mirror of
https://github.com/MariaDB/server.git
synced 2025-01-31 11:01:52 +01:00
e9145aab44
Problem: ========= One of the purge thread access the corrupted page and tries to remove from LRU list. In the mean time, other purge threads are waiting for same page in buf_wait_for_read(). Assertion(buf_fix_count == 0) fails for the purge thread which tries to remove the page from LRU list. Solution: ======== - Set the page id as FIL_NULL to indicate the page is corrupted before removing the block from LRU list. Acquire hash lock for the particular page id and wait for the other threads to release buf_fix_count for the block. - Added the error check for btr_cur_open() in row_search_on_row_ref().
1506 lines
41 KiB
C++
1506 lines
41 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1996, 2018, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2018, 2019, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/**************************************************//**
|
|
@file row/row0row.cc
|
|
General row routines
|
|
|
|
Created 4/20/1996 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "row0row.h"
|
|
#include "data0type.h"
|
|
#include "dict0dict.h"
|
|
#include "dict0boot.h"
|
|
#include "btr0btr.h"
|
|
#include "mach0data.h"
|
|
#include "trx0rseg.h"
|
|
#include "trx0trx.h"
|
|
#include "trx0roll.h"
|
|
#include "trx0undo.h"
|
|
#include "trx0purge.h"
|
|
#include "trx0rec.h"
|
|
#include "que0que.h"
|
|
#include "row0ext.h"
|
|
#include "row0upd.h"
|
|
#include "rem0cmp.h"
|
|
#include "read0read.h"
|
|
#include "ut0mem.h"
|
|
#include "gis0geo.h"
|
|
#include "row0mysql.h"
|
|
|
|
/*****************************************************************//**
|
|
When an insert or purge to a table is performed, this function builds
|
|
the entry to be inserted into or purged from an index on the table.
|
|
@return index entry which should be inserted or purged
|
|
@retval NULL if the externally stored columns in the clustered index record
|
|
are unavailable and ext != NULL, or row is missing some needed columns. */
|
|
dtuple_t*
|
|
row_build_index_entry_low(
|
|
/*======================*/
|
|
const dtuple_t* row, /*!< in: row which should be
|
|
inserted or purged */
|
|
const row_ext_t* ext, /*!< in: externally stored column
|
|
prefixes, or NULL */
|
|
dict_index_t* index, /*!< in: index on the table */
|
|
mem_heap_t* heap, /*!< in: memory heap from which
|
|
the memory for the index entry
|
|
is allocated */
|
|
ulint flag) /*!< in: ROW_BUILD_NORMAL,
|
|
ROW_BUILD_FOR_PURGE
|
|
or ROW_BUILD_FOR_UNDO */
|
|
{
|
|
dtuple_t* entry;
|
|
ulint entry_len;
|
|
ulint i;
|
|
ulint num_v = 0;
|
|
|
|
entry_len = dict_index_get_n_fields(index);
|
|
|
|
if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) {
|
|
num_v = dict_table_get_n_v_cols(index->table);
|
|
entry = dtuple_create_with_vcol(heap, entry_len, num_v);
|
|
} else {
|
|
entry = dtuple_create(heap, entry_len);
|
|
}
|
|
|
|
if (dict_index_is_ibuf(index)) {
|
|
dtuple_set_n_fields_cmp(entry, entry_len);
|
|
/* There may only be externally stored columns
|
|
in a clustered index B-tree of a user table. */
|
|
ut_a(!ext);
|
|
} else {
|
|
dtuple_set_n_fields_cmp(
|
|
entry, dict_index_get_n_unique_in_tree(index));
|
|
}
|
|
|
|
for (i = 0; i < entry_len + num_v; i++) {
|
|
const dict_field_t* ind_field = NULL;
|
|
const dict_col_t* col;
|
|
ulint col_no = 0;
|
|
dfield_t* dfield;
|
|
const dfield_t* dfield2;
|
|
ulint len;
|
|
|
|
if (i >= entry_len) {
|
|
/* This is to insert new rows to cluster index */
|
|
ut_ad(dict_index_is_clust(index)
|
|
&& flag == ROW_BUILD_FOR_INSERT);
|
|
dfield = dtuple_get_nth_v_field(entry, i - entry_len);
|
|
col = &dict_table_get_nth_v_col(
|
|
index->table, i - entry_len)->m_col;
|
|
|
|
} else {
|
|
ind_field = dict_index_get_nth_field(index, i);
|
|
col = ind_field->col;
|
|
col_no = dict_col_get_no(col);
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
}
|
|
#if DATA_MISSING != 0
|
|
# error "DATA_MISSING != 0"
|
|
#endif
|
|
|
|
if (dict_col_is_virtual(col)) {
|
|
const dict_v_col_t* v_col
|
|
= reinterpret_cast<const dict_v_col_t*>(col);
|
|
|
|
ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
|
|
dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);
|
|
|
|
ut_ad(dfield_is_null(dfield2) ||
|
|
dfield_get_len(dfield2) == 0 || dfield2->data);
|
|
} else {
|
|
dfield2 = dtuple_get_nth_field(row, col_no);
|
|
ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING
|
|
|| (!(dfield_get_type(dfield2)->prtype
|
|
& DATA_VIRTUAL)));
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype
|
|
== DATA_MISSING)) {
|
|
/* The field has not been initialized in the row.
