mariadb/locktree/tests/locktree_single_txnid_optimization.cc

109 lines
3.7 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
#ident "Copyright (c) 2007-2012 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include "locktree_unit_test.h"
namespace toku {
// test that the same txn can relock ranges it already owns
// ensure that existing read locks can be upgrading to
// write locks if overlapping and ensure that existing read
// or write locks are consolidated by overlapping relocks.
void locktree_unit_test::test_single_txnid_optimization(void) {
locktree::manager mgr;
mgr.create(nullptr, nullptr);
DESCRIPTOR desc = nullptr;
DICTIONARY_ID dict_id = { 1 };
locktree *lt = mgr.get_lt(dict_id, desc, compare_dbts, nullptr);
const DBT *zero = get_dbt(0);
const DBT *one = get_dbt(1);
const DBT *two = get_dbt(2);
const DBT *three = get_dbt(3);
int r;
TXNID txnid_a = 1001;
TXNID txnid_b = 2001;
// the single txnid optimization takes advantage of the fact that
// a locktree with only locks for a single txnid can be unlocked
// by just destroy every node. if this is implemented incorrectly,
// then some other txnid's lock might get lost. so test that no
// matter where txnid b takes its write lock in the middle of a bunch
// of txnid a locks, the txnid b lock does not get lost.
for (int where = 0; where < 4; where++) {
range_buffer buffer;
buffer.create();
#define lock_and_append_point_for_txnid_a(key) \
r = lt->acquire_write_lock(txnid_a, key, key, nullptr); \
invariant_zero(r); \
buffer.append(key, key);
#define maybe_point_locks_for_txnid_b(i) \
if (where == i) { \
r = lt->acquire_write_lock(txnid_b, one, one, nullptr); \
invariant_zero(r); \
}
lock_and_append_point_for_txnid_a(two);
maybe_point_locks_for_txnid_b(0);
lock_and_append_point_for_txnid_a(three);
maybe_point_locks_for_txnid_b(1);
lock_and_append_point_for_txnid_a(zero);
maybe_point_locks_for_txnid_b(2);
// txnid b does not take a lock on iteration 3
if (where != 3) {
invariant(num_row_locks(lt) == 4);
} else {
invariant(num_row_locks(lt) == 3);
}
lt->release_locks(txnid_a, &buffer);
// txnid b does not take a lock on iteration 3
if (where != 3) {
invariant(num_row_locks(lt) == 1);
struct verify_fn_obj {
TXNID expected_txnid;
keyrange *expected_range;
comparator *cmp;
bool fn(const keyrange &range, TXNID txnid) {
invariant(txnid == expected_txnid);
keyrange::comparison c = range.compare(cmp, *expected_range);
invariant(c == keyrange::comparison::EQUALS);
return true;
}
} verify_fn;
verify_fn.cmp = lt->m_cmp;
keyrange range;
range.create(one, one);
verify_fn.expected_txnid = txnid_b;
verify_fn.expected_range = &range;
locktree_iterate<verify_fn_obj>(lt, &verify_fn);
lt->remove_overlapping_locks_for_txnid(txnid_b, one, one);
}
buffer.destroy();
}
mgr.release_lt(lt);
mgr.destroy();
}
} /* namespace toku */
int main(void) {
toku::locktree_unit_test test;
test.test_single_txnid_optimization();
return 0;
}