mariadb/storage/innobase/ha/ha0ha.cc
Marko Mäkelä e63ead68bf Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0
btr_search_drop_page_hash_index(): Do not return before ensuring
that block->index=NULL, even if !btr_search_enabled. We would
typically still skip acquiring the AHI latch when the AHI is
disabled, because block->index would already be NULL. Only if the AHI
is in the process of being disabled, we would wait for the AHI latch
and then notice that block->index=NULL and return.

The above bug was a regression caused in MySQL 5.7.9 by the fix of
Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH

The rest of this patch improves diagnostics by adding assertions.

assert_block_ahi_valid(): A debug predicate for checking that
block->n_pointers!=0 implies block->index!=NULL.

assert_block_ahi_empty(): A debug predicate for checking that
block->n_pointers==0.

buf_block_init(): Instead of assigning block->n_pointers=0,
assert_block_ahi_empty(block).

buf_pool_clear_hash_index(): Clarify comments, and assign
block->n_pointers=0 before assigning block->index=NULL.
The wrong ordering could make block->n_pointers appear incorrect in
debug assertions. This bug was introduced in MySQL 5.1.52 by
Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE
ADAPTIVE HASH INDEX AT SHUTDOWN

i_s_innodb_buffer_page_get_info(): Add a comment that
the IS_HASHED column in the INFORMATION_SCHEMA views
INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may
show false positives (there may be no pointers after all.)

ha_insert_for_fold_func(), ha_delete_hash_node(),
ha_search_and_update_if_found_func(): Use atomics for
updating buf_block_t::n_pointers. While buf_block_t::index is
always protected by btr_search_x_lock(index), in
ha_insert_for_fold_func() the n_pointers-- may belong to
another dict_index_t whose btr_search_latches[] we are not holding.

RB: 13879
Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2017-04-26 23:03:27 +03:00