|
|
This should be from trx_undo_rec_get_partial_row(). */
|
|
return(NULL);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL
|
|
&& dict_index_is_clust(index)) {
|
|
ut_ad(flag == ROW_BUILD_FOR_INSERT);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* Special handle spatial index, set the first field
|
|
which is for store MBR. */
|
|
if (dict_index_is_spatial(index) && i == 0) {
|
|
double* mbr;
|
|
|
|
dfield_copy(dfield, dfield2);
|
|
dfield->type.prtype |= DATA_GIS_MBR;
|
|
|
|
/* Allocate memory for mbr field */
|
|
ulint mbr_len = DATA_MBR_LEN;
|
|
mbr = static_cast<double*>(mem_heap_alloc(heap, mbr_len));
|
|
|
|
/* Set mbr field data. */
|
|
dfield_set_data(dfield, mbr, mbr_len);
|
|
|
|
if (dfield2->data) {
|
|
const uchar* dptr = NULL;
|
|
ulint dlen = 0;
|
|
ulint flen = 0;
|
|
double tmp_mbr[SPDIMS * 2];
|
|
mem_heap_t* temp_heap = NULL;
|
|
|
|
if (dfield_is_ext(dfield2)) {
|
|
if (flag == ROW_BUILD_FOR_PURGE) {
|
|
const byte* ptr = NULL;
|
|
|
|
spatial_status_t spatial_status;
|
|
spatial_status =
|
|
dfield_get_spatial_status(
|
|
dfield2);
|
|
|
|
switch (spatial_status) {
|
|
case SPATIAL_ONLY:
|
|
ptr = static_cast<const byte*>(
|
|
dfield_get_data(
|
|
dfield2));
|
|
ut_ad(dfield_get_len(dfield2)
|
|
== DATA_MBR_LEN);
|
|
break;
|
|
|
|
case SPATIAL_MIXED:
|
|
ptr = static_cast<const byte*>(
|
|
dfield_get_data(
|
|
dfield2))
|
|
+ dfield_get_len(
|
|
dfield2);
|
|
break;
|
|
|
|
case SPATIAL_UNKNOWN:
|
|
ut_ad(0);
|
|
/* fall through */
|
|
case SPATIAL_NONE:
|
|
/* Undo record is logged before
|
|
spatial index is created.*/
|
|
return(NULL);
|
|
}
|
|
|
|
memcpy(mbr, ptr, DATA_MBR_LEN);
|
|
continue;
|
|
}
|
|
|
|
if (flag == ROW_BUILD_FOR_UNDO
|
|
&& dict_table_get_format(index->table)
|
|
>= UNIV_FORMAT_B) {
|
|
/* For build entry for undo, and
|
|
the table is Barrcuda, we need
|
|
to skip the prefix data. */
|
|
flen = BTR_EXTERN_FIELD_REF_SIZE;
|
|
ut_ad(dfield_get_len(dfield2) >=
|
|
BTR_EXTERN_FIELD_REF_SIZE);
|
|
dptr = static_cast<const byte*>(
|
|
dfield_get_data(dfield2))
|
|
+ dfield_get_len(dfield2)
|
|
- BTR_EXTERN_FIELD_REF_SIZE;
|
|
} else {
|
|
flen = dfield_get_len(dfield2);
|
|
dptr = static_cast<const byte*>(
|
|
dfield_get_data(dfield2));
|
|
}
|
|
|
|
temp_heap = mem_heap_create(1000);
|
|
|
|
const page_size_t page_size
|
|
= (ext != NULL)
|
|
? ext->page_size
|
|
: dict_table_page_size(
|
|
index->table);
|
|
|
|
dptr = btr_copy_externally_stored_field(
|
|
&dlen, dptr,
|
|
page_size,
|
|
flen,
|
|
temp_heap);
|
|
} else {
|
|
dptr = static_cast<const uchar*>(
|
|
dfield_get_data(dfield2));
|
|
dlen = dfield_get_len(dfield2);
|
|
|
|
}
|
|
|
|
if (dlen <= GEO_DATA_HEADER_SIZE) {
|
|
for (uint i = 0; i < SPDIMS; ++i) {
|
|
tmp_mbr[i * 2] = DBL_MAX;
|
|
tmp_mbr[i * 2 + 1] = -DBL_MAX;
|
|
}
|
|
} else {
|
|
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
|
|
static_cast<uint>(dlen
|
|
- GEO_DATA_HEADER_SIZE),
|
|
SPDIMS, tmp_mbr);
|
|
}
|
|
dfield_write_mbr(dfield, tmp_mbr);
|
|
if (temp_heap) {
|
|
mem_heap_free(temp_heap);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
len = dfield_get_len(dfield2);
|
|
|
|
dfield_copy(dfield, dfield2);
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
continue;
|
|
}
|
|
|
|
if ((!ind_field || ind_field->prefix_len == 0)
|
|
&& (!dfield_is_ext(dfield)
|
|
|| dict_index_is_clust(index))) {
|
|
/* The dfield_copy() above suffices for
|
|
columns that are stored in-page, or for
|
|
clustered index record columns that are not
|
|
part of a column prefix in the PRIMARY KEY,
|
|
or for virtaul columns in cluster index record. */
|
|
continue;
|
|
}
|
|
|
|
/* If the column is stored externally (off-page) in
|
|
the clustered index, it must be an ordering field in
|
|
the secondary index. In the Antelope format, only
|
|
prefix-indexed columns may be stored off-page in the
|
|
clustered index record. In the Barracuda format, also
|
|
fully indexed long CHAR or VARCHAR columns may be
|
|
stored off-page. */
|
|
ut_ad(col->ord_part);
|
|
|
|
if (ext && !col->is_virtual()) {
|
|
/* See if the column is stored externally. */
|
|
const byte* buf = row_ext_lookup(ext, col_no,
|
|
&len);
|
|
if (UNIV_LIKELY_NULL(buf)) {
|
|
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
|
|
return(NULL);
|
|
}
|
|
dfield_set_data(dfield, buf, len);
|
|
}
|
|
|
|
if (ind_field->prefix_len == 0) {
|
|
/* In the Barracuda format
|
|
(ROW_FORMAT=DYNAMIC or
|
|
ROW_FORMAT=COMPRESSED), we can have a
|
|
secondary index on an entire column
|
|
that is stored off-page in the
|
|
clustered index. As this is not a
|
|
prefix index (prefix_len == 0),
|
|
include the entire off-page column in
|
|
the secondary index record. */
|
|
continue;
|
|
}
|
|
} else if (dfield_is_ext(dfield)) {
|
|
/* This table is either in Antelope format
|
|
(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
|
|
or a purge record where the ordered part of
|
|
the field is not external.
