mariadb/sql/json_table.cc
Monty b66cdbd1ea Changing all cost calculation to be given in milliseconds
This makes it easier to compare different costs and also allows
the optimizer to optimizer different storage engines more reliably.

- Added tests/check_costs.pl, a tool to verify optimizer cost calculations.
  - Most engine costs has been found with this program. All steps to
    calculate the new costs are documented in Docs/optimizer_costs.txt

- User optimizer_cost variables are given in microseconds (as individual
  costs can be very small). Internally they are stored in ms.
- Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost
  (9 ms) to common SSD cost (400MB/sec).
- Removed cost calculations for hard disks (rotation etc).
- Changed the following handler functions to return IO_AND_CPU_COST.
  This makes it easy to apply different cost modifiers in ha_..time()
  functions for io and cpu costs.
  - scan_time()
  - rnd_pos_time() & rnd_pos_call_time()
  - keyread_time()
- Enhanched keyread_time() to calculate the full cost of reading of a set
  of keys with a given number of ranges and optional number of blocks that
  need to be accessed.
- Removed read_time() as keyread_time() + rnd_pos_time() can do the same
  thing and more.
- Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks.
  Used heap table costs for json_table. The rest are using default engine
  costs.
- Added the following new optimizer variables:
  - optimizer_disk_read_ratio
  - optimizer_disk_read_cost
  - optimizer_key_lookup_cost
  - optimizer_row_lookup_cost
  - optimizer_row_next_find_cost
  - optimizer_scan_cost
- Moved all engine specific cost to OPTIMIZER_COSTS structure.
- Changed costs to use 'records_out' instead of 'records_read' when
  recalculating costs.
- Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h.
  This allows one to change costs without having to compile a lot of
  files.
- Updated costs for filter lookup.
- Use a better cost estimate in best_extension_by_limited_search()
  for the sorting cost.
- Fixed previous issues with 'filtered' explain column as we are now
  using 'records_out' (min rows seen for table) to calculate filtering.
  This greatly simplifies the filtering code in
  JOIN_TAB::save_explain_data().

This change caused a lot of queries to be optimized differently than
before, which exposed different issues in the optimizer that needs to
be fixed.  These fixes are in the following commits.  To not have to
change the same test case over and over again, the changes in the test
cases are done in a single commit after all the critical change sets
are done.

InnoDB changes:
- Updated InnoDB to not divide big range cost with 2.
- Added cost for InnoDB (innobase_update_optimizer_costs()).
- Don't mark clustered primary key with HA_KEYREAD_ONLY. This will
  prevent that the optimizer is trying to use index-only scans on
  the clustered key.
- Disabled ha_innobase::scan_time() and ha_innobase::read_time() and
  ha_innobase::rnd_pos_time() as the default engine cost functions now
  works good for InnoDB.

Other things:
- Added  --show-query-costs (\Q) option to mysql.cc to show the query
  cost after each query (good when working with query costs).
- Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust
  the value that user is given. This is used to change cost from
  microseconds (user input) to milliseconds (what the server is
  internally using).
- Added include/my_tracker.h  ; Useful include file to quickly test
  costs of a function.
- Use handler::set_table() in all places instead of 'table= arg'.
- Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and
  shown in microseconds for the user but stored as milliseconds.
  This is to make the numbers easier to read for the user (less
  pre-zeros).  Implemented in 'Sys_var_optimizer_cost' class.
- In test_quick_select() do not use index scans if 'no_keyread' is set
  for the table. This is what we do in other places of the server.
- Added THD parameter to Unique::get_use_cost() and
  check_index_intersect_extension() and similar functions to be able
  to provide costs to called functions.
- Changed 'records' to 'rows' in optimizer_trace.
- Write more information to optimizer_trace.
- Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3)
  to calculate usage space of keys in b-trees. (Before we used numeric
  constants).
- Removed code that assumed that b-trees has similar costs as binary
  trees. Replaced with engine calls that returns the cost.
- Added Bitmap::find_first_bit()
- Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia).
- Added records_init and records_after_filter to POSITION to remember
  more of what best_access_patch() calculates.
- table_after_join_selectivity() changed to recalculate 'records_out'
  based on the new fields from best_access_patch()

Bug fixes:
- Some queries did not update last_query_cost (was 0). Fixed by moving
  setting thd->...last_query_cost in JOIN::optimize().
- Write '0' as number of rows for const tables with a matching row.

Some internals:
- Engine cost are stored in OPTIMIZER_COSTS structure.  When a
  handlerton is created, we also created a new cost variable for the
  handlerton. We also create a new variable if the user changes a
  optimizer cost for a not yet loaded handlerton either with command
  line arguments or with SET
  @@global.engine.optimizer_cost_variable=xx.
- There are 3 global OPTIMIZER_COSTS variables:
  default_optimizer_costs   The default costs + changes from the
                            command line without an engine specifier.
  heap_optimizer_costs      Heap table costs, used for temporary tables
  tmp_table_optimizer_costs The cost for the default on disk internal
                            temporary table (MyISAM or Aria)
- The engine cost for a table is stored in table_share. To speed up
  accesses the handler has a pointer to this. The cost is copied
  to the table on first access. If one wants to change the cost one
  must first update the global engine cost and then do a FLUSH TABLES.
  This was done to be able to access the costs for an open table
  without any locks.
- When a handlerton is created, the cost are updated the following way:
  See sql/keycaches.cc for details:
  - Use 'default_optimizer_costs' as a base
  - Call hton->update_optimizer_costs() to override with the engines
    default costs.
  - Override the costs that the user has specified for the engine.
  - One handler open, copy the engine cost from handlerton to TABLE_SHARE.
  - Call handler::update_optimizer_costs() to allow the engine to update
    cost for this particular table.
