mariadb/sql/compat56.cc
Monty 1628a2ae27 Fixed issues found by buildbot
- MDEV-11621 rpl.rpl_gtid_stop_start fails sporadically in buildbot
- MDEV-11620 rpl.rpl_upgrade_master_info fails sporadically in buildbot

The issue above was probably that the build machine was overworked and the
shutdown took longer than 30 resp 10 seconds, which caused MyISAM tables
to be marked as crashed.
Fixed by flushing myisam tables before doing a forced shutdown/kill.
I also increased timeout for forced shutdown from 10 seconds to 60 seconds
to fix other possible issues on slow machines.

Fixed also some compiler warnings
2017-01-11 09:18:35 +02:00

445 lines
12 KiB
C++

/*
Copyright (c) 2004, 2012, Oracle and/or its affiliates.
Copyright (c) 2013, MariaDB Foundation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "my_global.h"
#include "compat56.h"
#include "myisampack.h"
#include "my_time.h"
/*** MySQL56 TIME low-level memory and disk representation routines ***/
/*
In-memory format:
1 bit sign (Used for sign, when on disk)
1 bit unused (Reserved for wider hour range, e.g. for intervals)
10 bit hour (0-836)
6 bit minute (0-59)
6 bit second (0-59)
24 bits microseconds (0-999999)
Total: 48 bits = 6 bytes
Suhhhhhh.hhhhmmmm.mmssssss.ffffffff.ffffffff.ffffffff
*/
/**
Convert time value to MySQL56 numeric packed representation.
@param ltime The value to convert.
@return Numeric packed representation.
*/
longlong TIME_to_longlong_time_packed(const MYSQL_TIME *ltime)
{
/* If month is 0, we mix day with hours: "1 00:10:10" -> "24:00:10" */
long hms= (((ltime->month ? 0 : ltime->day * 24) + ltime->hour) << 12) |
(ltime->minute << 6) | ltime->second;
longlong tmp= MY_PACKED_TIME_MAKE(hms, ltime->second_part);
return ltime->neg ? -tmp : tmp;
}
/**
Convert MySQL56 time packed numeric representation to time.
@param OUT ltime The MYSQL_TIME variable to set.
@param tmp The packed numeric representation.
*/
void TIME_from_longlong_time_packed(MYSQL_TIME *ltime, longlong tmp)
{
long hms;
if ((ltime->neg= (tmp < 0)))
tmp= -tmp;
hms= (long) MY_PACKED_TIME_GET_INT_PART(tmp);
ltime->year= (uint) 0;
ltime->month= (uint) 0;
ltime->day= (uint) 0;
ltime->hour= (uint) (hms >> 12) % (1 << 10); /* 10 bits starting at 12th */
ltime->minute= (uint) (hms >> 6) % (1 << 6); /* 6 bits starting at 6th */
ltime->second= (uint) hms % (1 << 6); /* 6 bits starting at 0th */
ltime->second_part= MY_PACKED_TIME_GET_FRAC_PART(tmp);
ltime->time_type= MYSQL_TIMESTAMP_TIME;
}
/**
Calculate binary size of MySQL56 packed numeric time representation.
@param dec Precision.
*/
uint my_time_binary_length(uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
return 3 + (dec + 1) / 2;
}
/*
On disk we convert from signed representation to unsigned
representation using TIMEF_OFS, so all values become binary comparable.
*/
#define TIMEF_OFS 0x800000000000LL
#define TIMEF_INT_OFS 0x800000LL
/**
Convert MySQL56 in-memory numeric time representation to on-disk representation
@param nr Value in packed numeric time format.
@param OUT ptr The buffer to put value at.
@param dec Precision.
*/
void my_time_packed_to_binary(longlong nr, uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
/* Make sure the stored value was previously properly rounded or truncated */
DBUG_ASSERT((MY_PACKED_TIME_GET_FRAC_PART(nr) %
(int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
switch (dec)
{
case 0:
default:
mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
break;
case 1:
case 2:
mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
ptr[3]= (unsigned char) (char) (MY_PACKED_TIME_GET_FRAC_PART(nr) / 10000);
break;
case 4:
case 3:
mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
mi_int2store(ptr + 3, MY_PACKED_TIME_GET_FRAC_PART(nr) / 100);
break;
case 5:
case 6:
mi_int6store(ptr, nr + TIMEF_OFS);
break;
}
}
/**
Convert MySQL56 on-disk time representation to in-memory packed numeric
representation.