|
|
In Antelope, the maximum column prefix
|
|
index length is 767 bytes, and the clustered
|
|
index record contains a 768-byte prefix of
|
|
each off-page column. */
|
|
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
dfield_set_len(dfield, len);
|
|
}
|
|
|
|
/* If a column prefix index, take only the prefix. */
|
|
if (ind_field->prefix_len) {
|
|
len = dtype_get_at_most_n_mbchars(
|
|
col->prtype, col->mbminlen, col->mbmaxlen,
|
|
ind_field->prefix_len, len,
|
|
static_cast<char*>(dfield_get_data(dfield)));
|
|
dfield_set_len(dfield, len);
|
|
}
|
|
}
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index, with possible indexing on ongoing
|
|
addition of new virtual columns.
|
|
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
|
|
@param[in] index clustered index
|
|
@param[in] rec record in the clustered index
|
|
@param[in] offsets rec_get_offsets(rec,index) or NULL
|
|
@param[in] col_table table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead
|
|
@param[in] add_cols default values of added columns, or NULL
|
|
@param[in] add_v new virtual columns added
|
|
along with new indexes
|
|
@param[in] col_map mapping of old column
|
|
numbers to new ones, or NULL
|
|
@param[in] ext cache of externally stored column
|
|
prefixes, or NULL
|
|
@param[in] heap memory heap from which
|
|
the memory needed is allocated
|
|
@return own: row built; */
|
|
static inline
|
|
dtuple_t*
|
|
row_build_low(
|
|
ulint type,
|
|
const dict_index_t* index,
|
|
const rec_t* rec,
|
|
const ulint* offsets,
|
|
const dict_table_t* col_table,
|
|
const dtuple_t* add_cols,
|
|
const dict_add_v_col_t* add_v,
|
|
const ulint* col_map,
|
|
row_ext_t** ext,
|
|
mem_heap_t* heap)
|
|
{
|
|
const byte* copy;
|
|
dtuple_t* row;
|
|
ulint n_ext_cols;
|
|
ulint* ext_cols = NULL; /* remove warning */
|
|
ulint len;
|
|
byte* buf;
|
|
ulint j;
|
|
mem_heap_t* tmp_heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(dict_index_is_clust(index));
|
|
ut_ad(!trx_sys_mutex_own());
|
|
ut_ad(!col_map || col_table);
|
|
|
|
if (!offsets) {
|
|
offsets = rec_get_offsets(rec, index, offsets_, true,
|
|
ULINT_UNDEFINED, &tmp_heap);
|
|
} else {
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
}
|
|
|
|
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
|
|
/* Some blob refs can be NULL during crash recovery before
|
|
trx_rollback_active() has completed execution, or when a concurrently
|
|
executing insert or update has committed the B-tree mini-transaction
|
|
but has not yet managed to restore the cursor position for writing
|
|
the big_rec. Note that the mini-transaction can be committed multiple
|
|
times, and the cursor restore can happen multiple times for single
|
|
insert or update statement. */
|
|
ut_a(!rec_offs_any_null_extern(rec, offsets)
|
|
|| trx_rw_is_active(row_get_rec_trx_id(rec, index, offsets),
|
|
NULL, false));
|
|
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
|
|
|
|
if (type != ROW_COPY_POINTERS) {
|
|
/* Take a copy of rec to heap */
|
|
buf = static_cast<byte*>(
|
|
mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
copy = rec_copy(buf, rec, offsets);
|
|
} else {
|
|
copy = rec;
|
|
}
|
|
|
|
n_ext_cols = rec_offs_n_extern(offsets);
|
|
if (n_ext_cols) {
|
|
ext_cols = static_cast<ulint*>(
|
|
mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
|
|
}
|
|
|
|
/* Avoid a debug assertion in rec_offs_validate(). */
|
|
rec_offs_make_valid(copy, index, const_cast<ulint*>(offsets));
|
|
|
|
if (!col_table) {
|
|
ut_ad(!col_map);
|
|
ut_ad(!add_cols);
|
|
col_table = index->table;
|
|
}
|
|
|
|
if (add_cols) {
|
|
ut_ad(col_map);
|
|
row = dtuple_copy(add_cols, heap);
|
|
/* dict_table_copy_types() would set the fields to NULL */
|
|
for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) {
|
|
dict_col_copy_type(
|
|
dict_table_get_nth_col(col_table, i),
|
|
dfield_get_type(dtuple_get_nth_field(row, i)));
|
|
}
|
|
} else if (add_v != NULL) {
|
|
row = dtuple_create_with_vcol(
|
|
heap, dict_table_get_n_cols(col_table),
|
|
dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
|
|
dict_table_copy_types(row, col_table);
|
|
|
|
for (ulint i = 0; i < add_v->n_v_col; i++) {
|
|
dict_col_copy_type(
|
|
&add_v->v_col[i].m_col,
|
|
dfield_get_type(dtuple_get_nth_v_field(
|
|
row, i + col_table->n_v_def)));
|
|
}
|
|
} else {
|
|
row = dtuple_create_with_vcol(
|
|
heap, dict_table_get_n_cols(col_table),
|
|
dict_table_get_n_v_cols(col_table));
|
|
dict_table_copy_types(row, col_table);
|
|
}
|
|
|
|
dtuple_set_info_bits(row, rec_get_info_bits(
|
|
copy, rec_offs_comp(offsets)));
|
|
|
|
j = 0;
|
|
|
|
for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
|
|
const dict_field_t* ind_field
