mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 17:33:44 +01:00
360 lines
8.8 KiB
C
360 lines
8.8 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1996, 1997, 1998, 1999, 2000
|
|
* Sleepycat Software. All rights reserved.
|
|
*/
|
|
|
|
#include "db_config.h"
|
|
|
|
#ifndef lint
|
|
static const char revid[] = "$Id: db_salloc.c,v 11.10 2000/12/06 19:55:44 ubell Exp $";
|
|
#endif /* not lint */
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
|
|
/*
|
|
* Implement shared memory region allocation, using simple first-fit algorithm.
|
|
* The model is that we take a "chunk" of shared memory store and begin carving
|
|
* it up into areas, similarly to how malloc works. We do coalescing on free.
|
|
*
|
|
* The "len" field in the __data struct contains the length of the free region
|
|
* (less the size_t bytes that holds the length). We use the address provided
|
|
* by the caller to find this length, which allows us to free a chunk without
|
|
* requiring that the caller pass in the length of the chunk they're freeing.
|
|
*/
|
|
SH_LIST_HEAD(__head);
|
|
struct __data {
|
|
size_t len;
|
|
SH_LIST_ENTRY links;
|
|
};
|
|
|
|
/*
|
|
* __db_shalloc_init --
|
|
* Initialize the area as one large chunk.
|
|
*
|
|
* PUBLIC: void __db_shalloc_init __P((void *, size_t));
|
|
*/
|
|
void
|
|
__db_shalloc_init(area, size)
|
|
void *area;
|
|
size_t size;
|
|
{
|
|
struct __data *elp;
|
|
struct __head *hp;
|
|
|
|
hp = area;
|
|
SH_LIST_INIT(hp);
|
|
|
|
elp = (struct __data *)(hp + 1);
|
|
elp->len = size - sizeof(struct __head) - sizeof(elp->len);
|
|
SH_LIST_INSERT_HEAD(hp, elp, links, __data);
|
|
}
|
|
|
|
/*
|
|
* __db_shalloc --
|
|
* Allocate some space from the shared region.
|
|
*
|
|
* PUBLIC: int __db_shalloc_size __P((size_t, size_t));
|
|
*/
|
|
int
|
|
__db_shalloc_size(len, align)
|
|
size_t len, align;
|
|
{
|
|
/* Never allocate less than the size of a struct __data. */
|
|
if (len < sizeof(struct __data))
|
|
len = sizeof(struct __data);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Add room for a guard byte. */
|
|
++len;
|
|
#endif
|
|
|
|
/* Never align to less than a db_align_t boundary. */
|
|
if (align <= sizeof(db_align_t))
|
|
align = sizeof(db_align_t);
|
|
|
|
return (ALIGN(len, align) + sizeof (struct __data));
|
|
}
|
|
|
|
/*
|
|
* __db_shalloc --
|
|
* Allocate some space from the shared region.
|
|
*
|
|
* PUBLIC: int __db_shalloc __P((void *, size_t, size_t, void *));
|
|
*/
|
|
int
|
|
__db_shalloc(p, len, align, retp)
|
|
void *p, *retp;
|
|
size_t len, align;
|
|
{
|
|
struct __data *elp;
|
|
size_t *sp;
|
|
void *rp;
|
|
|
|
/* Never allocate less than the size of a struct __data. */
|
|
if (len < sizeof(struct __data))
|
|
len = sizeof(struct __data);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Add room for a guard byte. */
|
|
++len;
|
|
#endif
|
|
|
|
/* Never align to less than a db_align_t boundary. */
|
|
if (align <= sizeof(db_align_t))
|
|
align = sizeof(db_align_t);
|
|
|
|
/* Walk the list, looking for a slot. */
|
|
for (elp = SH_LIST_FIRST((struct __head *)p, __data);
|
|
elp != NULL;
|
|
elp = SH_LIST_NEXT(elp, links, __data)) {
|
|
/*
|
|
* Calculate the value of the returned pointer if we were to
|
|
* use this chunk.
|
|
* + Find the end of the chunk.
|
|
* + Subtract the memory the user wants.
|
|
* + Find the closest previous correctly-aligned address.