@param ptr The pointer to read the value at.
@param dec Precision.
@return Packed numeric time representation.
*/
longlong my_time_packed_from_binary(const uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
switch (dec)
{
case 0:
default:
{
longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
return MY_PACKED_TIME_MAKE_INT(intpart);
}
case 1:
case 2:
{
longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
int frac= (uint) ptr[3];
if (intpart < 0 && frac)
{
/*
Negative values are stored with reverse fractional part order,
for binary sort compatibility.
Disk value intpart frac Time value Memory value
800000.00 0 0 00:00:00.00 0000000000.000000
7FFFFF.FF -1 255 -00:00:00.01 FFFFFFFFFF.FFD8F0
7FFFFF.9D -1 99 -00:00:00.99 FFFFFFFFFF.F0E4D0
7FFFFF.00 -1 0 -00:00:01.00 FFFFFFFFFF.000000
7FFFFE.FF -1 255 -00:00:01.01 FFFFFFFFFE.FFD8F0
7FFFFE.F6 -2 246 -00:00:01.10 FFFFFFFFFE.FE7960
Formula to convert fractional part from disk format
(now stored in "frac" variable) to absolute value: "0x100 - frac".
To reconstruct in-memory value, we shift
to the next integer value and then substruct fractional part.
*/
intpart++; /* Shift to the next integer value */
frac-= 0x100; /* -(0x100 - frac) */
}
return MY_PACKED_TIME_MAKE(intpart, frac * 10000);
}
case 3:
case 4:
{
longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
int frac= mi_uint2korr(ptr + 3);
if (intpart < 0 && frac)
{
/*
Fix reverse fractional part order: "0x10000 - frac".
See comments for FSP=1 and FSP=2 above.
*/
intpart++; /* Shift to the next integer value */
frac-= 0x10000; /* -(0x10000-frac) */
}
return MY_PACKED_TIME_MAKE(intpart, frac * 100);
}
case 5:
case 6:
return ((longlong) mi_uint6korr(ptr)) - TIMEF_OFS;
}
}
/*** MySQL56 DATETIME low-level memory and disk representation routines ***/
/*
1 bit sign (used when on disk)
17 bits year*13+month (year 0-9999, month 0-12)
5 bits day (0-31)
5 bits hour (0-23)
6 bits minute (0-59)
6 bits second (0-59)
24 bits microseconds (0-999999)
Total: 64 bits = 8 bytes
SYYYYYYY.YYYYYYYY.YYdddddh.hhhhmmmm.mmssssss.ffffffff.ffffffff.ffffffff
*/
/**
Convert datetime to MySQL56 packed numeric datetime representation.
@param ltime The value to convert.
@return Packed numeric representation of ltime.
*/
longlong TIME_to_longlong_datetime_packed(const MYSQL_TIME *ltime)
{
longlong ymd= ((ltime->year * 13 + ltime->month) << 5) | ltime->day;
longlong hms= (ltime->hour << 12) | (ltime->minute << 6) | ltime->second;
longlong tmp= MY_PACKED_TIME_MAKE(((ymd << 17) | hms), ltime->second_part);
DBUG_ASSERT(!check_datetime_range(ltime)); /* Make sure no overflow */
return ltime->neg ? -tmp : tmp;
}
/**
Convert MySQL56 packed numeric datetime representation to MYSQL_TIME.
@param OUT ltime The datetime variable to convert to.
@param tmp The packed numeric datetime value.
*/
void TIME_from_longlong_datetime_packed(MYSQL_TIME *ltime, longlong tmp)
{
longlong ymd, hms;
longlong ymdhms, ym;
if ((ltime->neg= (tmp < 0)))
tmp= -tmp;
ltime->second_part= MY_PACKED_TIME_GET_FRAC_PART(tmp);
ymdhms= MY_PACKED_TIME_GET_INT_PART(tmp);
ymd= ymdhms >> 17;
ym= ymd >> 5;
hms= ymdhms % (1 << 17);
ltime->day= ymd % (1 << 5);
ltime->month= ym % 13;
ltime->year= (uint) (ym / 13);
ltime->second= hms % (1 << 6);
ltime->minute= (hms >> 6) % (1 << 6);
ltime->hour= (uint) (hms >> 12);
ltime->time_type= MYSQL_TIMESTAMP_DATETIME;
}
/**
Calculate binary size of MySQL56 packed datetime representation.
