mariadb/storage/xtradb/page/page0page.cc
Sergei Golubchik 0b3eb4559b 5.6.25-73.1
2015-08-01 15:04:20 +02:00

2866 lines
76 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2012, Facebook Inc.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file page/page0page.cc
Index page routines
Created 2/2/1994 Heikki Tuuri
*******************************************************/
#define THIS_MODULE
#include "page0page.h"
#ifdef UNIV_NONINL
#include "page0page.ic"
#endif
#undef THIS_MODULE
#include "ha_prototypes.h"
#include "buf0checksum.h"
#ifndef UNIV_INNOCHECKSUM
#include "page0cur.h"
#include "page0zip.h"
#include "buf0buf.h"
#include "btr0btr.h"
#ifndef UNIV_HOTBACKUP
# include "srv0srv.h"
# include "lock0lock.h"
# include "fut0lst.h"
# include "btr0sea.h"
#endif /* !UNIV_HOTBACKUP */
/* THE INDEX PAGE
==============
The index page consists of a page header which contains the page's
id and other information. On top of it are the index records
in a heap linked into a one way linear list according to alphabetic order.
Just below page end is an array of pointers which we call page directory,
to about every sixth record in the list. The pointers are placed in
the directory in the alphabetical order of the records pointed to,
enabling us to make binary search using the array. Each slot n:o I
in the directory points to a record, where a 4-bit field contains a count
of those records which are in the linear list between pointer I and
the pointer I - 1 in the directory, including the record
pointed to by pointer I and not including the record pointed to by I - 1.
We say that the record pointed to by slot I, or that slot I, owns
these records. The count is always kept in the range 4 to 8, with
the exception that it is 1 for the first slot, and 1--8 for the second slot.
An essentially binary search can be performed in the list of index
records, like we could do if we had pointer to every record in the
page directory. The data structure is, however, more efficient when
we are doing inserts, because most inserts are just pushed on a heap.
Only every 8th insert requires block move in the directory pointer
table, which itself is quite small. A record is deleted from the page
by just taking it off the linear list and updating the number of owned
records-field of the record which owns it, and updating the page directory,
if necessary. A special case is the one when the record owns itself.
Because the overhead of inserts is so small, we may also increase the
page size from the projected default of 8 kB to 64 kB without too
much loss of efficiency in inserts. Bigger page becomes actual
when the disk transfer rate compared to seek and latency time rises.
On the present system, the page size is set so that the page transfer
time (3 ms) is 20 % of the disk random access time (15 ms).
When the page is split, merged, or becomes full but contains deleted
records, we have to reorganize the page.
Assuming a page size of 8 kB, a typical index page of a secondary
index contains 300 index entries, and the size of the page directory
is 50 x 4 bytes = 200 bytes. */
/***************************************************************//**
Looks for the directory slot which owns the given record.
@return the directory slot number */
UNIV_INTERN
ulint
page_dir_find_owner_slot(
/*=====================*/
const rec_t* rec) /*!< in: the physical record */
{
const page_t* page;
register uint16 rec_offs_bytes;
register const page_dir_slot_t* slot;
register const page_dir_slot_t* first_slot;
register const rec_t* r = rec;
ut_ad(page_rec_check(rec));
page = page_align(rec);
first_slot = page_dir_get_nth_slot(page, 0);
slot = page_dir_get_nth_slot(page, page_dir_get_n_slots(page) - 1);
if (page_is_comp(page)) {
while (rec_get_n_owned_new(r) == 0) {
r = rec_get_next_ptr_const(r, TRUE);
ut_ad(r >= page + PAGE_NEW_SUPREMUM);
ut_ad(r < page + (UNIV_PAGE_SIZE - PAGE_DIR));
}
} else {
while (rec_get_n_owned_old(r) == 0) {
r = rec_get_next_ptr_const(r, FALSE);
ut_ad(r >= page + PAGE_OLD_SUPREMUM);
ut_ad(r < page + (UNIV_PAGE_SIZE - PAGE_DIR));
}
}
rec_offs_bytes = mach_encode_2(r - page);
while (UNIV_LIKELY(*(uint16*) slot != rec_offs_bytes)) {
if (UNIV_UNLIKELY(slot == first_slot)) {
fprintf(stderr,
"InnoDB: Probable data corruption on"
" page %lu\n"
"InnoDB: Original record ",
(ulong) page_get_page_no(page));
if (page_is_comp(page)) {
fputs("(compact record)", stderr);
} else {
rec_print_old(stderr, rec);
}
fputs("\n"
"InnoDB: on that page.\n"
"InnoDB: Cannot find the dir slot for record ",
stderr);
if (page_is_comp(page)) {
fputs("(compact record)", stderr);
} else {
rec_print_old(stderr, page
+ mach_decode_2(rec_offs_bytes));
}
fputs("\n"
"InnoDB: on that page!\n", stderr);
buf_page_print(page, 0, 0);
ut_error;
}
slot += PAGE_DIR_SLOT_SIZE;
}
return(((ulint) (first_slot - slot)) / PAGE_DIR_SLOT_SIZE);
}
/**************************************************************//**
Used to check the consistency of a directory slot.
@return TRUE if succeed */
static
ibool
page_dir_slot_check(
/*================*/
const page_dir_slot_t* slot) /*!< in: slot */
{
const page_t* page;
ulint n_slots;
ulint n_owned;
ut_a(slot);
page = page_align(slot);
n_slots = page_dir_get_n_slots(page);
ut_a(slot <= page_dir_get_nth_slot(page, 0));
ut_a(slot >= page_dir_get_nth_slot(page, n_slots - 1));
ut_a(page_rec_check(page_dir_slot_get_rec(slot)));
if (page_is_comp(page)) {
n_owned = rec_get_n_owned_new(page_dir_slot_get_rec(slot));
} else {
n_owned = rec_get_n_owned_old(page_dir_slot_get_rec(slot));
}
if (slot == page_dir_get_nth_slot(page, 0)) {
ut_a(n_owned == 1);
} else if (slot == page_dir_get_nth_slot(page, n_slots - 1)) {
ut_a(n_owned >= 1);
ut_a(n_owned <= PAGE_DIR_SLOT_MAX_N_OWNED);
} else {
ut_a(n_owned >= PAGE_DIR_SLOT_MIN_N_OWNED);
ut_a(n_owned <= PAGE_DIR_SLOT_MAX_N_OWNED);
}
return(TRUE);
}
/*************************************************************//**
Sets the max trx id field value. */
UNIV_INTERN
void
page_set_max_trx_id(
/*================*/
buf_block_t* block, /*!< in/out: page */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
trx_id_t trx_id, /*!< in: transaction id */
mtr_t* mtr) /*!< in/out: mini-transaction, or NULL */
{
page_t* page = buf_block_get_frame(block);
#ifndef UNIV_HOTBACKUP
ut_ad(!mtr || mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX));
#endif /* !UNIV_HOTBACKUP */
/* It is not necessary to write this change to the redo log, as
during a database recovery we assume that the max trx id of every
page is the maximum trx id assigned before the crash. */
if (page_zip) {
mach_write_to_8(page + (PAGE_HEADER + PAGE_MAX_TRX_ID), trx_id);
page_zip_write_header(page_zip,
page + (PAGE_HEADER + PAGE_MAX_TRX_ID),
8, mtr);
#ifndef UNIV_HOTBACKUP
} else if (mtr) {
mlog_write_ull(page + (PAGE_HEADER + PAGE_MAX_TRX_ID),
trx_id, mtr);
#endif /* !UNIV_HOTBACKUP */
} else {
mach_write_to_8(page + (PAGE_HEADER + PAGE_MAX_TRX_ID), trx_id);
}
}
/************************************************************//**
Allocates a block of memory from the heap of an index page.
@return pointer to start of allocated buffer, or NULL if allocation fails */
UNIV_INTERN
byte*
page_mem_alloc_heap(
/*================*/
page_t* page, /*!< in/out: index page */
page_zip_des_t* page_zip,/*!< in/out: compressed page with enough
space available for inserting the record,
or NULL */
ulint need, /*!< in: total number of bytes needed */
ulint* heap_no)/*!< out: this contains the heap number
of the allocated record
if allocation succeeds */
{
byte* block;
ulint avl_space;
ut_ad(page && heap_no);
avl_space = page_get_max_insert_size(page, 1);
if (avl_space >= need) {
block = page_header_get_ptr(page, PAGE_HEAP_TOP);
page_header_set_ptr(page, page_zip, PAGE_HEAP_TOP,
block + need);
*heap_no = page_dir_get_n_heap(page);
page_dir_set_n_heap(page, page_zip, 1 + *heap_no);
return(block);
}
return(NULL);
}
#ifndef UNIV_HOTBACKUP
/**********************************************************//**
Writes a log record of page creation. */
UNIV_INLINE
void
page_create_write_log(
/*==================*/
buf_frame_t* frame, /*!< in: a buffer frame where the page is
created */
mtr_t* mtr, /*!< in: mini-transaction handle */
ibool comp) /*!< in: TRUE=compact page format */
{
mlog_write_initial_log_record(frame, comp
? MLOG_COMP_PAGE_CREATE
: MLOG_PAGE_CREATE, mtr);
}
#else /* !UNIV_HOTBACKUP */
# define page_create_write_log(frame,mtr,comp) ((void) 0)
#endif /* !UNIV_HOTBACKUP */
/***********************************************************//**
Parses a redo log record of creating a page.
@return end of log record or NULL */
UNIV_INTERN
byte*
page_parse_create(
/*==============*/
byte* ptr, /*!< in: buffer */
byte* end_ptr __attribute__((unused)), /*!< in: buffer end */
ulint comp, /*!< in: nonzero=compact page format */
buf_block_t* block, /*!< in: block or NULL */
mtr_t* mtr) /*!< in: mtr or NULL */
{
ut_ad(ptr && end_ptr);
/* The record is empty, except for the record initial part */
if (block) {
page_create(block, mtr, comp);
}
return(ptr);
}
/**********************************************************//**
The index page creation function.
