *LEX::parsed_subselect(SELECT_LEX_UNIT *unit)
|
||
{
|
||
if (clause_that_disallows_subselect)
|
||
{
|
||
my_error(ER_SUBQUERIES_NOT_SUPPORTED, MYF(0),
|
||
clause_that_disallows_subselect);
|
||
return NULL;
|
||
}
|
||
|
||
// Add the subtree of subquery to the current SELECT_LEX
|
||
SELECT_LEX *curr_sel= select_stack_head();
|
||
DBUG_ASSERT(current_select == curr_sel);
|
||
if (curr_sel)
|
||
{
|
||
curr_sel->register_unit(unit, &curr_sel->context);
|
||
curr_sel->add_statistics(unit);
|
||
}
|
||
|
||
return unit->first_select();
|
||
}
|
||
|
||
|
||
/**
|
||
Process INSERT-like select
|
||
*/
|
||
|
||
bool LEX::parsed_insert_select(SELECT_LEX *first_select)
|
||
{
|
||
if (sql_command == SQLCOM_INSERT ||
|
||
sql_command == SQLCOM_REPLACE)
|
||
{
|
||
if (sql_command == SQLCOM_INSERT)
|
||
sql_command= SQLCOM_INSERT_SELECT;
|
||
else
|
||
sql_command= SQLCOM_REPLACE_SELECT;
|
||
}
|
||
insert_select_hack(first_select);
|
||
if (check_main_unit_semantics())
|
||
return true;
|
||
|
||
// fix "main" select
|
||
SELECT_LEX *blt __attribute__((unused))= pop_select();
|
||
DBUG_ASSERT(blt == &builtin_select);
|
||
push_select(first_select);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::parsed_TVC_start()
|
||
{
|
||
SELECT_LEX *sel;
|
||
many_values.empty();
|
||
insert_list= 0;
|
||
if (!(sel= alloc_select(TRUE)) ||
|
||
push_select(sel))
|
||
return true;
|
||
sel->init_select();
|
||
sel->braces= FALSE; // just initialisation
|
||
return false;
|
||
}
|
||
|
||
|
||
SELECT_LEX *LEX::parsed_TVC_end()
|
||
{
|
||
|
||
SELECT_LEX *res= pop_select(); // above TVC select
|
||
if (!(res->tvc=
|
||
new (thd->mem_root) table_value_constr(many_values,
|
||
res,
|
||
res->options)))
|
||
return NULL;
|
||
many_values.empty();
|
||
return res;
|
||
}
|
||
|
||
|
||
|
||
TABLE_LIST *LEX::parsed_derived_table(SELECT_LEX_UNIT *unit,
|
||
int for_system_time,
|
||
LEX_CSTRING *alias)
|
||
{
|
||
TABLE_LIST *res;
|
||
derived_tables|= DERIVED_SUBQUERY;
|
||
unit->first_select()->set_linkage(DERIVED_TABLE_TYPE);
|
||
|
||
// Add the subtree of subquery to the current SELECT_LEX
|
||
SELECT_LEX *curr_sel= select_stack_head();
|
||
DBUG_ASSERT(current_select == curr_sel);
|
||
|
||
Table_ident *ti= new (thd->mem_root) Table_ident(unit);
|
||
if (ti == NULL)
|
||
return NULL;
|
||
if (!(res= curr_sel->add_table_to_list(thd, ti, alias, 0,
|
||
TL_READ, MDL_SHARED_READ)))
|
||
return NULL;
|
||
if (for_system_time)
|
||
{
|
||
res->vers_conditions= vers_conditions;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
bool LEX::parsed_create_view(SELECT_LEX_UNIT *unit, int check)
|
||
{
|
||
SQL_I_List<TABLE_LIST> *save= &first_select_lex()->table_list;
|
||
if (set_main_unit(unit))
|
||
return true;
|
||
if (check_main_unit_semantics())
|
||
return true;
|
||
first_select_lex()->table_list.push_front(save);
|
||
current_select= first_select_lex();
|
||
size_t len= thd->m_parser_state->m_lip.get_cpp_ptr() -
|
||
create_view->select.str;
|
||
void *create_view_select= thd->memdup(create_view->select.str, len);
|
||
create_view->select.length= len;
|
||
create_view->select.str= (char *) create_view_select;
|
||
size_t not_used;
|
||
trim_whitespace(thd->charset(),
|
||
&create_view->select, ¬_used);
|
||
create_view->check= check;
|
||
parsing_options.allows_variable= TRUE;
|
||
return false;
|
||
}
|
||
|
||
bool LEX::select_finalize(st_select_lex_unit *expr)
|
||
{
|
||
sql_command= SQLCOM_SELECT;
|
||
selects_allow_into= TRUE;
|
||
selects_allow_procedure= TRUE;
|
||
if (set_main_unit(expr))
|
||
return true;
|
||
return check_main_unit_semantics();
|
||
}
|
||
|
||
|
||
bool LEX::select_finalize(st_select_lex_unit *expr, Lex_select_lock l)
|
||
{
|
||
return expr->set_lock_to_the_last_select(l) ||
|
||
select_finalize(expr);
|
||
}
|
||
|
||
|
||
/*
|
||
"IN" and "EXISTS" subselect can appear in two statement types:
|
||
|
||
1. Statements that can have table columns, such as SELECT, DELETE, UPDATE
|
||
2. Statements that cannot have table columns, e.g:
|
||
RETURN ((1) IN (SELECT * FROM t1))
|
||
IF ((1) IN (SELECT * FROM t1))
|
||
|
||
Statements of the first type call master_select_push() in the beginning.
|
||
In such case everything is properly linked.
|
||
|
||
Statements of the second type do not call mastr_select_push().
|
||
Here we catch the second case and relink thd->lex->builtin_select and
|
||
select_lex to properly point to each other.
|
||
|
||
QQ: Shouldn't subselects of other type also call relink_hack()?
|
||
QQ: Can we do it at constructor time instead?