550 lines
14 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/********************************************************************//**
@file ha/ha0ha.cc
The hash table with external chains
Created 8/22/1994 Heikki Tuuri
*************************************************************************/
#include "ha0ha.h"
#ifdef UNIV_DEBUG
# include "buf0buf.h"
#endif /* UNIV_DEBUG */
#include "btr0sea.h"
#include "page0page.h"
/*************************************************************//**
Creates a hash table with at least n array cells. The actual number
of cells is chosen to be a prime number slightly bigger than n.
@return own: created table */
hash_table_t*
ib_create(
/*======*/
ulint n, /*!< in: number of array cells */
latch_id_t id, /*!< in: latch ID */
ulint n_sync_obj,
/*!< in: number of mutexes to protect the
hash table: must be a power of 2, or 0 */
ulint type) /*!< in: type of datastructure for which
MEM_HEAP_FOR_PAGE_HASH */
{
hash_table_t* table;
ut_a(type == MEM_HEAP_FOR_BTR_SEARCH
|| type == MEM_HEAP_FOR_PAGE_HASH);
ut_ad(ut_is_2pow(n_sync_obj));
table = hash_create(n);
/* Creating MEM_HEAP_BTR_SEARCH type heaps can potentially fail,
but in practise it never should in this case, hence the asserts. */
if (n_sync_obj == 0) {
table->heap = mem_heap_create_typed(
ut_min(static_cast<ulint>(4096),
MEM_MAX_ALLOC_IN_BUF / 2
- MEM_BLOCK_HEADER_SIZE - MEM_SPACE_NEEDED(0)),
type);
ut_a(table->heap);
return(table);
}
if (type == MEM_HEAP_FOR_PAGE_HASH) {
/* We create a hash table protected by rw_locks for
buf_pool->page_hash. */
hash_create_sync_obj(
table, HASH_TABLE_SYNC_RW_LOCK, id, n_sync_obj);
} else {
hash_create_sync_obj(
table, HASH_TABLE_SYNC_MUTEX, id, n_sync_obj);
}
table->heaps = static_cast<mem_heap_t**>(
ut_malloc_nokey(n_sync_obj * sizeof(void*)));
for (ulint i = 0; i < n_sync_obj; i++) {
table->heaps[i] = mem_heap_create_typed(
ut_min(static_cast<ulint>(4096),
MEM_MAX_ALLOC_IN_BUF / 2
- MEM_BLOCK_HEADER_SIZE - MEM_SPACE_NEEDED(0)),
type);
ut_a(table->heaps[i]);
}
return(table);
}
/** Recreate a hash table with at least n array cells. The actual number
of cells is chosen to be a prime number slightly bigger than n.
The new cells are all cleared. The heaps are recreated.
The sync objects are reused.
@param[in,out] table hash table to be resuzed (to be freed later)
@param[in] n number of array cells
@return resized new table */
hash_table_t*
ib_recreate(
hash_table_t* table,
ulint n)
{
/* This function is for only page_hash for now */
ut_ad(table->type == HASH_TABLE_SYNC_RW_LOCK);
ut_ad(table->n_sync_obj > 0);
hash_table_t* new_table = hash_create(n);
new_table->type = table->type;
new_table->n_sync_obj = table->n_sync_obj;
new_table->sync_obj = table->sync_obj;
for (ulint i = 0; i < table->n_sync_obj; i++) {
mem_heap_free(table->heaps[i]);
}
ut_free(table->heaps);
new_table->heaps = static_cast<mem_heap_t**>(
ut_malloc_nokey(new_table->n_sync_obj * sizeof(void*)));
for (ulint i = 0; i < new_table->n_sync_obj; i++) {
new_table->heaps[i] = mem_heap_create_typed(
ut_min(static_cast<ulint>(4096),
MEM_MAX_ALLOC_IN_BUF / 2
- MEM_BLOCK_HEADER_SIZE - MEM_SPACE_NEEDED(0)),
MEM_HEAP_FOR_PAGE_HASH);
ut_a(new_table->heaps[i]);
}
return(new_table);
}
/*************************************************************//**
Empties a hash table and frees the memory heaps. */
void
ha_clear(
/*=====*/
hash_table_t* table) /*!< in, own: hash table */
{
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
#ifdef BTR_CUR_HASH_ADAPT
ut_ad(!table->adaptive || btr_search_own_all(RW_LOCK_X));
#endif /* BTR_CUR_HASH_ADAPT */
for (ulint i = 0; i < table->n_sync_obj; i++) {
mem_heap_free(table->heaps[i]);
}
ut_free(table->heaps);
switch (table->type) {
case HASH_TABLE_SYNC_MUTEX:
for (ulint i = 0; i < table->n_sync_obj; ++i) {
mutex_destroy(&table->sync_obj.mutexes[i]);
}
ut_free(table->sync_obj.mutexes);
table->sync_obj.mutexes = NULL;
break;
case HASH_TABLE_SYNC_RW_LOCK:
for (ulint i = 0; i < table->n_sync_obj; ++i) {
rw_lock_free(&table->sync_obj.rw_locks[i]);
}
ut_free(table->sync_obj.rw_locks);
table->sync_obj.rw_locks = NULL;
break;
case HASH_TABLE_SYNC_NONE:
/* do nothing */
break;
}
table->n_sync_obj = 0;
table->type = HASH_TABLE_SYNC_NONE;
/* Clear the hash table. */
ulint n = hash_get_n_cells(table);
for (ulint i = 0; i < n; i++) {
hash_get_nth_cell(table, i)->node = NULL;
}
}
#ifdef BTR_CUR_HASH_ADAPT