|
|
*/
|
|
rp = (u_int8_t *)elp + sizeof(size_t) + elp->len;
|
|
rp = (u_int8_t *)rp - len;
|
|
rp = (u_int8_t *)((db_alignp_t)rp & ~(align - 1));
|
|
|
|
/*
|
|
* Rp may now point before elp->links, in which case the chunk
|
|
* was too small, and we have to try again.
|
|
*/
|
|
if ((u_int8_t *)rp < (u_int8_t *)&elp->links)
|
|
continue;
|
|
|
|
*(void **)retp = rp;
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* At this point, whether or not we still need to split up a
|
|
* chunk, retp is the address of the region we are returning,
|
|
* and (u_int8_t *)elp + sizeof(size_t) + elp->len gives us
|
|
* the address of the first byte after the end of the chunk.
|
|
* Make the byte immediately before that the guard byte.
|
|
*/
|
|
*((u_int8_t *)elp + sizeof(size_t) + elp->len - 1) = GUARD_BYTE;
|
|
#endif
|
|
|
|
#define SHALLOC_FRAGMENT 32
|
|
/*
|
|
* If there are at least SHALLOC_FRAGMENT additional bytes of
|
|
* memory, divide the chunk into two chunks.
|
|
*/
|
|
if ((u_int8_t *)rp >=
|
|
(u_int8_t *)&elp->links + SHALLOC_FRAGMENT) {
|
|
sp = rp;
|
|
*--sp = elp->len -
|
|
((u_int8_t *)rp - (u_int8_t *)&elp->links);
|
|
elp->len -= *sp + sizeof(size_t);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we return the entire chunk, wasting some amount
|
|
* of space to keep the list compact. However, because the
|
|
* address we're returning to the user may not be the address
|
|
* of the start of the region for alignment reasons, set the
|
|
* size_t length fields back to the "real" length field to a
|
|
* flag value, so that we can find the real length during free.
|
|
*/
|
|
#define ILLEGAL_SIZE 1
|
|
SH_LIST_REMOVE(elp, links, __data);
|
|
for (sp = rp; (u_int8_t *)--sp >= (u_int8_t *)&elp->links;)
|
|
*sp = ILLEGAL_SIZE;
|
|
return (0);
|
|
}
|
|
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* __db_shalloc_free --
|
|
* Free a shared memory allocation.
|
|
*
|
|
* PUBLIC: void __db_shalloc_free __P((void *, void *));
|
|
*/
|
|
void
|
|
__db_shalloc_free(regionp, ptr)
|
|
void *regionp, *ptr;
|
|
{
|
|
struct __data *elp, *lastp, *newp;
|
|
struct __head *hp;
|
|
size_t free_size, *sp;
|
|
int merged;
|
|
|
|
/*
|
|
* Step back over flagged length fields to find the beginning of
|
|
* the object and its real size.
|
|
*/
|
|
for (sp = (size_t *)ptr; sp[-1] == ILLEGAL_SIZE; --sp)
|
|
;
|
|
ptr = sp;
|
|
|
|
newp = (struct __data *)((u_int8_t *)ptr - sizeof(size_t));
|
|
free_size = newp->len;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* The "real size" includes the guard byte; it's just the last
|
|
* byte in the chunk, and the caller never knew it existed.
|
|
*
|
|
* Check it to make sure it hasn't been stomped.
|
|
*/
|
|
if (*((u_int8_t *)ptr + free_size - 1) != GUARD_BYTE) {
|
|
/*
|
|
* Eventually, once we push a DB_ENV handle down to these
|
|
* routines, we should use the standard output channels.
|
|
*/
|
|
fprintf(stderr,
|
|
"Guard byte incorrect during shared memory free.\n");
|
|
abort();
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/* Trash the returned memory (including guard byte). */
|
|
memset(ptr, CLEAR_BYTE, free_size);
|
|
#endif
|
|
|
|
/*
|
|
* Walk the list, looking for where this entry goes.
|
|
*
|
|
* We keep the free list sorted by address so that coalescing is
|
|
* trivial.
|
|
*
|
|
* XXX
|
|
* Probably worth profiling this to see how expensive it is.
|
|
*/
|
|
hp = (struct __head *)regionp;
|
|
for (elp = SH_LIST_FIRST(hp, __data), lastp = NULL;
|
|
elp != NULL && (void *)elp < (void *)ptr;
|
|
lastp = elp, elp = SH_LIST_NEXT(elp, links, __data))
|
|
;
|
|
|
|
/*
|
|
* Elp is either NULL (we reached the end of the list), or the slot
|
|
* after the one that's being returned. Lastp is either NULL (we're
|
|
* returning the first element of the list) or the element before the
|
|
* one being returned.