|
||
*/
|
||
|
||
void LEX::relink_hack(st_select_lex *select_lex)
|
||
{
|
||
if (!select_stack_top) // Statements of the second type
|
||
{
|
||
if (!select_lex->get_master()->get_master())
|
||
((st_select_lex *) select_lex->get_master())->
|
||
set_master(&builtin_select);
|
||
if (!builtin_select.get_slave())
|
||
builtin_select.set_slave(select_lex->get_master());
|
||
}
|
||
}
|
||
|
||
|
||
bool SELECT_LEX_UNIT::set_lock_to_the_last_select(Lex_select_lock l)
|
||
{
|
||
if (l.defined_lock)
|
||
{
|
||
SELECT_LEX *sel= first_select();
|
||
while (sel->next_select())
|
||
sel= sel->next_select();
|
||
if (sel->braces)
|
||
{
|
||
my_error(ER_WRONG_USAGE, MYF(0), "lock options",
|
||
"SELECT in brackets");
|
||
return TRUE;
|
||
}
|
||
l.set_to(sel);
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/**
|
||
Generate unique name for generated derived table for this SELECT
|
||
*/
|
||
|
||
bool SELECT_LEX::make_unique_derived_name(THD *thd, LEX_CSTRING *alias)
|
||
{
|
||
// uint32 digits + two underscores + trailing '\0'
|
||
char buff[MAX_INT_WIDTH + 2 + 1];
|
||
alias->length= my_snprintf(buff, sizeof(buff), "__%u", select_number);
|
||
alias->str= thd->strmake(buff, alias->length);
|
||
return !alias->str;
|
||
}
|
||
|
||
|
||
/*
|
||
Make a new sp_instr_stmt and set its m_query to a concatenation
|
||
of two strings.
|
||
*/
|
||
bool LEX::new_sp_instr_stmt(THD *thd,
|
||
const LEX_CSTRING &prefix,
|
||
const LEX_CSTRING &suffix)
|
||
{
|
||
LEX_STRING qbuff;
|
||
sp_instr_stmt *i;
|
||
|
||
if (!(i= new (thd->mem_root) sp_instr_stmt(sphead->instructions(),
|
||
spcont, this)))
|
||
return true;
|
||
|
||
qbuff.length= prefix.length + suffix.length;
|
||
if (!(qbuff.str= (char*) alloc_root(thd->mem_root, qbuff.length + 1)))
|
||
return true;
|
||
memcpy(qbuff.str, prefix.str, prefix.length);
|
||
strmake(qbuff.str + prefix.length, suffix.str, suffix.length);
|
||
i->m_query= qbuff;
|
||
return sphead->add_instr(i);
|
||
}
|
||
|
||
|
||
bool LEX::sp_proc_stmt_statement_finalize_buf(THD *thd, const LEX_CSTRING &qbuf)
|
||
{
|
||
sphead->m_flags|= sp_get_flags_for_command(this);
|
||
/* "USE db" doesn't work in a procedure */
|
||
if (unlikely(sql_command == SQLCOM_CHANGE_DB))
|
||
{
|
||
my_error(ER_SP_BADSTATEMENT, MYF(0), "USE");
|
||
return true;
|
||
}
|
||
/*
|
||
Don't add an instruction for SET statements, since all
|
||
instructions for them were already added during processing
|
||
of "set" rule.
|
||
*/
|
||
DBUG_ASSERT(sql_command != SQLCOM_SET_OPTION || var_list.is_empty());
|
||
if (sql_command != SQLCOM_SET_OPTION)
|
||
return new_sp_instr_stmt(thd, empty_clex_str, qbuf);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::sp_proc_stmt_statement_finalize(THD *thd, bool no_lookahead)
|
||
{
|
||
// Extract the query statement from the tokenizer
|
||
Lex_input_stream *lip= &thd->m_parser_state->m_lip;
|
||
Lex_cstring qbuf(sphead->m_tmp_query, no_lookahead ? lip->get_ptr() :
|
||
lip->get_tok_start());
|
||
return LEX::sp_proc_stmt_statement_finalize_buf(thd, qbuf);
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Extract the condition that can be pushed into WHERE clause
|
||
|
||
@param thd the thread handle
|
||
@param cond the condition from which to extract a pushed condition
|
||
@param remaining_cond IN/OUT the condition that will remain of cond after
|
||
the extraction
|
||
@param transformer the transformer callback function to be
|
||
applied to the fields of the condition so it
|
||
can be pushed`
|
||
@param arg parameter to be passed to the transformer
|
||
|
||
@details
|
||
This function builds the most restrictive condition depending only on
|
||
the fields used in the GROUP BY of this SELECT. These fields were
|
||
collected before in grouping_tmp_fields list of this SELECT.
|
||
|
||
First this method checks if this SELECT doesn't have any aggregation
|
||
functions and has no GROUP BY clause. If so cond can be entirely pushed
|
||
into WHERE.
|
||
|
||
Otherwise the method checks if there is a condition depending only on
|
||
grouping fields that can be extracted from cond.
|
||
|
||
The condition that can be pushed into WHERE should be transformed.
|
||
It is done by transformer.
|
||
|
||
The extracted condition is saved in cond_pushed_into_where of this select.
|
||
cond can remain un empty after the extraction of the condition that can be
|
||
pushed into WHERE. It is saved in remaining_cond.
|
||
|
||
@note
|
||
This method is called for pushdown conditions into materialized
|
||
derived tables/views optimization.
|
||
Item::derived_field_transformer_for_where is passed as the actual
|
||
callback function.
|
||
Also it is called for pushdown into materialized IN subqueries.
|
||
Item::in_subq_field_transformer_for_where is passed as the actual
|
||
callback function.
|
||
*/
|
||
|
||
void st_select_lex::pushdown_cond_into_where_clause(THD *thd, Item *cond,
|
||
Item **remaining_cond,
|
||
Item_transformer transformer,
|
||
uchar *arg)
|
||
{
|
||
if (!cond_pushdown_is_allowed())
|
||
return;
|
||
thd->lex->current_select= this;
|
||
if (have_window_funcs())
|
||
{
|
||
Item *cond_over_partition_fields;
|
||
check_cond_extraction_for_grouping_fields(thd, cond);
|
||
cond_over_partition_fields=
|
||
build_cond_for_grouping_fields(thd, cond, true);
|
||
if (cond_over_partition_fields)
|
||
cond_over_partition_fields= cond_over_partition_fields->transform(thd,
|
||
&Item::grouping_field_transformer_for_where,
|
||
(uchar*) this);
|
||
if (cond_over_partition_fields)
|
||
{
|
||
cond_over_partition_fields->walk(
|
||
&Item::cleanup_excluding_const_fields_processor, 0, 0);
|
||
cond_pushed_into_where= cond_over_partition_fields;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
if (!join->group_list && !with_sum_func)
|
||
{
|
||
cond=
|
||
cond->transform(thd, transformer, arg);
|
||
if (cond)
|
||
{
|
||
cond->walk(
|
||
&Item::cleanup_excluding_const_fields_processor, 0, 0);
|
||
cond_pushed_into_where= cond;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/*
|
||
Figure out what can be extracted from cond and pushed into
|
||
the WHERE clause of this select.