# if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
/** Maximum number of records in a page */
static const lint MAX_N_POINTERS
= UNIV_PAGE_SIZE_MAX / REC_N_NEW_EXTRA_BYTES;
# endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
/*************************************************************//**
Inserts an entry into a hash table. If an entry with the same fold number
is found, its node is updated to point to the new data, and no new node
is inserted. If btr_search_enabled is set to FALSE, we will only allow
updating existing nodes, but no new node is allowed to be added.
@return TRUE if succeed, FALSE if no more memory could be allocated */
ibool
ha_insert_for_fold_func(
/*====================*/
hash_table_t* table, /*!< in: hash table */
ulint fold, /*!< in: folded value of data; if a node with
the same fold value already exists, it is
updated to point to the same data, and no new
node is created! */
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
buf_block_t* block, /*!< in: buffer block containing the data */
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
const rec_t* data) /*!< in: data, must not be NULL */
{
hash_cell_t* cell;
ha_node_t* node;
ha_node_t* prev_node;
ulint hash;
ut_ad(data);
ut_ad(table);
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
ut_a(block->frame == page_align(data));
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
hash_assert_can_modify(table, fold);
ut_ad(btr_search_enabled);
hash = hash_calc_hash(fold, table);
cell = hash_get_nth_cell(table, hash);
prev_node = static_cast<ha_node_t*>(cell->node);
while (prev_node != NULL) {
if (prev_node->fold == fold) {
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
if (table->adaptive) {
buf_block_t* prev_block = prev_node->block;
ut_a(prev_block->frame
== page_align(prev_node->data));
ut_a(my_atomic_addlint(
&prev_block->n_pointers, -1)
< MAX_N_POINTERS);
ut_a(my_atomic_addlint(&block->n_pointers, 1)
< MAX_N_POINTERS);
}
prev_node->block = block;
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
prev_node->data = data;
return(TRUE);
}
prev_node = prev_node->next;
}
/* We have to allocate a new chain node */
node = static_cast<ha_node_t*>(
mem_heap_alloc(hash_get_heap(table, fold), sizeof(ha_node_t)));
if (node == NULL) {
/* It was a btr search type memory heap and at the moment
no more memory could be allocated: return */
ut_ad(hash_get_heap(table, fold)->type & MEM_HEAP_BTR_SEARCH);
return(FALSE);
}
ha_node_set_data(node, block, data);
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
if (table->adaptive) {
ut_a(my_atomic_addlint(&block->n_pointers, 1)
< MAX_N_POINTERS);
}
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
node->fold = fold;
node->next = NULL;
prev_node = static_cast<ha_node_t*>(cell->node);
if (prev_node == NULL) {
cell->node = node;
return(TRUE);
}
while (prev_node->next != NULL) {
prev_node = prev_node->next;
}
prev_node->next = node;
return(TRUE);
}
#ifdef UNIV_DEBUG
/** Verify if latch corresponding to the hash table is x-latched
@param[in] table hash table */
static
void
ha_btr_search_latch_x_locked(const hash_table_t* table)
{
ulint i;
for (i = 0; i < btr_ahi_parts; ++i) {
if (btr_search_sys->hash_tables[i] == table) {
break;
}
}
ut_ad(i < btr_ahi_parts);
ut_ad(rw_lock_own(btr_search_latches[i], RW_LOCK_X));
}
#endif /* UNIV_DEBUG */
/***********************************************************//**
Deletes a hash node. */
void
ha_delete_hash_node(
/*================*/
hash_table_t* table, /*!< in: hash table */
ha_node_t* del_node) /*!< in: node to be deleted */
{
ut_ad(table);
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
ut_d(ha_btr_search_latch_x_locked(table));
ut_ad(btr_search_enabled);
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
if (table->adaptive) {
ut_a(del_node->block->frame = page_align(del_node->data));
ut_a(my_atomic_addlint(&del_node->block->n_pointers, -1)
< MAX_N_POINTERS);
}
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
HASH_DELETE_AND_COMPACT(ha_node_t, next, table, del_node);
}
/*********************************************************//**
Looks for an element when we know the pointer to the data, and updates
the pointer to data, if found.
@return TRUE if found */
ibool
ha_search_and_update_if_found_func(
/*===============================*/
hash_table_t* table, /*!< in/out: hash table */
ulint fold, /*!< in: folded value of the searched data */
const rec_t* data, /*!< in: pointer to the data */