@return pointer to the page */
static
page_t*
page_create_low(
/*============*/
buf_block_t* block, /*!< in: a buffer block where the
page is created */
ulint comp) /*!< in: nonzero=compact page format */
{
page_dir_slot_t* slot;
mem_heap_t* heap;
dtuple_t* tuple;
dfield_t* field;
byte* heap_top;
rec_t* infimum_rec;
rec_t* supremum_rec;
page_t* page;
dict_index_t* index;
ulint* offsets;
ut_ad(block);
#if PAGE_BTR_IBUF_FREE_LIST + FLST_BASE_NODE_SIZE > PAGE_DATA
# error "PAGE_BTR_IBUF_FREE_LIST + FLST_BASE_NODE_SIZE > PAGE_DATA"
#endif
#if PAGE_BTR_IBUF_FREE_LIST_NODE + FLST_NODE_SIZE > PAGE_DATA
# error "PAGE_BTR_IBUF_FREE_LIST_NODE + FLST_NODE_SIZE > PAGE_DATA"
#endif
/* The infimum and supremum records use a dummy index. */
if (UNIV_LIKELY(comp)) {
index = dict_ind_compact;
} else {
index = dict_ind_redundant;
}
/* 1. INCREMENT MODIFY CLOCK */
buf_block_modify_clock_inc(block);
page = buf_block_get_frame(block);
fil_page_set_type(page, FIL_PAGE_INDEX);
heap = mem_heap_create(200);
/* 3. CREATE THE INFIMUM AND SUPREMUM RECORDS */
/* Create first a data tuple for infimum record */
tuple = dtuple_create(heap, 1);
dtuple_set_info_bits(tuple, REC_STATUS_INFIMUM);
field = dtuple_get_nth_field(tuple, 0);
dfield_set_data(field, "infimum", 8);
dtype_set(dfield_get_type(field),
DATA_VARCHAR, DATA_ENGLISH | DATA_NOT_NULL, 8);
/* Set the corresponding physical record to its place in the page
record heap */
heap_top = page + PAGE_DATA;
infimum_rec = rec_convert_dtuple_to_rec(heap_top, index, tuple, 0);
if (UNIV_LIKELY(comp)) {
ut_a(infimum_rec == page + PAGE_NEW_INFIMUM);
rec_set_n_owned_new(infimum_rec, NULL, 1);
rec_set_heap_no_new(infimum_rec, 0);
} else {
ut_a(infimum_rec == page + PAGE_OLD_INFIMUM);
rec_set_n_owned_old(infimum_rec, 1);
rec_set_heap_no_old(infimum_rec, 0);
}
offsets = rec_get_offsets(infimum_rec, index, NULL,
ULINT_UNDEFINED, &heap);
heap_top = rec_get_end(infimum_rec, offsets);
/* Create then a tuple for supremum */
tuple = dtuple_create(heap, 1);
dtuple_set_info_bits(tuple, REC_STATUS_SUPREMUM);
field = dtuple_get_nth_field(tuple, 0);
dfield_set_data(field, "supremum", comp ? 8 : 9);
dtype_set(dfield_get_type(field),
DATA_VARCHAR, DATA_ENGLISH | DATA_NOT_NULL, comp ? 8 : 9);
supremum_rec = rec_convert_dtuple_to_rec(heap_top, index, tuple, 0);
if (UNIV_LIKELY(comp)) {
ut_a(supremum_rec == page + PAGE_NEW_SUPREMUM);
rec_set_n_owned_new(supremum_rec, NULL, 1);
rec_set_heap_no_new(supremum_rec, 1);
} else {
ut_a(supremum_rec == page + PAGE_OLD_SUPREMUM);
rec_set_n_owned_old(supremum_rec, 1);
rec_set_heap_no_old(supremum_rec, 1);
}
offsets = rec_get_offsets(supremum_rec, index, offsets,
ULINT_UNDEFINED, &heap);
heap_top = rec_get_end(supremum_rec, offsets);
ut_ad(heap_top == page
+ (comp ? PAGE_NEW_SUPREMUM_END : PAGE_OLD_SUPREMUM_END));
mem_heap_free(heap);
/* 4. INITIALIZE THE PAGE */
page_header_set_field(page, NULL, PAGE_N_DIR_SLOTS, 2);
page_header_set_ptr(page, NULL, PAGE_HEAP_TOP, heap_top);
page_header_set_field(page, NULL, PAGE_N_HEAP, comp
? 0x8000 | PAGE_HEAP_NO_USER_LOW
: PAGE_HEAP_NO_USER_LOW);
page_header_set_ptr(page, NULL, PAGE_FREE, NULL);
page_header_set_field(page, NULL, PAGE_GARBAGE, 0);
page_header_set_ptr(page, NULL, PAGE_LAST_INSERT, NULL);
page_header_set_field(page, NULL, PAGE_DIRECTION, PAGE_NO_DIRECTION);
page_header_set_field(page, NULL, PAGE_N_DIRECTION, 0);
page_header_set_field(page, NULL, PAGE_N_RECS, 0);
page_set_max_trx_id(block, NULL, 0, NULL);
memset(heap_top, 0, UNIV_PAGE_SIZE - PAGE_EMPTY_DIR_START
- page_offset(heap_top));
/* 5. SET POINTERS IN RECORDS AND DIR SLOTS */
/* Set the slots to point to infimum and supremum. */
slot = page_dir_get_nth_slot(page, 0);
page_dir_slot_set_rec(slot, infimum_rec);
slot = page_dir_get_nth_slot(page, 1);
page_dir_slot_set_rec(slot, supremum_rec);
/* Set the next pointers in infimum and supremum */
if (UNIV_LIKELY(comp)) {
rec_set_next_offs_new(infimum_rec, PAGE_NEW_SUPREMUM);
rec_set_next_offs_new(supremum_rec, 0);
} else {
rec_set_next_offs_old(infimum_rec, PAGE_OLD_SUPREMUM);
rec_set_next_offs_old(supremum_rec, 0);
}
return(page);
}
/**********************************************************//**
Create an uncompressed B-tree index page.
@return pointer to the page */
UNIV_INTERN
page_t*
page_create(
/*========*/
buf_block_t* block, /*!< in: a buffer block where the
page is created */
mtr_t* mtr, /*!< in: mini-transaction handle */
ulint comp) /*!< in: nonzero=compact page format */
{
page_create_write_log(buf_block_get_frame(block), mtr, comp);
return(page_create_low(block, comp));
}
/**********************************************************//**
Create a compressed B-tree index page.
@return pointer to the page */
UNIV_INTERN
page_t*
page_create_zip(
/*============*/
buf_block_t* block, /*!< in/out: a buffer frame where the
page is created */
dict_index_t* index, /*!< in: the index of the page */
ulint level, /*!< in: the B-tree level of the page */
trx_id_t max_trx_id, /*!< in: PAGE_MAX_TRX_ID */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
page_t* page;
page_zip_des_t* page_zip = buf_block_get_page_zip(block);
ut_ad(block);
ut_ad(page_zip);
ut_ad(index);
ut_ad(dict_table_is_comp(index->table));
page = page_create_low(block, TRUE);
mach_write_to_2(PAGE_HEADER + PAGE_LEVEL + page, level);
mach_write_to_8(PAGE_HEADER + PAGE_MAX_TRX_ID + page, max_trx_id);
if (!page_zip_compress(page_zip, page, index,
page_zip_level, mtr)) {
/* The compression of a newly created page
should always succeed. */
ut_error;
}
return(page);
}
/**********************************************************//**
Empty a previously created B-tree index page. */
UNIV_INTERN
void
page_create_empty(
/*==============*/
buf_block_t* block, /*!< in/out: B-tree block */
dict_index_t* index, /*!< in: the index of the page */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
trx_id_t max_trx_id = 0;
const page_t* page = buf_block_get_frame(block);
page_zip_des_t* page_zip= buf_block_get_page_zip(block);
ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX);
if (dict_index_is_sec_or_ibuf(index) && page_is_leaf(page)) {
max_trx_id = page_get_max_trx_id(page);
ut_ad(max_trx_id);
}
if (page_zip) {
page_create_zip(block, index,
page_header_get_field(page, PAGE_LEVEL),
max_trx_id, mtr);
} else {
page_create(block, mtr, page_is_comp(page));
if (max_trx_id) {
page_update_max_trx_id(
block, page_zip, max_trx_id, mtr);
}
}
}
/*************************************************************//**
Differs from page_copy_rec_list_end, because this function does not
touch the lock table and max trx id on page or compress the page.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if new_block is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit(). */
UNIV_INTERN
void
page_copy_rec_list_end_no_locks(
/*============================*/
buf_block_t* new_block, /*!< in: index page to copy to */
buf_block_t* block, /*!< in: index page of rec */
rec_t* rec, /*!< in: record on page */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr */
{
page_t* new_page = buf_block_get_frame(new_block);
page_cur_t cur1;
rec_t* cur2;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
page_cur_position(rec, block, &cur1);
if (page_cur_is_before_first(&cur1)) {
page_cur_move_to_next(&cur1);
}
btr_assert_not_corrupted(new_block, index);
ut_a(page_is_comp(new_page) == page_rec_is_comp(rec));
ut_a(mach_read_from_2(new_page + UNIV_PAGE_SIZE - 10) == (ulint)
(page_is_comp(new_page) ? PAGE_NEW_INFIMUM : PAGE_OLD_INFIMUM));
cur2 = page_get_infimum_rec(buf_block_get_frame(new_block));
/* Copy records from the original page to the new page */
while (!page_cur_is_after_last(&cur1)) {
rec_t* cur1_rec = page_cur_get_rec(&cur1);
rec_t* ins_rec;
offsets = rec_get_offsets(cur1_rec, index, offsets,
ULINT_UNDEFINED, &heap);
ins_rec = page_cur_insert_rec_low(cur2, index,
cur1_rec, offsets, mtr);
if (UNIV_UNLIKELY(!ins_rec)) {
/* Track an assertion failure reported on the mailing
list on June 18th, 2003 */
buf_page_print(new_page, 0,
BUF_PAGE_PRINT_NO_CRASH);
buf_page_print(page_align(rec), 0,
BUF_PAGE_PRINT_NO_CRASH);
ut_print_timestamp(stderr);
fprintf(stderr,
"InnoDB: rec offset %lu, cur1 offset %lu,"
" cur2 offset %lu\n",
(ulong) page_offset(rec),
(ulong) page_offset(page_cur_get_rec(&cur1)),
(ulong) page_offset(cur2));
ut_error;
}
page_cur_move_to_next(&cur1);
cur2 = ins_rec;
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
#ifndef UNIV_HOTBACKUP
/*************************************************************//**
Copies records from page to new_page, from a given record onward,
including that record. Infimum and supremum records are not copied.
The records are copied to the start of the record list on new_page.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if new_block is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit().