|
|
= dict_index_get_nth_field(index, i);
|
|
|
|
if (ind_field->prefix_len) {
|
|
/* Column prefixes can only occur in key
|
|
fields, which cannot be stored externally. For
|
|
a column prefix, there should also be the full
|
|
field in the clustered index tuple. The row
|
|
tuple comprises full fields, not prefixes. */
|
|
ut_ad(!rec_offs_nth_extern(offsets, i));
|
|
continue;
|
|
}
|
|
|
|
const dict_col_t* col
|
|
= dict_field_get_col(ind_field);
|
|
ulint col_no
|
|
= dict_col_get_no(col);
|
|
|
|
if (col_map) {
|
|
col_no = col_map[col_no];
|
|
|
|
if (col_no == ULINT_UNDEFINED) {
|
|
/* dropped column */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
dfield_t* dfield = dtuple_get_nth_field(row, col_no);
|
|
|
|
const byte* field = rec_get_nth_field(
|
|
copy, offsets, i, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
if (rec_offs_nth_extern(offsets, i)) {
|
|
dfield_set_ext(dfield);
|
|
|
|
col = dict_table_get_nth_col(col_table, col_no);
|
|
|
|
if (col->ord_part) {
|
|
/* We will have to fetch prefixes of
|
|
externally stored columns that are
|
|
referenced by column prefixes. */
|
|
ext_cols[j++] = col_no;
|
|
}
|
|
}
|
|
}
|
|
|
|
rec_offs_make_valid(rec, index, const_cast<ulint*>(offsets));
|
|
|
|
ut_ad(dtuple_check_typed(row));
|
|
|
|
if (!ext) {
|
|
/* REDUNDANT and COMPACT formats store a local
|
|
768-byte prefix of each externally stored
|
|
column. No cache is needed.
|
|
|
|
During online table rebuild,
|
|
row_log_table_apply_delete_low()
|
|
may use a cache that was set up by
|
|
row_log_table_delete(). */
|
|
|
|
} else if (j) {
|
|
*ext = row_ext_create(j, ext_cols, index->table->flags, row,
|
|
heap);
|
|
} else {
|
|
*ext = NULL;
|
|
}
|
|
|
|
if (tmp_heap) {
|
|
mem_heap_free(tmp_heap);
|
|
}
|
|
|
|
return(row);
|
|
}
|
|
|
|
|
|
/*******************************************************************//**
|
|
An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index.
|
|
@return own: row built; see the NOTE below! */
|
|
dtuple_t*
|
|
row_build(
|
|
/*======*/
|
|
ulint type, /*!< in: ROW_COPY_POINTERS or
|
|
ROW_COPY_DATA; the latter
|
|
copies also the data fields to
|
|
heap while the first only
|
|
places pointers to data fields
|
|
on the index page, and thus is
|
|
more efficient */
|
|
const dict_index_t* index, /*!< in: clustered index */
|
|
const rec_t* rec, /*!< in: record in the clustered
|
|
index; NOTE: in the case
|
|
ROW_COPY_POINTERS the data
|
|
fields in the row will point
|
|
directly into this record,
|
|
therefore, the buffer page of
|
|
this record must be at least
|
|
s-latched and the latch held
|
|
as long as the row dtuple is used! */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec,index)
|
|
or NULL, in which case this function
|
|
will invoke rec_get_offsets() */
|
|
const dict_table_t* col_table,
|
|
/*!< in: table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead */
|
|
const dtuple_t* add_cols,
|
|
/*!< in: default values of
|
|
added columns, or NULL */
|
|
const ulint* col_map,/*!< in: mapping of old column
|
|
numbers to new ones, or NULL */
|
|
row_ext_t** ext, /*!< out, own: cache of
|
|
externally stored column
|
|
prefixes, or NULL */
|
|
mem_heap_t* heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
return(row_build_low(type, index, rec, offsets, col_table,
|
|
add_cols, NULL, col_map, ext, heap));
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index, with possible indexing on ongoing
|
|
addition of new virtual columns.
|
|
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
|
|
@param[in] index clustered index
|
|
@param[in] rec record in the clustered index
|
|
@param[in] offsets rec_get_offsets(rec,index) or NULL
|
|
@param[in] col_table table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead
|
|
@param[in] add_cols default values of added columns, or NULL
|
|
@param[in] add_v new virtual columns added
|
|
along with new indexes
|
|
@param[in] col_map mapping of old column
|
|
numbers to new ones, or NULL
|
|
@param[in] ext cache of externally stored column
|
|
prefixes, or NULL
|
|
@param[in] heap memory heap from which
|
|
the memory needed is allocated
|
|
@return own: row built; */
|
|
dtuple_t*
|
|
row_build_w_add_vcol(
|
|
ulint type,
|
|
const dict_index_t* index,
|
|
const rec_t* rec,
|
|
const ulint* offsets,
|
|
const dict_table_t* col_table,
|
|
const dtuple_t* add_cols,
|
|
const dict_add_v_col_t* add_v,
|
|
const ulint* col_map,
|
|
row_ext_t** ext,
|
|
mem_heap_t* heap)
|
|
{
|
|
return(row_build_low(type, index, rec, offsets, col_table,
|
|
add_cols, add_v, col_map, ext, heap));
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Converts an index record to a typed data tuple.