|
||
*/
|
||
Item *cond_over_grouping_fields;
|
||
check_cond_extraction_for_grouping_fields(thd, cond);
|
||
cond_over_grouping_fields=
|
||
build_cond_for_grouping_fields(thd, cond, true);
|
||
|
||
/*
|
||
Transform references to the columns of condition that can be pushed
|
||
into WHERE so it can be pushed.
|
||
*/
|
||
if (cond_over_grouping_fields)
|
||
cond_over_grouping_fields= cond_over_grouping_fields->transform(thd,
|
||
&Item::grouping_field_transformer_for_where,
|
||
(uchar*) this);
|
||
|
||
if (cond_over_grouping_fields)
|
||
{
|
||
|
||
/*
|
||
Remove top conjuncts in cond that has been pushed into the WHERE
|
||
clause of this select
|
||
*/
|
||
cond= remove_pushed_top_conjuncts(thd, cond);
|
||
|
||
cond_over_grouping_fields->walk(
|
||
&Item::cleanup_excluding_const_fields_processor, 0, 0);
|
||
cond_pushed_into_where= cond_over_grouping_fields;
|
||
}
|
||
|
||
*remaining_cond= cond;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Mark OR-conditions as non-pushable to avoid repeatable pushdown
|
||
|
||
@param cond the processed condition
|
||
|
||
@details
|
||
Consider pushdown into the materialized derived table/view.
|
||
Consider OR condition that can be pushed into HAVING and some
|
||
parts of this OR condition that can be pushed into WHERE.
|
||
|
||
On example:
|
||
|
||
SELECT *
|
||
FROM t1,
|
||
(
|
||
SELECT a,MAX(c) AS m_c
|
||
GROUP BY a
|
||
) AS dt
|
||
WHERE ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) AND
|
||
(t1.a=v1.a);
|
||
|
||
|
||
Here ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) or1
|
||
can be pushed down into the HAVING of the materialized
|
||
derived table dt.
|
||
|
||
(dt.a>2) OR (dt.a<3) part of or1 depends only on grouping fields
|
||
of dt and can be pushed into WHERE.
|
||
|
||
As a result:
|
||
|
||
SELECT *
|
||
FROM t1,
|
||
(
|
||
SELECT a,MAX(c) AS m_c
|
||
WHERE (dt.a>2) OR (dt.a<3)
|
||
GROUP BY a
|
||
HAVING ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3))
|
||
) AS dt
|
||
WHERE ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) AND
|
||
(t1.a=v1.a);
|
||
|
||
|
||
Here (dt.a>2) OR (dt.a<3) also remains in HAVING of dt.
|
||
When SELECT that defines df is processed HAVING pushdown optimization
|
||
is made. In HAVING pushdown optimization it will extract
|
||
(dt.a>2) OR (dt.a<3) condition from or1 again and push it into WHERE.
|
||
This will cause duplicate conditions in WHERE of dt.
|
||
|
||
To avoid repeatable pushdown such OR conditions as or1 describen
|
||
above are marked with NO_EXTRACTION_FL.
|
||
|
||
@note
|
||
This method is called for pushdown into materialized
|
||
derived tables/views/IN subqueries optimization.
|
||
*/
|
||
|
||
void mark_or_conds_to_avoid_pushdown(Item *cond)
|
||
{
|
||
if (cond->type() == Item::COND_ITEM &&
|
||
((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
|
||
{
|
||
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
|
||
Item *item;
|
||
while ((item=li++))
|
||
{
|
||
if (item->type() == Item::COND_ITEM &&
|
||
((Item_cond*) item)->functype() == Item_func::COND_OR_FUNC)
|
||
item->set_extraction_flag(NO_EXTRACTION_FL);
|
||
}
|
||
}
|
||
else if (cond->type() == Item::COND_ITEM &&
|
||
((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC)
|
||
cond->set_extraction_flag(NO_EXTRACTION_FL);
|
||
}
|
||
|
||
/**
|
||
@brief
|
||
Get condition that can be pushed from HAVING into WHERE
|
||
|
||
@param thd the thread handle
|
||
@param cond the condition from which to extract the condition
|
||
|
||
@details
|
||
The method collects in attach_to_conds list conditions from cond
|
||
that can be pushed from HAVING into WHERE.
|
||
|
||
Conditions that can be pushed were marked with FULL_EXTRACTION_FL in
|
||
check_cond_extraction_for_grouping_fields() method.
|
||
Conditions that can't be pushed were marked with NO_EXTRACTION_FL.
|
||
Conditions which parts can be pushed weren't marked.
|
||
|
||
There are two types of conditions that can be pushed:
|
||
1. Condition that can be simply moved from HAVING
|
||
(if cond is marked with FULL_EXTRACTION_FL or
|
||
cond is an AND condition and some of its parts are marked with
|
||
FULL_EXTRACTION_FL)
|
||
In this case condition is transformed and pushed into attach_to_conds
|
||
list.
|
||
2. Part of some other condition c1 that can't be entirely pushed
|
||
(if с1 isn't marked with any flag).
|
||
|
||
For example:
|
||
|
||
SELECT t1.a,MAX(t1.b),t1.c
|
||
FROM t1
|
||
GROUP BY t1.a
|
||
HAVING ((t1.a > 5) AND (t1.c < 3)) OR (t1.a = 3);
|
||
|
||
Here (t1.a > 5) OR (t1.a = 3) from HAVING can be pushed into WHERE.
|
||
|
||
In this case build_pushable_cond() is called for c1.
|
||
This method builds a clone of the c1 part that can be pushed.