  - There are two costs stored in THD. These are copied to the handler
    when the table is used in a query:
    - optimizer_where_cost
    - optimizer_scan_setup_cost
- Simply code in best_access_path() by storing all cost result in a
  structure. (Idea/Suggestion by Igor)
2023-02-02 23:54:45 +03:00

1482 lines
42 KiB
C++

/*
Copyright (c) 2020, MariaDB Corporation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA
*/
#include "mariadb.h"
#include "sql_priv.h"
#include "sql_class.h" /* TMP_TABLE_PARAM */
#include "table.h"
#include "sql_type_json.h"
#include "item_jsonfunc.h"
#include "json_table.h"
#include "sql_show.h"
#include "sql_select.h"
#include "create_tmp_table.h"
#include "sql_parse.h"
#define HA_ERR_JSON_TABLE (HA_ERR_LAST+1)
/*
Allocating memory and *also* using it (reading and
writing from it) because some build instructions cause
compiler to optimize out stack_used_up. Since alloca()
here depends on stack_used_up, it doesnt get executed
correctly and causes json_debug_nonembedded to fail
( --error ER_STACK_OVERRUN_NEED_MORE does not occur).
*/
#define ALLOCATE_MEM_ON_STACK(A) do \
{ \
uchar *array= (uchar*)alloca(A); \
array[0]= 1; \
array[0]++; \
array[0] ? array[0]++ : array[0]--; \
} while(0)
class table_function_handlerton
{
public:
handlerton m_hton;
table_function_handlerton()
{
bzero(&m_hton, sizeof(m_hton));
m_hton.tablefile_extensions= hton_no_exts;
m_hton.slot= HA_SLOT_UNDEF;
m_hton.flags= HTON_HIDDEN;
}
};
static table_function_handlerton table_function_hton;
/*
@brief
Collect a set of tables that a given table function cannot have
references to.
@param
table_func The table function we are connecting info for
join_list The nested join to be processed
disallowed_tables Collect the tables here.
@detail
According to the SQL standard, a table function can refer to any table
that's "preceding" it in the FROM clause.
The other limitation we would like to enforce is that the inner side of
an outer join cannot refer to the outer side. An example:
SELECT * from JSON_TABLE(t1.col, ...) left join t1 on ...
This function implements both of the above restrictions.
Basic idea: the "join_list" contains the tables in the order that's a
reverse of the order they were specified in the query.
If we walk the join_list, we will encounter:
1. First, the tables that table function cannot refer to (collect them in a
bitmap)
2. Then, the table function itself (put it in the bitmap, too, as self-
references are not allowed, and stop the walk)
3. Tables that the table function CAN refer to (we don't walk these as
we've stopped on step #2).
The above can be applied recursively for nested joins (this covers NATURAL
JOIN, and JOIN ... USING constructs).
Enforcing the "refer to only preceding tables" rule means that outer side
of LEFT JOIN cannot refer to the inner side.
Handing RIGHT JOINs: There are no RIGHT JOINs in the join_list data
structures. They were converted to LEFT JOINs (see calls to st_select_lex::
convert_right_join). This conversion changes the order of tables, but
we are ok with operating on the tables "in the left join order".
@return
0 - Continue
1 - Finish the process, success
-1 - Finish the process, failure
*/
static
int get_disallowed_table_deps_for_list(MEM_ROOT *mem_root,
TABLE_LIST *table_func,
List<TABLE_LIST> *join_list,
List<TABLE_LIST> *disallowed_tables)
{
TABLE_LIST *table;
NESTED_JOIN *nested_join;
List_iterator<TABLE_LIST> li(*join_list);
DBUG_EXECUTE_IF("json_check_min_stack_requirement",
{
long arbitrary_var;
long stack_used_up= (available_stack_size(current_thd->thread_stack, &arbitrary_var));
ALLOCATE_MEM_ON_STACK(my_thread_stack_size-stack_used_up-STACK_MIN_SIZE);
});
if (check_stack_overrun(current_thd, STACK_MIN_SIZE , NULL))
return 1;
while ((table= li++))
{
if ((nested_join= table->nested_join))
{
int res;
if ((res= get_disallowed_table_deps_for_list(mem_root, table_func,
&nested_join->join_list,
disallowed_tables)))
return res;
}
else
{
if (disallowed_tables->push_back(table, mem_root))
return -1;
if (table == table_func)
{
// This is the JSON_TABLE(...) that are we're computing dependencies
// for.
return 1; // Finish the processing
}
}
}
return 0; // Continue
}
/*
@brief
Given a join and a table function in it (specified by its table_func_bit),
produce a bitmap of tables that the table function can NOT have references
to.
@detail
See get_disallowed_table_deps_for_list
@return
NULL - Out of memory
Other - A list of tables that the function cannot have references to. May
be empty.
*/
static
List<TABLE_LIST>* get_disallowed_table_deps(MEM_ROOT *mem_root,
SELECT_LEX *select,
TABLE_LIST *table_func)
{
List<TABLE_LIST> *disallowed_tables;
if (!(disallowed_tables = new (mem_root) List<TABLE_LIST>))
return NULL;
int res= get_disallowed_table_deps_for_list(mem_root, table_func,
select->join_list,
disallowed_tables);
// The collection process must have finished
DBUG_ASSERT(res != 0);
if (res == -1)
return NULL; // Out of memory
return disallowed_tables;
}
/*
A table that produces output rows for JSON_TABLE().
*/
class ha_json_table: public handler
{
Table_function_json_table *m_jt;
String *m_js; // The JSON document we're reading
String m_tmps; // Buffer for the above
int fill_column_values(THD *thd, uchar * buf, uchar *pos);
public:
ha_json_table(TABLE_SHARE *share_arg, Table_function_json_table *jt):
handler(&table_function_hton.m_hton, share_arg), m_jt(jt)
{
/*
set the mark_trx_read_write_done to avoid the
handler::mark_trx_read_write_internal() call.
It relies on &ha_thd()->ha_data[ht->slot].ha_info[0] to be set.
