mariadb/storage/tokudb/ft-index/ft/msg_buffer.cc
Sergei Golubchik b91432b4a4 tokudb 7.5.0
2014-09-23 22:03:35 +02:00

318 lines
12 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2014 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#include "ft/msg_buffer.h"
#include "util/dbt.h"
void message_buffer::create() {
_num_entries = 0;
_memory = nullptr;
_memory_size = 0;
_memory_used = 0;
}
void message_buffer::clone(message_buffer *src) {
_num_entries = src->_num_entries;
_memory_used = src->_memory_used;
_memory_size = src->_memory_size;
XMALLOC_N(_memory_size, _memory);
memcpy(_memory, src->_memory, _memory_size);
}
void message_buffer::destroy() {
if (_memory != nullptr) {
toku_free(_memory);
}
}
void message_buffer::deserialize_from_rbuf(struct rbuf *rb,
int32_t **fresh_offsets, int32_t *nfresh,
int32_t **stale_offsets, int32_t *nstale,
int32_t **broadcast_offsets, int32_t *nbroadcast) {
// read the number of messages in this buffer
int n_in_this_buffer = rbuf_int(rb);
if (fresh_offsets != nullptr) {
XMALLOC_N(n_in_this_buffer, *fresh_offsets);
}
if (stale_offsets != nullptr) {
XMALLOC_N(n_in_this_buffer, *stale_offsets);
}
if (broadcast_offsets != nullptr) {
XMALLOC_N(n_in_this_buffer, *broadcast_offsets);
}
_resize(rb->size + 64); // rb->size is a good hint for how big the buffer will be
// deserialize each message individually, noting whether it was fresh
// and putting its buffer offset in the appropriate offsets array
for (int i = 0; i < n_in_this_buffer; i++) {
XIDS xids;
bool is_fresh;
const ft_msg msg = ft_msg::deserialize_from_rbuf(rb, &xids, &is_fresh);
int32_t *dest;
if (ft_msg_type_applies_once(msg.type())) {
if (is_fresh) {
dest = fresh_offsets ? *fresh_offsets + (*nfresh)++ : nullptr;
} else {
dest = stale_offsets ? *stale_offsets + (*nstale)++ : nullptr;
}
} else {
invariant(ft_msg_type_applies_all(msg.type()) || ft_msg_type_does_nothing(msg.type()));
dest = broadcast_offsets ? *broadcast_offsets + (*nbroadcast)++ : nullptr;
}
enqueue(msg, is_fresh, dest);
toku_xids_destroy(&xids);
}
invariant(_num_entries == n_in_this_buffer);
}
MSN message_buffer::deserialize_from_rbuf_v13(struct rbuf *rb,
MSN *highest_unused_msn_for_upgrade,
int32_t **fresh_offsets, int32_t *nfresh,
int32_t **broadcast_offsets, int32_t *nbroadcast) {
// read the number of messages in this buffer
int n_in_this_buffer = rbuf_int(rb);
if (fresh_offsets != nullptr) {
XMALLOC_N(n_in_this_buffer, *fresh_offsets);
}
if (broadcast_offsets != nullptr) {
XMALLOC_N(n_in_this_buffer, *broadcast_offsets);
}
// Atomically decrement the header's MSN count by the number
// of messages in the buffer.
MSN highest_msn_in_this_buffer = {
.msn = toku_sync_sub_and_fetch(&highest_unused_msn_for_upgrade->msn, n_in_this_buffer)
};
// Create the message buffers from the deserialized buffer.
for (int i = 0; i < n_in_this_buffer; i++) {
XIDS xids;
// There were no stale messages at this version, so call it fresh.
const bool is_fresh = true;
// Increment our MSN, the last message should have the
// newest/highest MSN. See above for a full explanation.