|
|
@return index entry built; does not set info_bits, and the data fields
|
|
in the entry will point directly to rec */
|
|
dtuple_t*
|
|
row_rec_to_index_entry_low(
|
|
/*=======================*/
|
|
const rec_t* rec, /*!< in: record in the index */
|
|
const dict_index_t* index, /*!< in: index */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
|
|
ulint* n_ext, /*!< out: number of externally
|
|
stored columns */
|
|
mem_heap_t* heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
dtuple_t* entry;
|
|
dfield_t* dfield;
|
|
ulint i;
|
|
const byte* field;
|
|
ulint len;
|
|
ulint rec_len;
|
|
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index != NULL);
|
|
|
|
/* Because this function may be invoked by row0merge.cc
|
|
on a record whose header is in different format, the check
|
|
rec_offs_validate(rec, index, offsets) must be avoided here. */
|
|
ut_ad(n_ext);
|
|
*n_ext = 0;
|
|
|
|
rec_len = rec_offs_n_fields(offsets);
|
|
|
|
entry = dtuple_create(heap, rec_len);
|
|
|
|
dtuple_set_n_fields_cmp(entry,
|
|
dict_index_get_n_unique_in_tree(index));
|
|
ut_ad(rec_len == dict_index_get_n_fields(index)
|
|
/* a record for older SYS_INDEXES table
|
|
(missing merge_threshold column) is acceptable. */
|
|
|| (index->table->id == DICT_INDEXES_ID
|
|
&& rec_len == dict_index_get_n_fields(index) - 1));
|
|
|
|
dict_index_copy_types(entry, index, rec_len);
|
|
|
|
for (i = 0; i < rec_len; i++) {
|
|
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
field = rec_get_nth_field(rec, offsets, i, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
if (rec_offs_nth_extern(offsets, i)) {
|
|
dfield_set_ext(dfield);
|
|
(*n_ext)++;
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(entry));
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Converts an index record to a typed data tuple. NOTE that externally
|
|
stored (often big) fields are NOT copied to heap.
|
|
@return own: index entry built */
|
|
dtuple_t*
|
|
row_rec_to_index_entry(
|
|
/*===================*/
|
|
const rec_t* rec, /*!< in: record in the index */
|
|
const dict_index_t* index, /*!< in: index */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec) */
|
|
ulint* n_ext, /*!< out: number of externally
|
|
stored columns */
|
|
mem_heap_t* heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
dtuple_t* entry;
|
|
byte* buf;
|
|
const rec_t* copy_rec;
|
|
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
/* Take a copy of rec to heap */
|
|
buf = static_cast<byte*>(
|
|
mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
copy_rec = rec_copy(buf, rec, offsets);
|
|
|
|
rec_offs_make_valid(copy_rec, index, const_cast<ulint*>(offsets));
|
|
entry = row_rec_to_index_entry_low(
|
|
copy_rec, index, offsets, n_ext, heap);
|
|
rec_offs_make_valid(rec, index, const_cast<ulint*>(offsets));
|
|
|
|
dtuple_set_info_bits(entry,
|
|
rec_get_info_bits(rec, rec_offs_comp(offsets)));
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Builds from a secondary index record a row reference with which we can
|
|
search the clustered index record.
|
|
@return own: row reference built; see the NOTE below! */
|
|
dtuple_t*
|
|
row_build_row_ref(
|
|
/*==============*/
|
|
ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
|
|
the former copies also the data fields to
|
|
heap, whereas the latter only places pointers
|
|
to data fields on the index page */
|
|
dict_index_t* index, /*!< in: secondary index */
|
|
const rec_t* rec, /*!< in: record in the index;
|
|
NOTE: in the case ROW_COPY_POINTERS
|
|
the data fields in the row will point
|
|
directly into this record, therefore,
|
|
the buffer page of this record must be
|
|
at least s-latched and the latch held
|
|
as long as the row reference is used! */
|
|
mem_heap_t* heap) /*!< in: memory heap from which the memory
|
|
needed is allocated */
|
|
{
|
|
dict_table_t* table;
|
|
dict_index_t* clust_index;
|
|
dfield_t* dfield;
|
|
dtuple_t* ref;
|
|
const byte* field;
|
|
ulint len;
|
|
ulint ref_len;
|
|
ulint pos;
|
|
byte* buf;
|
|
ulint clust_col_prefix_len;
|
|
ulint i;
|
|
mem_heap_t* tmp_heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &tmp_heap);
|
|
/* Secondary indexes must not contain externally stored columns. */
|
|
ut_ad(!rec_offs_any_extern(offsets));
|
|
|
|
if (type == ROW_COPY_DATA) {
|
|
/* Take a copy of rec to heap */
|
|
|
|
buf = static_cast<byte*>(
|
|
mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
rec = rec_copy(buf, rec, offsets);
|
|
/* Avoid a debug assertion in rec_offs_validate(). */
|
|
rec_offs_make_valid(rec, index, offsets);
|
|
}
|
|
|
|
table = index->table;
|
|
|
|
clust_index = dict_table_get_first_index(table);
|
|
|
|
ref_len = dict_index_get_n_unique(clust_index);
|
|
|
|
ref = dtuple_create(heap, ref_len);
|
|
|
|
dict_index_copy_types(ref, clust_index, ref_len);
|
|
|
|
for (i = 0; i < ref_len; i++) {
|
|
dfield = dtuple_get_nth_field(ref, i);
|
|
|
|
pos = dict_index_get_nth_field_pos(index, clust_index, i);
|
|
|
|
ut_a(pos != ULINT_UNDEFINED);
|
|
|
|
field = rec_get_nth_field(rec, offsets, pos, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
/* If the primary key contains a column prefix, then the
|
|
secondary index may contain a longer prefix of the same
|
|
column, or the full column, and we must adjust the length