@return pointer to the original successor of the infimum record on
new_page, or NULL on zip overflow (new_block will be decompressed) */
UNIV_INTERN
rec_t*
page_copy_rec_list_end(
/*===================*/
buf_block_t* new_block, /*!< in/out: index page to copy to */
buf_block_t* block, /*!< in: index page containing rec */
rec_t* rec, /*!< in: record on page */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr */
{
page_t* new_page = buf_block_get_frame(new_block);
page_zip_des_t* new_page_zip = buf_block_get_page_zip(new_block);
page_t* page = page_align(rec);
rec_t* ret = page_rec_get_next(
page_get_infimum_rec(new_page));
ulint log_mode = 0; /* remove warning */
#ifdef UNIV_ZIP_DEBUG
if (new_page_zip) {
page_zip_des_t* page_zip = buf_block_get_page_zip(block);
ut_a(page_zip);
/* Strict page_zip_validate() may fail here.
Furthermore, btr_compress() may set FIL_PAGE_PREV to
FIL_NULL on new_page while leaving it intact on
new_page_zip. So, we cannot validate new_page_zip. */
ut_a(page_zip_validate_low(page_zip, page, index, TRUE));
}
#endif /* UNIV_ZIP_DEBUG */
ut_ad(buf_block_get_frame(block) == page);
ut_ad(page_is_leaf(page) == page_is_leaf(new_page));
ut_ad(page_is_comp(page) == page_is_comp(new_page));
/* Here, "ret" may be pointing to a user record or the
predefined supremum record. */
if (new_page_zip) {
log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE);
}
if (page_dir_get_n_heap(new_page) == PAGE_HEAP_NO_USER_LOW) {
page_copy_rec_list_end_to_created_page(new_page, rec,
index, mtr);
} else {
page_copy_rec_list_end_no_locks(new_block, block, rec,
index, mtr);
}
/* Update PAGE_MAX_TRX_ID on the uncompressed page.
Modifications will be redo logged and copied to the compressed
page in page_zip_compress() or page_zip_reorganize() below. */
if (dict_index_is_sec_or_ibuf(index) && page_is_leaf(page)) {
page_update_max_trx_id(new_block, NULL,
page_get_max_trx_id(page), mtr);
}
if (new_page_zip) {
mtr_set_log_mode(mtr, log_mode);
if (!page_zip_compress(new_page_zip, new_page,
index, page_zip_level, mtr)) {
/* Before trying to reorganize the page,
store the number of preceding records on the page. */
ulint ret_pos
= page_rec_get_n_recs_before(ret);
/* Before copying, "ret" was the successor of
the predefined infimum record. It must still
have at least one predecessor (the predefined
infimum record, or a freshly copied record
that is smaller than "ret"). */
ut_a(ret_pos > 0);
if (!page_zip_reorganize(new_block, index, mtr)) {
btr_blob_dbg_remove(new_page, index,
"copy_end_reorg_fail");
if (!page_zip_decompress(new_page_zip,
new_page, FALSE)) {
ut_error;
}
ut_ad(page_validate(new_page, index));
btr_blob_dbg_add(new_page, index,
"copy_end_reorg_fail");
return(NULL);
} else {
/* The page was reorganized:
Seek to ret_pos. */
ret = new_page + PAGE_NEW_INFIMUM;
do {
ret = rec_get_next_ptr(ret, TRUE);
} while (--ret_pos);
}
}
}
/* Update the lock table and possible hash index */
lock_move_rec_list_end(new_block, block, rec);
btr_search_move_or_delete_hash_entries(new_block, block, index);
return(ret);
}
/*************************************************************//**
Copies records from page to new_page, up to the given record,
NOT including that record. Infimum and supremum records are not copied.
The records are copied to the end of the record list on new_page.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if new_block is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit().
@return pointer to the original predecessor of the supremum record on
new_page, or NULL on zip overflow (new_block will be decompressed) */
UNIV_INTERN
rec_t*
page_copy_rec_list_start(
/*=====================*/
buf_block_t* new_block, /*!< in/out: index page to copy to */
buf_block_t* block, /*!< in: index page containing rec */
rec_t* rec, /*!< in: record on page */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr */
{
page_t* new_page = buf_block_get_frame(new_block);
page_zip_des_t* new_page_zip = buf_block_get_page_zip(new_block);
page_cur_t cur1;
rec_t* cur2;
ulint log_mode = 0 /* remove warning */;
mem_heap_t* heap = NULL;
rec_t* ret
= page_rec_get_prev(page_get_supremum_rec(new_page));
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
/* Here, "ret" may be pointing to a user record or the
predefined infimum record. */
if (page_rec_is_infimum(rec)) {
return(ret);
}
if (new_page_zip) {
log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE);
}
page_cur_set_before_first(block, &cur1);
page_cur_move_to_next(&cur1);
cur2 = ret;
/* Copy records from the original page to the new page */
while (page_cur_get_rec(&cur1) != rec) {
rec_t* cur1_rec = page_cur_get_rec(&cur1);
offsets = rec_get_offsets(cur1_rec, index, offsets,
ULINT_UNDEFINED, &heap);
cur2 = page_cur_insert_rec_low(cur2, index,
cur1_rec, offsets, mtr);
ut_a(cur2);
page_cur_move_to_next(&cur1);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
/* Update PAGE_MAX_TRX_ID on the uncompressed page.
Modifications will be redo logged and copied to the compressed
page in page_zip_compress() or page_zip_reorganize() below. */
if (dict_index_is_sec_or_ibuf(index)
&& page_is_leaf(page_align(rec))) {
page_update_max_trx_id(new_block, NULL,
page_get_max_trx_id(page_align(rec)),
mtr);
}
if (new_page_zip) {
mtr_set_log_mode(mtr, log_mode);
DBUG_EXECUTE_IF("page_copy_rec_list_start_compress_fail",
goto zip_reorganize;);
if (!page_zip_compress(new_page_zip, new_page, index,
page_zip_level, mtr)) {
ulint ret_pos;
#ifndef DBUG_OFF
zip_reorganize:
#endif /* DBUG_OFF */
/* Before trying to reorganize the page,
store the number of preceding records on the page. */
ret_pos = page_rec_get_n_recs_before(ret);
/* Before copying, "ret" was the predecessor
of the predefined supremum record. If it was
the predefined infimum record, then it would
still be the infimum, and we would have
ret_pos == 0. */
if (UNIV_UNLIKELY
(!page_zip_reorganize(new_block, index, mtr))) {
btr_blob_dbg_remove(new_page, index,
"copy_start_reorg_fail");
if (UNIV_UNLIKELY
(!page_zip_decompress(new_page_zip,
new_page, FALSE))) {
ut_error;
}
ut_ad(page_validate(new_page, index));
btr_blob_dbg_add(new_page, index,
"copy_start_reorg_fail");
return(NULL);
}
/* The page was reorganized: Seek to ret_pos. */
ret = page_rec_get_nth(new_page, ret_pos);
}
}
/* Update the lock table and possible hash index */
lock_move_rec_list_start(new_block, block, rec, ret);
btr_search_move_or_delete_hash_entries(new_block, block, index);
return(ret);
}
/**********************************************************//**
Writes a log record of a record list end or start deletion. */
UNIV_INLINE
void
page_delete_rec_list_write_log(
/*===========================*/
rec_t* rec, /*!< in: record on page */
dict_index_t* index, /*!< in: record descriptor */
byte type, /*!< in: operation type:
MLOG_LIST_END_DELETE, ... */
mtr_t* mtr) /*!< in: mtr */
{
byte* log_ptr;
ut_ad(type == MLOG_LIST_END_DELETE
|| type == MLOG_LIST_START_DELETE
|| type == MLOG_COMP_LIST_END_DELETE
|| type == MLOG_COMP_LIST_START_DELETE);
log_ptr = mlog_open_and_write_index(mtr, rec, index, type, 2);
if (log_ptr) {
/* Write the parameter as a 2-byte ulint */
mach_write_to_2(log_ptr, page_offset(rec));
mlog_close(mtr, log_ptr + 2);
}
}
#else /* !UNIV_HOTBACKUP */
# define page_delete_rec_list_write_log(rec,index,type,mtr) ((void) 0)
#endif /* !UNIV_HOTBACKUP */
/**********************************************************//**
Parses a log record of a record list end or start deletion.
@return end of log record or NULL */
UNIV_INTERN
byte*
page_parse_delete_rec_list(
/*=======================*/
byte type, /*!< in: MLOG_LIST_END_DELETE,
MLOG_LIST_START_DELETE,
MLOG_COMP_LIST_END_DELETE or
MLOG_COMP_LIST_START_DELETE */
byte* ptr, /*!< in: buffer */
byte* end_ptr,/*!< in: buffer end */
buf_block_t* block, /*!< in/out: buffer block or NULL */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr or NULL */
{
page_t* page;
ulint offset;
ut_ad(type == MLOG_LIST_END_DELETE
|| type == MLOG_LIST_START_DELETE
|| type == MLOG_COMP_LIST_END_DELETE
|| type == MLOG_COMP_LIST_START_DELETE);
/* Read the record offset as a 2-byte ulint */
if (end_ptr < ptr + 2) {
return(NULL);
}
offset = mach_read_from_2(ptr);
ptr += 2;
if (!block) {
return(ptr);
}
page = buf_block_get_frame(block);
ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table));
if (type == MLOG_LIST_END_DELETE
|| type == MLOG_COMP_LIST_END_DELETE) {
page_delete_rec_list_end(page + offset, block, index,
ULINT_UNDEFINED, ULINT_UNDEFINED,
mtr);
} else {
page_delete_rec_list_start(page + offset, block, index, mtr);
}
return(ptr);
}
/*************************************************************//**
Deletes records from a page from a given record onward, including that record.