|
||
|
||
Transformation mentioned above is made with multiple_equality_transformer
|
||
transformer. It transforms all multiple equalities in the extracted
|
||
condition into the set of equalities.
|
||
|
||
@note
|
||
Conditions that can be pushed are collected in attach_to_conds in this way:
|
||
1. if cond is an AND condition its parts that can be pushed into WHERE
|
||
are added to attach_to_conds list separately.
|
||
2. in all other cases conditions are pushed into the list entirely.
|
||
|
||
@retval
|
||
true - if an error occurs
|
||
false - otherwise
|
||
*/
|
||
|
||
bool
|
||
st_select_lex::build_pushable_cond_for_having_pushdown(THD *thd, Item *cond)
|
||
{
|
||
List<Item> equalities;
|
||
|
||
/* Condition can't be pushed */
|
||
if (cond->get_extraction_flag() == NO_EXTRACTION_FL)
|
||
return false;
|
||
|
||
/**
|
||
Condition can be pushed entirely.
|
||
Transform its multiple equalities and add to attach_to_conds list.
|
||
*/
|
||
if (cond->get_extraction_flag() == FULL_EXTRACTION_FL)
|
||
{
|
||
Item *result= cond->transform(thd,
|
||
&Item::multiple_equality_transformer,
|
||
(uchar *)this);
|
||
if (!result)
|
||
return true;
|
||
if (result->type() == Item::COND_ITEM &&
|
||
((Item_cond*) result)->functype() == Item_func::COND_AND_FUNC)
|
||
{
|
||
List_iterator<Item> li(*((Item_cond*) result)->argument_list());
|
||
Item *item;
|
||
while ((item= li++))
|
||
{
|
||
if (attach_to_conds.push_back(item, thd->mem_root))
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (attach_to_conds.push_back(result, thd->mem_root))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
There is no flag set for this condition. It means that some
|
||
part of this condition can be pushed.
|
||
*/
|
||
if (cond->type() != Item::COND_ITEM)
|
||
return false;
|
||
|
||
if (((Item_cond *)cond)->functype() != Item_cond::COND_AND_FUNC)
|
||
{
|
||
/*
|
||
cond is not a conjunctive formula and it cannot be pushed into WHERE.
|
||
Try to extract a formula that can be pushed.
|
||
*/
|
||
Item *fix= cond->build_pushable_cond(thd, 0, 0);
|
||
if (!fix)
|
||
return false;
|
||
if (attach_to_conds.push_back(fix, thd->mem_root))
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
|
||
Item *item;
|
||
while ((item=li++))
|
||
{
|
||
if (item->get_extraction_flag() == NO_EXTRACTION_FL)
|
||
continue;
|
||
else if (item->get_extraction_flag() == FULL_EXTRACTION_FL)
|
||
{
|
||
Item *result= item->transform(thd,
|
||
&Item::multiple_equality_transformer,
|
||
(uchar *)item);
|
||
if (!result)
|
||
return true;
|
||
if (result->type() == Item::COND_ITEM &&
|
||
((Item_cond*) result)->functype() == Item_func::COND_AND_FUNC)
|
||
{
|
||
List_iterator<Item> li(*((Item_cond*) result)->argument_list());
|
||
Item *item;
|
||
while ((item=li++))
|
||
{
|
||
if (attach_to_conds.push_back(item, thd->mem_root))
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (attach_to_conds.push_back(result, thd->mem_root))
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
Item *fix= item->build_pushable_cond(thd, 0, 0);
|
||
if (!fix)
|
||
continue;
|
||
if (attach_to_conds.push_back(fix, thd->mem_root))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
Check if item is equal to some field in Field_pair 'field_pair'
|
||
from 'pair_list' and return found 'field_pair' if it exists.
|
||
*/
|
||
|
||
Field_pair *get_corresponding_field_pair(Item *item,
|
||
List<Field_pair> pair_list)
|
||
{
|
||
DBUG_ASSERT(item->type() == Item::FIELD_ITEM ||
|
||
(item->type() == Item::REF_ITEM &&
|
||
((((Item_ref *) item)->ref_type() == Item_ref::VIEW_REF) ||
|
||
(((Item_ref *) item)->ref_type() == Item_ref::REF))));
|
||
|
||
List_iterator<Field_pair> it(pair_list);
|
||
Field_pair *field_pair;
|
||
Item_field *field_item= (Item_field *) (item->real_item());
|
||
while ((field_pair= it++))
|
||
{
|
||
if (field_item->field == field_pair->field)
|
||
return field_pair;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Collect fields from multiple equalities which are equal to grouping
|
||
|
||
@param thd the thread handle
|
||
|
||
@details
|
||
This method checks if multiple equalities of the WHERE clause contain
|
||
fields from GROUP BY of this SELECT. If so all fields of such multiple
|
||
equalities are collected in grouping_tmp_fields list without repetitions.
|
||
|
||
@retval
|
||
true - if an error occurs
|
||
false - otherwise
|
||
*/
|
||
|
||
bool st_select_lex::collect_fields_equal_to_grouping(THD *thd)
|
||
{
|
||
if (!join->cond_equal || join->cond_equal->is_empty())
|
||
return false;
|
||
|
||
List_iterator_fast<Item_equal> li(join->cond_equal->current_level);
|
||
Item_equal *item_equal;
|
||
|
||
while ((item_equal= li++))
|
||
{
|
||
Item_equal_fields_iterator it(*item_equal);
|
||
Item *item;
|
||
while ((item= it++))
|
||
{
|
||
if (get_corresponding_field_pair(item, grouping_tmp_fields))
|
||
break;
|
||
}
|
||
if (!item)
|
||
break;
|
||
|
||
it.rewind();
|
||
while ((item= it++))
|
||
{
|
||
if (get_corresponding_field_pair(item, grouping_tmp_fields))
|
||
continue;
|
||
Field_pair *grouping_tmp_field=
|
||
new Field_pair(((Item_field *)item->real_item())->field, item);
|
||
if (grouping_tmp_fields.push_back(grouping_tmp_field, thd->mem_root))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Remove marked top conjuncts of HAVING for having pushdown
|
||
|
||
@param thd the thread handle
|
||
@param cond the condition which subformulas are to be removed
|
||
|
||
@details
|
||
This method removes from cond all subformulas that can be moved from HAVING
|
||
into WHERE.
