mariadb/unittest/mysys/waiting_threads-t.c
Michal Schorm 17b4f99928 Update FSF address
This commit is based on the work of Michal Schorm, rebased on the
earliest MariaDB version.

Th command line used to generate this diff was:

find ./ -type f \
  -exec sed -i -e 's/Foundation, Inc., 59 Temple Place, Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
  -exec sed -i -e 's/Foundation, Inc. 59 Temple Place.* Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
  -exec sed -i -e 's/MA.*.....-1307.*USA/MA 02110-1335 USA/g' {} \; \
  -exec sed -i -e 's/Foundation, Inc., 59 Temple/Foundation, Inc., 51 Franklin/g' {} \; \
  -exec sed -i -e 's/Place, Suite 330, Boston, MA.*02111-1307.*USA/Street, Fifth Floor, Boston, MA 02110-1335 USA/g' {} \; \
  -exec sed -i -e 's/MA.*.....-1307/MA 02110-1335/g' {} \;
2019-05-10 20:52:00 +03:00

289 lines
8.5 KiB
C

/* Copyright (C) 2008 MySQL AB, 2008-2009 Sun Microsystems, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "thr_template.c"
#include <waiting_threads.h>
#include <m_string.h>
struct test_wt_thd {
WT_THD thd;
pthread_mutex_t lock;
} thds[THREADS];
uint i, cnt;
pthread_mutex_t lock;
pthread_cond_t thread_sync;
ulong wt_timeout_short=100, wt_deadlock_search_depth_short=4;
ulong wt_timeout_long=10000, wt_deadlock_search_depth_long=15;
#define reset(ARRAY) bzero(ARRAY, sizeof(ARRAY))
/* see explanation of the kill strategies in waiting_threads.h */
enum { LATEST, RANDOM, YOUNGEST, LOCKS } kill_strategy;
WT_RESOURCE_TYPE restype={ wt_resource_id_memcmp, 0};
#define rnd() ((uint)(my_rnd(&rand) * INT_MAX32))
/*
stress test: wait on a random number of random threads.
it always succeeds (unless crashes or hangs).
*/
pthread_handler_t test_wt(void *arg)
{
int m, n, i, id, res;
struct my_rnd_struct rand;
my_thread_init();
pthread_mutex_lock(&mutex);
id= cnt++;
wt_thd_lazy_init(& thds[id].thd,
& wt_deadlock_search_depth_short, & wt_timeout_short,
& wt_deadlock_search_depth_long, & wt_timeout_long);
/* now, wait for everybody to be ready to run */
if (cnt >= THREADS)
pthread_cond_broadcast(&thread_sync);
else
while (cnt < THREADS)
pthread_cond_wait(&thread_sync, &mutex);
pthread_mutex_unlock(&mutex);
my_rnd_init(&rand, (ulong)(intptr)&m, id);
if (kill_strategy == YOUNGEST)
thds[id].thd.weight= (ulong) ~ my_interval_timer();
if (kill_strategy == LOCKS)
thds[id].thd.weight= 0;
for (m= *(int *)arg; m ; m--)
{
WT_RESOURCE_ID resid;
int blockers[THREADS/10], j, k;
resid.value= id;
resid.type= &restype;
res= 0;
/* prepare for waiting for a random number of random threads */
for (j= n= (rnd() % THREADS)/10; !res && j >= 0; j--)
{
retry:
i= rnd() % (THREADS-1); /* pick a random thread */
if (i >= id) i++; /* with a number from 0 to THREADS-1 excluding ours */
for (k=n; k >=j; k--) /* the one we didn't pick before */
if (blockers[k] == i)
goto retry;
blockers[j]= i;
if (kill_strategy == RANDOM)
thds[id].thd.weight= rnd();
pthread_mutex_lock(& thds[i].lock);
res= wt_thd_will_wait_for(& thds[id].thd, & thds[i].thd, &resid);
pthread_mutex_unlock(& thds[i].lock);
}
if (!res)
{
pthread_mutex_lock(&lock);
res= wt_thd_cond_timedwait(& thds[id].thd, &lock);
pthread_mutex_unlock(&lock);
}
if (res)
{
pthread_mutex_lock(& thds[id].lock);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[id].thd);
pthread_mutex_unlock(&lock);
pthread_mutex_unlock(& thds[id].lock);
if (kill_strategy == LOCKS)
thds[id].thd.weight= 0;
if (kill_strategy == YOUNGEST)
thds[id].thd.weight= (ulong)~ my_interval_timer();
}
else if (kill_strategy == LOCKS)
thds[id].thd.weight++;
}
pthread_mutex_lock(&mutex);
/* wait for everybody to finish */
if (!--cnt)
pthread_cond_broadcast(&thread_sync);
else
while (cnt)
pthread_cond_wait(&thread_sync, &mutex);
pthread_mutex_lock(& thds[id].lock);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[id].thd);
pthread_mutex_unlock(&lock);
pthread_mutex_unlock(& thds[id].lock);
wt_thd_destroy(& thds[id].thd);
pthread_mutex_unlock(&mutex);
DBUG_PRINT("wt", ("exiting"));