The infimum and supremum records are not deleted. */
UNIV_INTERN
void
page_delete_rec_list_end(
/*=====================*/
rec_t* rec, /*!< in: pointer to record on page */
buf_block_t* block, /*!< in: buffer block of the page */
dict_index_t* index, /*!< in: record descriptor */
ulint n_recs, /*!< in: number of records to delete,
or ULINT_UNDEFINED if not known */
ulint size, /*!< in: the sum of the sizes of the
records in the end of the chain to
delete, or ULINT_UNDEFINED if not known */
mtr_t* mtr) /*!< in: mtr */
{
page_dir_slot_t*slot;
ulint slot_index;
rec_t* last_rec;
rec_t* prev_rec;
ulint n_owned;
page_zip_des_t* page_zip = buf_block_get_page_zip(block);
page_t* page = page_align(rec);
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
ut_ad(size == ULINT_UNDEFINED || size < UNIV_PAGE_SIZE);
ut_ad(!page_zip || page_rec_is_comp(rec));
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
if (page_rec_is_supremum(rec)) {
ut_ad(n_recs == 0 || n_recs == ULINT_UNDEFINED);
/* Nothing to do, there are no records bigger than the
page supremum. */
return;
}
if (recv_recovery_is_on()) {
/* If we are replaying a redo log record, we must
replay it exactly. Since MySQL 5.6.11, we should be
generating a redo log record for page creation if
the page would become empty. Thus, this branch should
only be executed when applying redo log that was
generated by an older version of MySQL. */
} else if (page_rec_is_infimum(rec)
|| n_recs == page_get_n_recs(page)) {
delete_all:
/* We are deleting all records. */
page_create_empty(block, index, mtr);
return;
} else if (page_is_comp(page)) {
if (page_rec_get_next_low(page + PAGE_NEW_INFIMUM, 1) == rec) {
/* We are deleting everything from the first
user record onwards. */
goto delete_all;
}
} else {
if (page_rec_get_next_low(page + PAGE_OLD_INFIMUM, 0) == rec) {
/* We are deleting everything from the first
user record onwards. */
goto delete_all;
}
}
/* Reset the last insert info in the page header and increment
the modify clock for the frame */
page_header_set_ptr(page, page_zip, PAGE_LAST_INSERT, NULL);
/* The page gets invalid for optimistic searches: increment the
frame modify clock */
buf_block_modify_clock_inc(block);
page_delete_rec_list_write_log(rec, index, page_is_comp(page)
? MLOG_COMP_LIST_END_DELETE
: MLOG_LIST_END_DELETE, mtr);
if (page_zip) {
ulint log_mode;
ut_a(page_is_comp(page));
/* Individual deletes are not logged */
log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE);
do {
page_cur_t cur;
page_cur_position(rec, block, &cur);
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
rec = rec_get_next_ptr(rec, TRUE);
#ifdef UNIV_ZIP_DEBUG
ut_a(page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
page_cur_delete_rec(&cur, index, offsets, mtr);
} while (page_offset(rec) != PAGE_NEW_SUPREMUM);
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
/* Restore log mode */
mtr_set_log_mode(mtr, log_mode);
return;
}
prev_rec = page_rec_get_prev(rec);
last_rec = page_rec_get_prev(page_get_supremum_rec(page));
if ((size == ULINT_UNDEFINED) || (n_recs == ULINT_UNDEFINED)) {
rec_t* rec2 = rec;
/* Calculate the sum of sizes and the number of records */
size = 0;
n_recs = 0;
do {
ulint s;
offsets = rec_get_offsets(rec2, index, offsets,
ULINT_UNDEFINED, &heap);
s = rec_offs_size(offsets);
ut_ad(rec2 - page + s - rec_offs_extra_size(offsets)
< UNIV_PAGE_SIZE);
ut_ad(size + s < UNIV_PAGE_SIZE);
size += s;
n_recs++;
rec2 = page_rec_get_next(rec2);
} while (!page_rec_is_supremum(rec2));
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
ut_ad(size < UNIV_PAGE_SIZE);
/* Update the page directory; there is no need to balance the number
of the records owned by the supremum record, as it is allowed to be
less than PAGE_DIR_SLOT_MIN_N_OWNED */
if (page_is_comp(page)) {
rec_t* rec2 = rec;
ulint count = 0;
while (rec_get_n_owned_new(rec2) == 0) {
count++;
rec2 = rec_get_next_ptr(rec2, TRUE);
}
ut_ad(rec_get_n_owned_new(rec2) > count);
n_owned = rec_get_n_owned_new(rec2) - count;
slot_index = page_dir_find_owner_slot(rec2);
ut_ad(slot_index > 0);
slot = page_dir_get_nth_slot(page, slot_index);
} else {
rec_t* rec2 = rec;
ulint count = 0;
while (rec_get_n_owned_old(rec2) == 0) {
count++;
rec2 = rec_get_next_ptr(rec2, FALSE);
}
ut_ad(rec_get_n_owned_old(rec2) > count);
n_owned = rec_get_n_owned_old(rec2) - count;
slot_index = page_dir_find_owner_slot(rec2);
ut_ad(slot_index > 0);
slot = page_dir_get_nth_slot(page, slot_index);
}
page_dir_slot_set_rec(slot, page_get_supremum_rec(page));
page_dir_slot_set_n_owned(slot, NULL, n_owned);
page_dir_set_n_slots(page, NULL, slot_index + 1);
/* Remove the record chain segment from the record chain */
page_rec_set_next(prev_rec, page_get_supremum_rec(page));
btr_blob_dbg_op(page, rec, index, "delete_end",
btr_blob_dbg_remove_rec);
/* Catenate the deleted chain segment to the page free list */
page_rec_set_next(last_rec, page_header_get_ptr(page, PAGE_FREE));
page_header_set_ptr(page, NULL, PAGE_FREE, rec);
page_header_set_field(page, NULL, PAGE_GARBAGE, size
+ page_header_get_field(page, PAGE_GARBAGE));
page_header_set_field(page, NULL, PAGE_N_RECS,
(ulint)(page_get_n_recs(page) - n_recs));
}
/*************************************************************//**
Deletes records from page, up to the given record, NOT including
that record. Infimum and supremum records are not deleted. */
UNIV_INTERN
void
page_delete_rec_list_start(
/*=======================*/
rec_t* rec, /*!< in: record on page */
buf_block_t* block, /*!< in: buffer block of the page */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr */
{
page_cur_t cur1;
ulint log_mode;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
mem_heap_t* heap = NULL;
byte type;
rec_offs_init(offsets_);
ut_ad((ibool) !!page_rec_is_comp(rec)
== dict_table_is_comp(index->table));
#ifdef UNIV_ZIP_DEBUG
{
page_zip_des_t* page_zip= buf_block_get_page_zip(block);
page_t* page = buf_block_get_frame(block);
/* page_zip_validate() would detect a min_rec_mark mismatch
in btr_page_split_and_insert()
between btr_attach_half_pages() and insert_page = ...
when btr_page_get_split_rec_to_left() holds
(direction == FSP_DOWN). */
ut_a(!page_zip
|| page_zip_validate_low(page_zip, page, index, TRUE));
}
#endif /* UNIV_ZIP_DEBUG */
if (page_rec_is_infimum(rec)) {
return;
}
if (page_rec_is_supremum(rec)) {
/* We are deleting all records. */
page_create_empty(block, index, mtr);
return;
}
if (page_rec_is_comp(rec)) {
type = MLOG_COMP_LIST_START_DELETE;
} else {
type = MLOG_LIST_START_DELETE;
}
page_delete_rec_list_write_log(rec, index, type, mtr);
page_cur_set_before_first(block, &cur1);
page_cur_move_to_next(&cur1);
/* Individual deletes are not logged */
log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE);
while (page_cur_get_rec(&cur1) != rec) {
offsets = rec_get_offsets(page_cur_get_rec(&cur1), index,
offsets, ULINT_UNDEFINED, &heap);
page_cur_delete_rec(&cur1, index, offsets, mtr);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
/* Restore log mode */
mtr_set_log_mode(mtr, log_mode);
}
#ifndef UNIV_HOTBACKUP
/*************************************************************//**
Moves record list end to another page. Moved records include
split_rec.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if new_block is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit().
@return TRUE on success; FALSE on compression failure (new_block will
be decompressed) */
UNIV_INTERN
ibool
page_move_rec_list_end(
/*===================*/
buf_block_t* new_block, /*!< in/out: index page where to move */
buf_block_t* block, /*!< in: index page from where to move */
rec_t* split_rec, /*!< in: first record to move */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr */
{
page_t* new_page = buf_block_get_frame(new_block);
ulint old_data_size;
ulint new_data_size;
ulint old_n_recs;
ulint new_n_recs;
old_data_size = page_get_data_size(new_page);
old_n_recs = page_get_n_recs(new_page);
#ifdef UNIV_ZIP_DEBUG
{
page_zip_des_t* new_page_zip
= buf_block_get_page_zip(new_block);
page_zip_des_t* page_zip
= buf_block_get_page_zip(block);
ut_a(!new_page_zip == !page_zip);
ut_a(!new_page_zip
|| page_zip_validate(new_page_zip, new_page, index));
ut_a(!page_zip
|| page_zip_validate(page_zip, page_align(split_rec),
index));
}
#endif /* UNIV_ZIP_DEBUG */
if (UNIV_UNLIKELY(!page_copy_rec_list_end(new_block, block,
split_rec, index, mtr))) {
return(FALSE);
}
new_data_size = page_get_data_size(new_page);
new_n_recs = page_get_n_recs(new_page);
ut_ad(new_data_size >= old_data_size);
page_delete_rec_list_end(split_rec, block, index,
new_n_recs - old_n_recs,
new_data_size - old_data_size, mtr);
return(TRUE);
}
/*************************************************************//**
Moves record list start to another page. Moved records do not include
split_rec.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if new_block is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit().