|
||
|
||
@retval
|
||
condition without removed subformulas
|
||
0 if the whole 'cond' is removed
|
||
*/
|
||
|
||
Item *remove_pushed_top_conjuncts_for_having(THD *thd, Item *cond)
|
||
{
|
||
/* Nothing to extract */
|
||
if (cond->get_extraction_flag() == NO_EXTRACTION_FL)
|
||
{
|
||
cond->clear_extraction_flag();
|
||
return cond;
|
||
}
|
||
/* cond can be pushed in WHERE entirely */
|
||
if (cond->get_extraction_flag() == FULL_EXTRACTION_FL)
|
||
{
|
||
cond->clear_extraction_flag();
|
||
return 0;
|
||
}
|
||
|
||
/* Some parts of cond can be pushed */
|
||
if (cond->type() == Item::COND_ITEM &&
|
||
((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
|
||
{
|
||
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
|
||
Item *item;
|
||
while ((item=li++))
|
||
{
|
||
if (item->get_extraction_flag() == NO_EXTRACTION_FL)
|
||
item->clear_extraction_flag();
|
||
else if (item->get_extraction_flag() == FULL_EXTRACTION_FL)
|
||
{
|
||
if (item->type() == Item::FUNC_ITEM &&
|
||
((Item_func*) item)->functype() == Item_func::MULT_EQUAL_FUNC)
|
||
item->set_extraction_flag(DELETION_FL);
|
||
else
|
||
{
|
||
item->clear_extraction_flag();
|
||
li.remove();
|
||
}
|
||
}
|
||
}
|
||
switch (((Item_cond*) cond)->argument_list()->elements)
|
||
{
|
||
case 0:
|
||
return 0;
|
||
case 1:
|
||
return (((Item_cond*) cond)->argument_list()->head());
|
||
default:
|
||
return cond;
|
||
}
|
||
}
|
||
return cond;
|
||
}
|
||
|
||
|
||
/**
|
||
@brief
|
||
Extract condition that can be pushed from HAVING into WHERE
|
||
|
||
@param thd the thread handle
|
||
@param having the HAVING clause of this select
|
||
@param having_equal multiple equalities of HAVING
|
||
|
||
@details
|
||
This method builds a set of conditions dependent only on
|
||
fields used in the GROUP BY of this select (directly or indirectly
|
||
through equalities). These conditions are extracted from the HAVING
|
||
clause of this select.
|
||
The method saves these conditions into attach_to_conds list and removes
|
||
from HAVING conditions that can be entirely pushed into WHERE.
|
||
|
||
Example of the HAVING pushdown transformation:
|
||
|
||
SELECT t1.a,MAX(t1.b)
|
||
FROM t1
|
||
GROUP BY t1.a
|
||
HAVING (t1.a>2) AND (MAX(c)>12);
|
||
|
||
=>
|
||
|
||
SELECT t1.a,MAX(t1.b)
|
||
FROM t1
|
||
WHERE (t1.a>2)
|
||
GROUP BY t1.a
|
||
HAVING (MAX(c)>12);
|
||
|
||
In this method (t1.a>2) is not attached to the WHERE clause.
|
||
It is pushed into the attach_to_conds list to be attached to
|
||
the WHERE clause later.
|
||
|
||
In details:
|
||
1. Collect fields used in the GROUP BY grouping_fields of this SELECT
|
||
2. Collect fields equal to grouping_fields from the WHERE clause
|
||
of this SELECT and add them to the grouping_fields list.
|
||
3. Extract the most restrictive condition from the HAVING clause of this
|
||
select that depends only on the grouping fields (directly or indirectly
|
||
through equality).
|
||
If the extracted condition is an AND condition it is transformed into a
|
||
list of all its conjuncts saved in attach_to_conds. Otherwise,
|
||
the condition is put into attach_to_conds as the only its element.
|
||
4. Remove conditions from HAVING clause that can be entirely pushed
|
||
into WHERE.
|
||
Multiple equalities are not removed but marked with DELETION_FL flag.
|
||
They will be deleted later in substitite_for_best_equal_field() called
|
||
for the HAVING condition.
|
||
5. Unwrap fields wrapped in Item_ref wrappers contained in the condition
|
||
of attach_to_conds so the condition could be pushed into WHERE.
|
||
|
||
@note
|
||
This method is similar to st_select_lex::pushdown_cond_into_where_clause().
|
||
|
||
@retval TRUE if an error occurs
|
||
@retval FALSE otherwise
|
||
*/
|
||
|
||
Item *st_select_lex::pushdown_from_having_into_where(THD *thd, Item *having)
|
||
{
|
||
if (!having || !group_list.first)
|
||
return having;
|
||
if (!cond_pushdown_is_allowed())
|
||
return having;
|
||
|
||
st_select_lex *save_curr_select= thd->lex->current_select;
|
||
thd->lex->current_select= this;
|
||
|
||
/*
|
||
1. Collect fields used in the GROUP BY grouping fields of this SELECT
|
||
2. Collect fields equal to grouping_fields from the WHERE clause
|
||
of this SELECT and add them to the grouping fields list.
|
||
*/
|
||
if (collect_grouping_fields(thd) ||
|
||
collect_fields_equal_to_grouping(thd))
|
||
return having;
|
||
|
||
/*
|
||
3. Extract the most restrictive condition from the HAVING clause of this
|
||
select that depends only on the grouping fields (directly or indirectly
|
||
through equality).
|
||
If the extracted condition is an AND condition it is transformed into a
|
||
list of all its conjuncts saved in attach_to_conds. Otherwise,
|
||
the condition is put into attach_to_conds as the only its element.
|
||
*/
|
||
List_iterator_fast<Item> it(attach_to_conds);
|
||
Item *item;
|
||
check_cond_extraction_for_grouping_fields(thd, having);
|
||
if (build_pushable_cond_for_having_pushdown(thd, having))
|
||
{
|
||
attach_to_conds.empty();
|
||
goto exit;
|
||
}
|
||
if (!attach_to_conds.elements)
|
||
goto exit;
|
||
|
||
/*
|
||
4. Remove conditions from HAVING clause that can be entirely pushed
|
||
into WHERE.