|
|
accordingly. */
|
|
|
|
clust_col_prefix_len = dict_index_get_nth_field(
|
|
clust_index, i)->prefix_len;
|
|
|
|
if (clust_col_prefix_len > 0) {
|
|
if (len != UNIV_SQL_NULL) {
|
|
|
|
const dtype_t* dtype
|
|
= dfield_get_type(dfield);
|
|
|
|
dfield_set_len(dfield,
|
|
dtype_get_at_most_n_mbchars(
|
|
dtype->prtype,
|
|
dtype->mbminlen,
|
|
dtype->mbmaxlen,
|
|
clust_col_prefix_len,
|
|
len, (char*) field));
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
if (tmp_heap) {
|
|
mem_heap_free(tmp_heap);
|
|
}
|
|
|
|
return(ref);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Builds from a secondary index record a row reference with which we can
|
|
search the clustered index record. */
|
|
void
|
|
row_build_row_ref_in_tuple(
|
|
/*=======================*/
|
|
dtuple_t* ref, /*!< in/out: row reference built;
|
|
see the NOTE below! */
|
|
const rec_t* rec, /*!< in: record in the index;
|
|
NOTE: the data fields in ref
|
|
will point directly into this
|
|
record, therefore, the buffer
|
|
page of this record must be at
|
|
least s-latched and the latch
|
|
held as long as the row
|
|
reference is used! */
|
|
const dict_index_t* index, /*!< in: secondary index */
|
|
ulint* offsets,/*!< in: rec_get_offsets(rec, index)
|
|
or NULL */
|
|
trx_t* trx) /*!< in: transaction */
|
|
{
|
|
const dict_index_t* clust_index;
|
|
dfield_t* dfield;
|
|
const byte* field;
|
|
ulint len;
|
|
ulint ref_len;
|
|
ulint pos;
|
|
ulint clust_col_prefix_len;
|
|
ulint i;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
ut_a(index->table);
|
|
|
|
clust_index = dict_table_get_first_index(index->table);
|
|
ut_ad(clust_index);
|
|
|
|
if (!offsets) {
|
|
offsets = rec_get_offsets(rec, index, offsets_, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
} else {
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
}
|
|
|
|
/* Secondary indexes must not contain externally stored columns. */
|
|
ut_ad(!rec_offs_any_extern(offsets));
|
|
ref_len = dict_index_get_n_unique(clust_index);
|
|
|
|
ut_ad(ref_len == dtuple_get_n_fields(ref));
|
|
|
|
dict_index_copy_types(ref, clust_index, ref_len);
|
|
|
|
for (i = 0; i < ref_len; i++) {
|
|
dfield = dtuple_get_nth_field(ref, i);
|
|
|
|
pos = dict_index_get_nth_field_pos(index, clust_index, i);
|
|
|
|
ut_a(pos != ULINT_UNDEFINED);
|
|
|
|
field = rec_get_nth_field(rec, offsets, pos, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
/* If the primary key contains a column prefix, then the
|
|
secondary index may contain a longer prefix of the same
|
|
column, or the full column, and we must adjust the length
|
|
accordingly. */
|
|
|
|
clust_col_prefix_len = dict_index_get_nth_field(
|
|
clust_index, i)->prefix_len;
|
|
|
|
if (clust_col_prefix_len > 0) {
|
|
if (len != UNIV_SQL_NULL) {
|
|
|
|
const dtype_t* dtype
|
|
= dfield_get_type(dfield);
|
|
|
|
dfield_set_len(dfield,
|
|
dtype_get_at_most_n_mbchars(
|
|
dtype->prtype,
|
|
dtype->mbminlen,
|
|
dtype->mbmaxlen,
|
|
clust_col_prefix_len,
|
|
len, (char*) field));
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
}
|
|
|
|
/***************************************************************//**
|
|
Searches the clustered index record for a row, if we have the row reference.
|
|
@return TRUE if found */
|
|
ibool
|
|
row_search_on_row_ref(
|
|
/*==================*/
|
|
btr_pcur_t* pcur, /*!< out: persistent cursor, which must
|
|
be closed by the caller */
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
const dict_table_t* table, /*!< in: table */
|
|
const dtuple_t* ref, /*!< in: row reference */
|
|
mtr_t* mtr) /*!< in/out: mtr */
|
|
{
|
|
ulint low_match;
|
|
rec_t* rec;
|
|
dict_index_t* index;
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
|
|
index = dict_table_get_first_index(table);
|
|
|
|
ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));
|
|
|
|
if (btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr)
|
|
!= DB_SUCCESS) {
|
|
return FALSE;
|
|
}
|
|
|
|
low_match = btr_pcur_get_low_match(pcur);
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
if (low_match != dtuple_get_n_fields(ref)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Fetches the clustered index record for a secondary index record. The latches
|
|
on the secondary index record are preserved.
|
|
@return record or NULL, if no record found */
|
|
rec_t*
|
|
row_get_clust_rec(
|
|
/*==============*/
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
const rec_t* rec, /*!< in: record in a secondary index */
|
|
dict_index_t* index, /*!< in: secondary index */
|
|
dict_index_t** clust_index,/*!< out: clustered index */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
mem_heap_t* heap;
|
|
dtuple_t* ref;
|
|
dict_table_t* table;
|
|
btr_pcur_t pcur;
|
|
ibool found;
|
|
rec_t* clust_rec;
|
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
table = index->table;
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
|
|
|
|
found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
|
|
|
|
clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;
|
|
|
|
mem_heap_free(heap);
|
|
|
|
btr_pcur_close(&pcur);
|
|
|
|
*clust_index = dict_table_get_first_index(table);
|
|
|
|
return(clust_rec);
|
|
}
|
|
|
|
/***************************************************************//**
|
|
Searches an index record.