@return TRUE on success; FALSE on compression failure */
UNIV_INTERN
ibool
page_move_rec_list_start(
/*=====================*/
buf_block_t* new_block, /*!< in/out: index page where to move */
buf_block_t* block, /*!< in/out: page containing split_rec */
rec_t* split_rec, /*!< in: first record not to move */
dict_index_t* index, /*!< in: record descriptor */
mtr_t* mtr) /*!< in: mtr */
{
if (UNIV_UNLIKELY(!page_copy_rec_list_start(new_block, block,
split_rec, index, mtr))) {
return(FALSE);
}
page_delete_rec_list_start(split_rec, block, index, mtr);
return(TRUE);
}
#endif /* !UNIV_HOTBACKUP */
/**************************************************************//**
Used to delete n slots from the directory. This function updates
also n_owned fields in the records, so that the first slot after
the deleted ones inherits the records of the deleted slots. */
UNIV_INLINE
void
page_dir_delete_slot(
/*=================*/
page_t* page, /*!< in/out: the index page */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
ulint slot_no)/*!< in: slot to be deleted */
{
page_dir_slot_t* slot;
ulint n_owned;
ulint i;
ulint n_slots;
ut_ad(!page_zip || page_is_comp(page));
ut_ad(slot_no > 0);
ut_ad(slot_no + 1 < page_dir_get_n_slots(page));
n_slots = page_dir_get_n_slots(page);
/* 1. Reset the n_owned fields of the slots to be
deleted */
slot = page_dir_get_nth_slot(page, slot_no);
n_owned = page_dir_slot_get_n_owned(slot);
page_dir_slot_set_n_owned(slot, page_zip, 0);
/* 2. Update the n_owned value of the first non-deleted slot */
slot = page_dir_get_nth_slot(page, slot_no + 1);
page_dir_slot_set_n_owned(slot, page_zip,
n_owned + page_dir_slot_get_n_owned(slot));
/* 3. Destroy the slot by copying slots */
for (i = slot_no + 1; i < n_slots; i++) {
rec_t* rec = (rec_t*)
page_dir_slot_get_rec(page_dir_get_nth_slot(page, i));
page_dir_slot_set_rec(page_dir_get_nth_slot(page, i - 1), rec);
}
/* 4. Zero out the last slot, which will be removed */
mach_write_to_2(page_dir_get_nth_slot(page, n_slots - 1), 0);
/* 5. Update the page header */
page_header_set_field(page, page_zip, PAGE_N_DIR_SLOTS, n_slots - 1);
}
/**************************************************************//**
Used to add n slots to the directory. Does not set the record pointers
in the added slots or update n_owned values: this is the responsibility
of the caller. */
UNIV_INLINE
void
page_dir_add_slot(
/*==============*/
page_t* page, /*!< in/out: the index page */
page_zip_des_t* page_zip,/*!< in/out: comprssed page, or NULL */
ulint start) /*!< in: the slot above which the new slots
are added */
{
page_dir_slot_t* slot;
ulint n_slots;
n_slots = page_dir_get_n_slots(page);
ut_ad(start < n_slots - 1);
/* Update the page header */
page_dir_set_n_slots(page, page_zip, n_slots + 1);
/* Move slots up */
slot = page_dir_get_nth_slot(page, n_slots);
memmove(slot, slot + PAGE_DIR_SLOT_SIZE,
(n_slots - 1 - start) * PAGE_DIR_SLOT_SIZE);
}
/****************************************************************//**
Splits a directory slot which owns too many records. */
UNIV_INTERN
void
page_dir_split_slot(
/*================*/
page_t* page, /*!< in/out: index page */
page_zip_des_t* page_zip,/*!< in/out: compressed page whose
uncompressed part will be written, or NULL */
ulint slot_no)/*!< in: the directory slot */
{
rec_t* rec;
page_dir_slot_t* new_slot;
page_dir_slot_t* prev_slot;
page_dir_slot_t* slot;
ulint i;
ulint n_owned;
ut_ad(page);
ut_ad(!page_zip || page_is_comp(page));
ut_ad(slot_no > 0);
slot = page_dir_get_nth_slot(page, slot_no);
n_owned = page_dir_slot_get_n_owned(slot);
ut_ad(n_owned == PAGE_DIR_SLOT_MAX_N_OWNED + 1);
/* 1. We loop to find a record approximately in the middle of the
records owned by the slot. */
prev_slot = page_dir_get_nth_slot(page, slot_no - 1);
rec = (rec_t*) page_dir_slot_get_rec(prev_slot);
for (i = 0; i < n_owned / 2; i++) {
rec = page_rec_get_next(rec);
}
ut_ad(n_owned / 2 >= PAGE_DIR_SLOT_MIN_N_OWNED);
/* 2. We add one directory slot immediately below the slot to be
split. */
page_dir_add_slot(page, page_zip, slot_no - 1);
/* The added slot is now number slot_no, and the old slot is
now number slot_no + 1 */
new_slot = page_dir_get_nth_slot(page, slot_no);
slot = page_dir_get_nth_slot(page, slot_no + 1);
/* 3. We store the appropriate values to the new slot. */
page_dir_slot_set_rec(new_slot, rec);
page_dir_slot_set_n_owned(new_slot, page_zip, n_owned / 2);
/* 4. Finally, we update the number of records field of the
original slot */
page_dir_slot_set_n_owned(slot, page_zip, n_owned - (n_owned / 2));
}
/*************************************************************//**
Tries to balance the given directory slot with too few records with the upper
neighbor, so that there are at least the minimum number of records owned by
the slot; this may result in the merging of two slots. */
UNIV_INTERN
void
page_dir_balance_slot(
/*==================*/
page_t* page, /*!< in/out: index page */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
ulint slot_no)/*!< in: the directory slot */
{
page_dir_slot_t* slot;
page_dir_slot_t* up_slot;
ulint n_owned;
ulint up_n_owned;
rec_t* old_rec;
rec_t* new_rec;
ut_ad(page);
ut_ad(!page_zip || page_is_comp(page));
ut_ad(slot_no > 0);
slot = page_dir_get_nth_slot(page, slot_no);
/* The last directory slot cannot be balanced with the upper
neighbor, as there is none. */
if (UNIV_UNLIKELY(slot_no == page_dir_get_n_slots(page) - 1)) {
return;
}
up_slot = page_dir_get_nth_slot(page, slot_no + 1);
n_owned = page_dir_slot_get_n_owned(slot);
up_n_owned = page_dir_slot_get_n_owned(up_slot);
ut_ad(n_owned == PAGE_DIR_SLOT_MIN_N_OWNED - 1);
/* If the upper slot has the minimum value of n_owned, we will merge
the two slots, therefore we assert: */
ut_ad(2 * PAGE_DIR_SLOT_MIN_N_OWNED - 1 <= PAGE_DIR_SLOT_MAX_N_OWNED);
if (up_n_owned > PAGE_DIR_SLOT_MIN_N_OWNED) {
/* In this case we can just transfer one record owned
by the upper slot to the property of the lower slot */
old_rec = (rec_t*) page_dir_slot_get_rec(slot);
if (page_is_comp(page)) {
new_rec = rec_get_next_ptr(old_rec, TRUE);
rec_set_n_owned_new(old_rec, page_zip, 0);
rec_set_n_owned_new(new_rec, page_zip, n_owned + 1);
} else {
new_rec = rec_get_next_ptr(old_rec, FALSE);
rec_set_n_owned_old(old_rec, 0);
rec_set_n_owned_old(new_rec, n_owned + 1);
}
page_dir_slot_set_rec(slot, new_rec);
page_dir_slot_set_n_owned(up_slot, page_zip, up_n_owned -1);
} else {
/* In this case we may merge the two slots */
page_dir_delete_slot(page, page_zip, slot_no);
}
}
/************************************************************//**
Returns the nth record of the record list.
This is the inverse function of page_rec_get_n_recs_before().
@return nth record */
UNIV_INTERN
const rec_t*
page_rec_get_nth_const(
/*===================*/
const page_t* page, /*!< in: page */
ulint nth) /*!< in: nth record */
{
const page_dir_slot_t* slot;
ulint i;
ulint n_owned;
const rec_t* rec;
if (nth == 0) {
return(page_get_infimum_rec(page));
}
ut_ad(nth < UNIV_PAGE_SIZE / (REC_N_NEW_EXTRA_BYTES + 1));
for (i = 0;; i++) {
slot = page_dir_get_nth_slot(page, i);
n_owned = page_dir_slot_get_n_owned(slot);
if (n_owned > nth) {
break;
} else {
nth -= n_owned;
}
}
ut_ad(i > 0);
slot = page_dir_get_nth_slot(page, i - 1);
rec = page_dir_slot_get_rec(slot);
if (page_is_comp(page)) {
do {
rec = page_rec_get_next_low(rec, TRUE);
ut_ad(rec);
} while (nth--);
} else {
do {
rec = page_rec_get_next_low(rec, FALSE);
ut_ad(rec);
} while (nth--);
}
return(rec);
}
/***************************************************************//**
Returns the number of records before the given record in chain.
The number includes infimum and supremum records.
@return number of records */
UNIV_INTERN
ulint
page_rec_get_n_recs_before(
/*=======================*/
const rec_t* rec) /*!< in: the physical record */
{
const page_dir_slot_t* slot;
const rec_t* slot_rec;
const page_t* page;
ulint i;
lint n = 0;
ut_ad(page_rec_check(rec));
page = page_align(rec);
if (page_is_comp(page)) {
while (rec_get_n_owned_new(rec) == 0) {
rec = rec_get_next_ptr_const(rec, TRUE);
n--;
}
for (i = 0; ; i++) {
slot = page_dir_get_nth_slot(page, i);
slot_rec = page_dir_slot_get_rec(slot);
n += rec_get_n_owned_new(slot_rec);
if (rec == slot_rec) {
break;
}
}
} else {
while (rec_get_n_owned_old(rec) == 0) {
rec = rec_get_next_ptr_const(rec, FALSE);
n--;
}
for (i = 0; ; i++) {
slot = page_dir_get_nth_slot(page, i);
slot_rec = page_dir_slot_get_rec(slot);
n += rec_get_n_owned_old(slot_rec);
if (rec == slot_rec) {
break;
}
}
}
n--;
ut_ad(n >= 0);
ut_ad((ulong) n < UNIV_PAGE_SIZE / (REC_N_NEW_EXTRA_BYTES + 1));
return((ulint) n);
}
#ifndef UNIV_HOTBACKUP
/************************************************************//**
Prints record contents including the data relevant only in
the index page context. */
UNIV_INTERN
void
page_rec_print(
/*===========*/
const rec_t* rec, /*!< in: physical record */
const ulint* offsets)/*!< in: record descriptor */
{
ut_a(!page_rec_is_comp(rec) == !rec_offs_comp(offsets));
rec_print_new(stderr, rec, offsets);
if (page_rec_is_comp(rec)) {
fprintf(stderr,
" n_owned: %lu; heap_no: %lu; next rec: %lu\n",
(ulong) rec_get_n_owned_new(rec),
(ulong) rec_get_heap_no_new(rec),
(ulong) rec_get_next_offs(rec, TRUE));
} else {
fprintf(stderr,
" n_owned: %lu; heap_no: %lu; next rec: %lu\n",
(ulong) rec_get_n_owned_old(rec),
(ulong) rec_get_heap_no_old(rec),
(ulong) rec_get_next_offs(rec, FALSE));
}
page_rec_check(rec);
rec_validate(rec, offsets);
}
# ifdef UNIV_BTR_PRINT
/***************************************************************//**
This is used to print the contents of the directory for
debugging purposes. */
UNIV_INTERN
void
page_dir_print(
/*===========*/
page_t* page, /*!< in: index page */
ulint pr_n) /*!< in: print n first and n last entries */
{
ulint n;
ulint i;
page_dir_slot_t* slot;
n = page_dir_get_n_slots(page);
fprintf(stderr, "--------------------------------\n"
"PAGE DIRECTORY\n"
"Page address %p\n"
"Directory stack top at offs: %lu; number of slots: %lu\n",
page, (ulong) page_offset(page_dir_get_nth_slot(page, n - 1)),
(ulong) n);
for (i = 0; i < n; i++) {
slot = page_dir_get_nth_slot(page, i);