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
buf_block_t* new_block,/*!< in: block containing new_data */
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
const rec_t* new_data)/*!< in: new pointer to the data */
{
ha_node_t* node;
ut_ad(table);
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
hash_assert_can_modify(table, fold);
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
ut_a(new_block->frame == page_align(new_data));
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
ut_d(ha_btr_search_latch_x_locked(table));
if (!btr_search_enabled) {
return(FALSE);
}
node = ha_search_with_data(table, fold, data);
if (node) {
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
if (table->adaptive) {
ut_a(my_atomic_addlint(&node->block->n_pointers, -1)
< MAX_N_POINTERS);
ut_a(my_atomic_addlint(&new_block->n_pointers, 1)
< MAX_N_POINTERS);
}
node->block = new_block;
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
node->data = new_data;
return(TRUE);
}
return(FALSE);
}
/*****************************************************************//**
Removes from the chain determined by fold all nodes whose data pointer
points to the page given. */
void
ha_remove_all_nodes_to_page(
/*========================*/
hash_table_t* table, /*!< in: hash table */
ulint fold, /*!< in: fold value */
const page_t* page) /*!< in: buffer page */
{
ha_node_t* node;
ut_ad(table);
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
hash_assert_can_modify(table, fold);
ut_ad(btr_search_enabled);
node = ha_chain_get_first(table, fold);
while (node) {
if (page_align(ha_node_get_data(node)) == page) {
/* Remove the hash node */
ha_delete_hash_node(table, node);
/* Start again from the first node in the chain
because the deletion may compact the heap of
nodes and move other nodes! */
node = ha_chain_get_first(table, fold);
} else {
node = ha_chain_get_next(node);
}
}
#ifdef UNIV_DEBUG
/* Check that all nodes really got deleted */
node = ha_chain_get_first(table, fold);
while (node) {
ut_a(page_align(ha_node_get_data(node)) != page);
node = ha_chain_get_next(node);
}
#endif /* UNIV_DEBUG */
}
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
/*************************************************************//**
Validates a given range of the cells in hash table.
@return TRUE if ok */
ibool
ha_validate(
/*========*/
hash_table_t* table, /*!< in: hash table */
ulint start_index, /*!< in: start index */
ulint end_index) /*!< in: end index */
{
ibool ok = TRUE;
ulint i;
ut_ad(table);
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
ut_a(start_index <= end_index);
ut_a(start_index < hash_get_n_cells(table));
ut_a(end_index < hash_get_n_cells(table));
for (i = start_index; i <= end_index; i++) {
ha_node_t* node;
hash_cell_t* cell;
cell = hash_get_nth_cell(table, i);
for (node = static_cast<ha_node_t*>(cell->node);
node != 0;
node = node->next) {
if (hash_calc_hash(node->fold, table) != i) {
ib::error() << "Hash table node fold value "
<< node->fold << " does not match the"
" cell number " << i << ".";
ok = FALSE;
}
}
}
return(ok);
}
#endif /* defined UNIV_AHI_DEBUG || defined UNIV_DEBUG */
/*************************************************************//**
Prints info of a hash table. */
void
ha_print_info(
/*==========*/
FILE* file, /*!< in: file where to print */
hash_table_t* table) /*!< in: hash table */
{
#ifdef UNIV_DEBUG
/* Some of the code here is disabled for performance reasons in production
builds, see http://bugs.mysql.com/36941 */
#define PRINT_USED_CELLS
#endif /* UNIV_DEBUG */
#ifdef PRINT_USED_CELLS
hash_cell_t* cell;
ulint cells = 0;
ulint i;
#endif /* PRINT_USED_CELLS */
ulint n_bufs;
ut_ad(table);
ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
#ifdef PRINT_USED_CELLS
for (i = 0; i < hash_get_n_cells(table); i++) {
cell = hash_get_nth_cell(table, i);
if (cell->node) {
cells++;
}
}
#endif /* PRINT_USED_CELLS */
fprintf(file, "Hash table size %lu",
(ulong) hash_get_n_cells(table));
#ifdef PRINT_USED_CELLS
fprintf(file, ", used cells %lu", (ulong) cells);
#endif /* PRINT_USED_CELLS */
if (table->heaps == NULL && table->heap != NULL) {
/* This calculation is intended for the adaptive hash
index: how many buffer frames we have reserved? */
n_bufs = UT_LIST_GET_LEN(table->heap->base) - 1;
if (table->heap->free_block) {
n_bufs++;
}
fprintf(file, ", node heap has %lu buffer(s)\n",
(ulong) n_bufs);
}
}
#endif /* BTR_CUR_HASH_ADAPT */