|
||
Multiple equalities are not removed but marked with DELETION_FL flag.
|
||
They will be deleted later in substitite_for_best_equal_field() called
|
||
for the HAVING condition.
|
||
*/
|
||
having= remove_pushed_top_conjuncts_for_having(thd, having);
|
||
|
||
/*
|
||
Change join->cond_equal which points to the multiple equalities of
|
||
the top level of HAVING.
|
||
Removal of AND conditions may leave only one conjunct in HAVING.
|
||
|
||
Example 1:
|
||
SELECT *
|
||
FROM t1
|
||
GROUP BY t1.a
|
||
(t1.a < 2) AND (t1.b = 2)
|
||
|
||
(t1.a < 2) is pushed into WHERE.
|
||
join->cond_equal should point on (t1.b = 2) multiple equality now.
|
||
|
||
Example 2:
|
||
SELECT *
|
||
FROM t1
|
||
GROUP BY t1.a
|
||
(t1.a = 2) AND (t1.b < 2)
|
||
|
||
(t1.a = 2) is pushed into WHERE.
|
||
join->cond_equal should be NULL now.
|
||
*/
|
||
if (having &&
|
||
having->type() == Item::FUNC_ITEM &&
|
||
((Item_func*) having)->functype() == Item_func::MULT_EQUAL_FUNC)
|
||
join->having_equal= new (thd->mem_root) COND_EQUAL((Item_equal *)having,
|
||
thd->mem_root);
|
||
else if (!having ||
|
||
having->type() != Item::COND_ITEM ||
|
||
((Item_cond *)having)->functype() != Item_cond::COND_AND_FUNC)
|
||
join->having_equal= 0;
|
||
|
||
/*
|
||
5. Unwrap fields wrapped in Item_ref wrappers contained in the condition
|
||
of attach_to_conds so the condition could be pushed into WHERE.
|
||
*/
|
||
it.rewind();
|
||
while ((item=it++))
|
||
{
|
||
item= item->transform(thd,
|
||
&Item::field_transformer_for_having_pushdown,
|
||
(uchar *)this);
|
||
|
||
if (item->walk(&Item::cleanup_excluding_immutables_processor, 0, STOP_PTR)
|
||
|| item->fix_fields(thd, NULL))
|
||
{
|
||
attach_to_conds.empty();
|
||
goto exit;
|
||
}
|
||
}
|
||
exit:
|
||
thd->lex->current_select= save_curr_select;
|
||
return having;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_install_plugin(const DDL_options_st &opt,
|
||
const Lex_ident_sys_st &name,
|
||
const LEX_CSTRING &soname)
|
||
{
|
||
create_info.init();
|
||
if (add_create_options_with_check(opt))
|
||
return true;
|
||
sql_command= SQLCOM_INSTALL_PLUGIN;
|
||
comment= name;
|
||
ident= soname;
|
||
return false;
|
||
}
|
||
|
||
|
||
void LEX::stmt_install_plugin(const LEX_CSTRING &soname)
|
||
{
|
||
sql_command= SQLCOM_INSTALL_PLUGIN;
|
||
comment= null_clex_str;
|
||
ident= soname;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_uninstall_plugin_by_name(const DDL_options_st &opt,
|
||
const Lex_ident_sys_st &name)
|
||
{
|
||
check_opt.init();
|
||
if (add_create_options_with_check(opt))
|
||
return true;
|
||
sql_command= SQLCOM_UNINSTALL_PLUGIN;
|
||
comment= name;
|
||
ident= null_clex_str;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_uninstall_plugin_by_soname(const DDL_options_st &opt,
|
||
const LEX_CSTRING &soname)
|
||
{
|
||
check_opt.init();
|
||
if (add_create_options_with_check(opt))
|
||
return true;
|
||
sql_command= SQLCOM_UNINSTALL_PLUGIN;
|
||
comment= null_clex_str;
|
||
ident= soname;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_prepare_validate(const char *stmt_type)
|
||
{
|
||
if (unlikely(table_or_sp_used()))
|
||
{
|
||
my_error(ER_SUBQUERIES_NOT_SUPPORTED, MYF(0), stmt_type);
|
||
return true;
|
||
}
|
||
return check_main_unit_semantics();
|
||
}
|
||
|
||
|
||
bool LEX::stmt_prepare(const Lex_ident_sys_st &ident, Item *code)
|
||
{
|
||
sql_command= SQLCOM_PREPARE;
|
||
if (stmt_prepare_validate("PREPARE..FROM"))
|
||
return true;
|
||
prepared_stmt.set(ident, code, NULL);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_execute_immediate(Item *code, List<Item> *params)
|
||
{
|
||
sql_command= SQLCOM_EXECUTE_IMMEDIATE;
|
||
if (stmt_prepare_validate("EXECUTE IMMEDIATE"))
|
||
return true;
|
||
static const Lex_ident_sys immediate(STRING_WITH_LEN("IMMEDIATE"));
|
||
prepared_stmt.set(immediate, code, params);
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_execute(const Lex_ident_sys_st &ident, List<Item> *params)
|
||
{
|
||
sql_command= SQLCOM_EXECUTE;
|
||
prepared_stmt.set(ident, NULL, params);
|
||
return stmt_prepare_validate("EXECUTE..USING");
|
||
}
|
||
|
||
|
||
void LEX::stmt_deallocate_prepare(const Lex_ident_sys_st &ident)
|
||
{
|
||
sql_command= SQLCOM_DEALLOCATE_PREPARE;
|
||
prepared_stmt.set(ident, NULL, NULL);
|
||
}
|
||
|
||
|
||
bool LEX::stmt_alter_table_exchange_partition(Table_ident *table)
|
||
{
|
||
DBUG_ASSERT(sql_command == SQLCOM_ALTER_TABLE);
|
||
first_select_lex()->db= table->db;
|
||
if (first_select_lex()->db.str == NULL &&
|
||
copy_db_to(&first_select_lex()->db))
|
||
return true;
|
||
name= table->table;
|
||
alter_info.partition_flags|= ALTER_PARTITION_EXCHANGE;
|
||
if (!first_select_lex()->add_table_to_list(thd, table, NULL,
|
||
TL_OPTION_UPDATING,
|
||
TL_READ_NO_INSERT,
|
||
MDL_SHARED_NO_WRITE))