if ((i == pr_n) && (i < n - pr_n)) {
fputs(" ... \n", stderr);
}
if ((i < pr_n) || (i >= n - pr_n)) {
fprintf(stderr,
"Contents of slot: %lu: n_owned: %lu,"
" rec offs: %lu\n",
(ulong) i,
(ulong) page_dir_slot_get_n_owned(slot),
(ulong)
page_offset(page_dir_slot_get_rec(slot)));
}
}
fprintf(stderr, "Total of %lu records\n"
"--------------------------------\n",
(ulong) (PAGE_HEAP_NO_USER_LOW + page_get_n_recs(page)));
}
/***************************************************************//**
This is used to print the contents of the page record list for
debugging purposes. */
UNIV_INTERN
void
page_print_list(
/*============*/
buf_block_t* block, /*!< in: index page */
dict_index_t* index, /*!< in: dictionary index of the page */
ulint pr_n) /*!< in: print n first and n last entries */
{
page_t* page = block->frame;
page_cur_t cur;
ulint count;
ulint n_recs;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
ut_a((ibool)!!page_is_comp(page) == dict_table_is_comp(index->table));
fprintf(stderr,
"--------------------------------\n"
"PAGE RECORD LIST\n"
"Page address %p\n", page);
n_recs = page_get_n_recs(page);
page_cur_set_before_first(block, &cur);
count = 0;
for (;;) {
offsets = rec_get_offsets(cur.rec, index, offsets,
ULINT_UNDEFINED, &heap);
page_rec_print(cur.rec, offsets);
if (count == pr_n) {
break;
}
if (page_cur_is_after_last(&cur)) {
break;
}
page_cur_move_to_next(&cur);
count++;
}
if (n_recs > 2 * pr_n) {
fputs(" ... \n", stderr);
}
while (!page_cur_is_after_last(&cur)) {
page_cur_move_to_next(&cur);
if (count + pr_n >= n_recs) {
offsets = rec_get_offsets(cur.rec, index, offsets,
ULINT_UNDEFINED, &heap);
page_rec_print(cur.rec, offsets);
}
count++;
}
fprintf(stderr,
"Total of %lu records \n"
"--------------------------------\n",
(ulong) (count + 1));
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
/***************************************************************//**
Prints the info in a page header. */
UNIV_INTERN
void
page_header_print(
/*==============*/
const page_t* page)
{
fprintf(stderr,
"--------------------------------\n"
"PAGE HEADER INFO\n"
"Page address %p, n records %lu (%s)\n"
"n dir slots %lu, heap top %lu\n"
"Page n heap %lu, free %lu, garbage %lu\n"
"Page last insert %lu, direction %lu, n direction %lu\n",
page, (ulong) page_header_get_field(page, PAGE_N_RECS),
page_is_comp(page) ? "compact format" : "original format",
(ulong) page_header_get_field(page, PAGE_N_DIR_SLOTS),
(ulong) page_header_get_field(page, PAGE_HEAP_TOP),
(ulong) page_dir_get_n_heap(page),
(ulong) page_header_get_field(page, PAGE_FREE),
(ulong) page_header_get_field(page, PAGE_GARBAGE),
(ulong) page_header_get_field(page, PAGE_LAST_INSERT),
(ulong) page_header_get_field(page, PAGE_DIRECTION),
(ulong) page_header_get_field(page, PAGE_N_DIRECTION));
}
/***************************************************************//**
This is used to print the contents of the page for
debugging purposes. */
UNIV_INTERN
void
page_print(
/*=======*/
buf_block_t* block, /*!< in: index page */
dict_index_t* index, /*!< in: dictionary index of the page */
ulint dn, /*!< in: print dn first and last entries
in directory */
ulint rn) /*!< in: print rn first and last records
in directory */
{
page_t* page = block->frame;
page_header_print(page);
page_dir_print(page, dn);
page_print_list(block, index, rn);
}
# endif /* UNIV_BTR_PRINT */
#endif /* !UNIV_HOTBACKUP */
/***************************************************************//**
The following is used to validate a record on a page. This function
differs from rec_validate as it can also check the n_owned field and
the heap_no field.
@return TRUE if ok */
UNIV_INTERN
ibool
page_rec_validate(
/*==============*/
const rec_t* rec, /*!< in: physical record */
const ulint* offsets)/*!< in: array returned by rec_get_offsets() */
{
ulint n_owned;
ulint heap_no;
const page_t* page;
page = page_align(rec);
ut_a(!page_is_comp(page) == !rec_offs_comp(offsets));
page_rec_check(rec);
rec_validate(rec, offsets);
if (page_rec_is_comp(rec)) {
n_owned = rec_get_n_owned_new(rec);
heap_no = rec_get_heap_no_new(rec);
} else {
n_owned = rec_get_n_owned_old(rec);
heap_no = rec_get_heap_no_old(rec);
}
if (UNIV_UNLIKELY(!(n_owned <= PAGE_DIR_SLOT_MAX_N_OWNED))) {
fprintf(stderr,
"InnoDB: Dir slot of rec %lu, n owned too big %lu\n",
(ulong) page_offset(rec), (ulong) n_owned);
return(FALSE);
}
if (UNIV_UNLIKELY(!(heap_no < page_dir_get_n_heap(page)))) {
fprintf(stderr,
"InnoDB: Heap no of rec %lu too big %lu %lu\n",
(ulong) page_offset(rec), (ulong) heap_no,
(ulong) page_dir_get_n_heap(page));
return(FALSE);
}
return(TRUE);
}
#ifndef UNIV_HOTBACKUP
/***************************************************************//**
Checks that the first directory slot points to the infimum record and
the last to the supremum. This function is intended to track if the
bug fixed in 4.0.14 has caused corruption to users' databases. */
UNIV_INTERN
void
page_check_dir(
/*===========*/
const page_t* page) /*!< in: index page */
{
ulint n_slots;
ulint infimum_offs;
ulint supremum_offs;
n_slots = page_dir_get_n_slots(page);
infimum_offs = mach_read_from_2(page_dir_get_nth_slot(page, 0));
supremum_offs = mach_read_from_2(page_dir_get_nth_slot(page,
n_slots - 1));
if (UNIV_UNLIKELY(!page_rec_is_infimum_low(infimum_offs))) {
fprintf(stderr,
"InnoDB: Page directory corruption:"
" infimum not pointed to\n");
buf_page_print(page, 0, 0);
}
if (UNIV_UNLIKELY(!page_rec_is_supremum_low(supremum_offs))) {
fprintf(stderr,
"InnoDB: Page directory corruption:"
" supremum not pointed to\n");
buf_page_print(page, 0, 0);
}
}
#endif /* !UNIV_HOTBACKUP */
/***************************************************************//**
This function checks the consistency of an index page when we do not
know the index. This is also resilient so that this should never crash
even if the page is total garbage.
@return TRUE if ok */
UNIV_INTERN
ibool
page_simple_validate_old(
/*=====================*/
const page_t* page) /*!< in: index page in ROW_FORMAT=REDUNDANT */
{
const page_dir_slot_t* slot;
ulint slot_no;
ulint n_slots;
const rec_t* rec;
const byte* rec_heap_top;
ulint count;
ulint own_count;
ibool ret = FALSE;
ut_a(!page_is_comp(page));
/* Check first that the record heap and the directory do not
overlap. */
n_slots = page_dir_get_n_slots(page);
if (UNIV_UNLIKELY(n_slots > UNIV_PAGE_SIZE / 4)) {
fprintf(stderr,
"InnoDB: Nonsensical number %lu of page dir slots\n",
(ulong) n_slots);
goto func_exit;
}
rec_heap_top = page_header_get_ptr(page, PAGE_HEAP_TOP);
if (UNIV_UNLIKELY(rec_heap_top
> page_dir_get_nth_slot(page, n_slots - 1))) {
fprintf(stderr,
"InnoDB: Record heap and dir overlap on a page,"
" heap top %lu, dir %lu\n",
(ulong) page_header_get_field(page, PAGE_HEAP_TOP),
(ulong)
page_offset(page_dir_get_nth_slot(page, n_slots - 1)));
goto func_exit;
}
/* Validate the record list in a loop checking also that it is
consistent with the page record directory. */
count = 0;
own_count = 1;
slot_no = 0;
slot = page_dir_get_nth_slot(page, slot_no);
rec = page_get_infimum_rec(page);
for (;;) {
if (UNIV_UNLIKELY(rec > rec_heap_top)) {
fprintf(stderr,
"InnoDB: Record %lu is above"
" rec heap top %lu\n",
(ulong)(rec - page),
(ulong)(rec_heap_top - page));
goto func_exit;
}
if (UNIV_UNLIKELY(rec_get_n_owned_old(rec))) {
/* This is a record pointed to by a dir slot */
if (UNIV_UNLIKELY(rec_get_n_owned_old(rec)
!= own_count)) {
fprintf(stderr,
"InnoDB: Wrong owned count %lu, %lu,"
" rec %lu\n",
(ulong) rec_get_n_owned_old(rec),
(ulong) own_count,
(ulong)(rec - page));
goto func_exit;
}
if (UNIV_UNLIKELY
(page_dir_slot_get_rec(slot) != rec)) {
fprintf(stderr,
"InnoDB: Dir slot does not point"
" to right rec %lu\n",
(ulong)(rec - page));
goto func_exit;
}
own_count = 0;
if (!page_rec_is_supremum(rec)) {
slot_no++;
slot = page_dir_get_nth_slot(page, slot_no);
}
}
if (page_rec_is_supremum(rec)) {
break;
}
if (UNIV_UNLIKELY
(rec_get_next_offs(rec, FALSE) < FIL_PAGE_DATA
|| rec_get_next_offs(rec, FALSE) >= UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Next record offset"
" nonsensical %lu for rec %lu\n",
(ulong) rec_get_next_offs(rec, FALSE),
(ulong) (rec - page));
goto func_exit;
}
count++;
if (UNIV_UNLIKELY(count > UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Page record list appears"
" to be circular %lu\n",
(ulong) count);
goto func_exit;
}
rec = page_rec_get_next_const(rec);
own_count++;
}
if (UNIV_UNLIKELY(rec_get_n_owned_old(rec) == 0)) {
fprintf(stderr, "InnoDB: n owned is zero in a supremum rec\n");
goto func_exit;
}
if (UNIV_UNLIKELY(slot_no != n_slots - 1)) {
fprintf(stderr, "InnoDB: n slots wrong %lu, %lu\n",
(ulong) slot_no, (ulong) (n_slots - 1));
goto func_exit;
}
if (UNIV_UNLIKELY(page_header_get_field(page, PAGE_N_RECS)
+ PAGE_HEAP_NO_USER_LOW
!= count + 1)) {
fprintf(stderr, "InnoDB: n recs wrong %lu %lu\n",
(ulong) page_header_get_field(page, PAGE_N_RECS)
+ PAGE_HEAP_NO_USER_LOW,
(ulong) (count + 1));
goto func_exit;
}
/* Check then the free list */
rec = page_header_get_ptr(page, PAGE_FREE);
while (rec != NULL) {
if (UNIV_UNLIKELY(rec < page + FIL_PAGE_DATA
|| rec >= page + UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Free list record has"
" a nonsensical offset %lu\n",
(ulong) (rec - page));
goto func_exit;
}
if (UNIV_UNLIKELY(rec > rec_heap_top)) {
fprintf(stderr,
"InnoDB: Free list record %lu"
" is above rec heap top %lu\n",
(ulong) (rec - page),
(ulong) (rec_heap_top - page));
goto func_exit;
}
count++;
if (UNIV_UNLIKELY(count > UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Page free list appears"
" to be circular %lu\n",
(ulong) count);
goto func_exit;
}
rec = page_rec_get_next_const(rec);
}
if (UNIV_UNLIKELY(page_dir_get_n_heap(page) != count + 1)) {
fprintf(stderr, "InnoDB: N heap is wrong %lu, %lu\n",
(ulong) page_dir_get_n_heap(page),
(ulong) (count + 1));
goto func_exit;
}
ret = TRUE;
func_exit:
return(ret);
}
/***************************************************************//**
This function checks the consistency of an index page when we do not
know the index. This is also resilient so that this should never crash
even if the page is total garbage.