my_thread_end();
return 0;
}
void do_one_test()
{
double sum, sum0;
DBUG_ENTER("do_one_test");
reset(wt_cycle_stats);
reset(wt_wait_stats);
wt_success_stats=0;
cnt=0;
test_concurrently("waiting_threads", test_wt, THREADS, CYCLES);
sum=sum0=0;
for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
sum+= wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
if (wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt] > 0)
{
sum0+=wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
diag("deadlock cycles of length %2u: %4u %4u %8.2f %%", cnt,
wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt], 1e2*sum0/sum);
}
diag("depth exceeded: %u %u",
wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt]);
for (cnt=0; cnt < WT_WAIT_STATS; cnt++)
if (wt_wait_stats[cnt]>0)
diag("deadlock waits up to %7llu us: %5u",
wt_wait_table[cnt], wt_wait_stats[cnt]);
diag("timed out: %u", wt_wait_stats[cnt]);
diag("successes: %u", wt_success_stats);
DBUG_VOID_RETURN;
}
void do_tests()
{
DBUG_ENTER("do_tests");
if (skip_big_tests)
{
skip(1, "Big test skipped");
return;
}
plan(14);
compile_time_assert(THREADS >= 4);
DBUG_PRINT("wt", ("================= initialization ==================="));
bad= my_atomic_initialize();
ok(!bad, "my_atomic_initialize() returned %d", bad);
pthread_cond_init(&thread_sync, 0);
pthread_mutex_init(&lock, 0);
wt_init();
for (cnt=0; cnt < THREADS; cnt++)
pthread_mutex_init(& thds[cnt].lock, 0);
{
WT_RESOURCE_ID resid[4];
for (i=0; i < array_elements(resid); i++)
{
wt_thd_lazy_init(& thds[i].thd,
& wt_deadlock_search_depth_short, & wt_timeout_short,
& wt_deadlock_search_depth_long, & wt_timeout_long);
resid[i].value= i+1;
resid[i].type= &restype;
}
DBUG_PRINT("wt", ("================= manual test ==================="));
#define ok_wait(X,Y, R) \
ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == 0, \
"thd[" #X "] will wait for thd[" #Y "]")
#define ok_deadlock(X,Y,R) \
ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == WT_DEADLOCK, \
"thd[" #X "] will wait for thd[" #Y "] - deadlock")
ok_wait(0,1,0);
ok_wait(0,2,0);
ok_wait(0,3,0);
pthread_mutex_lock(&lock);
bad= wt_thd_cond_timedwait(& thds[0].thd, &lock);
pthread_mutex_unlock(&lock);
ok(bad == WT_TIMEOUT, "timeout test returned %d", bad);
ok_wait(0,1,0);
ok_wait(1,2,1);
ok_deadlock(2,0,2);
pthread_mutex_lock(&lock);
ok(wt_thd_cond_timedwait(& thds[0].thd, &lock) == WT_TIMEOUT, "as always");
ok(wt_thd_cond_timedwait(& thds[1].thd, &lock) == WT_TIMEOUT, "as always");
wt_thd_release_all(& thds[0].thd);
wt_thd_release_all(& thds[1].thd);
wt_thd_release_all(& thds[2].thd);
wt_thd_release_all(& thds[3].thd);
for (i=0; i < array_elements(resid); i++)
{
wt_thd_release_all(& thds[i].thd);
wt_thd_destroy(& thds[i].thd);
}
pthread_mutex_unlock(&lock);
}
wt_deadlock_search_depth_short=6;
wt_timeout_short=1000;
wt_timeout_long= 100;
wt_deadlock_search_depth_long=16;
DBUG_PRINT("wt", ("================= stress test ==================="));
diag("timeout_short=%lu us, deadlock_search_depth_short=%lu",
wt_timeout_short, wt_deadlock_search_depth_short);
diag("timeout_long=%lu us, deadlock_search_depth_long=%lu",
wt_timeout_long, wt_deadlock_search_depth_long);
#ifndef _WIN32
#define test_kill_strategy(X) \
diag("kill strategy: " #X); \
DBUG_EXECUTE("reset_file", \
{ rewind(DBUG_FILE); my_chsize(fileno(DBUG_FILE), 0, 0, MYF(MY_WME)); }); \
DBUG_PRINT("info", ("kill strategy: " #X)); \
kill_strategy=X; \
do_one_test();
#else
#define test_kill_strategy(X) \
diag("kill strategy: " #X); \
DBUG_PRINT("info", ("kill strategy: " #X)); \
kill_strategy=X; \
do_one_test();
#endif
test_kill_strategy(LATEST);
test_kill_strategy(RANDOM);
test_kill_strategy(YOUNGEST);
test_kill_strategy(LOCKS);
DBUG_PRINT("wt", ("================= cleanup ==================="));
for (cnt=0; cnt < THREADS; cnt++)
pthread_mutex_destroy(& thds[cnt].lock);
wt_end();
pthread_mutex_destroy(&lock);
pthread_cond_destroy(&thread_sync);
DBUG_VOID_RETURN;
}