|
|
@return whether the record was found or buffered */
|
|
enum row_search_result
|
|
row_search_index_entry(
|
|
/*===================*/
|
|
dict_index_t* index, /*!< in: index */
|
|
const dtuple_t* entry, /*!< in: index entry */
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
btr_pcur_t* pcur, /*!< in/out: persistent cursor, which must
|
|
be closed by the caller */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
ulint n_fields;
|
|
ulint low_match;
|
|
rec_t* rec;
|
|
|
|
ut_ad(dtuple_check_typed(entry));
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE);
|
|
rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE,
|
|
mode, pcur, mtr);
|
|
} else {
|
|
btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
|
|
}
|
|
|
|
switch (btr_pcur_get_btr_cur(pcur)->flag) {
|
|
case BTR_CUR_DELETE_REF:
|
|
ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index));
|
|
return(ROW_NOT_DELETED_REF);
|
|
|
|
case BTR_CUR_DEL_MARK_IBUF:
|
|
case BTR_CUR_DELETE_IBUF:
|
|
case BTR_CUR_INSERT_TO_IBUF:
|
|
return(ROW_BUFFERED);
|
|
|
|
case BTR_CUR_HASH:
|
|
case BTR_CUR_HASH_FAIL:
|
|
case BTR_CUR_BINARY:
|
|
break;
|
|
}
|
|
|
|
low_match = btr_pcur_get_low_match(pcur);
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
n_fields = dtuple_get_n_fields(entry);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
|
|
return(ROW_NOT_FOUND);
|
|
} else if (low_match != n_fields) {
|
|
|
|
return(ROW_NOT_FOUND);
|
|
}
|
|
|
|
return(ROW_FOUND);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Formats the raw data in "data" (in InnoDB on-disk format) that is of
|
|
type DATA_INT using "prtype" and writes the result to "buf".
|
|
If the data is in unknown format, then nothing is written to "buf",
|
|
0 is returned and "format_in_hex" is set to TRUE, otherwise
|
|
"format_in_hex" is left untouched.
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always '\0'-terminated (provided buf_size > 0) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating '\0').
|
|
@return number of bytes that were written */
|
|
static
|
|
ulint
|
|
row_raw_format_int(
|
|
/*===============*/
|
|
const char* data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
ulint prtype, /*!< in: precise type */
|
|
char* buf, /*!< out: output buffer */
|
|
ulint buf_size, /*!< in: output buffer size
|
|
in bytes */
|
|
ibool* format_in_hex) /*!< out: should the data be
|
|
formated in hex */
|
|
{
|
|
ulint ret;
|
|
|
|
if (data_len <= sizeof(ib_uint64_t)) {
|
|
|
|
ib_uint64_t value;
|
|
ibool unsigned_type = prtype & DATA_UNSIGNED;
|
|
|
|
value = mach_read_int_type(
|
|
(const byte*) data, data_len, unsigned_type);
|
|
|
|
ret = snprintf(
|
|
buf, buf_size,
|
|
unsigned_type ? "%llu" : "%lld", (longlong) value)+1;
|
|
} else {
|
|
|
|
*format_in_hex = TRUE;
|
|
ret = 0;
|
|
}
|
|
|
|
return(ut_min(ret, buf_size));
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Formats the raw data in "data" (in InnoDB on-disk format) that is of
|
|
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
|
|
result to "buf".
|
|
If the data is in binary format, then nothing is written to "buf",
|
|
0 is returned and "format_in_hex" is set to TRUE, otherwise
|
|
"format_in_hex" is left untouched.
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always '\0'-terminated (provided buf_size > 0) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating '\0').
|
|
@return number of bytes that were written */
|
|
static
|
|
ulint
|
|
row_raw_format_str(
|
|
/*===============*/
|
|
const char* data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
ulint prtype, /*!< in: precise type */
|
|
char* buf, /*!< out: output buffer */
|
|
ulint buf_size, /*!< in: output buffer size
|
|
in bytes */
|
|
ibool* format_in_hex) /*!< out: should the data be
|
|
formated in hex */
|
|
{
|
|
ulint charset_coll;
|
|
|
|
if (buf_size == 0) {
|
|
|
|
return(0);
|
|
}
|
|
|
|
/* we assume system_charset_info is UTF-8 */
|
|
|
|
charset_coll = dtype_get_charset_coll(prtype);
|
|
|
|
if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
|
|
|
|
return(ut_str_sql_format(data, data_len, buf, buf_size));
|
|
}
|
|
/* else */
|
|
|
|
if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
|
|
|
|
*format_in_hex = TRUE;
|
|
return(0);
|
|
}
|
|
/* else */
|
|
|
|
return(innobase_raw_format(data, data_len, charset_coll,
|
|
buf, buf_size));
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Formats the raw data in "data" (in InnoDB on-disk format) using
|
|
"dict_field" and writes the result to "buf".
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always NUL-terminated (provided buf_size is positive) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating NUL).