But we don't set the ha_data for the ha_json_table, and
that call makes no sence for ha_json_table.
*/
mark_trx_read_write_done= 1;
/* See ha_json_table::position for format definition */
ref_length= m_jt->m_columns.elements * 4;
}
~ha_json_table() {}
handler *clone(const char *name, MEM_ROOT *mem_root) override { return NULL; }
/* Rows also use a fixed-size format */
enum row_type get_row_type() const override { return ROW_TYPE_FIXED; }
const char *table_type() const override
{
return "JSON_TABLE function";
}
ulonglong table_flags() const override
{
return (HA_FAST_KEY_READ | /*HA_NO_BLOBS |*/ HA_NULL_IN_KEY |
HA_CAN_SQL_HANDLER |
HA_REC_NOT_IN_SEQ | HA_NO_TRANSACTIONS |
HA_HAS_RECORDS);
}
ulong index_flags(uint inx, uint part, bool all_parts) const override
{
return HA_ONLY_WHOLE_INDEX | HA_KEY_SCAN_NOT_ROR;
}
ha_rows records() override { return HA_POS_ERROR; }
int open(const char *name, int mode, uint test_if_locked) override
{ return 0; }
int close(void) override { return 0; }
void update_optimizer_costs(OPTIMIZER_COSTS *costs)
{
memcpy(costs, &heap_optimizer_costs, sizeof(*costs));
}
int rnd_init(bool scan) override;
int rnd_next(uchar *buf) override;
int rnd_pos(uchar * buf, uchar *pos) override;
void position(const uchar *record) override;
int info(uint) override;
int extra(enum ha_extra_function operation) override { return 0; }
THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to,
enum thr_lock_type lock_type) override
{ return NULL; }
int create(const char *name, TABLE *form, HA_CREATE_INFO *create_info)
override { return 1; }
/* Give no message. */
bool get_error_message(int error, String *buf) override
{
buf->length(0);
return TRUE;
}
};
/*
Helper class that creates the temporary table that
represents the table function in the query.
*/
class Create_json_table final: public Create_tmp_table
{
public:
Create_json_table() :
Create_tmp_table((ORDER*) 0, 0, 0, 0, 0)
{}
virtual ~Create_json_table() {};
TABLE *start(THD *thd,
TMP_TABLE_PARAM *param,
Table_function_json_table *jt,
const LEX_CSTRING *table_alias);
bool choose_engine(THD *thd, TABLE *table, TMP_TABLE_PARAM *param) override
{
return 0; // Engine already choosen
}
bool add_json_table_fields(THD *thd, TABLE *table,
Table_function_json_table *jt);
bool finalize(THD *thd, TABLE *table, TMP_TABLE_PARAM *param,
Table_function_json_table *jt);
};
/*
@brief
Start scanning the JSON document in [str ... end]
@detail
Note: non-root nested paths are set to scan one JSON node (that is, a
"subdocument").
*/
void Json_table_nested_path::scan_start(CHARSET_INFO *i_cs,
const uchar *str, const uchar *end)
{
json_get_path_start(&m_engine, i_cs, str, end, &m_cur_path);
m_cur_nested= NULL;
m_null= false;
m_ordinality_counter= 0;
}
/*
@brief
Find the next JSON element that matches the search path.
*/
int Json_table_nested_path::scan_next()
{
bool no_records_found= false;
if (m_cur_nested)
{
for (;;)
{
if (m_cur_nested->scan_next() == 0)
return 0;
if (!(m_cur_nested= m_cur_nested->m_next_nested))
break;
handle_new_nested:
m_cur_nested->scan_start(m_engine.s.cs, m_engine.value_begin,
m_engine.s.str_end);
}
if (no_records_found)
return 0;
}
DBUG_ASSERT(!m_cur_nested);
while (!json_get_path_next(&m_engine, &m_cur_path))
{
if (json_path_compare(&m_path, &m_cur_path, m_engine.value_type,
NULL))
continue;
/* path found. */
++m_ordinality_counter;
if (!m_nested)
return 0;
m_cur_nested= m_nested;
no_records_found= true;
goto handle_new_nested;
}
m_null= true;
return 1;
}
int ha_json_table::rnd_init(bool scan)
{
Json_table_nested_path &p= m_jt->m_nested_path;
DBUG_ENTER("ha_json_table::rnd_init");
if ((m_js= m_jt->m_json->val_str(&m_tmps)))
{
p.scan_start(m_js->charset(),
(const uchar *) m_js->ptr(), (const uchar *) m_js->end());
}
DBUG_RETURN(0);
}
/*
@brief
Store JSON value in an SQL field, doing necessary special conversions
for JSON's null, true, and false.
*/
static void store_json_in_field(Field *f, const json_engine_t *je)
{
switch (je->value_type)
{
case JSON_VALUE_NULL:
f->set_null();
return;
case JSON_VALUE_TRUE:
case JSON_VALUE_FALSE:
{
Item_result rt= f->result_type();
if (rt == INT_RESULT || rt == DECIMAL_RESULT || rt == REAL_RESULT)
{
f->store(je->value_type == JSON_VALUE_TRUE, false);
return;
}
break;
}
default:
break;
};
f->store((const char *) je->value, (uint32) je->value_len, je->s.cs);
}
static int store_json_in_json(Field *f, json_engine_t *je)
{
const uchar *from= je->value_begin;
const uchar *to;
if (json_value_scalar(je))
to= je->value_end;
else
{
int error;
if ((error= json_skip_level(je)))
return error;
to= je->s.c_str;
}
f->store((const char *) from, (uint32) (to - from), je->s.cs);
return 0;
}
bool Json_table_nested_path::check_error(const char *str)
{
if (m_engine.s.error)
{
report_json_error_ex(str, &m_engine, "JSON_TABLE", 0,
Sql_condition::WARN_LEVEL_ERROR);
return true; // Error
}
return false; // Ok
}
int ha_json_table::rnd_next(uchar *buf)
{
if (!m_js)
return HA_ERR_END_OF_FILE;
/*
Step 1: Move the root nested path to the next record (this implies moving
its child nested paths accordingly)
*/
if (m_jt->m_nested_path.scan_next())
{
if (m_jt->m_nested_path.check_error(m_js->ptr()))
{
/*
We already reported an error, so returning an
error code that just doesn't produce extra
messages.