|
||
return true;
|
||
DBUG_ASSERT(!m_sql_cmd);
|
||
m_sql_cmd= new (thd->mem_root) Sql_cmd_alter_table_exchange_partition();
|
||
return m_sql_cmd == NULL;
|
||
}
|
||
|
||
|
||
void LEX::stmt_purge_to(const LEX_CSTRING &to)
|
||
{
|
||
type= 0;
|
||
sql_command= SQLCOM_PURGE;
|
||
to_log= to.str;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_purge_before(Item *item)
|
||
{
|
||
type= 0;
|
||
sql_command= SQLCOM_PURGE_BEFORE;
|
||
value_list.empty();
|
||
value_list.push_front(item, thd->mem_root);
|
||
return check_main_unit_semantics();
|
||
}
|
||
|
||
|
||
bool LEX::stmt_create_udf_function(const DDL_options_st &options,
|
||
enum_sp_aggregate_type agg_type,
|
||
const Lex_ident_sys_st &name,
|
||
Item_result return_type,
|
||
const LEX_CSTRING &soname)
|
||
{
|
||
if (stmt_create_function_start(options))
|
||
return true;
|
||
|
||
if (unlikely(is_native_function(thd, &name)))
|
||
{
|
||
my_error(ER_NATIVE_FCT_NAME_COLLISION, MYF(0), name.str);
|
||
return true;
|
||
}
|
||
sql_command= SQLCOM_CREATE_FUNCTION;
|
||
udf.name= name;
|
||
udf.returns= return_type;
|
||
udf.dl= soname.str;
|
||
udf.type= agg_type == GROUP_AGGREGATE ? UDFTYPE_AGGREGATE :
|
||
UDFTYPE_FUNCTION;
|
||
stmt_create_routine_finalize();
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_create_stored_function_start(const DDL_options_st &options,
|
||
enum_sp_aggregate_type agg_type,
|
||
const sp_name *spname)
|
||
{
|
||
if (stmt_create_function_start(options) ||
|
||
unlikely(!make_sp_head_no_recursive(thd, spname,
|
||
&sp_handler_function, agg_type)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_drop_function(const DDL_options_st &options,
|
||
const Lex_ident_sys_st &db,
|
||
const Lex_ident_sys_st &name)
|
||
{
|
||
if (unlikely(db.str && check_db_name((LEX_STRING*) &db)))
|
||
{
|
||
my_error(ER_WRONG_DB_NAME, MYF(0), db.str);
|
||
return true;
|
||
}
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_NO_DROP_SP, MYF(0), "FUNCTION");
|
||
return true;
|
||
}
|
||
set_command(SQLCOM_DROP_FUNCTION, options);
|
||
spname= new (thd->mem_root) sp_name(&db, &name, true);
|
||
return spname == NULL;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_drop_function(const DDL_options_st &options,
|
||
const Lex_ident_sys_st &name)
|
||
{
|
||
LEX_CSTRING db= {0, 0};
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_NO_DROP_SP, MYF(0), "FUNCTION");
|
||
return true;
|
||
}
|
||
if (thd->db.str && unlikely(copy_db_to(&db)))
|
||
return true;
|
||
set_command(SQLCOM_DROP_FUNCTION, options);
|
||
spname= new (thd->mem_root) sp_name(&db, &name, false);
|
||
return spname == NULL;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_drop_procedure(const DDL_options_st &options,
|
||
sp_name *name)
|
||
{
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_NO_DROP_SP, MYF(0), "PROCEDURE");
|
||
return true;
|
||
}
|
||
set_command(SQLCOM_DROP_PROCEDURE, options);
|
||
spname= name;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_alter_function_start(sp_name *name)
|
||
{
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_NO_DROP_SP, MYF(0), "FUNCTION");
|
||
return true;
|
||
}
|
||
if (main_select_push())
|
||
return true;
|
||
sp_chistics.init();
|
||
sql_command= SQLCOM_ALTER_FUNCTION;
|
||
spname= name;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::stmt_alter_procedure_start(sp_name *name)
|
||
{
|
||
if (unlikely(sphead))
|
||
{
|
||
my_error(ER_SP_NO_DROP_SP, MYF(0), "PROCEDURE");
|
||
return true;
|
||
}
|
||
if (main_select_push())
|
||
return true;
|
||
sp_chistics.init();
|
||
sql_command= SQLCOM_ALTER_PROCEDURE;
|
||
spname= name;
|
||
return false;
|
||
}
|
||
|
||
|
||
Spvar_definition *LEX::row_field_name(THD *thd, const Lex_ident_sys_st &name)
|
||
{
|
||
Spvar_definition *res;
|
||
if (unlikely(check_string_char_length(&name, 0, NAME_CHAR_LEN,
|
||
system_charset_info, 1)))
|
||
{
|
||
my_error(ER_TOO_LONG_IDENT, MYF(0), name.str);
|
||
return NULL;
|
||
}
|
||
if (unlikely(!(res= new (thd->mem_root) Spvar_definition())))
|
||
return NULL;
|
||
init_last_field(res, &name, thd->variables.collation_database);
|
||
return res;
|
||
}
|
||
|
||
|
||
Item *
|
||
Lex_cast_type_st::create_typecast_item_or_error(THD *thd, Item *item,
|
||
CHARSET_INFO *cs) const
|
||
{
|
||
Item *tmp= create_typecast_item(thd, item, cs);
|
||
if (!tmp)
|
||
{
|
||
Name name= m_type_handler->name();
|
||
char buf[128];
|
||
size_t length= my_snprintf(buf, sizeof(buf), "CAST(expr AS %.*s)",
|
||
(int) name.length(), name.ptr());
|
||
my_error(ER_UNKNOWN_OPERATOR, MYF(0),
|
||
ErrConvString(buf, length, system_charset_info).ptr());
|
||
}
|
||
return tmp;
|
||
}
|
||
|
||
|
||
void Lex_field_type_st::set_handler_length_flags(const Type_handler *handler,
|
||
const char *length,
|
||
uint32 flags)
|
||
{
|
||
