mariadb/storage/innobase/lock/lock0iter.c
Guilhem Bichot 7ceb29ff17 Renamed storage/innodb_plugin to storage/innobase, so that 1) it's the same
layout as we always had in trees containing only the builtin
2) win\configure.js WITH_INNOBASE_STORAGE_ENGINE still works.

storage/innobase/CMakeLists.txt:
  fix to new directory name (and like 5.1)
storage/innobase/Makefile.am:
  fix to new directory name (and like 5.1)
storage/innobase/handler/ha_innodb.cc:
  fix to new directory name (and like 5.1)
storage/innobase/plug.in:
  fix to new directory name (and like 5.1)
2009-08-07 12:16:00 +02:00

114 lines
3.3 KiB
C

/*****************************************************************************
Copyright (c) 2007, 2009, Innobase Oy. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*****************************************************************************/
/**************************************************//**
@file lock/lock0iter.c
Lock queue iterator. Can iterate over table and record
lock queues.
Created July 16, 2007 Vasil Dimov
*******************************************************/
#define LOCK_MODULE_IMPLEMENTATION
#include "univ.i"
#include "lock0iter.h"
#include "lock0lock.h"
#include "lock0priv.h"
#include "ut0dbg.h"
#include "ut0lst.h"
#ifdef UNIV_DEBUG
# include "srv0srv.h" /* kernel_mutex */
#endif /* UNIV_DEBUG */
/*******************************************************************//**
Initialize lock queue iterator so that it starts to iterate from
"lock". bit_no specifies the record number within the heap where the
record is stored. It can be undefined (ULINT_UNDEFINED) in two cases:
1. If the lock is a table lock, thus we have a table lock queue;
2. If the lock is a record lock and it is a wait lock. In this case
bit_no is calculated in this function by using
lock_rec_find_set_bit(). There is exactly one bit set in the bitmap
of a wait lock. */
UNIV_INTERN
void
lock_queue_iterator_reset(
/*======================*/
lock_queue_iterator_t* iter, /*!< out: iterator */
const lock_t* lock, /*!< in: lock to start from */
ulint bit_no) /*!< in: record number in the
heap */
{
ut_ad(mutex_own(&kernel_mutex));
iter->current_lock = lock;
if (bit_no != ULINT_UNDEFINED) {
iter->bit_no = bit_no;
} else {
switch (lock_get_type_low(lock)) {
case LOCK_TABLE:
iter->bit_no = ULINT_UNDEFINED;
break;
case LOCK_REC:
iter->bit_no = lock_rec_find_set_bit(lock);
ut_a(iter->bit_no != ULINT_UNDEFINED);
break;
default:
ut_error;
}
}
}
/*******************************************************************//**
Gets the previous lock in the lock queue, returns NULL if there are no
more locks (i.e. the current lock is the first one). The iterator is
receded (if not-NULL is returned).
@return previous lock or NULL */
UNIV_INTERN
const lock_t*
lock_queue_iterator_get_prev(
/*=========================*/
lock_queue_iterator_t* iter) /*!< in/out: iterator */
{
const lock_t* prev_lock;
ut_ad(mutex_own(&kernel_mutex));
switch (lock_get_type_low(iter->current_lock)) {
case LOCK_REC:
prev_lock = lock_rec_get_prev(
iter->current_lock, iter->bit_no);
break;
case LOCK_TABLE:
prev_lock = UT_LIST_GET_PREV(
un_member.tab_lock.locks, iter->current_lock);
break;
default:
ut_error;
}
if (prev_lock != NULL) {
iter->current_lock = prev_lock;
}
return(prev_lock);
}