highest_msn_in_this_buffer.msn++;
const ft_msg msg = ft_msg::deserialize_from_rbuf_v13(rb, highest_msn_in_this_buffer, &xids);
int32_t *dest;
if (ft_msg_type_applies_once(msg.type())) {
dest = fresh_offsets ? *fresh_offsets + (*nfresh)++ : nullptr;
} else {
invariant(ft_msg_type_applies_all(msg.type()) || ft_msg_type_does_nothing(msg.type()));
dest = broadcast_offsets ? *broadcast_offsets + (*nbroadcast)++ : nullptr;
}
enqueue(msg, is_fresh, dest);
toku_xids_destroy(&xids);
}
return highest_msn_in_this_buffer;
}
void message_buffer::_resize(size_t new_size) {
XREALLOC_N(new_size, _memory);
_memory_size = new_size;
}
static int next_power_of_two (int n) {
int r = 4096;
while (r < n) {
r*=2;
assert(r>0);
}
return r;
}
struct message_buffer::buffer_entry *message_buffer::get_buffer_entry(int32_t offset) const {
return (struct buffer_entry *) (_memory + offset);
}
void message_buffer::enqueue(const ft_msg &msg, bool is_fresh, int32_t *offset) {
int need_space_here = msg_memsize_in_buffer(msg);
int need_space_total = _memory_used + need_space_here;
if (_memory == nullptr || need_space_total > _memory_size) {
// resize the buffer to the next power of 2 greater than the needed space
int next_2 = next_power_of_two(need_space_total);
_resize(next_2);
}
uint32_t keylen = msg.kdbt()->size;
uint32_t datalen = msg.vdbt()->size;
struct buffer_entry *entry = get_buffer_entry(_memory_used);
entry->type = (unsigned char) msg.type();
entry->msn = msg.msn();
toku_xids_cpy(&entry->xids_s, msg.xids());
entry->is_fresh = is_fresh;
unsigned char *e_key = toku_xids_get_end_of_array(&entry->xids_s);
entry->keylen = keylen;
memcpy(e_key, msg.kdbt()->data, keylen);
entry->vallen = datalen;
memcpy(e_key + keylen, msg.vdbt()->data, datalen);
if (offset) {
*offset = _memory_used;
}
_num_entries++;
_memory_used += need_space_here;
}
void message_buffer::set_freshness(int32_t offset, bool is_fresh) {
struct buffer_entry *entry = get_buffer_entry(offset);
entry->is_fresh = is_fresh;
}
bool message_buffer::get_freshness(int32_t offset) const {
struct buffer_entry *entry = get_buffer_entry(offset);
return entry->is_fresh;
}
ft_msg message_buffer::get_message(int32_t offset, DBT *keydbt, DBT *valdbt) const {
struct buffer_entry *entry = get_buffer_entry(offset);
uint32_t keylen = entry->keylen;
uint32_t vallen = entry->vallen;
enum ft_msg_type type = (enum ft_msg_type) entry->type;
MSN msn = entry->msn;
const XIDS xids = (XIDS) &entry->xids_s;
const void *key = toku_xids_get_end_of_array(xids);
const void *val = (uint8_t *) key + entry->keylen;
return ft_msg(toku_fill_dbt(keydbt, key, keylen), toku_fill_dbt(valdbt, val, vallen), type, msn, xids);
}
void message_buffer::get_message_key_msn(int32_t offset, DBT *key, MSN *msn) const {
struct buffer_entry *entry = get_buffer_entry(offset);
if (key != nullptr) {
toku_fill_dbt(key, toku_xids_get_end_of_array((XIDS) &entry->xids_s), entry->keylen);
}
if (msn != nullptr) {
*msn = entry->msn;
}
}
int message_buffer::num_entries() const {
return _num_entries;
}
size_t message_buffer::buffer_size_in_use() const {
return _memory_used;
}
size_t message_buffer::memory_size_in_use() const {
return sizeof(*this) + _memory_used;
}
size_t message_buffer::memory_footprint() const {
return sizeof(*this) + toku_memory_footprint(_memory, _memory_used);
}
bool message_buffer::equals(message_buffer *other) const {
return (_memory_used == other->_memory_used &&
memcmp(_memory, other->_memory, _memory_used) == 0);
}
void message_buffer::serialize_to_wbuf(struct wbuf *wb) const {
wbuf_nocrc_int(wb, _num_entries);
struct msg_serialize_fn {
struct wbuf *wb;
msg_serialize_fn(struct wbuf *w) : wb(w) { }
int operator()(const ft_msg &msg, bool is_fresh) {
msg.serialize_to_wbuf(wb, is_fresh);
return 0;
}
} serialize_fn(wb);
iterate(serialize_fn);
}
size_t message_buffer::msg_memsize_in_buffer(const ft_msg &msg) {
const uint32_t keylen = msg.kdbt()->size;
const uint32_t datalen = msg.vdbt()->size;
const size_t xidslen = toku_xids_get_size(msg.xids());
return sizeof(struct buffer_entry) + keylen + datalen + xidslen - sizeof(XIDS_S);
}