DBUG_ASSERT(!handler->is_unsigned());
|
||
if (flags & UNSIGNED_FLAG)
|
||
handler= handler->type_handler_unsigned();
|
||
set(handler, length, NULL);
|
||
}
|
||
|
||
|
||
bool LEX::set_field_type_udt(Lex_field_type_st *type,
|
||
const LEX_CSTRING &name,
|
||
const Lex_length_and_dec_st &attr)
|
||
{
|
||
const Type_handler *h;
|
||
if (!(h= Type_handler::handler_by_name_or_error(thd, name)))
|
||
return true;
|
||
type->set(h, attr);
|
||
charset= &my_charset_bin;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::set_cast_type_udt(Lex_cast_type_st *type,
|
||
const LEX_CSTRING &name)
|
||
{
|
||
const Type_handler *h;
|
||
if (!(h= Type_handler::handler_by_name_or_error(thd, name)))
|
||
return true;
|
||
type->set(h);
|
||
charset= NULL;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool sp_expr_lex::sp_repeat_loop_finalize(THD *thd)
|
||
{
|
||
uint ip= sphead->instructions();
|
||
sp_label *lab= spcont->last_label(); /* Jumping back */
|
||
sp_instr_jump_if_not *i= new (thd->mem_root)
|
||
sp_instr_jump_if_not(ip, spcont, get_item(), lab->ip, this);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)))
|
||
return true;
|
||
/* We can shortcut the cont_backpatch here */
|
||
i->m_cont_dest= ip+1;
|
||
return false;
|
||
}
|
||
|
||
|
||
bool sp_expr_lex::sp_if_expr(THD *thd)
|
||
{
|
||
uint ip= sphead->instructions();
|
||
sp_instr_jump_if_not *i= new (thd->mem_root)
|
||
sp_instr_jump_if_not(ip, spcont, get_item(), this);
|
||
return
|
||
(unlikely(i == NULL) ||
|
||
unlikely(sphead->push_backpatch(thd, i,
|
||
spcont->push_label(thd, &empty_clex_str,
|
||
0))) ||
|
||
unlikely(sphead->add_cont_backpatch(i)) ||
|
||
unlikely(sphead->add_instr(i)));
|
||
}
|
||
|
||
|
||
bool LEX::sp_if_after_statements(THD *thd)
|
||
{
|
||
uint ip= sphead->instructions();
|
||
sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(ip, spcont);
|
||
if (unlikely(i == NULL) ||
|
||
unlikely(sphead->add_instr(i)))
|
||
return true;
|
||
sphead->backpatch(spcont->pop_label());
|
||
sphead->push_backpatch(thd, i, spcont->push_label(thd, &empty_clex_str, 0));
|
||
return false;
|
||
}
|
||
|
||
|
||
sp_condition_value *LEX::stmt_signal_value(const Lex_ident_sys_st &ident)
|
||
{
|
||
sp_condition_value *cond;
|
||
/* SIGNAL foo cannot be used outside of stored programs */
|
||
if (unlikely(spcont == NULL))
|
||
{
|
||
my_error(ER_SP_COND_MISMATCH, MYF(0), ident.str);
|
||
return NULL;
|
||
}
|
||
cond= spcont->find_declared_or_predefined_condition(thd, &ident);
|
||
if (unlikely(cond == NULL))
|
||
{
|
||
my_error(ER_SP_COND_MISMATCH, MYF(0), ident.str);
|
||
return NULL;
|
||
}
|
||
bool bad= thd->variables.sql_mode & MODE_ORACLE ?
|
||
!cond->has_sql_state() :
|
||
cond->type != sp_condition_value::SQLSTATE;
|
||
if (unlikely(bad))
|
||
{
|
||
my_error(ER_SIGNAL_BAD_CONDITION_TYPE, MYF(0));
|
||
return NULL;
|
||
}
|
||
return cond;
|
||
}
|
||
|
||
|
||
bool LEX::add_table_foreign_key(const LEX_CSTRING *name,
|
||
const LEX_CSTRING *constraint_name,
|
||
Table_ident *ref_table_name,
|
||
DDL_options ddl_options)
|
||
{
|
||
Key *key= new (thd->mem_root) Foreign_key(name,
|
||
&last_key->columns,
|
||
constraint_name,
|
||
&ref_table_name->db,
|
||
&ref_table_name->table,
|
||
&ref_list,
|
||
fk_delete_opt,
|
||
fk_update_opt,
|
||
fk_match_option,
|
||
ddl_options);
|
||
if (unlikely(key == NULL))
|
||
return true;
|
||
|
||
/*
|
||
handle_if_exists_options() expects the two keys in this order:
|
||
the Foreign_key, followed by its auto-generated Key.
|
||
*/
|
||
alter_info.key_list.push_back(key, thd->mem_root);
|
||
alter_info.key_list.push_back(last_key, thd->mem_root);
|
||
|
||
option_list= NULL;
|
||
|
||
/* Only used for ALTER TABLE. Ignored otherwise. */
|
||
alter_info.flags|= ALTER_ADD_FOREIGN_KEY;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
bool LEX::add_column_foreign_key(const LEX_CSTRING *name,
|
||
const LEX_CSTRING *constraint_name,
|
||
Table_ident *ref_table_name,
|
||
DDL_options ddl_options)
|
||
{
|
||
if (last_field->vcol_info || last_field->vers_sys_field())
|
||
{
|
||
thd->parse_error();
|
||
return true;
|
||
}
|
||
if (unlikely(!(last_key= (new (thd->mem_root)
|
||
Key(Key::MULTIPLE, constraint_name,
|
||
HA_KEY_ALG_UNDEF, true, ddl_options)))))
|
||
return true;
|
||
Key_part_spec *key= new (thd->mem_root) Key_part_spec(name, 0);
|
||
if (unlikely(key == NULL))
|
||
return true;
|
||
last_key->columns.push_back(key, thd->mem_root);
|
||
if (ref_list.is_empty())
|
||
{
|
||
ref_list.push_back(key, thd->mem_root);
|
||
}
|
||
if (unlikely(add_table_foreign_key(constraint_name, constraint_name,
|
||
ref_table_name, ddl_options)))
|
||
return true;
|
||
option_list= NULL;
|
||
|
||
/* Only used for ALTER TABLE. Ignored otherwise. */
|
||
alter_info.flags|= ALTER_ADD_FOREIGN_KEY;
|
||
|
||
return false;
|
||
}
|