*/
return HA_ERR_JSON_TABLE;
}
return HA_ERR_END_OF_FILE;
}
/*
Step 2: Read values for all columns (the columns refer to nested paths
they are in).
*/
return fill_column_values(table->in_use, buf, NULL) ? HA_ERR_JSON_TABLE : 0;
}
/*
@brief
Fill values of table columns, taking data either from Json_nested_path
objects, or from the rowid value
@param pos NULL means the data should be read from Json_nested_path
objects.
Non-null value is a pointer to previously saved rowid (see
ha_json_table::position() for description)
*/
int ha_json_table::fill_column_values(THD *thd, uchar * buf, uchar *pos)
{
MY_BITMAP *orig_map= dbug_tmp_use_all_columns(table, &table->write_set);
int error= 0;
Counting_error_handler er_handler;
Field **f= table->field;
Json_table_column *jc;
List_iterator_fast<Json_table_column> jc_i(m_jt->m_columns);
my_ptrdiff_t ptrdiff= buf - table->record[0];
Abort_on_warning_instant_set ao_set(table->in_use, FALSE);
enum_check_fields cf_orig= table->in_use->count_cuted_fields;
table->in_use->count_cuted_fields= CHECK_FIELD_ERROR_FOR_NULL;
thd->push_internal_handler(&er_handler);
while (!error && (jc= jc_i++))
{
bool is_null_value;
uint int_pos= 0; /* just to make compilers happy. */
if (!bitmap_is_set(table->read_set, (*f)->field_index))
{
/*
If the RESPONSE_ERROR is set for the column, we have
to unpack it even if it's not in the read_set - to check
for possible errors.
*/
if (jc->m_on_empty.m_response != Json_table_column::RESPONSE_ERROR &&
jc->m_on_error.m_response != Json_table_column::RESPONSE_ERROR)
goto cont_loop;
}
(*f)->move_field_offset(ptrdiff);
/*
Read the NULL flag:
- if we are reading from a rowid value, 0 means SQL NULL.
- if scanning json document, read it from the nested path
*/
if (pos)
is_null_value= !(int_pos= uint4korr(pos));
else
is_null_value= jc->m_nest->m_null;
if (is_null_value)
{
(*f)->set_null();
}
else
{
(*f)->set_notnull();
switch (jc->m_column_type)
{
case Json_table_column::FOR_ORDINALITY:
{
/*
Read the cardinality counter:
- read it from nested path when scanning the json document
- or, read it from rowid when in rnd_pos() call
*/
longlong counter= pos? int_pos: jc->m_nest->m_ordinality_counter;
(*f)->store(counter, TRUE);
break;
}
case Json_table_column::PATH:
case Json_table_column::EXISTS_PATH:
{
json_engine_t je;
json_path_step_t *cur_step;
int array_counters[JSON_DEPTH_LIMIT];
int not_found;
const uchar* node_start;
const uchar* node_end;
/*
Get the JSON context node that we will need to evaluate PATH or
EXISTS against:
- when scanning the json document, read it from nested path
- when in rnd_pos call, the rowid has the start offset.
*/
if (pos)
{
node_start= (const uchar *) (m_js->ptr() + (int_pos-1));
node_end= (const uchar *) m_js->end();
}
else
{
node_start= jc->m_nest->get_value();
node_end= jc->m_nest->get_value_end();
}
json_scan_start(&je, m_js->charset(), node_start, node_end);
cur_step= jc->m_path.steps;
not_found= json_find_path(&je, &jc->m_path, &cur_step, array_counters) ||
json_read_value(&je);
if (jc->m_column_type == Json_table_column::EXISTS_PATH)
{
(*f)->store(!not_found);
}
else /*PATH*/
{
if (not_found)
{
error= jc->m_on_empty.respond(jc, *f, ER_JSON_TABLE_ERROR_ON_FIELD);
}
else
{
if (jc->m_format_json)
{
if (!(error= store_json_in_json(*f, &je)))
error= er_handler.errors;
}
else if (!(error= !json_value_scalar(&je)))
{
store_json_in_field(*f, &je);
error= er_handler.errors;
}
if (error)
{
error= jc->m_on_error.respond(jc, *f,
ER_JSON_TABLE_SCALAR_EXPECTED);
er_handler.errors= 0;
}
else
{
/*
If the path contains wildcards, check if there are
more matches for it in json and report an error if so.
*/
if (jc->m_path.types_used &
(JSON_PATH_WILD | JSON_PATH_DOUBLE_WILD |
JSON_PATH_ARRAY_RANGE) &&
(json_scan_next(&je) ||
!json_find_path(&je, &jc->m_path, &cur_step,
array_counters)))
{
error= jc->m_on_error.respond(jc, *f,
ER_JSON_TABLE_MULTIPLE_MATCHES);
}
}
}
}
break;
}
};
}
(*f)->move_field_offset(-ptrdiff);
cont_loop:
f++;
if (pos)
pos+= 4;
}
dbug_tmp_restore_column_map(&table->write_set, orig_map);
thd->pop_internal_handler();
thd->count_cuted_fields= cf_orig;
return error;
}
int ha_json_table::rnd_pos(uchar * buf, uchar *pos)
{
return fill_column_values(table->in_use, buf, pos) ? HA_ERR_JSON_TABLE : 0;
}
/*
The reference has 4 bytes for every column of the JSON_TABLE.
There it keeps 0 for the NULL values, ordinality index for
the ORDINALITY columns and the offset of the field's data in
the JSON for other column types.