@return TRUE if ok */
UNIV_INTERN
ibool
page_simple_validate_new(
/*=====================*/
const page_t* page) /*!< in: index page in ROW_FORMAT!=REDUNDANT */
{
const page_dir_slot_t* slot;
ulint slot_no;
ulint n_slots;
const rec_t* rec;
const byte* rec_heap_top;
ulint count;
ulint own_count;
ibool ret = FALSE;
ut_a(page_is_comp(page));
/* Check first that the record heap and the directory do not
overlap. */
n_slots = page_dir_get_n_slots(page);
if (UNIV_UNLIKELY(n_slots > UNIV_PAGE_SIZE / 4)) {
fprintf(stderr,
"InnoDB: Nonsensical number %lu"
" of page dir slots\n", (ulong) n_slots);
goto func_exit;
}
rec_heap_top = page_header_get_ptr(page, PAGE_HEAP_TOP);
if (UNIV_UNLIKELY(rec_heap_top
> page_dir_get_nth_slot(page, n_slots - 1))) {
fprintf(stderr,
"InnoDB: Record heap and dir overlap on a page,"
" heap top %lu, dir %lu\n",
(ulong) page_header_get_field(page, PAGE_HEAP_TOP),
(ulong)
page_offset(page_dir_get_nth_slot(page, n_slots - 1)));
goto func_exit;
}
/* Validate the record list in a loop checking also that it is
consistent with the page record directory. */
count = 0;
own_count = 1;
slot_no = 0;
slot = page_dir_get_nth_slot(page, slot_no);
rec = page_get_infimum_rec(page);
for (;;) {
if (UNIV_UNLIKELY(rec > rec_heap_top)) {
fprintf(stderr,
"InnoDB: Record %lu is above rec"
" heap top %lu\n",
(ulong) page_offset(rec),
(ulong) page_offset(rec_heap_top));
goto func_exit;
}
if (UNIV_UNLIKELY(rec_get_n_owned_new(rec))) {
/* This is a record pointed to by a dir slot */
if (UNIV_UNLIKELY(rec_get_n_owned_new(rec)
!= own_count)) {
fprintf(stderr,
"InnoDB: Wrong owned count %lu, %lu,"
" rec %lu\n",
(ulong) rec_get_n_owned_new(rec),
(ulong) own_count,
(ulong) page_offset(rec));
goto func_exit;
}
if (UNIV_UNLIKELY
(page_dir_slot_get_rec(slot) != rec)) {
fprintf(stderr,
"InnoDB: Dir slot does not point"
" to right rec %lu\n",
(ulong) page_offset(rec));
goto func_exit;
}
own_count = 0;
if (!page_rec_is_supremum(rec)) {
slot_no++;
slot = page_dir_get_nth_slot(page, slot_no);
}
}
if (page_rec_is_supremum(rec)) {
break;
}
if (UNIV_UNLIKELY
(rec_get_next_offs(rec, TRUE) < FIL_PAGE_DATA
|| rec_get_next_offs(rec, TRUE) >= UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Next record offset nonsensical %lu"
" for rec %lu\n",
(ulong) rec_get_next_offs(rec, TRUE),
(ulong) page_offset(rec));
goto func_exit;
}
count++;
if (UNIV_UNLIKELY(count > UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Page record list appears"
" to be circular %lu\n",
(ulong) count);
goto func_exit;
}
rec = page_rec_get_next_const(rec);
own_count++;
}
if (UNIV_UNLIKELY(rec_get_n_owned_new(rec) == 0)) {
fprintf(stderr, "InnoDB: n owned is zero"
" in a supremum rec\n");
goto func_exit;
}
if (UNIV_UNLIKELY(slot_no != n_slots - 1)) {
fprintf(stderr, "InnoDB: n slots wrong %lu, %lu\n",
(ulong) slot_no, (ulong) (n_slots - 1));
goto func_exit;
}
if (UNIV_UNLIKELY(page_header_get_field(page, PAGE_N_RECS)
+ PAGE_HEAP_NO_USER_LOW
!= count + 1)) {
fprintf(stderr, "InnoDB: n recs wrong %lu %lu\n",
(ulong) page_header_get_field(page, PAGE_N_RECS)
+ PAGE_HEAP_NO_USER_LOW,
(ulong) (count + 1));
goto func_exit;
}
/* Check then the free list */
rec = page_header_get_ptr(page, PAGE_FREE);
while (rec != NULL) {
if (UNIV_UNLIKELY(rec < page + FIL_PAGE_DATA
|| rec >= page + UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Free list record has"
" a nonsensical offset %lu\n",
(ulong) page_offset(rec));
goto func_exit;
}
if (UNIV_UNLIKELY(rec > rec_heap_top)) {
fprintf(stderr,
"InnoDB: Free list record %lu"
" is above rec heap top %lu\n",
(ulong) page_offset(rec),
(ulong) page_offset(rec_heap_top));
goto func_exit;
}
count++;
if (UNIV_UNLIKELY(count > UNIV_PAGE_SIZE)) {
fprintf(stderr,
"InnoDB: Page free list appears"
" to be circular %lu\n",
(ulong) count);
goto func_exit;
}
rec = page_rec_get_next_const(rec);
}
if (UNIV_UNLIKELY(page_dir_get_n_heap(page) != count + 1)) {
fprintf(stderr, "InnoDB: N heap is wrong %lu, %lu\n",
(ulong) page_dir_get_n_heap(page),
(ulong) (count + 1));
goto func_exit;
}
ret = TRUE;
func_exit:
return(ret);
}
/***************************************************************//**
This function checks the consistency of an index page.
@return TRUE if ok */
UNIV_INTERN
ibool
page_validate(
/*==========*/
const page_t* page, /*!< in: index page */
dict_index_t* index) /*!< in: data dictionary index containing
the page record type definition */
{
const page_dir_slot_t* slot;
mem_heap_t* heap;
byte* buf;
ulint count;
ulint own_count;
ulint rec_own_count;
ulint slot_no;
ulint data_size;
const rec_t* rec;
const rec_t* old_rec = NULL;
ulint offs;
ulint n_slots;
ibool ret = FALSE;
ulint i;
ulint* offsets = NULL;
ulint* old_offsets = NULL;
if (UNIV_UNLIKELY((ibool) !!page_is_comp(page)
!= dict_table_is_comp(index->table))) {
fputs("InnoDB: 'compact format' flag mismatch\n", stderr);
goto func_exit2;
}
if (page_is_comp(page)) {
if (UNIV_UNLIKELY(!page_simple_validate_new(page))) {
goto func_exit2;
}
} else {
if (UNIV_UNLIKELY(!page_simple_validate_old(page))) {
goto func_exit2;
}
}
if (dict_index_is_sec_or_ibuf(index) && page_is_leaf(page)
&& !page_is_empty(page)) {
trx_id_t max_trx_id = page_get_max_trx_id(page);
trx_id_t sys_max_trx_id = trx_sys_get_max_trx_id();
if (max_trx_id == 0 || max_trx_id > sys_max_trx_id) {
ib_logf(IB_LOG_LEVEL_ERROR,
"PAGE_MAX_TRX_ID out of bounds: "
TRX_ID_FMT ", " TRX_ID_FMT,
max_trx_id, sys_max_trx_id);
goto func_exit2;
}
}
heap = mem_heap_create(UNIV_PAGE_SIZE + 200);
/* The following buffer is used to check that the
records in the page record heap do not overlap */
buf = static_cast<byte*>(mem_heap_zalloc(heap, UNIV_PAGE_SIZE));
/* Check first that the record heap and the directory do not
overlap. */
n_slots = page_dir_get_n_slots(page);
if (UNIV_UNLIKELY(!(page_header_get_ptr(page, PAGE_HEAP_TOP)
<= page_dir_get_nth_slot(page, n_slots - 1)))) {
fprintf(stderr,
"InnoDB: Record heap and dir overlap"
" on space %lu page %lu index %s, %p, %p\n",
(ulong) page_get_space_id(page),
(ulong) page_get_page_no(page), index->name,
page_header_get_ptr(page, PAGE_HEAP_TOP),
page_dir_get_nth_slot(page, n_slots - 1));
goto func_exit;
}
/* Validate the record list in a loop checking also that
it is consistent with the directory. */
count = 0;
data_size = 0;
own_count = 1;
slot_no = 0;
slot = page_dir_get_nth_slot(page, slot_no);
rec = page_get_infimum_rec(page);
for (;;) {
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
if (page_is_comp(page) && page_rec_is_user_rec(rec)
&& UNIV_UNLIKELY(rec_get_node_ptr_flag(rec)
== page_is_leaf(page))) {
fputs("InnoDB: node_ptr flag mismatch\n", stderr);
goto func_exit;
}
if (UNIV_UNLIKELY(!page_rec_validate(rec, offsets))) {
goto func_exit;
}
#ifndef UNIV_HOTBACKUP
/* Check that the records are in the ascending order */
if (UNIV_LIKELY(count >= PAGE_HEAP_NO_USER_LOW)
&& !page_rec_is_supremum(rec)) {
if (UNIV_UNLIKELY
(1 != cmp_rec_rec(rec, old_rec,
offsets, old_offsets, index))) {
fprintf(stderr,
"InnoDB: Records in wrong order"
" on space %lu page %lu index %s\n",
(ulong) page_get_space_id(page),
(ulong) page_get_page_no(page),
index->name);
fputs("\nInnoDB: previous record ", stderr);
rec_print_new(stderr, old_rec, old_offsets);
fputs("\nInnoDB: record ", stderr);
rec_print_new(stderr, rec, offsets);
putc('\n', stderr);
goto func_exit;
}
}
#endif /* !UNIV_HOTBACKUP */
if (page_rec_is_user_rec(rec)) {
data_size += rec_offs_size(offsets);
}
offs = page_offset(rec_get_start(rec, offsets));
i = rec_offs_size(offsets);
if (UNIV_UNLIKELY(offs + i >= UNIV_PAGE_SIZE)) {
fputs("InnoDB: record offset out of bounds\n", stderr);
goto func_exit;
}
while (i--) {
if (UNIV_UNLIKELY(buf[offs + i])) {
/* No other record may overlap this */
fputs("InnoDB: Record overlaps another\n",
stderr);
goto func_exit;
}
