mariadb/storage/xtradb/os/os0sync.cc
2016-09-09 08:33:08 +02:00

635 lines
15 KiB
C++

/*****************************************************************************
Copyright (c) 1995, 2015, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file os/os0sync.cc
The interface to the operating system
synchronization primitives.
Created 9/6/1995 Heikki Tuuri
*******************************************************/
#include "os0sync.h"
#ifdef UNIV_NONINL
#include "os0sync.ic"
#endif
#ifdef __WIN__
#include <windows.h>
#endif
#include "ut0mem.h"
#include "srv0start.h"
#include "srv0srv.h"
/* Type definition for an operating system mutex struct */
struct os_mutex_t{
os_event_t event; /*!< Used by sync0arr.cc for queing threads */
void* handle; /*!< OS handle to mutex */
ulint count; /*!< we use this counter to check
that the same thread does not
recursively lock the mutex: we
do not assume that the OS mutex
supports recursive locking, though
NT seems to do that */
};
// All the os_*_count variables are accessed atomically
/** This is incremented by 1 in os_thread_create and decremented by 1 in
os_thread_exit. */
UNIV_INTERN ulint os_thread_count = 0;
UNIV_INTERN ulint os_event_count = 0;
UNIV_INTERN ulint os_mutex_count = 0;
UNIV_INTERN ulint os_fast_mutex_count = 0;
/* The number of microsecnds in a second. */
static const ulint MICROSECS_IN_A_SECOND = 1000000;
#ifdef UNIV_PFS_MUTEX
UNIV_INTERN mysql_pfs_key_t event_os_mutex_key;
UNIV_INTERN mysql_pfs_key_t os_mutex_key;
#endif
/*********************************************************//**
Initialitze condition variable */
UNIV_INLINE
void
os_cond_init(
/*=========*/
os_cond_t* cond) /*!< in: condition variable. */
{
ut_a(cond);
#ifdef __WIN__
InitializeConditionVariable(cond);
#else
ut_a(pthread_cond_init(cond, NULL) == 0);
#endif
}
/*********************************************************//**
Do a timed wait on condition variable.
@return TRUE if timed out, FALSE otherwise */
UNIV_INLINE
ibool
os_cond_wait_timed(
/*===============*/
os_cond_t* cond, /*!< in: condition variable. */
os_fast_mutex_t* fast_mutex, /*!< in: fast mutex */
#ifndef __WIN__
const struct timespec* abstime /*!< in: timeout */
#else
DWORD time_in_ms /*!< in: timeout in
milliseconds*/
#endif /* !__WIN__ */
)
{
fast_mutex_t* mutex = &fast_mutex->mutex;
#ifdef __WIN__
BOOL ret;
DWORD err;
ret = SleepConditionVariableCS(cond, mutex, time_in_ms);
if (!ret) {
err = GetLastError();
/* From http://msdn.microsoft.com/en-us/library/ms686301%28VS.85%29.aspx,
"Condition variables are subject to spurious wakeups
(those not associated with an explicit wake) and stolen wakeups
(another thread manages to run before the woken thread)."
Check for both types of timeouts.