*/
void ha_json_table::position(const uchar *record)
{
uchar *c_ref= ref;
Json_table_column *jc;
List_iterator_fast<Json_table_column> jc_i(m_jt->m_columns);
while ((jc= jc_i++))
{
if (jc->m_nest->m_null)
{
int4store(c_ref, 0);
}
else
{
switch (jc->m_column_type)
{
case Json_table_column::FOR_ORDINALITY:
int4store(c_ref, jc->m_nest->m_ordinality_counter);
break;
case Json_table_column::PATH:
case Json_table_column::EXISTS_PATH:
{
size_t pos= jc->m_nest->get_value() -
(const uchar *) m_js->ptr() + 1;
int4store(c_ref, pos);
break;
}
};
}
c_ref+= 4;
}
}
int ha_json_table::info(uint)
{
/*
We don't want 0 or 1 in stats.records.
Though this value shouldn't matter as the optimizer
supposed to use Table_function_json_table::get_estimates
to obtain this data.
*/
stats.records= 4;
return 0;
}
/**
Create a json table according to a field list.
@param thd thread handle
@param param a description used as input to create the table
@param jt json_table specificaion
@param table_alias alias
*/
TABLE *Create_json_table::start(THD *thd,
TMP_TABLE_PARAM *param,
Table_function_json_table *jt,
const LEX_CSTRING *table_alias)
{
TABLE *table;
TABLE_SHARE *share;
DBUG_ENTER("Create_json_table::start");
param->tmp_name= "json";
if (!(table= Create_tmp_table::start(thd, param, table_alias)))
DBUG_RETURN(0);
share= table->s;
share->not_usable_by_query_cache= FALSE;
share->db_plugin= NULL;
if (!(table->file= new (&table->mem_root) ha_json_table(share, jt)))
DBUG_RETURN(NULL);
table->file->init();
DBUG_RETURN(table);
}
bool Create_json_table::finalize(THD *thd, TABLE *table,
TMP_TABLE_PARAM *param,
Table_function_json_table *jt)
{
DBUG_ENTER("Create_json_table::finalize");
DBUG_ASSERT(table);
if (Create_tmp_table::finalize(thd, table, param, 1, 0))
DBUG_RETURN(true);
table->db_stat= HA_OPEN_KEYFILE;
if (unlikely(table->file->ha_open(table, table->s->path.str, O_RDWR,
HA_OPEN_TMP_TABLE | HA_OPEN_INTERNAL_TABLE)))
DBUG_RETURN(true);
table->set_created();
table->s->max_rows= ~(ha_rows) 0;
param->end_write_records= HA_POS_ERROR;
DBUG_RETURN(0);
}
/*
@brief
Read the JSON_TABLE's field definitions from @jt and add the fields to
table @table.
*/
bool Create_json_table::add_json_table_fields(THD *thd, TABLE *table,
Table_function_json_table *jt)
{
TABLE_SHARE *share= table->s;
Json_table_column *jc;
uint fieldnr= 0;
MEM_ROOT *mem_root_save= thd->mem_root;
List_iterator_fast<Json_table_column> jc_i(jt->m_columns);
Column_derived_attributes da(&my_charset_utf8mb4_general_ci);
DBUG_ENTER("add_json_table_fields");
thd->mem_root= &table->mem_root;
current_counter= other;
while ((jc= jc_i++))
{
Create_field *sql_f= jc->m_field;
List_iterator_fast<Json_table_column> it2(jt->m_columns);
Json_table_column *jc2;
/*
Initialize length from its original value (number of characters),
which was set in the parser. This is necessary if we're
executing a prepared statement for the second time.
*/
sql_f->length= sql_f->char_length;
if (sql_f->prepare_stage1(thd, thd->mem_root, table->file,
table->file->ha_table_flags(), &da))
goto err_exit;
while ((jc2= it2++) != jc)
{
if (lex_string_cmp(system_charset_info,
&sql_f->field_name, &jc2->m_field->field_name) == 0)
{
my_error(ER_DUP_FIELDNAME, MYF(0), sql_f->field_name.str);
goto err_exit;
}
}
it2.rewind();
}
jc_i.rewind();
while ((jc= jc_i++))
{
Create_field *sql_f= jc->m_field;
Record_addr addr(!(sql_f->flags & NOT_NULL_FLAG));
Bit_addr bit(addr.null());
uint uneven_delta;
sql_f->prepare_stage2(table->file, table->file->ha_table_flags());
if (!sql_f->charset)
sql_f->charset= &my_charset_utf8mb4_bin;
Field *f= sql_f->type_handler()->make_table_field_from_def(share,
thd->mem_root, &sql_f->field_name, addr, bit, sql_f, sql_f->flags);
if (!f)
goto err_exit;
f->init(table);
uneven_delta= m_uneven_bit_length;
add_field(table, f, fieldnr++, 0);
m_uneven_bit[current_counter]+= (m_uneven_bit_length - uneven_delta);
}
share->fields= fieldnr;
share->blob_fields= m_blob_count;
table->field[fieldnr]= 0; // End marker
share->blob_field[m_blob_count]= 0; // End marker
share->column_bitmap_size= bitmap_buffer_size(share->fields);
thd->mem_root= mem_root_save;
DBUG_RETURN(FALSE);
err_exit:
thd->mem_root= mem_root_save;
DBUG_RETURN(TRUE);
}
/*
@brief
Given a TABLE_LIST representing JSON_TABLE(...) syntax, create a temporary
table for it.
@detail
The temporary table will have:
- fields whose names/datatypes are specified in JSON_TABLE(...) syntax
- a ha_json_table as the storage engine.
The uses of the temporary table are:
- name resolution: the query may have references to the columns of
JSON_TABLE(...). A TABLE object will allow to resolve them.
- query execution: ha_json_table will produce JSON_TABLE's rows.