|
|
*
|
|
* Check for coalescing with the next element.
|
|
*/
|
|
merged = 0;
|
|
if ((u_int8_t *)ptr + free_size == (u_int8_t *)elp) {
|
|
newp->len += elp->len + sizeof(size_t);
|
|
SH_LIST_REMOVE(elp, links, __data);
|
|
if (lastp != NULL)
|
|
SH_LIST_INSERT_AFTER(lastp, newp, links, __data);
|
|
else
|
|
SH_LIST_INSERT_HEAD(hp, newp, links, __data);
|
|
merged = 1;
|
|
}
|
|
|
|
/* Check for coalescing with the previous element. */
|
|
if (lastp != NULL && (u_int8_t *)lastp +
|
|
lastp->len + sizeof(size_t) == (u_int8_t *)newp) {
|
|
lastp->len += newp->len + sizeof(size_t);
|
|
|
|
/*
|
|
* If we have already put the new element into the list take
|
|
* it back off again because it's just been merged with the
|
|
* previous element.
|
|
*/
|
|
if (merged)
|
|
SH_LIST_REMOVE(newp, links, __data);
|
|
merged = 1;
|
|
}
|
|
|
|
if (!merged) {
|
|
if (lastp == NULL)
|
|
SH_LIST_INSERT_HEAD(hp, newp, links, __data);
|
|
else
|
|
SH_LIST_INSERT_AFTER(lastp, newp, links, __data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __db_shalloc_count --
|
|
* Return the amount of memory on the free list.
|
|
*
|
|
* PUBLIC: size_t __db_shalloc_count __P((void *));
|
|
*/
|
|
size_t
|
|
__db_shalloc_count(addr)
|
|
void *addr;
|
|
{
|
|
struct __data *elp;
|
|
size_t count;
|
|
|
|
count = 0;
|
|
for (elp = SH_LIST_FIRST((struct __head *)addr, __data);
|
|
elp != NULL;
|
|
elp = SH_LIST_NEXT(elp, links, __data))
|
|
count += elp->len;
|
|
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* __db_shsizeof --
|
|
* Return the size of a shalloc'd piece of memory.
|
|
*
|
|
* !!!
|
|
* Note that this is from an internal standpoint -- it includes not only
|
|
* the size of the memory being used, but also the extra alignment bytes
|
|
* in front and, #ifdef DIAGNOSTIC, the guard byte at the end.
|
|
*
|
|
* PUBLIC: size_t __db_shsizeof __P((void *));
|
|
*/
|
|
size_t
|
|
__db_shsizeof(ptr)
|
|
void *ptr;
|
|
{
|
|
struct __data *elp;
|
|
size_t *sp;
|
|
|
|
/*
|
|
* Step back over flagged length fields to find the beginning of
|
|
* the object and its real size.
|
|
*/
|
|
for (sp = (size_t *)ptr; sp[-1] == ILLEGAL_SIZE; --sp)
|
|
;
|
|
|
|
elp = (struct __data *)((u_int8_t *)sp - sizeof(size_t));
|
|
return (elp->len);
|
|
}
|
|
|
|
/*
|
|
* __db_shalloc_dump --
|
|
*
|
|
* PUBLIC: void __db_shalloc_dump __P((void *, FILE *));
|
|
*/
|
|
void
|
|
__db_shalloc_dump(addr, fp)
|
|
void *addr;
|
|
FILE *fp;
|
|
{
|
|
struct __data *elp;
|
|
|
|
/* Make it easy to call from the debugger. */
|
|
if (fp == NULL)
|
|
fp = stderr;
|
|
|
|
fprintf(fp, "%s\nMemory free list\n", DB_LINE);
|
|
|
|
for (elp = SH_LIST_FIRST((struct __head *)addr, __data);
|
|
elp != NULL;
|
|
elp = SH_LIST_NEXT(elp, links, __data))
|
|
fprintf(fp, "%#lx: %lu\t", (u_long)elp, (u_long)elp->len);
|
|
fprintf(fp, "\n");
|
|
}
|