Conditions are checked by the caller.*/
if ((err == WAIT_TIMEOUT) || (err == ERROR_TIMEOUT)) {
return(TRUE);
}
}
ut_a(ret);
return(FALSE);
#else
int ret;
ret = pthread_cond_timedwait(cond, mutex, abstime);
switch (ret) {
case 0:
case ETIMEDOUT:
/* We play it safe by checking for EINTR even though
according to the POSIX documentation it can't return EINTR. */
case EINTR:
break;
default:
fprintf(stderr, " InnoDB: pthread_cond_timedwait() returned: "
"%d: abstime={%lu,%lu}\n",
ret, (ulong) abstime->tv_sec, (ulong) abstime->tv_nsec);
ut_error;
}
return(ret == ETIMEDOUT);
#endif
}
/*********************************************************//**
Wait on condition variable */
UNIV_INLINE
void
os_cond_wait(
/*=========*/
os_cond_t* cond, /*!< in: condition variable. */
os_fast_mutex_t* fast_mutex)/*!< in: fast mutex */
{
fast_mutex_t* mutex = &fast_mutex->mutex;
ut_a(cond);
ut_a(mutex);
#ifdef __WIN__
ut_a(SleepConditionVariableCS(cond, mutex, INFINITE));
#else
ut_a(pthread_cond_wait(cond, mutex) == 0);
#endif
}
/*********************************************************//**
Wakes all threads waiting for condition variable */
UNIV_INLINE
void
os_cond_broadcast(
/*==============*/
os_cond_t* cond) /*!< in: condition variable. */
{
ut_a(cond);
#ifdef __WIN__
WakeAllConditionVariable(cond);
#else
ut_a(pthread_cond_broadcast(cond) == 0);
#endif
}
/*********************************************************//**
Destroys condition variable */
UNIV_INLINE
void
os_cond_destroy(
/*============*/
os_cond_t* cond) /*!< in: condition variable. */
{
#ifdef __WIN__
/* Do nothing */
#else
ut_a(pthread_cond_destroy(cond) == 0);
#endif
}
/*********************************************************//**
Initializes global event and OS 'slow' mutex lists. */
UNIV_INTERN
void
os_sync_init(void)
/*==============*/
{
}
/** Create an event semaphore, i.e., a semaphore which may just have two
states: signaled and nonsignaled. The created event is manual reset: it must be
reset explicitly by calling sync_os_reset_event.
@param[in,out] event memory block where to create the event */
UNIV_INTERN
void
os_event_create(os_event_t event)
{
#ifndef PFS_SKIP_EVENT_MUTEX
os_fast_mutex_init(event_os_mutex_key, &event->os_mutex);
#else
os_fast_mutex_init(PFS_NOT_INSTRUMENTED, &event->os_mutex);
#endif
os_cond_init(&(event->cond_var));
event->init_count_and_set();
os_atomic_increment_ulint(&os_event_count, 1);
}
/*********************************************************//**
Creates an event semaphore, i.e., a semaphore which may just have two
states: signaled and nonsignaled. The created event is manual reset: it
must be reset explicitly by calling sync_os_reset_event.
@return the event handle */
UNIV_INTERN
os_event_t
os_event_create(void)
/*==================*/
{
os_event_t event = static_cast<os_event_t>(ut_malloc(sizeof(*event)));
os_event_create(event);
return(event);
}
/**********************************************************//**
Sets an event semaphore to the signaled state: lets waiting threads
proceed. */
UNIV_INTERN
void
os_event_set(
/*=========*/
os_event_t event) /*!< in: event to set */
{
ut_a(event);
os_fast_mutex_lock(&(event->os_mutex));
if (UNIV_UNLIKELY(event->is_set())) {
/* Do nothing */
} else {
event->set();
event->inc_signal_count();
os_cond_broadcast(&(event->cond_var));
}
os_fast_mutex_unlock(&(event->os_mutex));
}
/**********************************************************//**
Resets an event semaphore to the nonsignaled state. Waiting threads will
stop to wait for the event.
The return value should be passed to os_even_wait_low() if it is desired
that this thread should not wait in case of an intervening call to
os_event_set() between this os_event_reset() and the
os_event_wait_low() call. See comments for os_event_wait_low().
@return current signal_count. */
UNIV_INTERN
ib_int64_t
os_event_reset(
/*===========*/
os_event_t event) /*!< in: event to reset */
{
ib_int64_t ret = 0;
ut_a(event);
os_fast_mutex_lock(&(event->os_mutex));
if (UNIV_UNLIKELY(!event->is_set())) {
/* Do nothing */
} else {
event->reset();
}
ret = event->signal_count();
os_fast_mutex_unlock(&(event->os_mutex));
return(ret);
}
/**********************************************************//**
Frees an event object. */
UNIV_INTERN
void
os_event_free(
/*==========*/
os_event_t event, /*!< in: event to free */
bool free_memory)/*!< in: if true, deallocate the event
memory block too */
{
ut_a(event);
os_fast_mutex_free(&(event->os_mutex));
os_cond_destroy(&(event->cond_var));
os_atomic_decrement_ulint(&os_event_count, 1);
if (free_memory)
ut_free(event);
}
/**********************************************************//**
Waits for an event object until it is in the signaled state.
Typically, if the event has been signalled after the os_event_reset()
we'll return immediately because event->is_set == TRUE.