*/
TABLE *create_table_for_function(THD *thd, TABLE_LIST *sql_table)
{
TMP_TABLE_PARAM tp;
TABLE *table;
uint field_count= sql_table->table_function->m_columns.elements+1;
DBUG_ENTER("create_table_for_function");
tp.init();
tp.table_charset= system_charset_info;
tp.field_count= field_count;
{
Create_json_table maker;
if (!(table= maker.start(thd, &tp,
sql_table->table_function, &sql_table->alias)) ||
maker.add_json_table_fields(thd, table, sql_table->table_function) ||
maker.finalize(thd, table, &tp, sql_table->table_function))
{
if (table)
free_tmp_table(thd, table);
DBUG_RETURN(NULL);
}
}
sql_table->schema_table_name.length= 0;
my_bitmap_map* bitmaps=
(my_bitmap_map*) thd->alloc(bitmap_buffer_size(field_count));
my_bitmap_init(&table->def_read_set, (my_bitmap_map*) bitmaps, field_count);
table->read_set= &table->def_read_set;
bitmap_clear_all(table->read_set);
table->alias_name_used= true;
table->next= thd->derived_tables;
thd->derived_tables= table;
table->s->tmp_table= INTERNAL_TMP_TABLE;
table->grant.privilege= SELECT_ACL;
sql_table->table= table;
DBUG_RETURN(table);
}
int Json_table_column::set(THD *thd, enum_type ctype, const LEX_CSTRING &path,
CHARSET_INFO *cs)
{
set(ctype);
m_explicit_cs= cs;
if (json_path_setup(&m_path, thd->variables.collation_connection,
(const uchar *) path.str, (const uchar *)(path.str + path.length)))
{
report_path_error_ex(path.str, &m_path, "JSON_TABLE", 1,
Sql_condition::WARN_LEVEL_ERROR);
return 1;
}
/*
This is done so the ::print function can just print the path string.
Can be removed if we redo that function to print the path using it's
anctual content. Not sure though if we should.
*/
m_path.s.c_str= (const uchar *) path.str;
if (ctype == PATH)
m_format_json= m_field->type_handler() == &type_handler_long_blob_json;
return 0;
}
int Json_table_column::set(THD *thd, enum_type ctype, const LEX_CSTRING &path,
const Lex_column_charset_collation_attrs_st &cl)
{
if (cl.is_empty() || cl.is_contextually_typed_collate_default())
return set(thd, ctype, path, nullptr);
CHARSET_INFO *tmp;
if (!(tmp= cl.resolved_to_character_set(&my_charset_utf8mb4_general_ci)))
return 1;
return set(thd, ctype, path, tmp);
}
static int print_path(String *str, const json_path_t *p)
{
return str->append('\'') ||
str->append_for_single_quote((const char *) p->s.c_str,
p->s.str_end - p->s.c_str) ||
str->append('\'');
}
/*
Print the string representation of the Json_table_column.
@param thd - the thread
@param f - the remaining array of Field-s from the table
if the Json_table_column
@param str - the string where to print
*/
int Json_table_column::print(THD *thd, Field **f, String *str)
{
StringBuffer<MAX_FIELD_WIDTH> column_type(str->charset());
if (append_identifier(thd, str, &m_field->field_name) ||
str->append(' '))
return 1;
switch (m_column_type)
{
case FOR_ORDINALITY:
if (str->append(STRING_WITH_LEN("FOR ORDINALITY")))
return 1;
break;
case EXISTS_PATH:
case PATH:
{
static const LEX_CSTRING path= { STRING_WITH_LEN(" PATH ") };
static const LEX_CSTRING exists_path= { STRING_WITH_LEN(" EXISTS PATH ") };
(*f)->sql_type(column_type);
if (str->append(column_type) ||
((*f)->has_charset() && m_explicit_cs &&
(str->append(STRING_WITH_LEN(" CHARSET ")) ||
str->append(&m_explicit_cs->cs_name) ||
(Charset(m_explicit_cs).can_have_collate_clause() &&
(str->append(STRING_WITH_LEN(" COLLATE ")) ||
str->append(&m_explicit_cs->coll_name))))) ||
str->append(m_column_type == PATH ? &path : &exists_path) ||
print_path(str, &m_path))
return 1;
break;
}
};
if (m_on_empty.print("EMPTY", str) ||
m_on_error.print("ERROR", str))
return 1;
return 0;
}
int Json_table_nested_path::set_path(THD *thd, const LEX_CSTRING &path)
{
if (json_path_setup(&m_path, thd->variables.collation_connection,
(const uchar *) path.str, (const uchar *)(path.str + path.length)))
{
report_path_error_ex(path.str, &m_path, "JSON_TABLE", 1,
Sql_condition::WARN_LEVEL_ERROR);
return 1;
}
/*
This is done so the ::print function can just print the path string.
Can be removed if we redo that function to print the path using its
actual content. Not sure though if we should.
*/
m_path.s.c_str= (const uchar *) path.str;
return 0;
}
/*
@brief
Perform the action of this response on field @f (emit an error, or set @f
to NULL, or set it to default value).
error_num supposed to have the error message with field_name and table_name
arguments.