buf[offs + i] = 1;
}
if (page_is_comp(page)) {
rec_own_count = rec_get_n_owned_new(rec);
} else {
rec_own_count = rec_get_n_owned_old(rec);
}
if (UNIV_UNLIKELY(rec_own_count)) {
/* This is a record pointed to by a dir slot */
if (UNIV_UNLIKELY(rec_own_count != own_count)) {
fprintf(stderr,
"InnoDB: Wrong owned count %lu, %lu\n",
(ulong) rec_own_count,
(ulong) own_count);
goto func_exit;
}
if (page_dir_slot_get_rec(slot) != rec) {
fputs("InnoDB: Dir slot does not"
" point to right rec\n",
stderr);
goto func_exit;
}
page_dir_slot_check(slot);
own_count = 0;
if (!page_rec_is_supremum(rec)) {
slot_no++;
slot = page_dir_get_nth_slot(page, slot_no);
}
}
if (page_rec_is_supremum(rec)) {
break;
}
count++;
own_count++;
old_rec = rec;
rec = page_rec_get_next_const(rec);
/* set old_offsets to offsets; recycle offsets */
{
ulint* offs = old_offsets;
old_offsets = offsets;
offsets = offs;
}
}
if (page_is_comp(page)) {
if (UNIV_UNLIKELY(rec_get_n_owned_new(rec) == 0)) {
goto n_owned_zero;
}
} else if (UNIV_UNLIKELY(rec_get_n_owned_old(rec) == 0)) {
n_owned_zero:
fputs("InnoDB: n owned is zero\n", stderr);
goto func_exit;
}
if (UNIV_UNLIKELY(slot_no != n_slots - 1)) {
fprintf(stderr, "InnoDB: n slots wrong %lu %lu\n",
(ulong) slot_no, (ulong) (n_slots - 1));
goto func_exit;
}
if (UNIV_UNLIKELY(page_header_get_field(page, PAGE_N_RECS)
+ PAGE_HEAP_NO_USER_LOW
!= count + 1)) {
fprintf(stderr, "InnoDB: n recs wrong %lu %lu\n",
(ulong) page_header_get_field(page, PAGE_N_RECS)
+ PAGE_HEAP_NO_USER_LOW,
(ulong) (count + 1));
goto func_exit;
}
if (UNIV_UNLIKELY(data_size != page_get_data_size(page))) {
fprintf(stderr,
"InnoDB: Summed data size %lu, returned by func %lu\n",
(ulong) data_size, (ulong) page_get_data_size(page));
goto func_exit;
}
/* Check then the free list */
rec = page_header_get_ptr(page, PAGE_FREE);
while (rec != NULL) {
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
if (UNIV_UNLIKELY(!page_rec_validate(rec, offsets))) {
goto func_exit;
}
count++;
offs = page_offset(rec_get_start(rec, offsets));
i = rec_offs_size(offsets);
if (UNIV_UNLIKELY(offs + i >= UNIV_PAGE_SIZE)) {
fputs("InnoDB: record offset out of bounds\n", stderr);
goto func_exit;
}
while (i--) {
if (UNIV_UNLIKELY(buf[offs + i])) {
fputs("InnoDB: Record overlaps another"
" in free list\n", stderr);
goto func_exit;
}
buf[offs + i] = 1;
}
rec = page_rec_get_next_const(rec);
}
if (UNIV_UNLIKELY(page_dir_get_n_heap(page) != count + 1)) {
fprintf(stderr, "InnoDB: N heap is wrong %lu %lu\n",
(ulong) page_dir_get_n_heap(page),
(ulong) count + 1);
goto func_exit;
}
ret = TRUE;
func_exit:
mem_heap_free(heap);
if (UNIV_UNLIKELY(ret == FALSE)) {
func_exit2:
fprintf(stderr,
"InnoDB: Apparent corruption"
" in space %lu page %lu index %s\n",
(ulong) page_get_space_id(page),
(ulong) page_get_page_no(page),
index->name);
buf_page_print(page, 0, 0);
}
return(ret);
}
#ifndef UNIV_HOTBACKUP
/***************************************************************//**
Looks in the page record list for a record with the given heap number.
@return record, NULL if not found */
UNIV_INTERN
const rec_t*
page_find_rec_with_heap_no(
/*=======================*/
const page_t* page, /*!< in: index page */
ulint heap_no)/*!< in: heap number */
{
const rec_t* rec;
if (page_is_comp(page)) {
rec = page + PAGE_NEW_INFIMUM;
for(;;) {
ulint rec_heap_no = rec_get_heap_no_new(rec);
if (rec_heap_no == heap_no) {
return(rec);
} else if (rec_heap_no == PAGE_HEAP_NO_SUPREMUM) {
return(NULL);
}
rec = page + rec_get_next_offs(rec, TRUE);
}
} else {
rec = page + PAGE_OLD_INFIMUM;
for (;;) {
ulint rec_heap_no = rec_get_heap_no_old(rec);
if (rec_heap_no == heap_no) {
return(rec);
} else if (rec_heap_no == PAGE_HEAP_NO_SUPREMUM) {
return(NULL);
}
rec = page + rec_get_next_offs(rec, FALSE);
}
}
}
#endif /* !UNIV_HOTBACKUP */
/*******************************************************//**
Removes the record from a leaf page. This function does not log
any changes. It is used by the IMPORT tablespace functions.
The cursor is moved to the next record after the deleted one.
@return true if success, i.e., the page did not become too empty */
UNIV_INTERN
bool
page_delete_rec(
/*============*/
const dict_index_t* index, /*!< in: The index that the record
belongs to */
page_cur_t* pcur, /*!< in/out: page cursor on record
to delete */
page_zip_des_t* page_zip,/*!< in: compressed page descriptor */
const ulint* offsets)/*!< in: offsets for record */
{
bool no_compress_needed;
buf_block_t* block = pcur->block;
page_t* page = buf_block_get_frame(block);
ut_ad(page_is_leaf(page));
if (!rec_offs_any_extern(offsets)
&& ((page_get_data_size(page) - rec_offs_size(offsets)
< BTR_CUR_PAGE_COMPRESS_LIMIT)
|| (mach_read_from_4(page + FIL_PAGE_NEXT) == FIL_NULL
&& mach_read_from_4(page + FIL_PAGE_PREV) == FIL_NULL)
|| (page_get_n_recs(page) < 2))) {
ulint root_page_no = dict_index_get_page(index);
/* The page fillfactor will drop below a predefined
minimum value, OR the level in the B-tree contains just
one page, OR the page will become empty: we recommend
compression if this is not the root page. */
no_compress_needed = page_get_page_no(page) == root_page_no;
} else {
no_compress_needed = true;
}
if (no_compress_needed) {
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
page_cur_delete_rec(pcur, index, offsets, 0);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page, index));
#endif /* UNIV_ZIP_DEBUG */
}
return(no_compress_needed);
}
/** Get the last non-delete-marked record on a page.
@param[in] page index tree leaf page
@return the last record, not delete-marked
@retval infimum record if all records are delete-marked */
const rec_t*
page_find_rec_max_not_deleted(
const page_t* page)
{
const rec_t* rec = page_get_infimum_rec(page);
const rec_t* prev_rec = NULL; // remove warning
/* Because the page infimum is never delete-marked,
prev_rec will always be assigned to it first. */
ut_ad(!rec_get_deleted_flag(rec, page_rec_is_comp(rec)));
if (page_is_comp(page)) {
do {
if (!rec_get_deleted_flag(rec, true)) {
prev_rec = rec;
}
rec = page_rec_get_next_low(rec, true);
} while (rec != page + PAGE_NEW_SUPREMUM);
} else {
do {
if (!rec_get_deleted_flag(rec, false)) {
prev_rec = rec;
}
rec = page_rec_get_next_low(rec, false);
} while (rec != page + PAGE_OLD_SUPREMUM);
}
return(prev_rec);
}
#endif /* #ifndef UNIV_INNOCHECKSUM */
/** Issue a warning when the checksum that is stored in the page is valid,
but different than the global setting innodb_checksum_algorithm.
@param[in] current_algo current checksum algorithm
@param[in] page_checksum page valid checksum
@param[in] space_id tablespace id
@param[in] page_no page number */
void
page_warn_strict_checksum(
srv_checksum_algorithm_t curr_algo,
srv_checksum_algorithm_t page_checksum,
ulint space_id,
ulint page_no)
{
srv_checksum_algorithm_t curr_algo_nonstrict;
switch (curr_algo) {
case SRV_CHECKSUM_ALGORITHM_STRICT_CRC32:
curr_algo_nonstrict = SRV_CHECKSUM_ALGORITHM_CRC32;
break;
case SRV_CHECKSUM_ALGORITHM_STRICT_INNODB:
curr_algo_nonstrict = SRV_CHECKSUM_ALGORITHM_INNODB;
break;
case SRV_CHECKSUM_ALGORITHM_STRICT_NONE:
curr_algo_nonstrict = SRV_CHECKSUM_ALGORITHM_NONE;
break;
default:
ut_error;
}
#ifdef UNIV_INNOCHECKSUM
fprintf(stderr,
#else
ib_logf(IB_LOG_LEVEL_WARN,
#endif
"innodb_checksum_algorithm is set to \"%s\""
" but the page [page id: space=" ULINTPF ","
" page number=" ULINTPF "] contains a valid checksum \"%s\"."
" Accepting the page as valid. Change innodb_checksum_algorithm"
" to \"%s\" to silently accept such pages or rewrite all pages"
" so that they contain \"%s\" checksum.",
buf_checksum_algorithm_name(curr_algo),
space_id, page_no,
buf_checksum_algorithm_name(page_checksum),
buf_checksum_algorithm_name(curr_algo_nonstrict),
buf_checksum_algorithm_name(curr_algo_nonstrict));
}