There are, however, situations (e.g.: sync_array code) where we may
lose this information. For example:
thread A calls os_event_reset()
thread B calls os_event_set() [event->is_set == TRUE]
thread C calls os_event_reset() [event->is_set == FALSE]
thread A calls os_event_wait() [infinite wait!]
thread C calls os_event_wait() [infinite wait!]
Where such a scenario is possible, to avoid infinite wait, the
value returned by os_event_reset() should be passed in as
reset_sig_count. */
UNIV_INTERN
void
os_event_wait_low(
/*==============*/
os_event_t event, /*!< in: event to wait */
ib_int64_t reset_sig_count)/*!< in: zero or the value
returned by previous call of
os_event_reset(). */
{
os_fast_mutex_lock(&event->os_mutex);
if (!reset_sig_count) {
reset_sig_count = event->signal_count();
}
while (!event->is_set() && event->signal_count() == reset_sig_count) {
os_cond_wait(&(event->cond_var), &(event->os_mutex));
/* Solaris manual said that spurious wakeups may occur: we
have to check if the event really has been signaled after
we came here to wait */
}
os_fast_mutex_unlock(&event->os_mutex);
}
/**********************************************************//**
Waits for an event object until it is in the signaled state or
a timeout is exceeded.
@return 0 if success, OS_SYNC_TIME_EXCEEDED if timeout was exceeded */
UNIV_INTERN
ulint
os_event_wait_time_low(
/*===================*/
os_event_t event, /*!< in: event to wait */
ulint time_in_usec, /*!< in: timeout in
microseconds, or
OS_SYNC_INFINITE_TIME */
ib_int64_t reset_sig_count) /*!< in: zero or the value
returned by previous call of
os_event_reset(). */
{
ibool timed_out = FALSE;
#ifdef __WIN__
DWORD time_in_ms;
if (time_in_usec != OS_SYNC_INFINITE_TIME) {
time_in_ms = static_cast<DWORD>(time_in_usec / 1000);
} else {
time_in_ms = INFINITE;
}
#else
struct timespec abstime;
if (time_in_usec != OS_SYNC_INFINITE_TIME) {
struct timeval tv;
int ret;
ulint sec;
ulint usec;
ret = ut_usectime(&sec, &usec);
ut_a(ret == 0);
tv.tv_sec = sec;
tv.tv_usec = usec;
tv.tv_usec += time_in_usec;
if ((ulint) tv.tv_usec >= MICROSECS_IN_A_SECOND) {
tv.tv_sec += tv.tv_usec / MICROSECS_IN_A_SECOND;
tv.tv_usec %= MICROSECS_IN_A_SECOND;
}
abstime.tv_sec = tv.tv_sec;
abstime.tv_nsec = tv.tv_usec * 1000;
} else {
abstime.tv_nsec = 999999999;
abstime.tv_sec = (time_t) ULINT_MAX;
}
ut_a(abstime.tv_nsec <= 999999999);
#endif /* __WIN__ */
os_fast_mutex_lock(&event->os_mutex);
if (!reset_sig_count) {
reset_sig_count = event->signal_count();
}
do {
if (event->is_set()
|| event->signal_count() != reset_sig_count) {
break;
}
timed_out = os_cond_wait_timed(
&event->cond_var, &event->os_mutex,
#ifndef __WIN__
&abstime
#else
time_in_ms
#endif /* !__WIN__ */
);
} while (!timed_out);
os_fast_mutex_unlock(&event->os_mutex);
return(timed_out ? OS_SYNC_TIME_EXCEEDED : 0);
}
/*********************************************************//**
Creates an operating system mutex semaphore. Because these are slow, the
mutex semaphore of InnoDB itself (ib_mutex_t) should be used where possible.