*/
int Json_table_column::On_response::respond(Json_table_column *jc, Field *f,
uint error_num)
{
switch (m_response)
{
case Json_table_column::RESPONSE_NOT_SPECIFIED:
case Json_table_column::RESPONSE_NULL:
f->set_null();
break;
case Json_table_column::RESPONSE_ERROR:
f->set_null();
my_error(error_num, MYF(0), f->field_name.str, f->table->alias.ptr());
return 1;
case Json_table_column::RESPONSE_DEFAULT:
f->set_notnull();
f->store(m_default.str,
m_default.length, jc->m_defaults_cs);
break;
}
return 0;
}
int Json_table_column::On_response::print(const char *name, String *str) const
{
LEX_CSTRING resp;
const LEX_CSTRING *ds= NULL;
if (m_response == Json_table_column::RESPONSE_NOT_SPECIFIED)
return 0;
switch (m_response)
{
case Json_table_column::RESPONSE_NULL:
lex_string_set3(&resp, STRING_WITH_LEN("NULL"));
break;
case Json_table_column::RESPONSE_ERROR:
lex_string_set3(&resp, STRING_WITH_LEN("ERROR"));
break;
case Json_table_column::RESPONSE_DEFAULT:
{
lex_string_set3(&resp, STRING_WITH_LEN("DEFAULT"));
ds= &m_default;
break;
}
default:
lex_string_set3(&resp, "", 0);
DBUG_ASSERT(FALSE); /* should never happen. */
}
return (str->append(' ') || str->append(resp) ||
(ds && (str->append(STRING_WITH_LEN(" '")) ||
str->append_for_single_quote(ds->str, ds->length) ||
str->append('\''))) ||
str->append(STRING_WITH_LEN(" ON ")) ||
str->append(name, strlen(name)));
}
void Table_function_json_table::start_nested_path(Json_table_nested_path *np)
{
np->m_parent= cur_parent;
*last_sibling_hook= np;
// Make the newly added path the parent
cur_parent= np;
last_sibling_hook= &np->m_nested;
}
void Table_function_json_table::end_nested_path()
{
last_sibling_hook= &cur_parent->m_next_nested;
cur_parent= cur_parent->m_parent;
}
/*
@brief Create a name resolution context for doing name resolution in table
function argument.
@seealso
push_new_name_resolution_context
*/
bool push_table_function_arg_context(LEX *lex, MEM_ROOT *alloc)
{
// Walk the context stack until we find a context that is used for resolving
// the SELECT's WHERE clause.
List_iterator<Name_resolution_context> it(lex->context_stack);
Name_resolution_context *ctx;
while ((ctx= it++))
{
if (ctx->select_lex && ctx == &ctx->select_lex->context)
break;
}
DBUG_ASSERT(ctx);
// Then, create a copy of it and return it.
Name_resolution_context *new_ctx= new (alloc) Name_resolution_context;
// Note: not all fields of *ctx are initialized yet at this point.
// We will get all of the fields filled in Table_function_json_table::setup
// (search for the "Prepare the name resolution context" comment).
*new_ctx= *ctx;
return lex->push_context(new_ctx);
}
/*
@brief
Perform name-resolution phase tasks
@detail
The only argument that needs name resolution is the first parameter which
has the JSON text:
JSON_TABLE(json_doc, ... )
The argument may refer to other tables and uses special name resolution
rules (see get_disallowed_table_deps_for_list for details). This function
sets up Name_resolution_context object appropriately before calling
fix_fields for the argument.
@return
false OK
true Fatal error
*/
bool Table_function_json_table::setup(THD *thd, TABLE_LIST *sql_table,
SELECT_LEX *s_lex)
{
thd->where= "JSON_TABLE argument";
if (!m_context_setup_done)
{
m_context_setup_done= true;
// Prepare the name resolution context. First, copy the context that is
// used for name resolution of the WHERE clause
*m_context= s_lex->context;
// Then, restrict it to only allow to refer to tables that come before the
// table function reference
if (!(m_context->ignored_tables=
get_disallowed_table_deps(thd->stmt_arena->mem_root, s_lex,
sql_table)))
return TRUE; // Error
}
bool save_is_item_list_lookup;
save_is_item_list_lookup= s_lex->is_item_list_lookup;
s_lex->is_item_list_lookup= 0;
// Do the same what setup_without_group() does: do not count the referred
// fields in non_agg_field_used:
const bool saved_non_agg_field_used= s_lex->non_agg_field_used();
bool res= m_json->fix_fields_if_needed_for_scalar(thd, &m_json);
s_lex->is_item_list_lookup= save_is_item_list_lookup;
s_lex->set_non_agg_field_used(saved_non_agg_field_used);
if (res)
return TRUE; // Error
return FALSE;
}
int Table_function_json_table::walk_items(Item_processor processor,
bool walk_subquery, void *argument)
{
return m_json->walk(processor, walk_subquery, argument);
}
void Table_function_json_table::get_estimates(ha_rows *out_rows,
double *scan_time,
double *startup_cost)
{
*out_rows= 40;
*scan_time= 0.0;
*startup_cost= 0.0;
}
/*
Check if a column belongs to the nested path
or a path that nested into it.
It only supposed to be used in the Json_table_nested_path::print, and
since the nested path should have at least one field we
don't have to loop through the m_next_nested.
*/
bool Json_table_nested_path::column_in_this_or_nested(
const Json_table_nested_path *p, const Json_table_column *jc)
{
for (; p; p= p->m_nested)
{
if (jc->m_nest == p)
return TRUE;
}
return FALSE;
}
/*
Print the string representation of the Json_nested_path object.
Which is the COLUMNS(...) part of the JSON_TABLE definition.
@param thd - the thread
@param f - the remaining part of the array of Field* objects
taken from the TABLE.
It's needed as Json_table_column objects
don't have links to the related Field-s.
@param str - the string where to print
@param it - the remaining part of the Json_table_column list
@param last_column - the last column taken from the list.
*/
int Json_table_nested_path::print(THD *thd, Field ***f, String *str,
List_iterator_fast<Json_table_column> &it,
Json_table_column **last_column)
{
Json_table_nested_path *c_path= this;
Json_table_nested_path *c_nested= m_nested;
Json_table_column *jc= *last_column;
bool first_column= TRUE;
if (str->append(STRING_WITH_LEN("COLUMNS (")))
return 1;
/* loop while jc belongs to the current or nested paths. */
while(jc &&
(jc->m_nest == c_path || column_in_this_or_nested(c_nested, jc)))
{
if (first_column)
first_column= FALSE;
else if (str->append(STRING_WITH_LEN(", ")))
return 1;
if (jc->m_nest == c_path)
{
if (jc->print(thd, *f, str))
return 1;
if ((jc= it++))
++(*f);
}
else
{
DBUG_ASSERT(column_in_this_or_nested(c_nested, jc));
if (str->append(STRING_WITH_LEN("NESTED PATH ")) ||
print_path(str, &jc->m_nest->m_path) ||
str->append(' ') ||
c_nested->print(thd, f, str, it, &jc))
return 1;
c_nested= c_nested->m_next_nested;
}
}
if (str->append(STRING_WITH_LEN(")")))
return 1;
*last_column= jc;
return 0;
}
/*
Print the SQL definition of the JSON_TABLE.