@param dec Precision.
*/
uint my_datetime_binary_length(uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
return 5 + (dec + 1) / 2;
}
/*
On disk we store as unsigned number with DATETIMEF_INT_OFS offset,
for HA_KETYPE_BINARY compatibilty purposes.
*/
#define DATETIMEF_INT_OFS 0x8000000000LL
/**
Convert MySQL56 on-disk datetime representation
to in-memory packed numeric representation.
@param ptr The pointer to read value at.
@param dec Precision.
@return In-memory packed numeric datetime representation.
*/
longlong my_datetime_packed_from_binary(const uchar *ptr, uint dec)
{
longlong intpart= mi_uint5korr(ptr) - DATETIMEF_INT_OFS;
int frac;
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
switch (dec)
{
case 0:
default:
return MY_PACKED_TIME_MAKE_INT(intpart);
case 1:
case 2:
frac= ((int) (signed char) ptr[5]) * 10000;
break;
case 3:
case 4:
frac= mi_sint2korr(ptr + 5) * 100;
break;
case 5:
case 6:
frac= mi_sint3korr(ptr + 5);
break;
}
return MY_PACKED_TIME_MAKE(intpart, frac);
}
/**
Store MySQL56 in-memory numeric packed datetime representation to disk.
@param nr In-memory numeric packed datetime representation.
@param OUT ptr The pointer to store at.
@param dec Precision, 1-6.
*/
void my_datetime_packed_to_binary(longlong nr, uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
/* The value being stored must have been properly rounded or truncated */
DBUG_ASSERT((MY_PACKED_TIME_GET_FRAC_PART(nr) %
(int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
mi_int5store(ptr, MY_PACKED_TIME_GET_INT_PART(nr) + DATETIMEF_INT_OFS);
switch (dec)
{
case 0:
default:
break;
case 1:
case 2:
ptr[5]= (unsigned char) (char) (MY_PACKED_TIME_GET_FRAC_PART(nr) / 10000);
break;
case 3:
case 4:
mi_int2store(ptr + 5, MY_PACKED_TIME_GET_FRAC_PART(nr) / 100);
break;
case 5:
case 6:
mi_int3store(ptr + 5, MY_PACKED_TIME_GET_FRAC_PART(nr));
}
}
/*** MySQL56 TIMESTAMP low-level memory and disk representation routines ***/
/**
Calculate on-disk size of a timestamp value.
@param dec Precision.
*/
uint my_timestamp_binary_length(uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
return 4 + (dec + 1) / 2;
}
/**
Convert MySQL56 binary timestamp representation to in-memory representation.
@param OUT tm The variable to convert to.
@param ptr The pointer to read the value from.
@param dec Precision.
*/
void my_timestamp_from_binary(struct timeval *tm, const uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
tm->tv_sec= mi_uint4korr(ptr);
switch (dec)
{
case 0:
default:
tm->tv_usec= 0;
break;
case 1:
case 2:
tm->tv_usec= ((int) ptr[4]) * 10000;
break;
case 3:
case 4:
tm->tv_usec= mi_sint2korr(ptr + 4) * 100;
break;
case 5:
case 6:
tm->tv_usec= mi_sint3korr(ptr + 4);
}
}
/**
Convert MySQL56 in-memory timestamp representation to on-disk representation.
@param tm The value to convert.
@param OUT ptr The pointer to store the value to.
@param dec Precision.
*/
void my_timestamp_to_binary(const struct timeval *tm, uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
/* Stored value must have been previously properly rounded or truncated */
DBUG_ASSERT((tm->tv_usec %
(int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
mi_int4store(ptr, tm->tv_sec);
switch (dec)
{
case 0:
default:
break;
case 1:
case 2:
ptr[4]= (unsigned char) (char) (tm->tv_usec / 10000);
break;
case 3:
case 4:
mi_int2store(ptr + 4, tm->tv_usec / 100);
break;
/* Impossible second precision. Fall through */
case 5:
case 6:
mi_int3store(ptr + 4, tm->tv_usec);
}
}
/****************************************/