@return the mutex handle */
UNIV_INTERN
os_ib_mutex_t
os_mutex_create(void)
/*=================*/
{
os_fast_mutex_t* mutex;
os_ib_mutex_t mutex_str;
mutex = static_cast<os_fast_mutex_t*>(
ut_malloc(sizeof(os_fast_mutex_t)));
os_fast_mutex_init(os_mutex_key, mutex);
mutex_str = static_cast<os_ib_mutex_t>(ut_malloc(sizeof *mutex_str));
mutex_str->handle = mutex;
mutex_str->count = 0;
mutex_str->event = os_event_create();
os_atomic_increment_ulint(&os_mutex_count, 1);
return(mutex_str);
}
/**********************************************************//**
Acquires ownership of a mutex semaphore. */
UNIV_INTERN
void
os_mutex_enter(
/*===========*/
os_ib_mutex_t mutex) /*!< in: mutex to acquire */
{
os_fast_mutex_lock(static_cast<os_fast_mutex_t*>(mutex->handle));
(mutex->count)++;
ut_a(mutex->count == 1);
}
/**********************************************************//**
Releases ownership of a mutex. */
UNIV_INTERN
void
os_mutex_exit(
/*==========*/
os_ib_mutex_t mutex) /*!< in: mutex to release */
{
ut_a(mutex);
ut_a(mutex->count == 1);
(mutex->count)--;
os_fast_mutex_unlock(static_cast<os_fast_mutex_t*>(mutex->handle));
}
/**********************************************************//**
Frees a mutex object. */
UNIV_INTERN
void
os_mutex_free(
/*==========*/
os_ib_mutex_t mutex) /*!< in: mutex to free */
{
ut_a(mutex);
os_event_free(mutex->event);
os_atomic_decrement_ulint(&os_mutex_count, 1);
os_fast_mutex_free(static_cast<os_fast_mutex_t*>(mutex->handle));
ut_free(mutex->handle);
ut_free(mutex);
}
/*********************************************************//**
Initializes an operating system fast mutex semaphore. */
UNIV_INTERN
void
os_fast_mutex_init_func(
/*====================*/
fast_mutex_t* fast_mutex) /*!< in: fast mutex */
{
#ifdef __WIN__
ut_a(fast_mutex);
InitializeCriticalSection((LPCRITICAL_SECTION) fast_mutex);
#else
ut_a(0 == pthread_mutex_init(fast_mutex, MY_MUTEX_INIT_FAST));
#endif
os_atomic_increment_ulint(&os_fast_mutex_count, 1);
}
/**********************************************************//**
Acquires ownership of a fast mutex. */
UNIV_INTERN
void
os_fast_mutex_lock_func(
/*====================*/
fast_mutex_t* fast_mutex) /*!< in: mutex to acquire */
{
#ifdef __WIN__
EnterCriticalSection((LPCRITICAL_SECTION) fast_mutex);
#else
pthread_mutex_lock(fast_mutex);
#endif
}
/**********************************************************//**
Releases ownership of a fast mutex. */
UNIV_INTERN
void
os_fast_mutex_unlock_func(
/*======================*/
fast_mutex_t* fast_mutex) /*!< in: mutex to release */
{
#ifdef __WIN__
LeaveCriticalSection(fast_mutex);
#else
pthread_mutex_unlock(fast_mutex);
#endif
}
/**********************************************************//**
Releases ownership of a fast mutex. Implies a full memory barrier even on
platforms such as PowerPC where this is not normally required. */
UNIV_INTERN
void
os_fast_mutex_unlock_full_barrier(
/*=================*/
os_fast_mutex_t* fast_mutex) /*!< in: mutex to release */
{
#ifdef __WIN__
LeaveCriticalSection(&fast_mutex->mutex);
#else
pthread_mutex_unlock(&fast_mutex->mutex);
#ifdef __powerpc__
os_mb;
#endif
#endif
}
/**********************************************************//**
Frees a mutex object. */
UNIV_INTERN
void
os_fast_mutex_free_func(
/*====================*/
fast_mutex_t* fast_mutex) /*!< in: mutex to free */
{
#ifdef __WIN__
ut_a(fast_mutex);
DeleteCriticalSection((LPCRITICAL_SECTION) fast_mutex);
#else
int ret;
ret = pthread_mutex_destroy(fast_mutex);
if (UNIV_UNLIKELY(ret != 0)) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: error: return value %lu when calling\n"
"InnoDB: pthread_mutex_destroy().\n", (ulint) ret);
fprintf(stderr,
"InnoDB: Byte contents of the pthread mutex at %p:\n",
(void*) fast_mutex);
ut_print_buf(stderr, fast_mutex, sizeof(os_fast_mutex_t));
putc('\n', stderr);
}
#endif
os_atomic_decrement_ulint(&os_fast_mutex_count, 1);
}