Used mostly as a part of the CREATE VIEW statement.
@param thd - the thread
@param sql_table - the corresponding TABLE_LIST object
@param str - the string where to print
@param query_type - the query type
*/
int Table_function_json_table::print(THD *thd, TABLE_LIST *sql_table,
String *str, enum_query_type query_type)
{
List_iterator_fast<Json_table_column> jc_i(m_columns);
Json_table_column *jc= jc_i++;
Field **f_list= sql_table->table->field;
DBUG_ENTER("Table_function_json_table::print");
if (str->append(STRING_WITH_LEN("JSON_TABLE(")))
DBUG_RETURN(TRUE);
m_json->print(str, query_type);
if (str->append(STRING_WITH_LEN(", ")) ||
print_path(str, &m_nested_path.m_path) ||
str->append(' ') ||
m_nested_path.print(thd, &f_list, str, jc_i, &jc) ||
str->append(')'))
DBUG_RETURN(TRUE);
DBUG_RETURN(0);
}
void Table_function_json_table::fix_after_pullout(TABLE_LIST *sql_table,
st_select_lex *new_parent, bool merge)
{
m_json->fix_after_pullout(new_parent, &m_json, merge);
sql_table->dep_tables= used_tables();
}
/*
@brief
Recursively make all tables in the join_list also depend on deps.
*/
static void add_extra_deps(List<TABLE_LIST> *join_list, table_map deps)
{
TABLE_LIST *table;
List_iterator<TABLE_LIST> li(*join_list);
DBUG_EXECUTE_IF("json_check_min_stack_requirement",
{
long arbitrary_var;
long stack_used_up= (available_stack_size(current_thd->thread_stack, &arbitrary_var));
ALLOCATE_MEM_ON_STACK(my_thread_stack_size-stack_used_up-STACK_MIN_SIZE);
});
if (check_stack_overrun(current_thd, STACK_MIN_SIZE , NULL))
return;
while ((table= li++))
{
table->dep_tables |= deps;
NESTED_JOIN *nested_join;
if ((nested_join= table->nested_join))
{
// set the deps inside, too
add_extra_deps(&nested_join->join_list, deps);
}
}
}
/*
@brief
Add table dependencies that are directly caused by table functions, also
add extra dependencies so that the join optimizer does not construct
"dead-end" join prefixes.
@detail
There are two kinds of limitations on join order:
1A. Outer joins require that inner tables follow outer.
1B. Tables within a join nest must be present in the join order
"without interleaving". See check_interleaving_with_nj for details.
2. Table function argument may refer to *any* table that precedes the
current table in the query text. The table maybe outside of the current
nested join and/or inside another nested join.
One may think that adding dependency according to #2 would be sufficient,
but this is not the case.
@example
select ...
from
t20 left join t21 on t20.a=t21.a
join
(t31 left join (t32 join
JSON_TABLE(t21.js,
'$' COLUMNS (ab INT PATH '$.a')) AS jt
) on t31.a<3
)
Here, jt's argument refers to t21.
Table dependencies are:
t21 -> t20
t32 -> t31
jt -> t21 t31 (also indirectly depends on t20 through t21)
This allows to construct a "dead-end" join prefix, like:
t31, t32
Here, "no interleaving" rule requires the next table to be jt, but we
can't add it, because it depends on t21 which is not in the join prefix.
@end example
Dead-end join prefixes do not work with join prefix pruning done for
@@optimizer_prune_level: it is possible that all non-dead-end prefixes are
pruned away.
The solution is as follows: if there is an outer join that contains
(directly on indirectly) a table function JT which has a reference JREF
outside of the outer join:
left join ( T_I ... json_table(JREF, ...) as JT ...)
then make *all* tables T_I also dependent on outside references in JREF.
This way, the optimizer will put table T_I into the join prefix only when
JT can be put there as well, and "dead-end" prefixes will not be built.
@param join_list List of tables to process. Initial invocation should
supply the JOIN's top-level table list.
@param nest_tables Bitmap of all tables in the join list.
@return Bitmap of all outside references that tables in join_list have
*/
table_map add_table_function_dependencies(List<TABLE_LIST> *join_list,
table_map nest_tables)
{
TABLE_LIST *table;
table_map res= 0;
List_iterator<TABLE_LIST> li(*join_list);
DBUG_EXECUTE_IF("json_check_min_stack_requirement",
{
long arbitrary_var;
long stack_used_up= (available_stack_size(current_thd->thread_stack, &arbitrary_var));
ALLOCATE_MEM_ON_STACK(my_thread_stack_size-stack_used_up-STACK_MIN_SIZE);
});
if ((res=check_stack_overrun(current_thd, STACK_MIN_SIZE , NULL)))
return res;
// Recursively compute extra dependencies
while ((table= li++))
{
NESTED_JOIN *nested_join;
if ((nested_join= table->nested_join))
{
res |= add_table_function_dependencies(&nested_join->join_list,
nested_join->used_tables);
}
else if (table->table_function)
{
table->dep_tables |= table->table_function->used_tables();
res |= table->dep_tables;
}
}
res= res & ~nest_tables & ~PSEUDO_TABLE_BITS;
// Then, make all "peers" have them:
if (res)
add_extra_deps(join_list, res);
return res;
}