|
|
@return number of bytes that were written */
|
|
ulint
|
|
row_raw_format(
|
|
/*===========*/
|
|
const char* data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
const dict_field_t* dict_field, /*!< in: index field */
|
|
char* buf, /*!< out: output buffer */
|
|
ulint buf_size) /*!< in: output buffer size
|
|
in bytes */
|
|
{
|
|
ulint mtype;
|
|
ulint prtype;
|
|
ulint ret;
|
|
ibool format_in_hex;
|
|
|
|
if (buf_size == 0) {
|
|
|
|
return(0);
|
|
}
|
|
|
|
if (data_len == UNIV_SQL_NULL) {
|
|
|
|
ret = snprintf((char*) buf, buf_size, "NULL") + 1;
|
|
|
|
return(ut_min(ret, buf_size));
|
|
}
|
|
|
|
mtype = dict_field->col->mtype;
|
|
prtype = dict_field->col->prtype;
|
|
|
|
format_in_hex = FALSE;
|
|
|
|
switch (mtype) {
|
|
case DATA_INT:
|
|
|
|
ret = row_raw_format_int(data, data_len, prtype,
|
|
buf, buf_size, &format_in_hex);
|
|
if (format_in_hex) {
|
|
|
|
goto format_in_hex;
|
|
}
|
|
break;
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
case DATA_MYSQL:
|
|
case DATA_VARMYSQL:
|
|
|
|
ret = row_raw_format_str(data, data_len, prtype,
|
|
buf, buf_size, &format_in_hex);
|
|
if (format_in_hex) {
|
|
|
|
goto format_in_hex;
|
|
}
|
|
|
|
break;
|
|
/* XXX support more data types */
|
|
default:
|
|
format_in_hex:
|
|
|
|
if (UNIV_LIKELY(buf_size > 2)) {
|
|
|
|
memcpy(buf, "0x", 2);
|
|
buf += 2;
|
|
buf_size -= 2;
|
|
ret = 2 + ut_raw_to_hex(data, data_len,
|
|
buf, buf_size);
|
|
} else {
|
|
|
|
buf[0] = '\0';
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
return(ret);
|
|
}
|
|
|
|
#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT
|
|
|
|
#ifdef HAVE_UT_CHRONO_T
|
|
|
|
void
|
|
test_row_raw_format_int()
|
|
{
|
|
ulint ret;
|
|
char buf[128];
|
|
ibool format_in_hex;
|
|
ulint i;
|
|
|
|
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
|
|
ret_expected, buf_expected, format_in_hex_expected)\
|
|
do {\
|
|
ibool ok = TRUE;\
|
|
ulint i;\
|
|
memset(buf, 'x', 10);\
|
|
buf[10] = '\0';\
|
|
format_in_hex = FALSE;\
|
|
fprintf(stderr, "TESTING \"\\x");\
|
|
for (i = 0; i < data_len; i++) {\
|
|
fprintf(stderr, "%02hhX", data[i]);\
|
|
}\
|
|
fprintf(stderr, "\", %lu, %lu, %lu\n",\
|
|
(ulint) data_len, (ulint) prtype,\
|
|
(ulint) buf_size);\
|
|
ret = row_raw_format_int(data, data_len, prtype,\
|
|
buf, buf_size, &format_in_hex);\
|
|
if (ret != ret_expected) {\
|
|
fprintf(stderr, "expected ret %lu, got %lu\n",\
|
|
(ulint) ret_expected, ret);\
|
|
ok = FALSE;\
|
|
}\
|
|
if (strcmp((char*) buf, buf_expected) != 0) {\
|
|
fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
|
|
buf_expected, buf);\
|
|
ok = FALSE;\
|
|
}\
|
|
if (format_in_hex != format_in_hex_expected) {\
|
|
fprintf(stderr, "expected format_in_hex %d, got %d\n",\
|
|
(int) format_in_hex_expected,\
|
|
(int) format_in_hex);\
|
|
ok = FALSE;\
|
|
}\
|
|
if (ok) {\
|
|
fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
|
|
(ulint) ret, buf, (int) format_in_hex);\
|
|
} else {\
|
|
return;\
|
|
}\
|
|
} while (0)
|
|
|
|
#if 1
|
|
/* min values for signed 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\x00", 1, 0,
|
|
buf, sizeof(buf), 5, "-128", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00", 2, 0,
|
|
buf, sizeof(buf), 7, "-32768", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00", 3, 0,
|
|
buf, sizeof(buf), 9, "-8388608", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
|
|
buf, sizeof(buf), 12, "-2147483648", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
|
|
buf, sizeof(buf), 14, "-549755813888", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
|
|
buf, sizeof(buf), 17, "-140737488355328", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
|
|
buf, sizeof(buf), 19, "-36028797018963968", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
|
|
buf, sizeof(buf), 21, "-9223372036854775808", 0);
|
|
|
|
/* min values for unsigned 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
/* max values for signed 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\xFF", 1, 0,
|
|
buf, sizeof(buf), 4, "127", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF", 2, 0,
|
|
buf, sizeof(buf), 6, "32767", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
|
|
buf, sizeof(buf), 8, "8388607", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
|
|
buf, sizeof(buf), 11, "2147483647", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
|
|
buf, sizeof(buf), 13, "549755813887", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
|
|
buf, sizeof(buf), 16, "140737488355327", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
|
|
buf, sizeof(buf), 18, "36028797018963967", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
|
|
buf, sizeof(buf), 20, "9223372036854775807", 0);
|
|
|
|
/* max values for unsigned 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 4, "255", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "65535", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 9, "16777215", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 11, "4294967295", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 14, "1099511627775", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 16, "281474976710655", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 18, "72057594037927935", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 21, "18446744073709551615", 0);
|
|
|
|
/* some random values */
|
|
|
|
CALL_AND_TEST("\x52", 1, 0,
|
|
buf, sizeof(buf), 4, "-46", 0);
|
|
|
|
CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 3, "14", 0);
|
|
|
|
CALL_AND_TEST("\x62\xCE", 2, 0,
|
|
buf, sizeof(buf), 6, "-7474", 0);
|
|
|
|
CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "10710", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
|
|
buf, sizeof(buf), 5, "-112", 0);
|
|
|
|
CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "41238", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
|
|
buf, sizeof(buf), 3, "-9", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 3, "92", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
|
|
buf, sizeof(buf), 6, "-9117", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "91234", 0);
|
|
#endif
|
|
|
|
/* speed test */
|
|
|
|
ut_chrono_t ch(__func__);
|
|
|
|
for (i = 0; i < 1000000; i++) {
|
|
row_raw_format_int("\x23", 1,
|
|
0, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
row_raw_format_int("\x23", 1,
|
|
DATA_UNSIGNED, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
|
|
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
|
|
0, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
|
|
DATA_UNSIGNED, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
}
|
|
}
|
|
|
|
#endif /* HAVE_UT_CHRONO_T */
|
|
|
|
#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */
|